JP2004183732A - Dynamic pressure fluid bearing device, and motor provided with the same - Google Patents

Dynamic pressure fluid bearing device, and motor provided with the same Download PDF

Info

Publication number
JP2004183732A
JP2004183732A JP2002349691A JP2002349691A JP2004183732A JP 2004183732 A JP2004183732 A JP 2004183732A JP 2002349691 A JP2002349691 A JP 2002349691A JP 2002349691 A JP2002349691 A JP 2002349691A JP 2004183732 A JP2004183732 A JP 2004183732A
Authority
JP
Japan
Prior art keywords
shaft
lubricant
thrust
dynamic pressure
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002349691A
Other languages
Japanese (ja)
Other versions
JP4298275B2 (en
Inventor
Keigo Kusaka
圭吾 日下
Daisuke Ito
大輔 伊藤
Hiroaki Saito
浩昭 斎藤
Takafumi Asada
隆文 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002349691A priority Critical patent/JP4298275B2/en
Priority to US10/724,046 priority patent/US7011450B2/en
Priority to CNB2003101169451A priority patent/CN100348877C/en
Publication of JP2004183732A publication Critical patent/JP2004183732A/en
Application granted granted Critical
Publication of JP4298275B2 publication Critical patent/JP4298275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain stable thrust floating characteristics of a dynamic pressure fluid bearing device, and prevent the leak and shortfall of a lubricant. <P>SOLUTION: Inside a shaft 2, a pressure adjusting hole 2b to communicate the center part of a thrust surface 2a facing a thrust plate 3 with a lubricant pool part 1a in an inner circumferential surface of a sleeve 1 is provided. When the shaft 2 floats, the lubricant goes through the pressure adjusting hole 2b to be circulated to the lubricant pool part 1a. Since pressure between the thrust plate 3 and the thrust surface 2a of the shaft 2 is adjusted by change of floating quantity of the shaft 2, stable floating characteristics can be obtained. In addition, in a case where axial vibration or impact is added to this bearing device, lubricant in the lubricant pool part 1a flows through an asymmetric dynamic pressure generating groove 1c below the lubricant pool part 1a toward the thrust plate 3, and it moves to a center part of the thrust surface 2a of the shaft 2 to return through the pressure adjusting hole 2b provided in the shaft 2 to an original position. Shortfall of lubricant in the bearing due to leak of the lubricant can thus be prevented. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、潤滑剤の漏洩を起こさず、安定した浮上特性を持つ動圧流体軸受装置、及びその動圧流体軸受装置を備えた回転する磁気ディスクから信号の記録再生を行うディスク記録装置に用いられるモータに関する。
【0002】
【従来の技術】
図6は、動圧流体軸受の従来例についての断面図である。
【0003】
この動圧流体軸受は、スリーブ11の下端面に円筒状穴を閉塞するスラスト板13が固定され、円筒状穴には回転自在な軸12が挿入されている。
【0004】
円筒状穴の開口部は円筒状穴より大径の大径穴11aとなっている。
【0005】
前記軸12の外周面には、スリーブ11の円筒状穴の内周面と対向する図7に示すようにスパイラル状の動圧発生溝12aが設けられている。
【0006】
前記動圧発生溝12aは軸受の作動中即ち軸12とスリーブ11との少なくとも一方の回転中に軸12とスリーブ11の間のすきま内の潤滑剤をスラスト板13の方向へ流動させる作用を行う。
【0007】
前記軸12のスラスト板13と対向する端面の中央部には軸方向に循環穴12bが設けられ、また軸12には軸12の作動中に循環穴12bから大径穴11aに通ずる連通穴12cが設けられている(例えば特許文献1参照)。
【0008】
以上のように構成されているので、軸12の静止時には軸12の一方の端面とスラスト板13とは接触しているが、軸12が回転するとスパイラル状の動圧発生溝12aのポンピング作用によって大径穴11a内の潤滑剤がスラスト板13の方向に流動し、軸12が浮上する。前記軸12が浮上すると、潤滑剤は循環穴12bおよび連通穴12cを通って大径穴11aに流出する。スラスト板13と軸12の一方の端面の間の圧力は軸12の浮上量の変化によって調整されるので、安定した浮上特性が得られる。
【0009】
【特許文献1】
特開昭58−24616号公報
【0010】
【発明が解決しようとする課題】
しかしながら、上記のような構成では、軸方向に振動、衝撃が加担された場合には、スリーブ11の開口部に設けた大径穴11a部へ流出する潤滑剤が、軸受の外部に漏洩し、潤滑剤切れが生じるという重大な欠点を有していた。
【0011】
本発明は、上記欠点を鑑み、潤滑剤の漏洩がなく、軸方向の振動、衝撃が加担された場合でも安定した浮上特性を有する信頼性の高い動圧流体軸受装置及びその動圧流体軸受装置を備えたモータを提供するものである。
【0012】
【課題を解決するための手段】
上記の目的を達成するために本発明の請求項1記載の動圧流体軸受装置は、軸受穴を有するスリーブと、この軸受穴に相対回転自在に挿入された軸と、前記スリーブ端面に固定され、前記軸の一端面と当接するスラスト軸受部材からなり、前記軸の一端面と前記スラスト軸受部材との少なくとも一方にはスラスト側動圧発生溝を有し、前記スリーブの軸受穴の内周面または前記軸の外周面との少なくとも一方には潤滑剤を前記スラスト軸受部材へ流動させる作用を行う少なくとも2組のラジアル側動圧発生溝を有し、前記2組の動圧発生溝の中間において、前記動圧発生溝部におけるスリーブと軸との間隙よりも大きく、外部に臨まない潤滑剤プール部が設けられている動圧流体軸受装置において、前記軸の前記スラスト軸受部材と対向する端面の中央部に設けられ、前記潤滑剤プール部と連通する圧力調整穴を有していることを特徴とする。
【0013】
この構成によると、動圧流体軸受装置は安定したスラスト浮上特性が得られると共に、軸方向の振動や衝撃が加担された場合でも、軸受内の潤滑剤が軸受外部に漏洩して軸受内が潤滑剤切れを起こすことを防ぐことができる。
【0014】
また、本発明の請求項2記載の動圧流体軸受装置は、軸受穴を有するスリーブと、この軸受穴に相対回転自在に挿入された軸と、前記スリーブ端面に固定され、前記軸の一端面と当接するスラスト軸受部材からなり、前記軸の一端面と前記スラスト軸受部材との少なくとも一方にはスラスト側動圧発生溝を有し、前記スリーブの軸受穴の内周面または前記軸の外周面との少なくとも一方には潤滑剤を前記スラスト軸受部材へ流動させる作用を行う少なくとも2組のラジアル側動圧発生溝を有し、前記2組の動圧発生溝の中間において、前記動圧発生溝部におけるスリーブと軸との間隙よりも大きく、外部に臨まない潤滑剤プール部が設けられている動圧流体軸受装置において、前記軸の前記スラスト軸受部材と対向する端面の前記スラスト側動圧発生溝の外周近傍に設けられ、前記潤滑剤プール部と連通する圧力調整穴を有していることを特徴とする。
【0015】
この構成によると、動圧流体軸受装置は安定したスラスト浮上特性が得られると共に、軸方向の振動や衝撃が加担された場合でも、軸受内の潤滑剤が軸受外部に漏洩して軸受内が潤滑剤切れを起こすことを防ぐことができる。加えて、スラスト軸受部材と対向する軸の端面の中央部におけるスラスト圧力分布の最高部を有効に活用でき、装置をコンパクトに設計できる。
【0016】
なお、本発明の動圧流体軸受装置は、モータの他、種々の機械器具に利用することができる。
【0017】
次に、本発明のモータは、上記の動圧流体軸受装置を備え、軸又はスリーブがロータの一部として回転するものである。このモータは、ハードディスク等の磁気ディスク、光磁気ディスク、CD、DVD等の光ディスクを始めとする記録媒体駆動装置用のスピンドルモータとして用いることができる。
【0018】
【発明の実施の形態】
本発明の各実施の形態を図1から図5を参照しつつ説明する。
【0019】
図1から図3は、本発明の実施の形態の一例としての請求項1記載の動圧流体軸受装置を備えたハードディスク駆動用のスピンドルモータについてのものであって、そのうち図2はスリーブ内周面の動圧発生溝の詳細図、図3(イ)はスラスト軸受面の詳細図、(ロ)スラスト圧力分布の説明図である。
【0020】
図1に示すように、スピンドルモータのベース4の嵌合穴に略円筒形状のスリーブ1の下端面が、例えば圧入やレーザー溶接、接着剤による接着などにより嵌合固定されることによって、スリーブ1が固定されている。
【0021】
スリーブ1には、碗形状のロータハブ5の中央部に上端部が固定されて内方に突出した軸2が円筒状穴に回転自在に挿入されており、スリーブ1の下端面には円筒状穴を閉塞するスラスト板3が固定されている。
【0022】
ロータハブ5の外周壁の内周面には円筒状のロータマグネット6が内嵌固定され、ステータコア7と径方向空隙を隔てて相対している。ロータは、軸2とロータハブ5とロータマグネット6からなる。ロータハブ5の外周壁の外周面にはハードディスクが外嵌保持される。
【0023】
スリーブ1及びスラスト板3と軸2との間隙には、潤滑剤が充填され、これらにより動圧流体軸受装置を構成している。
【0024】
軸2の下端面は、軸心方向に対し垂直なスラスト面2aが形成され、潤滑剤を介してスラスト板3の上面と軸心方向に相対し、スラスト軸受部を構成している。
【0025】
スリーブ1の円周の上下中間部に環状凹形状の潤滑剤プール部1aが形成されている。
【0026】
スリーブ1の潤滑剤プール部1aの上下における内周面と、軸2の外周面とがそれぞれ潤滑剤を介して径方向に相対することにより、上下ラジアル軸受部を構成している。この上下ラジアル軸受部におけるスリーブ1の内周部には軸2の回転時にスラスト板3に向かって潤滑剤を流動させるための非対称の動圧発生溝1b、1cが設けられている。
【0027】
また、軸2の内部には、スラスト板3と対向するスラスト面2aの中央部とスリーブ1の内周面の潤滑剤プール部1aとを連通する圧力調整穴2bが設けられている。
【0028】
以上の構成により、軸2の静止時には軸2の下端面のスラスト面2aとスラスト板3とは接触しているが、軸2が回転すると図2に示すように非対称のヘリングボーン状の動圧発生溝2cのポンピング作用によって潤滑剤プール部1a内の潤滑剤がスラスト板3の方向に流動し、軸2が浮上する。軸2が浮上すると、潤滑剤は圧力調整穴2bを通って潤滑剤プール部1aへと循環する。スラスト板3と軸2の下端面のスラスト面2aの間の圧力は軸2の浮上量の変化によって調整されるので、図3に示すスラスト圧力により安定した浮上特性が得られる。加えて、軸受装置に軸方向の振動や衝撃が加担された場合、軸2の停止時には潤滑剤の表面張力(毛細管現象)によりスリーブ1と軸2の間隙にとどまり軸受外部には漏洩しない。また、軸2の回転時には、潤滑剤プール部1aよりも上の非対称の動圧発生溝1bにより潤滑剤が潤滑剤プール部1aに移動し、シール作用が働き軸受外部には漏洩しない。
【0029】
潤滑剤プール部1aの潤滑剤は、潤滑剤プール部1aよりも下の非対称の動圧発生溝1cによりスラスト板3の方向に流動し、軸2のスラスト面2aの中央部まで移動し、軸2内に設けた圧力調整穴2bを通り、元の位置に戻ることで、潤滑剤の漏洩による軸受内の潤滑剤切れを防ぐことができる。
【0030】
請求項2記載の動圧流体軸受装置においては、図4に示すように、軸2の内部には、スラスト板3と対向するスラスト面2aの動圧発生溝2cの外周近傍部とスリーブ1の内周面の潤滑剤プール部1aとを連通する圧力調整穴2dが設けられており、軸2の静止時には軸2の下端面のスラスト面2aとスラスト板3とは接触しているが、軸2が回転すると非対称のヘリングボーン状の動圧発生溝2cのポンピング作用によって潤滑剤プール部1a内の潤滑剤がスラスト板3の方向に流動し、軸2が浮上する。軸2が浮上すると、潤滑剤は圧力調整穴2dを通って潤滑剤プール部1aへと循環する。スラスト板3と軸2の下端面のスラスト面2aの間の圧力は軸2の浮上量の変化によって調整されるので、安定した浮上特性が得られる。加えて、軸受装置に軸方向の振動や衝撃が加担された場合、軸2の停止時には潤滑剤の表面張力(毛細管現象)によりスリーブ1と軸2の間隙にとどまり軸受外部には漏洩しない。また、軸2の回転時には、潤滑剤プール部1aよりも上の非対称の動圧発生溝1bにより潤滑剤が潤滑剤プール部1aに移動し、シール作用が働き軸受外部には漏洩しない。
【0031】
潤滑剤プール部1aの潤滑剤は、潤滑剤プール部1aよりも下の非対称の動圧発生溝1cによりスラスト板3の方向に流動し、軸2のスラスト面2aの動圧発生溝2cの外周近傍部まで移動し、軸2内に設けた圧力調整穴2dを通り、元の位置に戻ることで、潤滑剤の漏洩による軸受内の潤滑剤切れを防ぐことができると共に、図5に示すスラスト圧力分布によりスラスト面2aの中央部の圧力最高部を浮上に対して有効に活用でき、動圧流体軸受装置及び、スピンドルモータをコンパクトにすることができる。
【0032】
なお、軸2の下端面のスラスト面2aに設けた動圧発生溝2cは、対面するスラスト板3の表面に設けても良い。
【0033】
また、軸2の内部に設けられ、スリーブ1内周面の潤滑剤プール部1aへと連通する圧力調整穴2b、2dは2本以上であってもよい。
【0034】
軸2の内部に設けられ、スリーブ1内周面の潤滑剤プール部1aとスラスト板3と対向するスラスト面2aの動圧発生溝2cの外周近傍部とをする圧力調整穴2dについても2本以上であってもよい。
【0035】
以上の実施の形態についての記述における上下位置関係は、単に図に基づいた説明の便宜のためのものであって、実際の使用状態等を限定するものではない。
【0036】
【発明の効果】
本発明の動圧流体軸受装置又はモータによれば、軸の内部には、スラスト板と対向するスラスト面中央部とスリーブ内周面の潤滑剤プール部とを連通する圧力調整穴が設けられていることより、安定した浮上特性が得られると共に、軸方向に振動や衝撃が加担された場合に、軸受外部への潤滑剤の漏洩や、軸受内の潤滑剤切れを防ぐことができる。
【0037】
また、軸内部のスリーブ内周面の潤滑剤プール部と連通する圧力調整穴をスラスト板と対向するスラスト面の動圧発生溝の外周近傍部に設けることにより、スラスト面中央部の圧力最後部を浮上に対して有効に活用でき、動圧流体軸受装置及び、スピンドルモータをコンパクトにすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における動圧流体軸受装置を備えたハードディスク駆動用のスピンドルモータの模式的な断面図
【図2】図1に示すスリーブ内周面の動圧発生溝の詳細図
【図3】(イ)図1に示すスラスト軸受面の詳細図
(ロ)スラスト圧力分布の説明図
【図4】本発明の第2の実施形態における動圧流体軸受装置を備えたハードディスク駆動用のスピンドルモータの模式的な断面図
【図5】(イ)図4に示すスラスト軸受面の詳細図
(ロ)スラスト圧力分布の説明図
【図6】従来の動圧流体軸受の断面図
【図7】図6に示す軸外周面の動圧発生溝の詳細図
【符号の説明】
1 スリーブ
1a 潤滑剤プール部
1b、1c 非対称動圧発生溝
2 軸
2a スラスト面
2b、2d 圧力調整穴
2c 動圧発生溝
3 スラスト板
4 ベース
5 ロータハブ
6 ロータマグネット
7 ステータコア
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used for a hydrodynamic bearing device having stable floating characteristics without causing leakage of a lubricant, and a disk recording device for recording and reproducing signals from a rotating magnetic disk provided with the hydrodynamic bearing device. Related motors.
[0002]
[Prior art]
FIG. 6 is a sectional view of a conventional example of a hydrodynamic bearing.
[0003]
In this hydrodynamic bearing, a thrust plate 13 for closing a cylindrical hole is fixed to a lower end surface of a sleeve 11, and a rotatable shaft 12 is inserted into the cylindrical hole.
[0004]
The opening of the cylindrical hole is a large-diameter hole 11a having a larger diameter than the cylindrical hole.
[0005]
On the outer peripheral surface of the shaft 12, a spiral dynamic pressure generating groove 12a facing the inner peripheral surface of the cylindrical hole of the sleeve 11 is provided as shown in FIG.
[0006]
The dynamic pressure generating groove 12a serves to cause the lubricant in the clearance between the shaft 12 and the sleeve 11 to flow toward the thrust plate 13 during operation of the bearing, that is, during rotation of at least one of the shaft 12 and the sleeve 11. .
[0007]
A circulation hole 12b is provided in the center of the end face of the shaft 12 facing the thrust plate 13, and a communication hole 12c is formed in the shaft 12 so as to communicate with the large hole 11a from the circulation hole 12b during operation of the shaft 12. Is provided (for example, see Patent Document 1).
[0008]
When the shaft 12 is stationary, one end face of the shaft 12 and the thrust plate 13 are in contact with each other when the shaft 12 is at rest. However, when the shaft 12 rotates, the spiral dynamic pressure generating groove 12a performs a pumping action. The lubricant in the large-diameter hole 11a flows in the direction of the thrust plate 13, and the shaft 12 floats. When the shaft 12 floats, the lubricant flows out to the large-diameter hole 11a through the circulation hole 12b and the communication hole 12c. Since the pressure between the thrust plate 13 and one end face of the shaft 12 is adjusted by the change in the floating amount of the shaft 12, stable floating characteristics can be obtained.
[0009]
[Patent Document 1]
JP-A-58-24616
[Problems to be solved by the invention]
However, in the above configuration, when vibration and impact are applied in the axial direction, the lubricant flowing out to the large-diameter hole 11a provided in the opening of the sleeve 11 leaks to the outside of the bearing, It had the serious disadvantage of running out of lubricant.
[0011]
SUMMARY OF THE INVENTION In view of the above-described disadvantages, the present invention provides a highly reliable hydrodynamic bearing device that has no leakage of lubricant and has stable levitation characteristics even when subjected to axial vibration and impact, and the hydrodynamic bearing device. The present invention provides a motor having:
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a hydrodynamic bearing device according to claim 1 of the present invention comprises a sleeve having a bearing hole, a shaft inserted into the bearing hole so as to be relatively rotatable, and fixed to an end face of the sleeve. A thrust bearing member abutting on one end surface of the shaft, at least one of the one end surface of the shaft and the thrust bearing member has a thrust-side dynamic pressure generating groove, and an inner peripheral surface of a bearing hole of the sleeve. Alternatively, at least one of the outer peripheral surfaces of the shaft has at least two sets of radial-side dynamic pressure generating grooves that act to cause a lubricant to flow to the thrust bearing member. In the hydrodynamic bearing device provided with a lubricant pool that is larger than the gap between the sleeve and the shaft in the dynamic pressure generating groove and does not face the outside, the shaft opposes the thrust bearing member of the shaft. Provided at the center of the surface, characterized in that it has a pressure adjusting hole that communicates with the lubricant pool section.
[0013]
According to this configuration, the hydrodynamic bearing device can obtain stable thrust floating characteristics, and even when axial vibration or impact is applied, the lubricant in the bearing leaks to the outside of the bearing to lubricate the inside of the bearing. It is possible to prevent the agent from running out.
[0014]
A hydrodynamic bearing device according to a second aspect of the present invention includes a sleeve having a bearing hole, a shaft inserted into the bearing hole so as to be rotatable relative to the sleeve, and an end surface of the shaft fixed to the end surface of the sleeve. A thrust bearing member which is in contact with the shaft, at least one of the one end surface of the shaft and the thrust bearing member has a thrust-side dynamic pressure generating groove, and an inner peripheral surface of a bearing hole of the sleeve or an outer peripheral surface of the shaft. At least one of the two has at least two sets of radial-side dynamic pressure generating grooves for causing a lubricant to flow to the thrust bearing member, and the dynamic pressure generating groove portion is provided between the two sets of dynamic pressure generating grooves. In the hydrodynamic bearing device provided with a lubricant pool portion that is larger than the gap between the sleeve and the shaft and does not face the outside, the thrust side of the end surface of the shaft facing the thrust bearing member Provided near the outer circumference of the pressure generating groove, characterized in that it has a pressure adjusting hole that communicates with the lubricant pool section.
[0015]
According to this configuration, the hydrodynamic bearing device can obtain stable thrust floating characteristics, and even when axial vibration or impact is applied, the lubricant in the bearing leaks to the outside of the bearing to lubricate the inside of the bearing. It is possible to prevent the agent from running out. In addition, the highest part of the thrust pressure distribution at the center of the end face of the shaft facing the thrust bearing member can be effectively used, and the device can be designed compact.
[0016]
In addition, the hydrodynamic bearing device of the present invention can be used for various types of machinery other than the motor.
[0017]
Next, a motor according to the present invention includes the above hydrodynamic bearing device, and the shaft or the sleeve rotates as a part of the rotor. This motor can be used as a spindle motor for a recording medium drive such as a magnetic disk such as a hard disk, a magneto-optical disk, or an optical disk such as a CD or DVD.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to FIGS.
[0019]
FIGS. 1 to 3 relate to a spindle motor for driving a hard disk provided with the hydrodynamic bearing device according to claim 1 as an example of an embodiment of the present invention. FIG. 3A is a detailed view of a thrust bearing surface, and FIG. 3B is an explanatory view of a thrust pressure distribution.
[0020]
As shown in FIG. 1, the lower end surface of the substantially cylindrical sleeve 1 is fitted and fixed to the fitting hole of the base 4 of the spindle motor by, for example, press-fitting, laser welding, bonding with an adhesive, or the like. Has been fixed.
[0021]
A shaft 2 whose upper end is fixed to the center of a bowl-shaped rotor hub 5 and protrudes inward is rotatably inserted into the cylindrical hole in the sleeve 1, and a cylindrical hole is formed in the lower end surface of the sleeve 1. Is fixed.
[0022]
A cylindrical rotor magnet 6 is internally fixed to the inner peripheral surface of the outer peripheral wall of the rotor hub 5 and faces the stator core 7 with a radial gap therebetween. The rotor includes a shaft 2, a rotor hub 5, and a rotor magnet 6. A hard disk is fitted and held on the outer peripheral surface of the outer peripheral wall of the rotor hub 5.
[0023]
The gap between the sleeve 1 and the thrust plate 3 and the shaft 2 is filled with a lubricant, and these constitute a hydrodynamic bearing device.
[0024]
The lower end surface of the shaft 2 is formed with a thrust surface 2a perpendicular to the axial direction, and faces the upper surface of the thrust plate 3 in the axial direction via a lubricant to form a thrust bearing portion.
[0025]
An annular concave lubricant pool 1a is formed at the upper and lower middle part of the circumference of the sleeve 1.
[0026]
The upper and lower inner peripheral surfaces of the lubricant pool portion 1a of the sleeve 1 and the outer peripheral surface of the shaft 2 are radially opposed to each other via a lubricant, thereby forming a vertical radial bearing portion. Asymmetrical dynamic pressure generating grooves 1b and 1c for allowing the lubricant to flow toward the thrust plate 3 when the shaft 2 rotates are provided in the inner peripheral portion of the sleeve 1 in the upper and lower radial bearings.
[0027]
Further, inside the shaft 2, there is provided a pressure adjusting hole 2 b which communicates the center of the thrust surface 2 a facing the thrust plate 3 with the lubricant pool 1 a on the inner peripheral surface of the sleeve 1.
[0028]
With the above configuration, when the shaft 2 is stationary, the thrust surface 2a at the lower end surface of the shaft 2 is in contact with the thrust plate 3, but when the shaft 2 rotates, an asymmetric herringbone-shaped dynamic pressure as shown in FIG. The lubricant in the lubricant pool portion 1a flows toward the thrust plate 3 by the pumping action of the generation groove 2c, and the shaft 2 floats. When the shaft 2 rises, the lubricant circulates through the pressure adjusting hole 2b to the lubricant pool 1a. Since the pressure between the thrust plate 3 and the thrust surface 2a at the lower end surface of the shaft 2 is adjusted by the change in the floating amount of the shaft 2, stable floating characteristics can be obtained by the thrust pressure shown in FIG. In addition, when axial vibration or impact is applied to the bearing device, when the shaft 2 stops, the lubricant stays in the gap between the sleeve 1 and the shaft 2 due to the surface tension (capillary phenomenon) of the lubricant and does not leak outside the bearing. Also, when the shaft 2 rotates, the lubricant moves to the lubricant pool 1a by the asymmetric dynamic pressure generating groove 1b above the lubricant pool 1a, and a sealing action is performed to prevent the lubricant from leaking outside the bearing.
[0029]
The lubricant in the lubricant pool 1a flows in the direction of the thrust plate 3 by the asymmetric dynamic pressure generating groove 1c below the lubricant pool 1a, moves to the center of the thrust surface 2a of the shaft 2, and By returning to the original position through the pressure adjusting hole 2b provided in the inside 2, it is possible to prevent running out of the lubricant in the bearing due to leakage of the lubricant.
[0030]
In the hydrodynamic bearing device according to the second aspect, as shown in FIG. 4, inside the shaft 2, the portion near the outer periphery of the dynamic pressure generating groove 2 c of the thrust surface 2 a facing the thrust plate 3 and the sleeve 1 A pressure adjusting hole 2d communicating with the lubricant pool portion 1a on the inner peripheral surface is provided. When the shaft 2 is stationary, the thrust surface 2a at the lower end surface of the shaft 2 and the thrust plate 3 are in contact with each other. When the shaft 2 rotates, the lubricant in the lubricant pool 1a flows in the direction of the thrust plate 3 by the pumping action of the asymmetric herringbone-shaped dynamic pressure generating groove 2c, and the shaft 2 floats. When the shaft 2 floats, the lubricant circulates through the pressure adjusting hole 2d to the lubricant pool 1a. Since the pressure between the thrust plate 3 and the thrust surface 2a at the lower end surface of the shaft 2 is adjusted by a change in the floating amount of the shaft 2, stable floating characteristics are obtained. In addition, when axial vibration or impact is applied to the bearing device, when the shaft 2 stops, the lubricant stays in the gap between the sleeve 1 and the shaft 2 due to the surface tension (capillary phenomenon) of the lubricant and does not leak outside the bearing. Also, when the shaft 2 rotates, the lubricant moves to the lubricant pool 1a by the asymmetric dynamic pressure generating groove 1b above the lubricant pool 1a, and a sealing action is performed to prevent the lubricant from leaking outside the bearing.
[0031]
The lubricant in the lubricant pool 1a flows in the direction of the thrust plate 3 by the asymmetric dynamic pressure generating groove 1c below the lubricant pool 1a, and the outer periphery of the dynamic pressure generating groove 2c on the thrust surface 2a of the shaft 2. By moving to the vicinity and passing through the pressure adjusting hole 2d provided in the shaft 2 and returning to the original position, it is possible to prevent running out of the lubricant in the bearing due to leakage of the lubricant, and to obtain the thrust shown in FIG. Due to the pressure distribution, the highest pressure portion at the center of the thrust surface 2a can be effectively used for floating, and the hydrodynamic bearing device and the spindle motor can be made compact.
[0032]
The dynamic pressure generating groove 2c provided on the thrust surface 2a at the lower end surface of the shaft 2 may be provided on the surface of the thrust plate 3 facing the same.
[0033]
Further, two or more pressure adjusting holes 2b and 2d provided inside the shaft 2 and communicating with the lubricant pool 1a on the inner peripheral surface of the sleeve 1 may be provided.
[0034]
Two pressure adjusting holes 2d are provided inside the shaft 2 and serve as the lubricant pool 1a on the inner peripheral surface of the sleeve 1 and the vicinity of the outer periphery of the dynamic pressure generating groove 2c on the thrust surface 2a facing the thrust plate 3. It may be the above.
[0035]
The vertical positional relationship in the description of the above embodiment is merely for convenience of description based on the drawings, and does not limit the actual use state and the like.
[0036]
【The invention's effect】
According to the hydrodynamic bearing device or the motor of the present invention, the shaft is provided with a pressure adjusting hole communicating the thrust surface central portion facing the thrust plate and the lubricant pool portion on the sleeve inner peripheral surface. Thus, stable floating characteristics can be obtained, and when vibration or impact is applied in the axial direction, leakage of the lubricant to the outside of the bearing and running out of the lubricant in the bearing can be prevented.
[0037]
In addition, by providing a pressure adjusting hole communicating with the lubricant pool portion on the inner peripheral surface of the sleeve inside the shaft near the outer periphery of the dynamic pressure generating groove on the thrust surface facing the thrust plate, the pressure rearmost portion at the center of the thrust surface Can be effectively used for floating, and the hydrodynamic bearing device and the spindle motor can be made compact.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a spindle motor for driving a hard disk provided with a hydrodynamic bearing device according to a first embodiment of the present invention. FIG. 2 is a dynamic pressure generating groove on the inner peripheral surface of a sleeve shown in FIG. (B) Detailed view of the thrust bearing surface shown in FIG. 1 (b) Explanatory view of the thrust pressure distribution FIG. 4 is provided with a hydrodynamic bearing device according to a second embodiment of the present invention. Fig. 5 (a) Detailed view of the thrust bearing surface shown in Fig. 4 (b) Illustration of thrust pressure distribution [Fig. 6] Cross section of conventional hydrodynamic bearing FIG. 7 is a detailed view of the dynamic pressure generating groove on the outer peripheral surface of the shaft shown in FIG.
DESCRIPTION OF SYMBOLS 1 Sleeve 1a Lubricant pool part 1b, 1c Asymmetric dynamic pressure generating groove 2 Shaft 2a Thrust surface 2b, 2d Pressure adjusting hole 2c Dynamic pressure generating groove 3 Thrust plate 4 Base 5 Rotor hub 6 Rotor magnet 7 Stator core

Claims (3)

軸受穴を有するスリーブと、この軸受穴に相対回転自在に挿入された軸と、前記スリーブ端面に固定され、前記軸の一端面と当接するスラスト軸受部材からなり、前記軸の一端面と前記スラスト軸受部材との少なくとも一方にはスラスト側動圧発生溝を有し、前記スリーブの軸受穴の内周面または前記軸の外周面との少なくとも一方には潤滑剤を前記スラスト軸受部材へ流動させる作用を行う少なくとも2組のラジアル側動圧発生溝を有し、前記2組の動圧発生溝の中間において、前記動圧発生溝部におけるスリーブと軸との間隙よりも大きく、外部に臨まない潤滑剤プール部が設けられている動圧流体軸受装置において、前記軸の前記スラスト軸受部材と対向する端面の中央部に設けられ、前記潤滑剤プール部と連通する圧力調整穴を有していることを特徴とする動圧流体軸受装置。A sleeve having a bearing hole, a shaft inserted into the bearing hole so as to be relatively rotatable, and a thrust bearing member fixed to the end face of the sleeve and abutting against one end face of the shaft, wherein one end face of the shaft and the thrust At least one of the bearing members has a thrust-side dynamic pressure generating groove, and at least one of the inner peripheral surface of the bearing hole of the sleeve and the outer peripheral surface of the shaft has an action of flowing a lubricant to the thrust bearing member. Having at least two sets of radial-side dynamic pressure generating grooves, wherein the lubricant is larger than the gap between the sleeve and the shaft in the dynamic pressure generating grooves in the middle of the two sets of dynamic pressure generating grooves. In the hydrodynamic bearing device provided with a pool portion, the hydrodynamic bearing device has a pressure adjusting hole provided at a central portion of an end surface of the shaft facing the thrust bearing member and communicating with the lubricant pool portion. Hydrodynamic bearing apparatus characterized by there. 軸受穴を有するスリーブと、この軸受穴に相対回転自在に挿入された軸と、前記スリーブ端面に固定され、前記軸の一端面と当接するスラスト軸受部材からなり、前記軸の一端面と前記スラスト軸受部材との少なくとも一方にはスラスト側動圧発生溝を有し、前記スリーブの軸受穴の内周面または前記軸の外周面との少なくとも一方には潤滑剤を前記スラスト軸受部材へ流動させる作用を行う少なくとも2組のラジアル側動圧発生溝を有し、前記2組の動圧発生溝の中間において、前記動圧発生溝部におけるスリーブと軸との間隙よりも大きく、外部に臨まない潤滑剤プール部が設けられている動圧流体軸受装置において、前記軸の前記スラスト軸受部材と対向する端面の前記スラスト側動圧発生溝の外周近傍に設けられ、前記潤滑剤プール部と連通する圧力調整穴を有していることを特徴とする動圧流体軸受装置。A sleeve having a bearing hole, a shaft inserted into the bearing hole so as to be relatively rotatable, and a thrust bearing member fixed to the end face of the sleeve and abutting against one end face of the shaft, wherein one end face of the shaft and the thrust At least one of the bearing members has a thrust-side dynamic pressure generating groove, and at least one of the inner peripheral surface of the bearing hole of the sleeve and the outer peripheral surface of the shaft has an action of flowing a lubricant to the thrust bearing member. Having at least two sets of radial-side dynamic pressure generating grooves, wherein the lubricant is larger than the gap between the sleeve and the shaft in the dynamic pressure generating grooves in the middle of the two sets of dynamic pressure generating grooves. In the hydrodynamic bearing device provided with a pool portion, the lubricant pool is provided near an outer periphery of the thrust-side dynamic pressure generating groove on an end surface of the shaft facing the thrust bearing member, and the lubricant pool is provided. Hydrodynamic bearing apparatus characterized in that it has a pressure adjusting hole communicating with. 請求項1又は2記載の動圧気体軸受装置を備え、スリーブ又は軸がロータの一部として回転するモータ。A motor comprising the dynamic pressure gas bearing device according to claim 1 or 2, wherein a sleeve or a shaft rotates as a part of a rotor.
JP2002349691A 2002-12-02 2002-12-02 Hydrodynamic bearing device and motor equipped with the same Expired - Fee Related JP4298275B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002349691A JP4298275B2 (en) 2002-12-02 2002-12-02 Hydrodynamic bearing device and motor equipped with the same
US10/724,046 US7011450B2 (en) 2002-12-02 2003-12-01 Fluid dynamic bearing device and motor including the device
CNB2003101169451A CN100348877C (en) 2002-12-02 2003-12-02 Fluid dynamic bearing device and motor including the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349691A JP4298275B2 (en) 2002-12-02 2002-12-02 Hydrodynamic bearing device and motor equipped with the same

Publications (2)

Publication Number Publication Date
JP2004183732A true JP2004183732A (en) 2004-07-02
JP4298275B2 JP4298275B2 (en) 2009-07-15

Family

ID=32752151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349691A Expired - Fee Related JP4298275B2 (en) 2002-12-02 2002-12-02 Hydrodynamic bearing device and motor equipped with the same

Country Status (1)

Country Link
JP (1) JP4298275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038444A1 (en) * 2004-10-07 2006-04-13 Ntn Corporation Dynamic pressure bearing device
DE102004040295B4 (en) 2004-08-19 2017-03-02 Minebea Co., Ltd. Hydrodynamic bearing arrangement for an electric motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004040295B4 (en) 2004-08-19 2017-03-02 Minebea Co., Ltd. Hydrodynamic bearing arrangement for an electric motor
DE102004040295B9 (en) * 2004-08-19 2017-07-13 Minebea Co., Ltd. Hydrodynamic bearing arrangement for an electric motor
WO2006038444A1 (en) * 2004-10-07 2006-04-13 Ntn Corporation Dynamic pressure bearing device

Also Published As

Publication number Publication date
JP4298275B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
US7201517B2 (en) Hydrodynamic bearing device and a recording disk drive equipped with it
US7391139B2 (en) Spindle motor and rotation apparatus
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP2006283773A (en) Dynamic pressure fluid bearing device and small-sized motor having the same
US8304946B2 (en) Spindle motor
JP2004011897A (en) Dynamic-pressure bearing device
JP2005003115A (en) Dynamic pressure bearing device, and manufacturing method for the same
JP2011080597A (en) Fluid dynamic pressure bearing, motor, and recording medium drive device
JP2014005934A (en) Bearing mechanism, motor and disk driving device
JP2007252168A (en) Fluid-bearing type rotary device
JP2003148457A (en) Dynamic pressure bearing device
US20070071378A1 (en) Hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
US20100166346A1 (en) Dynamic bearing device
JP2008121849A (en) Dynamic pressure fluid bearing device, spindle motor and record reproduction device
JP2004183772A (en) Fluid dynamic bearing and disk rotating device
JP2006118531A (en) Dynamic pressure bearing device, motor using the same and disc driving device
JP2005016556A (en) Conical dynamic pressure bearing device, and recording disk drive device having the same
JP2004183732A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JP2006112614A (en) Dynamic pressure bearing device
JP2004183866A (en) Fluid dynamic bearing and disk drive
JP5726687B2 (en) Fluid dynamic bearing device
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JP2007060731A (en) Spindle motor and rotary device
JP2002054628A (en) Dynamic pressure fluid bearing device and spindle motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051202

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20060112

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Effective date: 20070515

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080606

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees