JP2004183579A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2004183579A
JP2004183579A JP2002352950A JP2002352950A JP2004183579A JP 2004183579 A JP2004183579 A JP 2004183579A JP 2002352950 A JP2002352950 A JP 2002352950A JP 2002352950 A JP2002352950 A JP 2002352950A JP 2004183579 A JP2004183579 A JP 2004183579A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
predetermined
value
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002352950A
Other languages
English (en)
Other versions
JP3944731B2 (ja
Inventor
Yasuki Tamura
保樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002352950A priority Critical patent/JP3944731B2/ja
Publication of JP2004183579A publication Critical patent/JP2004183579A/ja
Application granted granted Critical
Publication of JP3944731B2 publication Critical patent/JP3944731B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】空燃比を強制変調させる場合において、過渡運転時においても触媒コンバータの排気浄化性能を高く維持可能な内燃機関の排気浄化装置を提供する。
【解決手段】内燃機関の加速運転時或いは減速運転時に(S10)、空燃比強制変調手段による強制変調の所定の振幅を定常運転時に比べて大きくする変調振幅増大手段を備えるようにした(S14)。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に係り、詳しくは、空燃比を強制変調させることにより触媒コンバータの浄化性能を向上させる技術に関する。
【0002】
【関連する背景技術】
白金(Pt)等の貴金属を利用した排気浄化用の三元触媒コンバータは、少なからず酸素(O)ストレージ機能を有しており、排気空燃比がリーン空燃比(酸化雰囲気)であるときにOを吸蔵してNOxの発生を抑え、一方排気空燃比がリッチ空燃比(還元雰囲気)であるときには、上記吸蔵したOを放出してHC、COの酸化促進を図り、排気浄化性能を向上させることが可能である。
【0003】
このようなことから、近年では、例えば内燃機関の燃焼室内の空燃比を一定期間毎にリーン空燃比とリッチ空燃比とに切り換えることで排気空燃比をリーン空燃比とリッチ空燃比とに強制的に変調させ、三元触媒コンバータの排気浄化性能向上を図った自動車が開発され、実用化されている(特許文献1等参照)。
【0004】
【特許文献1】
特開平7−166924号公報(段落0002等)
【0005】
【発明が解決しようとする課題】
ところで、吸気管噴射型の内燃機関で上記排気空燃比の強制変調を行う場合、内燃機関の加速時や減速時等の過渡運転時において、目標空燃比(目標燃料量)と実空燃比(実燃料量)間に誤差が生じ、例えば目標空燃比がリーン空燃比側である場合にオーバリーンとなったり、目標空燃比がリッチ空燃比側である場合にオーバリッチとなったりする場合がある。これは、過渡運転時のスロットル開度変化によって、吸気ポート壁面への燃料付着量が増減し、つまり減速時にはスロットル開度が絞られて燃料付着量が増大する一方加速時にはスロットル開度が開かれて付着した燃料が持ち去られる等して燃料付着量が減少し、燃焼室に輸送される燃料量が一時的に変動するためと考えられる。
【0006】
このように目標空燃比に対して実空燃比がオーバリーンとなったりオーバリッチとなったりすると、三元触媒コンバータの酸素ストレージ機能によるOの吸蔵量が過剰になったり不足したりして偏りが生じ、(オーバ)リーン空燃比時にはストレージされるOが少ないためにNOxスパイクが発生し、(オーバ)リッチ空燃比時には放出されるOが足りなくてHCスパイクが発生し、排気浄化性能が低下するという問題がある。
【0007】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、空燃比を強制変調させる場合において、過渡運転時においても触媒コンバータの排気浄化性能を高く維持可能な内燃機関の排気浄化装置を提供することにある。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられた触媒コンバータと、前記触媒コンバータに流入する排気の空燃比を所定の中心空燃比を挟みリーン空燃比側とリッチ空燃比側とに所定の周期、振幅で強制変調させる空燃比強制変調手段と、内燃機関の加速運転時或いは減速運転時に、前記空燃比強制変調手段による強制変調の前記所定の振幅を定常運転時に比べて大きくする変調振幅増大手段とを備えることを特徴としている。
【0009】
即ち、空燃比強制変調手段により排気空燃比をリーン空燃比側とリッチ空燃比側とに所定の周期、振幅で強制変調させることによって触媒コンバータの酸素ストレージ機能を利用して排気浄化性能の向上が図られるが、さらに内燃機関の加速運転時或いは減速運転時、即ち過渡運転時には、変調振幅増大手段により強制変調の所定の振幅が定常運転時に比べて大きく、即ち所謂ウィンドウ幅が拡大されて強制変調が実施される。
【0010】
つまり、強制変調の所定の振幅が大きくされ、ウィンドウ幅が拡大されると、触媒コンバータの酸素吸蔵量が増大するとともにHC、CO量が増大して反応が促進され、触媒コンバータの排気浄化性能が向上し、このように過渡運転時において当該ウィンドウ幅を拡大すると、たとえ過渡運転時において吸気ポート壁面への燃料付着量の変化等により目標空燃比(目標燃料量)と実空燃比(実燃料量)間に誤差が生じてオーバリーンやオーバリッチとなり、NOxスパイクやHCスパイクが発生しても、これらオーバリーンやオーバリッチに拘わらず、触媒コンバータの排気浄化性能の低下が抑制される。
【0011】
また、請求項2の内燃機関の排気浄化装置では、さらに、前記排気通路の前記触媒コンバータよりも上流側に設けられ、排気空燃比を検出する排気空燃比検出手段と、前記空燃比強制変調手段による強制変調中、前記排気空燃比検出手段により検出される実際の排気空燃比に基づき前記空燃比強制変調手段による強制変調を補正する補正手段と、内燃機関の加速運転時或いは減速運転時に、前記空燃比強制変調手段による強制変調の前記所定の周期を定常運転時に比べて短縮する変調周期短縮手段とを備えることを特徴としている。
【0012】
即ち、ウィンドウ幅の拡大によって触媒コンバータの排気浄化性能の低下が抑制されることに加え、強制変調の所定の周期が過渡運転時において短くされると、当該過渡運転時において吸気ポート壁面への燃料付着量の変化等により目標空燃比(目標燃料量)と実空燃比(実燃料量)間に誤差が生じてオーバリーンやオーバリッチとなっても、排気空燃比検出手段により検出される排気空燃比に基づいて補正手段により短期間(短縮された周期)で瞬時に次の変調周期に空燃比補正をかけることが可能となり、オーバリーンやオーバリッチによる酸素吸蔵量の過不足が極力抑えられ、過渡運転時におけるNOxスパイクやHCスパイクの発生が十分に抑制されて触媒コンバータの排気浄化性能がさらに向上する。
【0013】
また、請求項3の内燃機関の排気浄化装置では、前記補正手段は、前記実際の排気空燃比の前記所定の周期間での平均値または平均相関値が、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値よりリーン空燃比寄りの値であるとき、前記所定の中心空燃比をリッチ空燃比側に変更し、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2所定値または第2所定相関値よりリッチ空燃比寄りの値であるとき、前記所定の中心空燃比をリーン空燃比側に変更することを特徴としている。
【0014】
つまり、実際の排気空燃比の所定の周期間での平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値(例えば、第1所定空燃比積算量)よりもリーン空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が増加して燃料供給量が減少しオーバリーンになっていると判断でき、この場合には所定の中心空燃比をリッチ空燃比側に補正し、一方、当該平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2所定値または第2所定相関値(例えば、第2所定空燃比積算量)よりもリッチ空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が持ち去り等により減少して燃料供給量が増加しオーバリッチになっていると判断でき、この場合には所定の中心空燃比をリーン空燃比側に補正する。
【0015】
これにより、過渡運転時においても空燃比補正が空燃比の偏りを是正するよう容易にして速やかに実施されてオーバリーンやオーバリッチによる酸素吸蔵量の過不足が即座に抑えられ、過渡運転時におけるNOxスパイクやHCスパイクの発生が確実に抑制される。
また、請求項4の内燃機関の排気浄化装置では、前記補正手段は、前記実際の排気空燃比の前記所定の周期間での平均値または平均相関値が、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値よりリーン空燃比寄りの値であるとき、前記空燃比強制変調手段による強制変調のデューティ比をリッチ空燃比側が大となるよう変更し、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2の所定値または第2所定相関値よりリッチ空燃比寄りの値であるとき、前記強制変調のデューティ比をリーン空燃比側が大となるよう変更することを特徴としている。
【0016】
つまり、実際の排気空燃比の所定の周期間での平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値(例えば、第1所定空燃比積算量)よりもリーン空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が増加して燃料供給量が減少しオーバリーンになっていると判断でき、この場合には強制変調のデューティ比をリッチ空燃比側が大となるよう補正し、一方、当該平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2所定値または第2所定相関値(例えば、第2所定空燃比積算量)よりもリッチ空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が持ち去り等により減少して燃料供給量が増加しオーバリッチになっていると判断でき、この場合には強制変調のデューティ比をリーン空燃比側が大となるよう補正する。
【0017】
これにより、やはり、過渡運転時においても空燃比補正が空燃比の偏りを是正するよう容易にして速やかに実施されてオーバリーンやオーバリッチによる酸素吸蔵量の過不足が即座に抑えられ、過渡運転時におけるNOxスパイクやHCスパイクの発生が確実に抑制される。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
図1を参照すると、車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図が示されており、以下、当該排気浄化装置の構成を説明する。
同図に示すように、内燃機関であるエンジン本体(以下、単にエンジンという)1としては、吸気管噴射型(Multi Port Injection:MPI)ガソリンエンジンが採用される。
【0019】
エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4が取り付けられており、点火プラグ4には高電圧を出力する点火コイル8が接続されている。
シリンダヘッド2には、各気筒毎に吸気ポートが形成されており、各吸気ポートと連通するようにして吸気マニホールド10の一端がそれぞれ接続されている。吸気マニホールド10には、電磁式の燃料噴射弁6が取り付けられており、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。
【0020】
吸気マニホールド10の燃料噴射弁6よりも上流側には、吸入空気量を調節する電磁式のスロットル弁14が設けられており、併せてスロットル弁14の弁開度θthを検出するスロットルポジションセンサ(TPS)16が設けられている。さらに、スロットル弁14の上流には、吸入空気量を計測するエアフローセンサ18が介装されている。エアフローセンサ18としては、カルマン渦式エアフローセンサが使用される。
【0021】
また、シリンダヘッド2には、各気筒毎に排気ポートが形成されており、各排気ポートと連通するようにして排気マニホールド12の一端がそれぞれ接続されている。
なお、当該MPIエンジンは公知のものであるため、その構成の詳細については説明を省略する。
【0022】
排気マニホールド12の他端には排気管20が接続されており、当該排気管20には、排気浄化触媒装置として三元触媒(触媒コンバータ)30が介装されている。
この三元触媒30は、担体に活性貴金属として銅(Cu),コバルト(Co),銀(Ag),白金(Pt)のいずれかを有している。セリウム(Ce)、ジルコニア(Zr)等の酸素吸蔵材を含む場合の他、当該酸素吸蔵材を含まない場合においても、活性貴金属は、酸素吸蔵機能(Oストレージ機能)を有しており、故に、三元触媒30は、排気空燃比(排気A/F)がリーン空燃比(リーンA/F)である酸化雰囲気中において酸素(O)を吸着すると、排気A/Fがリッチ空燃比(リッチA/F)となり還元雰囲気となるまでそのOをストレージOとして保持し、当該ストレージOにより、還元雰囲気状態においてもHC(炭化水素)やCO(一酸化炭素)を酸化除去可能である。即ち、当該三元触媒30は、酸化雰囲気でHC、COを浄化できるのは勿論のことNOxの発生をもある程度抑え、吸蔵されたOにより還元雰囲気中においてNOxの浄化のみならずHC、COをもある程度浄化可能である。
【0023】
また、排気管20の三元触媒コンバータ30よりも上流側には、A/Fセンサ(排気空燃比検出手段)22が配設されている。ここでは、A/Fセンサ22としてリニア空燃比センサ(LAFSと略す)が採用され、当該LAFSを用いることで比較的広範囲に亘り排気A/Fの値を適切に検出可能である。
ECU(電子コントロールユニット)40は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えており、当該ECU40により、エンジン1を含めた排気浄化装置の総合的な制御が行われる。
【0024】
ECU40の入力側には、上述したTPS16、エアフローセンサ18、A/Fセンサ22の他、エンジン1のクランク角を検出するクランク角センサ42等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。なお、クランク角センサ42からのクランク角情報に基づいてエンジン回転速度Neが検出される。
【0025】
一方、ECU40の出力側には、上述の燃料噴射弁6、点火コイル8、スロットル弁14等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期等がそれぞれ出力される。詳しくは、各種センサ類からの検出情報に基づき空燃比が適正な目標空燃比(目標A/F)に設定され、当該目標A/Fに応じた量の燃料が適正なタイミングで燃料噴射弁6から噴射され、またスロットル弁14が適正な開度に調整され、点火プラグ4により適正なタイミングで火花点火が実施される。
【0026】
より詳しくは、当該排気浄化装置では、三元触媒30が上記Oストレージ機能を有していることから、三元触媒30の能力を十分発揮するために、通常運転時には、ECU40によって目標A/Fを所定の中心空燃比(中心A/F)を境に所定のリッチA/Fと所定のリーンA/Fとの間で強制的に交互に振る強制変調を行うようにしている。つまり、燃焼室内の空燃比(燃焼A/F)を一定期間に亘りリーンA/Fとした後一定期間リッチA/Fとするように変調制御し、排気A/Fを所定のリーンA/Fと所定のリッチA/F間で所定の周期、振幅で周期的に変調させるようにしている(空燃比強制変調手段)。なお、変調波形は方形波に限られるものではなく、三角波、正弦波等でもよい。
【0027】
これにより、排気A/FがリーンA/Fである酸化雰囲気中ではHC、COが良好に浄化されるとともに三元触媒30のOストレージ機能によりOが吸蔵されてNOxの発生がある程度抑えられ、排気A/FがリッチA/Fである還元雰囲気中ではNOxが良好に浄化されるとともに吸蔵されたストレージOによってHC、COがある程度継続的に浄化され続け、三元触媒30の排気浄化性能の向上が図られる。
【0028】
ところで、MPIガソリンエンジンであるエンジン1でこのような空燃比の強制変調を行う場合、上述したように、エンジン1の加速時、減速時等の過渡運転時には、吸気ポート壁面への燃料付着量がスロットル弁14の開度θthに応じて増減するため、目標A/F(目標燃料量)に対して実A/F(実燃料量)がオーバリーンとなったりオーバリッチとなったりしてストレージOが過剰或いは不足して偏り、(オーバ)リーンA/F時にストレージされるOが少ないためNOxスパイクが生じたり或いは(オーバ)リッチA/F時に放出されるOが足りなくてHCスパイクが生じたりするという問題がある。
【0029】
本発明に係る排気浄化装置では、このような問題を解決するように図っており、以下、上記のように構成された本発明に係る排気浄化装置の作用、即ち本発明に係る強制変調手法について説明する。
先ず、第1実施例について説明する。
図2を参照すると、本発明の第1実施例に係る強制変調制御の制御ルーチンがフローチャートで示されており、以下同フローチャートに沿い説明する。
【0030】
ステップS10では、強制変調制御中において、エンジン1の運転状態が過渡運転状態になったか否か、即ち、エンジン1が加速運転或いは減速運転をしているか否かを判別する。ここに、過渡運転状態であるか否かは、例えばTPS16からのスロットル開度θth情報に基づき、スロットル弁14が開閉作動したか否かで判別する。詳しくは、スロットル開度θthの時間変化率が加速側に所定正値以上であるか否か、減速側に所定負値以下であるか否かを判別する。なお、クランク角センサ42から検出されるエンジン回転速度Neやエアフローセンサ18から検出される吸入空気量の時間変化率に基づいて過渡運転状態を判別するようにしてもよいし、検出可能であれば、車速Vや吸気マニホールド圧や排気流量の時間変化率に基づいて過渡運転状態を判別するようにしてもよい。
【0031】
ステップS10の判別結果が偽(No)で、過渡運転状態ではないと判定された場合には、ステップS12において通常通り変調振幅をベース値として強制変調を行う。一方、ステップS10の判別結果が真(Yes)で、加速運転或いは減速運転をしていると判定された場合には、ステップS14に進む。
過渡運転状態であるときには、吸気ポート壁面への燃料付着量がスロットル弁14の開度θthに応じて増減し、上記の如く目標A/Fに対して実A/Fがオーバリーンやオーバリッチとなり、NOxスパイクが生じたり或いはHCスパイクが生じたりして三元触媒30の排気浄化性能が低下する。
【0032】
そこで、ステップS14では、図3に変調波形の一例を示すように、過渡運転時における変調振幅を上記ベース値に対し大きくする(変調振幅増大手段)。
変調振幅を大きくすると、三元触媒30における排気浄化性能のリーンA/F側でのNOx浄化効率及びリッチA/F側でのHC、CO浄化効率が向上されて、NOx浄化効率及びHC、CO浄化効率の両浄化効率が高効率(例えば、95%以上)となる空燃比領域、所謂ウィンドウ幅が拡大される。これより、各種原因によって空燃比が変動し、浄化効率が低下してNOxスパイクやHCスパイクが発生するような場合であっても、ウィンドウ幅が拡大されて浄化効率の高い空燃比領域が拡張されることで、当該空燃比変動に拘わらず高い浄化効率を維持でき、NOxスパイクやHCスパイクの発生を抑制することができる。
【0033】
そして、変調振幅の増大によって、NOx浄化効率及びHC、CO浄化効率の両浄化効率が高効率(例えば、95%以上)となる空燃比領域、所謂ウィンドウ幅が拡大されると、三元触媒30のストレージOの量が増大するとともにHC、CO量が増大して反応が促進され、三元触媒30の排気浄化性能が向上する。故に、過渡運転時において当該ウィンドウ幅を拡大することにより、例え吸気ポート壁面への燃料付着量がスロットル弁14の開度θthに応じて増減し、上記の如く目標A/Fに対して実A/Fがオーバリーンやオーバリッチとなり、NOxスパイクやHCスパイクが生じたとしても、これらオーバリーンやオーバリッチに拘わらず、三元触媒30の排気浄化性能の低下が抑制され、当該排気浄化性能が高く維持される。
【0034】
なお、このようにウィンドウ幅を拡大すると、燃費が悪化するが、ウィンドウ幅の拡大を過渡運転時に限定することにより、燃費の悪化は最小限に抑えられる。
次に、第2実施例について説明する。
図4を参照すると、本発明の第2実施例に係る強制変調制御の制御ルーチンがフローチャートで示されており、以下同フローチャートに沿い説明する。なお、第2実施例では、上記第1実施例の図2のフローチャートに対しステップS13及びステップS15以降が追加されている点が異なっており、ここでは第1実施例と異なる部分を中心に説明する。
【0035】
ステップS10の判別結果が偽(No)で、過渡運転状態ではないと判定された場合には、ステップS12において通常通り変調振幅をベース値として強制変調を行うとともに、ステップS13において通常通り変調周期をベース値(例えば、1sec)として強制変調を行う。
一方、ステップS10の判別結果が真(Yes)で、加速運転或いは減速運転をしていると判定された場合には、ステップS14に進み、変調振幅を上記変調振幅のベース値に対し大きくし、所謂ウィンドウ幅を拡大するとともに、ステップS15において変調周期を上記変調周期のベース値(例えば、1sec)に対し短期化する(変調周期短縮手段)。
【0036】
図5を参照すると、減速時(過渡運転時)においても変調周期をベース値(例えば、1sec)のまま保持した場合の目標A/F(実線)と排気A/F、即ち実A/F(破線)との時間変化が示されているが、減速時には吸気ポート壁面への燃料付着量が増加し、このように応答遅れがあるものの実A/Fが目標A/Fを超えてオーバリーンとなる。図示しないが加速時についても図5と同様であり、吸気ポート壁面への燃料付着量が持ち去りにより減少し、実A/Fが目標A/Fを超えてオーバリッチとなる。
【0037】
また、強制変調制御では、一旦中心A/Fを境に所定のリッチA/Fと所定のリーンA/Fとを設定して強制変調を開始すると、実A/Fが目標A/Fから外れてもその周期間では空燃比を補正することは困難であり、図5に示すように、空燃比補正は次の周期で初めて反映される。つまり、変調周期がベース値のままでは、過渡運転時における加速、減速直後の最初の一周期間に発生するNOxスパイクやHCスパイクを十分に抑制できない。
【0038】
そこで、ステップS15では、変調周期を上記ベース値(例えば、1sec)に対し短期化し、空燃比補正が反映されるまでの期間を短くする。ここでは、例えば変調周期を上記ベース値の半分以下の値(例えば、0.5sec以下)に設定して強制変調を実施する。つまり、図6を参照すると、減速時(過渡運転時)であるときにおいて変調周期を短周期(例えば、0.5sec以下)に変更した場合の目標A/F(実線)と排気A/F、即ち実A/F(破線)との時間変化が示されているが、同図に示すように変調周期を短期化する。図示しないが加速時についても図6と同様である。
【0039】
このように、過渡運転時において強制変調の変調周期を短くすると、過渡運転により目標A/Fと実A/F間に誤差が生じてオーバリーンやオーバリッチとなっても、短期間(短縮された周期)で瞬時に次の変調周期に空燃比補正をかけることが可能となり、図5と図6の比較から分かるように、オーバリーンやオーバリッチが極力抑えられる。これにより、過渡運転時におけるNOxスパイクやHCスパイクの発生が十分に抑制されて三元触媒30の排気浄化性能がさらに向上する。
【0040】
ステップS16以降では空燃比の具体的な補正手順を示す(補正手段)。
ステップS16では、A/Fセンサ22からの排気A/F情報に基づき、強制変調周期の一周期間における実A/Fの平均A/F、即ちリッチA/F側の実際の検出値とリーンA/F側の実際の検出値との平均値、即ち平均A/F(AFave)を算出する。
【0041】
そして、ステップS18では、上記のように求めたAFaveがリーンA/F側の所定値AF1(第1所定値)よりも大きい(AFave>AF1)か否かを判別する。ここに、所定値AF1は、中心A/Fまたは中心A/FよりややリーンA/F寄りの値に設定されている。判別結果が真(Yes)で、AFaveが所定値AF1よりも大きいと判定された場合には、強制変調の空燃比が全体としてリーンA/F寄り、つまり目標A/Fとしての所定のリーンA/Fを超えてオーバリーンになっていると判断できる(図6参照)。従って、この場合には、ステップS20に進む。
【0042】
ステップS20では、強制変調の中心A/Fをリッチ化する。具体的には、例えばAFaveと所定値AF1との差分だけ中心A/FをリッチA/F側に補正する。
一方、ステップS18の判別結果が偽(No)で、AFaveが所定値AF1以下と判定された場合には、ステップS22に進み、今度はAFaveがリッチA/F側の所定値AF2(第2所定値)よりも小さい(AFave<AF2)か否かを判別する。ここに、所定値AF2は、中心A/Fまたは中心A/FよりややリッチA/F寄りの値に設定されている。判別結果が真(Yes)で、AFaveが所定値AF2よりも小さいと判定された場合には、強制変調の空燃比が全体としてリッチA/F寄り、つまり目標A/Fとしての所定のリッチA/Fを超えてオーバリッチになっていると判断できる。従って、この場合には、ステップS24に進む。
【0043】
ステップS24では、強制変調の中心A/Fをリーン化する。具体的には、例えばAFaveと所定値AF2との差分だけ中心A/FをリーンA/F側に補正する。
このようにAFaveを補正すると、ステップS22の判別結果は偽(No)、即ちAFaveが所定値AF1と所定値AF2間の目標範囲内(AF2≦AFave≦AF1)となり、強制変調の次の周期では、図6に示すように容易にして速やかに実A/F(破線)が目標A/F(実線)と偏りなく略一致する。これにより、以降実A/Fがオーバリーン或いはオーバリッチとなることが防止され、過渡運転時におけるNOxスパイクやHCスパイクの発生が確実に抑制されて三元触媒30の排気浄化性能がさらに向上する。
【0044】
以上第1、第2実施例に基づき説明したように、本発明に係る排気浄化装置では、過渡運転時において強制変調の変調振幅を大きくし、所謂ウィンドウ幅を拡大するので、強制変調中に加速、減速により目標A/Fと実A/F間に誤差が生じてオーバリーンやオーバリッチとなり、NOxスパイクやHCスパイクが発生しても、これらオーバリーンやオーバリッチに拘わらず、燃費の悪化を招くウィンドウ幅の拡大を過渡運転時に限定して燃費の悪化を最小限に抑えつつ、三元触媒30の排気浄化性能の低下を抑制することができ、排気浄化性能を高く維持することができる。
【0045】
また、第2実施例に示すように、過渡運転時において併せて変調周期を短くすることにより、強制変調中に加速、減速により目標A/Fと実A/F間に誤差が生じてオーバリーンやオーバリッチとなっても、短期間(短縮された周期)で瞬時に次の変調周期に空燃比補正をかけることが可能となり、全体としてオーバリーンやオーバリッチによるストレージOの過不足を極力抑えることができる。
これにより、過渡運転時におけるNOxスパイクやHCスパイクの発生を十分に抑制でき、三元触媒30の排気浄化性能をより一層向上させることができる。
【0046】
この際、実A/Fの平均A/F(AFave)を求め、AFaveと強制変調の中心A/Fまたは中心A/F近傍値(所定値AF1、所定値AF2)との比較に基づいて中心A/Fを補正するので、通常運転時のみならず過渡運転時においても空燃比補正を容易にして速やかに実施して実A/Fの偏りを是正することができる。
これにより、オーバリーンやオーバリッチを即座に抑えて過渡運転時におけるNOxスパイクやHCスパイクの発生を確実に抑制することができる。
【0047】
なお、上記実施形態では、エンジン1の加速時及び減速時の双方を過渡運転時とみなして説明したが(ステップS10)、状況に応じて加速時のみ或いは減速時のみを過渡運転時として、ウィンドウ幅を拡大し、変調周期を短期化するようにしてもよい。
また、上記実施形態では、エンジン1の加速、減速に拘わらず過渡運転時には同一のウィンドウ幅拡大度合いで変調振幅を大きくし、同一の短期化度合いで変調周期を短縮するようにしたが、加速時と減速時でウィンドウ幅拡大度合い及び短期化度合いを変えるようにしてもよい。また、過渡運転度合いに応じて、例えば加速度合いや減速度合いが大きいほどウィンドウ幅拡大度合いや短期化度合いを大きくするようにしてもよい。
【0048】
また、上記実施形態では、第2実施例において、実A/Fの平均A/F(AFave)を求め、AFaveと強制変調の中心A/Fまたは中心A/F近傍値(所定値AF1、所定値AF2)との比較に基づいて中心A/Fを補正するようにしたが(ステップS20、ステップS24)、ステップS16において実A/Fの平均A/Fに代えて平均A/Fの相関値として周期間の空燃比積算量Qaf(平均相関値)を算出し、ステップS18、ステップS22において当該空燃比積算量Qafが所定値Q1(第1所定相関値)より大きい(Qaf>Q1)か否か或いは所定値Q2(第2所定相関値)より小さい(Qaf<Q2)か否かを判別するようにしてもよい。この場合には、例えば空燃比積算量Qafと所定値Q1または所定値Q2との差に相当する分だけ中心A/FをリッチA/F側或いはリーンA/F側に補正すればよい(補正手段)。さらに、その他の平均A/Fの相関値を用いるようにしてもよい。
【0049】
また、空燃比の変わりに空燃比の逆数である燃空比、理論燃空比に対する実燃空比の比率である当量比を用いるようにしてもよい。
また、第2実施例では、中心A/FをリッチA/F側或いはリーンA/F側に補正するようにしたが(ステップS20、ステップS24)、これに代えて強制変調のデューティ比(一周期中の中心A/FよりリーンA/F側である期間と中心A/FよりリッチA/F側である期間との比)を平均A/F(AFave)或いは上記空燃比積算量Qaf(平均値または平均相関値)に応じて、AFaveが所定値AF1(第1所定値)よりも大きいとき或いは空燃比積算量Qafが所定値Q1(第1所定相関値)より大きいときにはリッチA/F側が大となるよう補正し、AFaveが所定値AF2(第2所定値)よりも小さいとき或いは空燃比積算量Qafが所定値Q2(第2所定相関値)より小さいときにはリーンA/F側が大となるよう補正するようにしてもよい(補正手段)。これにより、やはり容易にして速やかに実A/Fが目標A/Fと偏りなく略一致し、過渡運転時におけるNOxスパイクやHCスパイクの発生が確実に抑制される。
【0050】
また、やはり第2実施例では、A/Fセンサ22としてLAFSを用いるようにしたが、中心A/Fが理論空燃比(ストイキオ)またはその近傍値であって強制変調幅が小さいような場合にあっては、A/Fセンサ22としてOセンサを適用させることも可能である。この場合には、上記AFaveに代えてOaveを用い、例えば、当該Oaveと中心A/Fまたは中心A/FよりリーンA/F側に設定された所定値O1或いは中心A/Fまたは中心A/FよりリッチA/F側に設定された所定値O2とを比較することで空燃比補正を行うようにすればよい。好ましくは、Oセンサ出力を空燃比、或いは燃空比、当量比に変換して用いるのがよく、これにより精度が向上する。
【0051】
また、上記実施形態では、触媒コンバータとして三元触媒30を例に説明したが、これに限られず、触媒コンバータは少なくともOストレージ機能を有していれば如何なるものであってもよい。
また、上記実施形態では、エンジン1としてMPIエンジンを採用した例を示したが、これに限られず、エンジン1は強制変調制御が可能であれば如何なるエンジンであってもよく、筒内噴射型エンジンであってもよい。
【0052】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の内燃機関の排気浄化装置によれば、空燃比強制変調手段による所定の周期、振幅での強制変調中、内燃機関の加速運転時或いは減速運転時、即ち過渡運転時には、上記強制変調の所定の振幅を定常運転時に比べ大きく、即ちウィンドウ幅を拡大して強制変調を実施するようにしたので、たとえ過渡運転時において吸気ポート壁面への燃料付着量の変化等により目標空燃比(目標燃料量)と実空燃比(実燃料量)間に誤差が生じてオーバリーンやオーバリッチとなり、NOxスパイクやHCスパイクが発生しても、これらオーバリーンやオーバリッチに拘わらず、燃費の悪化を招くウィンドウ幅の拡大を過渡運転時に限定することで燃費の悪化を最小限に抑えつつ、触媒コンバータの排気浄化性能の低下を抑制することができる。
【0053】
また、請求項2の内燃機関の排気浄化装置によれば、空燃比強制変調手段による所定の周期、振幅での強制変調中、内燃機関の加速運転時或いは減速運転時、即ち過渡運転時には、ウィンドウ幅の拡大による排気浄化性能の低下の抑制に加え、上記強制変調の所定の周期を定常運転時に比べ短縮して強制変調を実施するようにしたので、過渡運転時において吸気ポート壁面への燃料付着量の変化等により目標空燃比(目標燃料量)と実空燃比(実燃料量)間に誤差が生じてオーバリーンやオーバリッチとなっても、短期間(短縮された周期)で瞬時に次の変調周期に空燃比補正をかけることができ、故に、オーバリーンやオーバリッチとなり酸素吸蔵量の過不足が生じることを極力抑えて過渡運転時におけるNOxスパイクやHCスパイクの発生を十分に抑制でき、触媒コンバータの排気浄化性能をより一層向上させることができる。
【0054】
また、請求項3の内燃機関の排気浄化装置によれば、補正手段は、実際の排気空燃比の所定の周期間での平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値(例えば、第1所定空燃比積算量)よりもリーン空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が増加して燃料供給量が減少しオーバリーンになっていると判断して所定の中心空燃比をリッチ空燃比側に補正し、一方、当該平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2所定値または第2所定相関値(例えば、第2所定空燃比積算量)よりもリッチ空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が持ち去り等により減少して燃料供給量が増加しオーバリッチになっていると判断して所定の中心空燃比をリーン空燃比側に補正するので、過渡運転時においても空燃比補正を空燃比の偏りを是正するよう容易にして速やかに実施してオーバリーンやオーバリッチによる酸素吸蔵量の過不足を即座に抑えるようにでき、過渡運転時におけるNOxスパイクやHCスパイクの発生を確実に抑制することができる。
【0055】
また、請求項4の内燃機関の排気浄化装置によれば、補正手段は、実際の排気空燃比の所定の周期間での平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値(例えば、第1所定空燃比積算量)よりもリーン空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が増加して燃料供給量が減少しオーバリーンになっていると判断して強制変調のデューティ比をリッチ空燃比側が大となるよう補正し、一方、当該平均値または平均相関値(例えば、周期間の空燃比積算量)が所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2所定値または第2所定相関値(例えば、第2所定空燃比積算量)よりもリッチ空燃比寄りの値であるときには、吸気ポート壁面への燃料付着量が持ち去り等により減少して燃料供給量が増加しオーバリッチになっていると判断して強制変調のデューティ比をリーン空燃比側が大となるよう補正するので、やはり、過渡運転時においても空燃比補正を空燃比の偏りを是正するよう容易にして速やかに実施してオーバリーンやオーバリッチによる酸素吸蔵量の過不足を即座に抑えるようにでき、過渡運転時におけるNOxスパイクやHCスパイクの発生を確実に抑制することができる。
【図面の簡単な説明】
【図1】車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図である。
【図2】本発明の第1実施例に係る強制変調制御の制御ルーチンを示すフローチャートである。
【図3】本発明の第1実施例に係る強制変調制御の過渡運転時における変調波形の一例を示す図である。
【図4】本発明の第2実施例に係る強制変調制御の制御ルーチンを示すフローチャートである。
【図5】減速時(過渡運転時)においても変調周期をベース値(例えば、1sec)のまま保持した場合の目標A/F(実線)と排気A/F、即ち実A/F(破線)との時間変化を示す図である。
【図6】減速時(過渡運転時)であるときにおいて変調周期を短周期(例えば、0.5sec以下)に変更した場合の目標A/F(実線)と排気A/F、即ち実A/F(破線)との時間変化を示す図である。
【符号の説明】
1 エンジン本体
16 TPS
22 A/Fセンサ(排気空燃比検出手段)
30 三元触媒(触媒コンバータ)
40 ECU(電子コントロールユニット)

Claims (4)

  1. 内燃機関の排気通路に設けられた触媒コンバータと、
    前記触媒コンバータに流入する排気の空燃比を所定の中心空燃比を挟みリーン空燃比側とリッチ空燃比側とに所定の周期、振幅で強制変調させる空燃比強制変調手段と、
    内燃機関の加速運転時或いは減速運転時に、前記空燃比強制変調手段による強制変調の前記所定の振幅を定常運転時に比べて大きくする変調振幅増大手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  2. さらに、前記排気通路の前記触媒コンバータよりも上流側に設けられ、排気空燃比を検出する排気空燃比検出手段と、
    前記空燃比強制変調手段による強制変調中、前記排気空燃比検出手段により検出される実際の排気空燃比に基づき前記空燃比強制変調手段による強制変調を補正する補正手段と、
    内燃機関の加速運転時或いは減速運転時に、前記空燃比強制変調手段による強制変調の前記所定の周期を定常運転時に比べて短縮する変調周期短縮手段と、
    を備えることを特徴とする、請求項1記載の内燃機関の排気浄化装置。
  3. 前記補正手段は、前記実際の排気空燃比の前記所定の周期間での平均値または平均相関値が、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値よりリーン空燃比寄りの値であるとき、前記所定の中心空燃比をリッチ空燃比側に変更し、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2所定値または第2所定相関値よりリッチ空燃比寄りの値であるとき、前記所定の中心空燃比をリーン空燃比側に変更することを特徴とする、請求項2記載の内燃機関の排気浄化装置。
  4. 前記補正手段は、前記実際の排気空燃比の前記所定の周期間での平均値または平均相関値が、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリーン空燃比側に設定された第1所定値または第1所定相関値よりリーン空燃比寄りの値であるとき、前記空燃比強制変調手段による強制変調のデューティ比をリッチ空燃比側が大となるよう変更し、前記所定の中心空燃比に或いは該所定の中心空燃比よりもリッチ空燃比側に設定された第2の所定値または第2所定相関値よりリッチ空燃比寄りの値であるとき、前記強制変調のデューティ比をリーン空燃比側が大となるよう変更することを特徴とする、請求項2記載の内燃機関の排気浄化装置。
JP2002352950A 2002-12-04 2002-12-04 内燃機関の排気浄化装置 Expired - Fee Related JP3944731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352950A JP3944731B2 (ja) 2002-12-04 2002-12-04 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352950A JP3944731B2 (ja) 2002-12-04 2002-12-04 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2004183579A true JP2004183579A (ja) 2004-07-02
JP3944731B2 JP3944731B2 (ja) 2007-07-18

Family

ID=32754404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352950A Expired - Fee Related JP3944731B2 (ja) 2002-12-04 2002-12-04 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP3944731B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228565A (ja) * 2008-03-24 2009-10-08 Mitsubishi Motors Corp 内燃機関の燃料制御装置
JP2010038075A (ja) * 2008-08-06 2010-02-18 Mazda Motor Corp 内燃機関の燃料供給を制御する方法及びシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228565A (ja) * 2008-03-24 2009-10-08 Mitsubishi Motors Corp 内燃機関の燃料制御装置
JP4530183B2 (ja) * 2008-03-24 2010-08-25 三菱自動車工業株式会社 内燃機関の燃料制御装置
US7877190B2 (en) 2008-03-24 2011-01-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel control device for internal combustion engine
JP2010038075A (ja) * 2008-08-06 2010-02-18 Mazda Motor Corp 内燃機関の燃料供給を制御する方法及びシステム

Also Published As

Publication number Publication date
JP3944731B2 (ja) 2007-07-18

Similar Documents

Publication Publication Date Title
JP4692911B2 (ja) NOxセンサの出力較正装置及び出力較正方法
US7162863B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP3962892B2 (ja) 排気浄化装置
JP2006118433A (ja) 内燃機関の排気浄化装置
JP3944731B2 (ja) 内燃機関の排気浄化装置
JP3944730B2 (ja) 内燃機関の排気浄化装置
JP3427881B2 (ja) 内燃機関
JP2000130221A (ja) 内燃機関の燃料噴射制御装置
JP3661464B2 (ja) 内燃機関の排気浄化装置
JP3334634B2 (ja) 内燃機関の排気浄化装置
JP3489441B2 (ja) 内燃機関の空燃比制御装置
JP2005163590A (ja) エンジンの排気浄化装置
JP2000230421A (ja) 内燃機関の排気浄化装置
US8190349B2 (en) Control device of internal combustion engine
JP2000064877A (ja) 内燃機関の排気浄化装置
JP4114025B2 (ja) 内燃機関の排気浄化装置
JP3915874B2 (ja) 排気浄化装置
JP4324787B2 (ja) 内燃機関の空燃比制御装置
JP2000230420A (ja) 内燃機関の排気浄化装置
JP2005282505A (ja) 内燃機関の排気浄化装置
JP3867192B2 (ja) 内燃機関の排気浄化装置
JP3351349B2 (ja) 筒内噴射型内燃機関の排気昇温装置
JP3010625B2 (ja) 内燃機関の空燃比制御装置
JP4518362B2 (ja) 内燃機関の空燃比制御装置
JP2006083795A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees