JP2004182528A - Fuel treating equipment - Google Patents

Fuel treating equipment Download PDF

Info

Publication number
JP2004182528A
JP2004182528A JP2002351030A JP2002351030A JP2004182528A JP 2004182528 A JP2004182528 A JP 2004182528A JP 2002351030 A JP2002351030 A JP 2002351030A JP 2002351030 A JP2002351030 A JP 2002351030A JP 2004182528 A JP2004182528 A JP 2004182528A
Authority
JP
Japan
Prior art keywords
heat
fuel
combustion chamber
inorganic
primary heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351030A
Other languages
Japanese (ja)
Inventor
Makoto Inagaki
信 稲垣
Takashi Suzuki
隆 鈴木
Kunihiko Murayama
邦彦 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Ballard Corp
Original Assignee
Ebara Ballard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Ballard Corp filed Critical Ebara Ballard Corp
Priority to JP2002351030A priority Critical patent/JP2004182528A/en
Publication of JP2004182528A publication Critical patent/JP2004182528A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide fuel treating equipment equipped with a heat-insulation shaped article that has high heat resistance, heat-insulation properties, molding properties and strong impact resistance, and that is easy to be fixed to fuel treating equipment 1 or is easy to be packed in a narrow space in the fuel treating equipment. <P>SOLUTION: In the fuel treating equipment 1 that conducts a treatment of a raw material gas G and reforms the same to a fuel gas J comprising hydrogen as a main component, the fuel treating equipment 1 is provided with a combustion chamber 13 that generates heat for utilization in the reforming, a first primary solid heat-insulation material 17 that insulates heat against the outside of combustion chamber 13, and a cloth-like secondary heat-insulation material 19 that covers and heat-insulates the outside of the first primary heat-insulation material 17. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原料ガスを処理し燃料電池に供給する燃料ガスを得る燃料処理装置であって、特に燃焼部分を断熱保温し、あるいは温度的に隔離する断熱成形体を備える燃料処理装置に関するものである。
【0002】
【従来の技術】
天然ガス、灯油などの化石燃料から固体高分子型燃料電池用の水素を発生させる燃料処理装置では、原料処理効率を高めるため、また装置内部の温度バランスを適正に保つために、装置の燃焼部、触媒層、熱交換部分等を100℃から800℃以上の高温度に維持・安定させることが条件となる。この条件を満足させるために、燃料処理装置の燃焼部、触媒層、熱交換部分等に、これらの形状、構造に合わせ、不燃性、耐熱性、断熱性を有する断熱成形体を装着、挿入し、あるいは被覆することが必要である。これを満たす例としてシリカフューム等のシリカ超微粒子粉末を圧縮成形した断熱成形体を装着、被覆した断熱保温を備えた燃料処理装置がある。
【0003】
【発明が解決しようとする課題】
しかしながら、このような断熱成形体は耐熱性と断熱性は満足するものの、高価であり、圧縮成形等の手段で成形加工されるため、加工性が十分でなく、所望の形状に成形することが難しく、且つ、断熱成形体の表面硬度、強度が低いので外的衝撃に対して弱く、実用性が十分でない場合があった。また、これらの固形断熱材は、固定が難しく、従来はテープ等で固定していたが、熱膨張により固形断熱材間、あるいは容器と固定断熱材との間に隙間が生じ、熱が外部に逃げる現象があった。また、狭い空間等に充填する際には断熱材と装置との間に隙間ができ、断熱性能が低下する場合があった。
【0004】
本発明は、上述の技術課題に関し、高い耐熱性、断熱性を有し、成形性がよく、外的衝撃に対して強く、燃料処理装置への固定が容易であり、あるいは燃料処理装置内の狭い空間等に隙間を生じることなく充填することが容易な断熱成形体を備えた燃料処理装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明による燃料処理装置1は、例えば図1に示すように、原料ガスGを処理して水素を主成分とする燃料ガスJに改質する燃料処理装置1において;前記改質に利用する熱を発生する燃焼室13と;燃焼室13を外部に対して断熱する固形の第1の1次断熱材17と;第1の1次断熱材17の外側を覆い断熱する布状の2次断熱材19とを備える。
【0006】
このように構成すると、燃料処理装置1は、燃焼室13と、第1の1次断熱材17と、2次断熱材19とを備えるので、第1の1次断熱材17と2次断熱材19とを組合せ、高い断熱性を有する固形の第1の1次断熱材17により燃焼熱が燃焼室13から装置外部に漏れるのを防ぎ、燃焼室13の燃焼温度を適切な値に維持することができ、柔軟性を有し加工性に優れた布状の2次断熱材19により、強度が不十分な第1の1次断熱材17の外側を覆い断熱し、第1の1次断熱材17の断熱性能を補強し、さらに第1の1次断熱材17を外的衝撃に対し強くすることができる。なお、2次断熱材19が、第1の1次断熱材17の外側を覆うとは、2次断熱材19が、第1の1次断熱材17の外側を直接覆う場合だけでなく、2次断熱材19と第1の1次断熱材17との間に介在物があり2次断熱材19が介在物の外側を覆う場合を含む概念とする。
【0007】
請求項2に係る発明による燃料処理装置1は、請求項1に記載の燃料処理装置において、例えば図1に示すように、第1の1次断熱材17として、シリカ・アルミナ系微粒子粉末を含んで配合した混合物を発泡させ硬化させた無機質発泡体37Aを用い;2次断熱材19として無機質繊維から成形した2次断熱成形体39を用いる。
【0008】
このように構成すると、燃料処理装置1は、無機質発泡体37Aと、2次断熱成形体39とを用いるので、無機質発泡体37Aと2次断熱成形体39とを組合せ、優れた耐熱性と高温での良好な断熱性を有し一体成形可能な無機質発泡体37Aにより燃焼熱が燃焼室13から装置外部に漏れるのを防ぎ、燃焼室13の燃焼温度を適切な値に維持することができ、良好な施工性と強度を有する2次断熱成形体39により、強度の不十分な無機質発泡体37Aの外側を断熱し、無機質発泡体37Aの断熱性能を補強し、さらに無機質発泡体37Aを外的衝撃に対し強くすることができる。
【0009】
請求項3に係る発明による燃料処理装置1は、請求項1に記載の燃料処理装置において、例えば図1に示すように、前記第1の1次断熱材17として、シリカ系微粒子粉末を含んで配合した混合物を圧縮成形させた無機質多孔体37Bを用い;2次断熱材19として無機質繊維から成形した2次断熱成形体39を用いる。
【0010】
このように構成すると、燃料処理装置1は、無機質多孔体37Bと、2次断熱成形体39とを用いるので、無機質多孔体37Bと2次断熱成形体39とを組合せ、優れた耐熱性と高温での良好な断熱性を有する無機質発泡体37Aにより燃焼熱が燃焼室13から装置外部に漏れるのを防ぎ、燃焼室13の燃焼温度を適切な値に維持することができ、良好な施工性と強度を有する2次断熱材19により、もろく、固定の難しい無機質多孔体37Bの外側を断熱し、無機質発泡体37Aを外的衝撃に強くし、さらに無機質発泡体37Aを確実に燃料処理装置1に固定することができる。
【0011】
上記目的を達成するために、請求項4に係る発明による燃料処理装置1は、例えば図1に示すように、原料ガスGを処理して水素を主成分とする燃料ガスJに改質する燃料処理装置において;前記改質に利用する熱を発生する燃焼室13と;燃焼室13を外部に対して断熱する固形の第1の1次断熱材17と;燃焼室13と燃料処理装置1内の他の部分との間を断熱する布状の第2の1次断熱材18とを備える。
【0012】
このように構成すると、燃料処理装置1は、燃焼室13と、第1の1次断熱材17と、第2の1次断熱材18とを備えるので、第1の1次断熱材17と第2の1次断熱材18とを組合せ、第1の1次断熱材17により燃焼熱が燃焼室13から装置外部に漏れるのを防ぎ、燃焼室13の燃焼温度を適切な値に維持し、第2の1次断熱材18により燃焼室13と燃料処理装置1の他の部分との間を断熱し、燃焼室13の燃焼温度を適切な値に維持し、また他の部分の温度を他の部分に適した低い温度とすることができる。燃焼室13を外部に対して断熱するのを高い断熱性能、耐熱性能を有する固形の第1の1次断熱材17にて行い、燃焼室13と他の部分との間の断熱を、燃焼室13と他の部分との間に形成された空間に挿入される、柔軟性を有する第2の1次断熱材18にて行い、第1の1次断熱材17と第2の1次断熱材18とを使い分け、効率のよい断熱を行うことができる。なお、燃料処理装置1内の他の部分とは、燃焼燃料処理1内の、燃焼室13より低い温度であることを要する部分をいう。
【0013】
上記目的を達成するために、請求項5に係る発明による燃料処理装置1は、例えば図1に示すように、原料ガスGを処理して水素を主成分とする燃料ガスJに改質する燃料処理装置1において;前記改質に利用する熱を発生する燃焼室13と;燃焼室13を外部に対して断熱する固形の第1の1次断熱材17とを備え;前記第1の1次断熱材17として、シリカ・アルミナ系微粒子粉末を含んで配合した混合物を発泡させ硬化させた無機質発泡体37Aを用いる。
【0014】
このように構成すると、燃料処理装置1は、燃焼室13と、第1の1次断熱材17とを備え、第1の1次断熱材17として無機質発泡体37Aを用いるので、優れた耐熱性と高温での良好な断熱性を有し一体成形可能な無機質発泡体37Aにより燃焼熱が燃焼室13から装置外部に漏れるのを防ぎ、燃焼室13の燃焼温度を適切な値に維持することができる。
【0015】
上記目的を達成するために、請求項6に係る発明による燃料処理装置1は、例えば図1に示すように、原料ガスGを処理して水素を主成分とする燃料ガスJに改質する燃料処理装置において;前記改質に利用する熱を発生する燃焼室13と;燃焼室13と燃料処理装置1内の他の部分との間を断熱する布状の第2の1次断熱材18とを備え;第2の1次断熱材18として、無機質短繊維と加熱膨張材とを含んで配合した混合物をフェルト状に成形させた無機質短繊維フェルト38Aを用いる。
【0016】
このように構成すると、燃料処理装置1は、燃焼室13と、第2の1次断熱材18とを備え;第2の1次断熱材18として、優れた耐熱性と、良好な高温での断熱性を有する無機質短繊維フェルト38Aを用いるので、燃焼室13と燃料処理装置1の他の部分との間を断熱し、燃焼室13の燃焼温度を適切な値に維持し、また他の部分の温度を他の部分に適した低い温度とすることができる。燃焼室13と他の部分との間の断熱を、燃焼室13と他の部分との間に形成された空間に挿入される、柔軟性を有し、加工性に優れ、高温下で粉化、発泡膨張する無機質短繊維フェルト38Aにて行うので、効率のよい断熱を行うことができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明の実施の形態にかかる燃料処理装置としての燃料改質器1の概略構成を示す断面図である。図に示すように、略円柱形状の燃料改質器1は、垂直に設置され、燃焼原料導入部11と、バーナー12(燃焼炎を一点鎖線にて図示)と、燃焼室13と、改質触媒層14と、シフト触媒層15と、選択酸化触媒層16と、第1の1次断熱部17と、第2の1次断熱部18と、2次断熱部19と、隔壁41と、隔壁42と、隔壁43と、隔壁44と、隔壁45と、隔壁46と、隔壁47とを備える。燃焼原料導入部11と2次断熱部19とを除くこれらの構成要素は、円筒形状の2次断熱部19内に収納されている。
【0018】
燃焼原料導入部11は、燃料改質器1の上部中央に設置され、原料導入口31を有する。原料導入口31から燃焼用原料(燃焼用ガスDと燃焼用空気E)が導入される。バーナー12は、燃料改質器1の上部中央であって燃焼原料導入部11の直下方に形成された開口部3に接続され、燃料改質器1の中心軸線に沿って懸架され、燃焼用ガスDを燃焼させる。燃焼室13は、円筒形状をした燃焼円筒体13Aをその周囲を囲む周壁として有し、バーナー12を収納する。燃焼室13は、バーナー12で燃焼用ガスDを燃焼し、原料ガスGの改質に利用する熱を発生する。改質触媒層14は、円環形状をし、燃焼円筒体13Aの外側(燃料改質器1の径方向外側)に配置されている。改質触媒層14は、その内側を隔壁41により、その外側を隔壁42により直接挟まれ、隔壁41と隔壁42の間に収納されている。
【0019】
第1の1次断熱部17は、第1の1次断熱材を成形した固形の第1の1次断熱成形体37である。第1の1次断熱成形体37は、固形であるので、もろいが高い断熱、耐熱性能を有する。第1の1次断熱成形体37は、固形であるので、成形性が十分でなく、狭い充填空間に充填するのには適していない。よって、第1の1次断熱成形体37は、図に示すように燃料改質器1の下部の広い充填空間に充填される。第1の1次断熱成形体37は、後述のように第1の1次断熱材の組成により、(1)無機質発泡体37Aと、(2)無機質多孔体37Bと、無機質発泡体37Aを成形する第1の断熱材と、無機質多孔体37Bを成形する第1の断熱材とをブロック的に組み合わせて成形した(3)無機質組合せ体37Cとに分類される。
【0020】
第1の1次断熱部17は、上部に円柱形の凹部20を有する円柱形状であり、燃料改質器1の下部に、後述の2次断熱成形体39の底面及び内壁面下部に接触して配置されている。凹部20には、燃焼室13の下部と、改質触媒層14の下部が収納されている。凹部20は、隔壁43の外周面43Aに接触して、あるいは外周面43Aと1mm程度の隙間をあけて配置されている。すなわち、2次断熱成形体39は、第1の1次断熱部17の外側を覆い断熱を行っている。
【0021】
第2の1次断熱部18は、第1の1次断熱成形体37を形成する第1の1次断熱材とは異なる、第2の1次断熱材を成形した布状の第2の1次断熱成形体38である。断熱成形体が布状とは、断熱成形体が繊維構造であり自在に変形することができ、厚さ方向の長さが縦方向および横方向の長さに比較して大幅に短く、かつ変形の際に成分が安定し変質・飛散しないことをいう。第2の1次断熱成形体38は、布状であるので、柔軟性を有し、充填口が狭く、細長比(挿入長さと充填口の幅との比)の大きい狭い充填空間に容易に充填することができる。第2の1次断熱成形体38は、円環形状に成形した無機質短繊維フェルト38Aであり、改質触媒層14の外側(燃料改質器1の径方向外側)であって、第1の1次断熱部17の上方に、配置されている。無機質短繊維フェルト38Aは、その内側を隔壁43により、その外側を隔壁44により直接挟まれ、隔壁43と隔壁44の間に収納されている。
【0022】
シフト触媒層15は、円環形状であり、第2の1次断熱部18の外側(燃料改質器1の径方向外側)に配置されている。シフト触媒層15は、その内側を隔壁44により、その外側を隔壁45により直接挟まれ、隔壁44と隔壁45の間に収納されている。選択酸化触媒層16は、円環形状であり、シフト触媒層15の外側(燃料改質器1の径方向外側)に、配置されている。選択酸化触媒層16は、隔壁46と隔壁47の垂直部47Aとの間に収納されている。2次断熱成形体39は、選択酸化触媒層16の外側に配置されている。2次断熱成形体39は、隔壁47の垂直部47Aの外側に接触して配置されている。隔壁41〜47をステンレス製の鋼板から製作するとよい。2次断熱部19は、短繊維断熱材の2次断熱材からなり略円筒形状の容器構造をした2次断熱成形体39であり、前述のように燃焼原料導入部11を除くバーナー12等の燃料改質器1の要素を内部に収納している。
【0023】
燃料改質器1は、さらに燃焼排気ガス流路21と、原料ガス流路22と、改質ガス流路23とを備える。容器構造の2次断熱成形体39には、その側壁面に、それぞれパイプ形状の燃焼排ガス出口32、原料ガス供給口33、改質ガス出口34、選択酸化用空気供給口35が貫通するための孔が設けられている。
【0024】
燃焼排気ガス流路21は、燃焼円筒体13Aと隔壁41との間に円環形状に形成され、さらに燃料改質器1上部であって2次断熱部19の天井部36に接する隔壁47の水平部47Bの真下に薄い円板状に形成される。バーナー12で燃焼した原料ガスGの燃焼排気ガスFは、燃焼排気ガス流路21を通って燃焼排ガス出口32から燃料改質器1外に排気される。燃焼排気ガスFは、燃焼排気ガス流路21を通っている間、改質触媒層14を加熱し、加熱された改質触媒層14は、300℃から800℃の範囲内にある。また、後述のように円板状の燃焼排気ガス流路21の真下には原料ガス流路22の一部が通っており、燃焼排気ガスFは、改質触媒層14に接触する前の原料ガスGを予熱する。
【0025】
原料ガス流路22は、燃料改質器1上部であって燃焼排気ガス流路21の直下方に形成される。原料ガス流路22は、その途中に、円環形状の流路22Aと、同じく円環形状の流路22Bとを有する。流路22Aでは、原料ガスGは、選択酸化触媒層16とシフト触媒層15の間を下降し、原料ガスGと選択酸化触媒層16との間で熱交換が隔壁46を介して行われる熱交換部25を通過し、原料ガスGが選択酸化触媒層16により予熱される。流路22Bでは、原料ガスGは、さらに反転し選択酸化触媒層16とシフト触媒層15の間を上昇し、原料ガスGとシフト触媒層15との間で熱交換が隔壁45を介して行われる熱交換部26を通過し、原料ガスGがシフト触媒層15により予熱される。
【0026】
水Hが添加された原料ガスGは、原料ガス供給口33から原料ガス流路22に入り、原料ガス流路22を通って改質触媒層14に供給される。改質ガス流路23は、第1の1次断熱部17と改質触媒層14との間に円環状に形成された流路23Aを含み、さらにシフト触媒層15の上方に形成された流路23Bと、シフト触媒層15と選択酸化触媒層16との下方に形成された流路23Cと、選択酸化触媒層16の上方に形成された流路23Dを含んで構成されている。シフト触媒層15、選択酸化触媒層16も、改質ガス流路23の一部を形成する。
【0027】
原料ガスG及び水Hは、選択酸化触媒層16とシフト触媒層15とに挟まれた原料ガス流路22である熱交換部25と熱交換部26とを通過する間に100℃から500℃に予熱される。原料ガスGは、改質触媒層14で改質反応により改質されHとCOを主成分とする改質ガスMとなる。改質ガスMは、改質触媒層14から流路23A、23Bを通ってシフト触媒層15に送られ、改質ガスM中のCOは、シフト触媒層15でシフト(変成)反応により、HとCOにシフトされ、改質ガスM中のCOは減少する。改質ガスMは、シフト触媒層15から流路23Cを通って選択酸化触媒層16に送られ、改質ガスM中のCOは、選択酸化触媒層16で選択酸化用空気供給口35から送られた空気Kとの選択酸化反応により、COが酸化されて除去され、Hを主成分とする燃料ガスJとなる。COが除去された改質ガスMは、流路23Dを通って改質ガス出口34から燃料改質器1外に排出される。さらに改質ガスMは、不図示の固体高分子型燃料電池に、Hを主成分とする燃料ガスJとして送られ、燃料電池発電が行われる。
【0028】
第1の1次断熱部17は、高温部、すなわち(1)燃焼室13、(2)改質触媒層14、燃焼排ガスFと改質触媒層14間の熱交換が隔壁41を介して行われる(3)熱交換部24の熱が、外部(燃料改質器1の外部、以下同様)に逃げないようにしている(以上第1の1次断熱)。第2の1次断熱部18は、高温部の径方向外周(燃料改質器1の径方向外周と同じ)を断熱保持し、略円柱形状の高温部と、高温部の周りに位置する円環形状の低温部、すなわち(1)シフト触媒層15、(2)選択酸化触媒層16、(3)熱交換部24、25とを隔てる(以上第2の1次断熱)。低温部は、本発明の燃料処理装置内の他の部分である。2次断熱部19は、円筒形状に燃料改質器1の外壁を構成するよう形成され、第1の1次断熱成形体37の外側を覆って断熱し、熱が燃料改質器1の外表面から外に逃げないようにしている(2次断熱)。
【0029】
なお、本発明において第1の1次断熱とは、前述のように燃焼室13等がある高温部の熱が外部に逃げないようにすること、第2の1次断熱とは、燃焼室13等の高温部とその周りのシフト触媒層15等のある低温部との間を断熱し温度的に隔てることをいう。
【0030】
次に、第1の1次断熱部17、第2の1次断熱部18、2次断熱部19に用いられる断熱材についてさらに詳しく説明する。
第1の1次断熱材によって、第1の1次断熱部17を形成する第1の1次断熱成形体37が成形される。第1の1次断熱成形体37は、燃料改質器1内部に装着、被覆され、高温部(600〜800℃)の外部に対する断熱を可能とするあ226う。第1の1次断熱成形体37は、立体形状に固形に成形加工される。
【0031】
第2の1次断熱材によって、第2の1次断熱部18を形成する第2の1次断熱成形体38が形成される。第2の1次断熱成形体38は、円環形状、布状に成形加工され、高温部と低温部の間に挿入、装着され、高温部と低温部の間を断熱し温度的に隔てることを可能とする。第1の第1の1次断熱成形体37と、第2の1次断熱成形体38とを用いることにより、高温部の温度を維持し、高温部と低温部の間を断熱し温度的に隔てることにより、燃料改質器1が原料ガスGを効率よく処理し燃料ガスJを効率よく製造することができる。
【0032】
さらに第2の断熱材によって、2次断熱成形体39が形成される。2次断熱成形体39は、円筒形状に成形加工され、1次断熱を施した燃料改質器1の外周部分(側面、上面、底面)を覆って装着、被覆され、燃料改質器1の表面の温度を接触しても火傷をしない温度まで下げることが可能である。
【0033】
第1の1次断熱成形体37には、微粒子シリカ・アルミナ系微粒子粉末を主成分とする(1)無機質発泡体37A、または、シリカ超微粒子粉末を主成分とする(2)無機質多孔体37B、さらには該無機質発泡体37Aを形成する断熱材と該無機質多孔体37Bを形成する断熱材とをブロック的に組み合せて形成した(3)無機質組合せ体37Cがある。
第2の1次断熱成形体38には、ロックウールまたはセラミックウール、またはこれらを混合した混合ウールを主要成分とする無機質短繊維フェルト38Aがある。
【0034】
2次断熱成形体39には、無機質短繊維としてのロックウールまたは無機質短繊維としてのガラスウールを円筒形状に成形加工し、さらにALGC(アルミガラスクロス)等の外皮材40を外周部分(側面、上面、底面)に施し、さらに燃焼排気ガスF、原料ガスG、燃料ガスJ、選択酸化用空気Kの配管用(原料導入口31、燃焼排ガス出口32、原料ガス供給口33、改質ガス出口34、選択酸化用空気供給口35にそれぞれ接続された配管ノズル)の穴加工がなされている。
【0035】
1次断熱材(第1の1次断熱材及び第2の1次断熱材)は、機械的な強度は劣るが耐熱性に優れた無機質素材から構成されており、1000℃以上の高温断熱が可能であり、内部の高温部の温度600〜800℃に対し、1次断熱(第1の1次断熱及び第2の1次断熱)された燃料改質器1の外表面の温度を100℃〜200℃まで低下させることが可能となる。また、2次断熱材は、耐熱性は1次断熱材よりやや劣るが、安価で実用強度のある素材から構成され、燃料改質器1への装着、被覆が容易で、且つ、第1の1次断熱成形体37の保護を兼ねた300℃以下の温度域での断熱保温を目的とするものである。
以上説明したように1次断熱と2次断熱によって、燃料改質器1の生成効率を高めることができ実用性に優れた断熱成形体を備えた燃料改質器1の供給が可能となる。
【0036】
第1の1次断熱成形体37は、シリカ・アルミナ系微粒子粉末、熱線反射材、耐熱性繊維、整泡材、硬化材を配合した混合物を約500kg/m以下の密度で発泡させ硬化させて成形した無機質発泡体37Aとしてもよい。
【0037】
第1の1次断熱成形体37は、シリカ系微粒子粉末、耐熱性繊維、および熱線反射材を配合した混合物を約500kg/m以下の密度で圧縮成形した無機質多孔体37Bとしてもよい。
【0038】
第2の1次断熱成形体38は、無機質短繊維と加熱膨張材とを含んで配合した混合物をフェルト状に成形した無機質短繊維フェルト38Aとしてもよい。無機質短繊維は、ロックウール、またはセラミックウール、またはロックウールとセラミックウールの混合繊維からなる群から選ばれたものとするとよい。無機質短繊維は、脱ショット処理をしたものを用いてもよい。無機質短繊維フェルト38Aは、ロックウール、またはセラミックウール、またはロックウールとセラミックウールの混合繊維からなる群から選ばれた無機質繊維と、焼結材と、結合剤と、加熱膨張材とを配合してフェルト状に成形してもよい。
【0039】
2次断熱成形体39は、結合剤を付着させた無機質短繊維を円筒形状に成形硬化し、前記円筒形状の成形体の外周に不燃性布を貼り付けて形成したものとするとよい。無機質短繊維は、ロックウール短繊維、またはガラスウール短繊維とするとよい。結合剤として、水溶性フェノール樹脂、メラミン樹脂、およびコロダイルシリカからなる群から選ばれたものを用いるとよい。
【0040】
以下、第1の1次断熱を行う第1の1次断熱成形体37、第2の1次断熱を行う第2の1次断熱成形体38、2次断熱を行う2次断熱成形体39について詳述する。
第1の1次断熱部17の断熱材は、第1の1次断熱成形体37で形成されている。第1の1次断熱成形体37は、シリカ・アルミナ系微粒子粉末を主要成分に、熱線反射材、耐熱性繊維、微粒子軽量化材、有機結合剤を配合してなるマトリックス材を100重量部、硬化剤を50〜100重量部、発泡剤を5〜15重量部、整泡剤を0.1〜0.2重量部を配合した混合物を撹拌混合し、図に示すような所定の形状を形成するよう型に注入することにより製造され無機質発泡体37Aとすることができる。
【0041】
シリカ・アルミナ系微粒子粉末は、メタカオリン、ボーキサイト、無定形シリカ、フライアッシュ、セメント等を成分とする。熱線反射材として、酸化チタン微粒子粉末を用いるとよい。耐熱性繊維として、寸法安定材と補強材を兼ねてガラスショップド繊維を用いるとよい。粒子軽量化材として、パーライト、ガラスバルーン、シラスバルーン等を用いるとよい。無機質発泡体37Aの強度向上を目的とする有機結合剤として、水溶性変性アクリル樹脂、ポバール等を用いる。硬化剤として、ナトリウム、カリウム系のアルカリ金属珪酸塩を用いるとよい。発泡剤として、アルミニウム粉末または過酸化水素水を用い、整泡剤として、カゼイン、シリコン樹脂、ヒマシ油エチレン・プロピレンオキサイド等を用いるとよい。
【0042】
注入後、50〜70℃の温度で30分〜2時間発泡硬化させ、続いて100℃前後の温度で約2時間養生乾燥し、さらに耐熱性、及び寸法安定性の付与を目的に500〜600℃の温度で短時間熱処理し、無機質発泡体37Aを製造することができる。このように製造された無機質発泡体37Aの密度及び熱伝導率は、整泡剤のタイプ、発泡剤の配合量、軽量化剤の配合量等に依存するが、実用性の点から密度は200〜500kg/mの範囲となるようにするのが好ましく、さらに200〜300kg/mの範囲とするのがより好ましく、断熱性の尺度となる熱伝導率として、0.030〜0.060W/mKの性能が得られる。また、無機質発泡体37Aの耐熱温度は約1000℃と高く、1次断熱としての前述の高温部(600〜800℃)の断熱に適した条件を満たす断熱素材である。
【0043】
第1の1次断熱部17を、以下に述べる他の実施の形態の第1の1次断熱成形体37としてもよい。他の実施の形態の1次断熱成形体37は、シリカ系微粒子粉末を主要成分に、熱線反射材、耐熱性繊維を配合してなる混合物を所定の形状に圧縮成形して製造する無機質多孔体37Bとすることができる。シリカ系微粒子粉末として、シリカ超微粒子粉末であるシリカフューム等を用いる。熱線反射材として、微粒子粉末酸化チタン、酸化ジルコニウムを用いるとよい。耐熱性繊維は、補強材としても作用し、ガラスチョップド繊維を用いるとよい。本無機質多孔体37Bは、素材が高価であるため、低密度で使用することが好ましいが、形状保持性と経済性の点から密度200〜500kg/mの範囲とするのが好ましく、さらに200〜300kg/mの範囲とするのがより好ましい。この範囲の密度で、熱伝導率として、0.020〜0.030W/mKの性能が得られる。また、耐熱温度も約1000℃と高く、素材としては高価ではあるが、すぐれた高温断熱が可能であり1次断熱としての条件を満たす。
【0044】
無機質発泡体37Aまたは無機質多孔体37Bは、軽量で耐熱性、断熱性に優れ、燃料改質器1の燃焼室13等の600〜800℃の高温度での断熱保温に充分な性能を有する。しかしながら係る無機質発泡体37Aまたは無機質多孔体37Bである第1の1次断熱成形体37は強度、表面硬度が低く、また切削加工性が十分でないため、これらの点に対処するため、第1の1次断熱成形体37を断熱被覆する2次断熱成形体39による組み合せが経済性の観点からも好ましい。
【0045】
本実施の形態に係る燃料改質器1は、第2の1次断熱としての、燃料改質器1内部の温度域を隔てる(高温部と低温部を隔てる)断熱保温のため、狭い円筒形状の隙間に挿入すること、あるいは装着することが容易なフェルト形状の第2の1次断熱成形体を用いることができる。
【0046】
第2の1次断熱部18の断熱材は、挿入、装着が容易なフェルト状の第2の1次断熱成形体38で形成されている。本実施の形態の第2の1次断熱成形体38は、無機質短繊維100重量部に、加熱膨脹性無機質粉末5〜40重量部、焼結性無機質粉末5〜15重量部、結合助材を含む結合剤10重量部以下、不燃性の点から好ましくは7重量部以下からなる混合物を水に分散させて得られるスラリーを、円網または長網タイプの製紙用抄造機と同様の抄造機でフェルト状に抄造し、乾燥、硬化させることにより製造される無機質短繊維フェルト38Aとすることができる。
【0047】
本無機質短繊維フェルト38Aを構成する無機質短繊維は、ロックウールまたはセラミックウールであって、単独又は混合して使用される。ロックウールはSiO35〜55wt%、Al10〜20wt%、MgO5〜40wt%、CaO5〜40wt%、FeO0〜10wt%、Cr、NaO、KO、TiO、MnO等の微量成分0〜10wt%とからなる原料鉱物の混合物を、セラミックウールは、SiO47〜52wt%、Al47〜52wt%、CaO、MgO、TiO、ZrO等の微量成分の合計が0〜10wt%とからなる原料鉱物の混合物を、キュポラ炉又は電気炉で1400〜1600℃の温度で溶融し、ブローイング法や高速回転体によるスピニング法で繊維化して得られる。係る無機質短繊維はショットと称する非繊維化粒子を約30wt%含有しているので、脱ショット処理された形で使用する。
【0048】
加熱膨脹性無機質粉末(加熱膨張材)として、未焼成バーミキュライト粉末、膨脹性黒鉛等を用いるとよい。焼結性無機質粉末として、ホウ砂、セピオライト、アタパルジャイト、低融点ガラスフリット、チタン酸カリウムホイスカー等の焼結性無機質粉末を用いるとよい。有機結合剤、無機結合剤として、アクリル樹脂、変性アクリル樹脂、酢酸ビニル樹脂、フェノール樹脂、コロイダルシリカ等を用いる。結合助材として、ポリエチレンパルプ、ポリエチレン・ポリプロピレン複合繊維、ナイロン繊維等を用いるとよい。
【0049】
本無機質短繊維フェルト38Aは、挿入、装着する形状にもよるが、厚み2〜5mm、坪量300〜2000g/mが適正で、フェルトの加熱発砲後の熱伝導率は、0.030〜0.050W/mKの範囲にあり、耐熱性も700〜1000℃と高く、燃料改質器1内部の高温部を低温部から隔てる断熱保温を行うための挿入型の第2の1次断熱成形体38として使用することができる。
【0050】
2次断熱部19の断熱材は、2次断熱成形体39で形成されている。無機質短繊維としてのロックウールまたはガラスウール短繊維を円筒形状に成形加工した2次断熱成形体の基本形は、前述したロックウール、または組成が、SiO60〜72wt%、Al1〜5wt%、MgO0〜5wt%、CaO6〜11wt%、B0〜7wt%、RO(NaO+KO)14〜19wt%からなるガラスウールの保温筒の製造設備で製造することができる。係る2次断熱成形体39は、以上説明したロックウール又はガラスウール組成の原料をキュポラ炉、電気炉で溶融し、続いて高速回転体等で繊維化するが、この工程で水溶性フェノール樹脂、水溶性メラミン樹脂、コロイダルシリカに、必要に応じてワックス系撥水剤やシランカップリング剤を配合した水溶性バインダー液を吹霧して繊維に付着させたマットを円筒形状の芯管に巻きつけ、150〜250℃の温度で5〜20分加熱硬化させ、切断脱芯を経て連結半割型の円筒形状の断熱材が製造される。係る円筒形状の断熱材は、密度80〜150kg/m、熱伝導率0.030〜0.050W/mKで、300〜700℃の温度範囲に適した耐熱性がある。また、以上説明した円筒形状の断熱材は、不燃性布としてのALGC(アルミガラスクロス)、不燃性布としてのALK(アルミクラフト紙)等の外皮材40を貼り、且つ、配管用の穴あけ加工をして2次断熱成形体39に加工され、1次断熱を施した燃料改質器1を覆い円筒形状に装着、被覆される。
【0051】
以上説明したように本発明の第1の1次断熱成形体37、第2の1次断熱成形体38、2次断熱成形体39を挿入、装着、被覆した燃料ガスJを発生する燃料改質器1の内部温度600〜800℃に対し、燃料改質器1の外表面温度は30〜50℃まで低下し、優れた断熱保温性を有し、軽量であり、メンテナンス性にも優れた性能を発揮する。また第1の1次断熱成形体37、第2の1次断熱成形体38、2次断熱成形体39の挿入、装着、被覆等の作業性も良好で経済性と実用性も満足され、起動停止の繰り返しによる容器の膨張、収縮に対しても、柔軟に追従して良好な断熱性を示し、本発明の技術課題が解決される。
【0052】
【実施例】
以下、本発明の燃料処理装置用の第1の1次断熱材から形成される第1の1次断熱成形体37、第2の1次断熱材から形成される第2の1次断熱形成体38、2次断熱材から形成される2次断熱成形体39について実施例を以て説明する。無機質発泡体37A(第1の1次断熱成形体37)の実施例を説明する(実施例1)。
メタカリオン30wt%、ワラストナイト28wt%、タルク20wt%、マスコバイト2wt%、ヒマシ油エチレンプロピレンオキサイド系の整泡剤2wt%からなる粒径10μm以下の微粒子粉末の混合物220gに、40wt%濃度珪酸カリウム50g、17wt%過酸化水素水30gを常温で3分撹拌し、サイズ、約250mm(長さ)×約250mm(幅)×約20mm(厚さ)の離型処理したスチール製の型枠に注入し、蓋で密閉する。続いて型枠を50℃の乾燥機に入れ、1時間、発泡硬化させた後、脱形して無機質発泡体37Aを得た。発泡体37Aは、室温で一昼夜、養生し、養生後100℃で2時間乾燥し、続いて600℃で10分熱処理をして最終的な無機質発泡体37Aを製造する。
【0053】
表1に、得られた無機質発泡体37Aの性能を表示する。
【表1】

Figure 2004182528
【0054】
表1に示した無機質発泡体37Aの試験方法は次の通りである。熱伝導率は、JIS A 1412の平板法による熱伝導率測定による評価である。耐熱温度は、電気炉で10℃/minの昇温速度で加熱した時の2%寸法収縮する温度として評価している。圧縮強度は、5%圧縮変形で得られる最大圧縮強度として評価している。
表1より本発明の無機質発泡体37Aは、軽量で耐熱性、断熱性に優れ、1次断熱としての適正条件を満足し、且つ、所定の形状に発泡成形することが可能で、1次断熱成形体37として使用できることが理解される。
【0055】
次に、無機質多孔体37Bの実施例を説明する(実施例2)。
日本マイクロサーム社の粒径50nm以下の超微粉子シリカ・エアロジルが100重量部、1μm以下の微粒子酸化チタンが50重量部、ガラスチョップド繊維が8重量部からなる混合物に、成形助剤としての炭酸アンモニウム1重量部を配合し、常温で圧縮成形し、続いて125℃で加圧養生してサイズ、約250mm(長さ)×約250mm(幅)×約20mm(幅)の無機質多孔体を製造した。(註:日本マイクロサーム社のマイクロサーム・ブロックタイプの製法に該当する)
【0056】
表2に、得られた無機質多孔体37B(第1の1次断熱成形体37)の性能を示す。
【表2】
Figure 2004182528
【0057】
表2に示した無機質多孔体37Bの試験方法は次の通りである。熱伝導率は、JIS A 1412平板法による熱伝導率測定による評価である。耐熱温度は、電気炉で10℃/minの昇温速度で加熱した時の2%寸法収縮する温度として評価している。
表2より無機質多孔体37Bは、耐熱性、断熱性に優れ1次断熱としての適正条件を満足するが、成形加工性がやや不十分で素材も高価であるので、形状のシンプルな断熱成形体として部分的に使用することが好ましい。
【0058】
次に、無機質短繊維フェルト38A−1(図中、符号38Aと同一形状)(第2の1次断熱成形体38)の実施例を説明する(実施例3−1)。
SiO48wt%、CaOlwt%、MgO28wt%、Al19wt%、その他微量成分の合計4wt%からなるロックウール粒状綿を水に分散しパルパーで解繊切断し、続いてクリーナーによる脱ショット処理をして得られる繊維長100〜1000μmのロックウール40wt%、粒径が0.5〜2.0mmの未焼成バーミキュライト40wt%、解繊精製したセピオライト10wt%、チタン酸カリウムとパルプの混合物3wt%、繊維長が約10mm、3デニールのポリエチレン・ポリプロピレン複合繊維2wt%、ガラス転移温度−14℃で固形分45wt%の熱自己架橋型アクリル樹脂エマルジョン5wt%からなる混合物をミキサーで分散し、約1wt%の水性スラリーを調整する。係る水性スラリーをロートフォーマー型抄造機で抄造し、吸引脱水後150℃、20分乾燥し、厚み約5mmのフェルトを製造した。続いて20g/mのポリエステル繊維不織布をニッドパンチ加工した無機質短繊維フェルト38A−1を製造した。
【0059】
他の実施例の無機質短繊維フェルト38A−2(図中、符号38Aと同一形状)(第2の1次断熱成形体38)を説明する(実施例3−2)。
実施例1のロックウールが70wt%、平均粒度約1.5mmの膨脹性黒鉛が10wt%、解繊精製したセピオライト10wt%、チタン酸カリウムとパルプの混合物3wt%、繊維長が約10mm、3デニールのポリエチレン・ポリプロピレン複合繊維2wt%、ガラス転移温度−14℃の固形分45wt%の熱自己架橋型アクリル樹脂エマルジョン5wt%からなる混合物を実施例(3−1)と同様にして、厚み約5mmの無機質短繊維フェルト38A−2を製造した。
【0060】
さらに他の実施例の無機質短繊維フェルト38A−3(図中、符号38Aと同一形状)を説明する(実施例3−3)。
SiO48wt%、Al48wt%、その他微量成分4wt%からなるセラミックウールを無機質発泡体の実施例1のロックウールと同様の方法で処理し、脱ショットした得られる繊維長が100〜1000μmのセラミックウール40wt%、その他の成分及び製造法は実施例(3−1)と同様な方法で厚み約5mmの無機質短繊維フェルト38A−3を製造した。
【0061】
実施例(3−1)〜(3−3)で得られた無機質短繊維フェルト38A−1から38A−3の性能を表3に示す。
【表3】
Figure 2004182528
【0062】
表3に示した無機質短繊維フェルト38A−1〜3の試験方法は次の通りである。防火性は、JIS A 1321の基材試験及び表面試験による評価である。耐熱温度は、電気炉で10℃/minの昇温速度で加熱した時のフェルトの縦、横方向の寸法が5%収縮する温度としての評価である。加熱膨脹率は、電気炉で600℃、2分間加熱処理した時のフェルトの厚み方向の膨張率である。熱伝導率は、JIS A 1412の平板法による熱伝導率による評価である。表3より本実施の形態の無機質短繊維フェルト38Aは、耐熱性と断熱性、柔軟性を有するシートで、挿入型の第2の1次断熱成形体38として使用できることが理解される。
【0063】
次に、無機質短繊維円筒形状断熱成形体(2次断熱成形体39)の実施例を説明する(実施例4)。
SiO40wt%、Al13wt%、MgO5wt%、CaO37wt%、その他微量成分の合計5wt%からなるロックウール原料を電気炉で1450〜1500℃に熔融し遠心力を利用した2ホイール型高速回転体で繊維化して得られる平均繊維径4μmのロックウールに、回転体の周囲に配置した複数のノズルよりコロイダルシリカと水溶性メラミン樹脂からなるバインダー液を噴霧し、繊維に固形分で5wt%付着させた未硬化綿を製造した。続いて外径約160mmのスチール製の芯管に肉厚約20mmになる様、巻きつけ200℃の硬化炉で30分加熱硬化させ、脱芯を経て連結半割型にカットした円筒形状の断熱材を製造した。続いて、円筒形状の断熱材に一般市販品のALGC(アルミガラスクロス)シートをクロロプレン接着剤で被覆し、2次断熱成形体39であるロックウール系断熱成形体を製造する。
【0064】
無機質短繊維円筒形状断熱成形体(2次断熱成形体39)の他の実施例を説明する(実施例5)。
SiO63wt%、Al3wt%、MgO3wt%、CaO7wt%、B5wt%、KO5wt%、NaO12wt%、その他微量成分の合計2wt%からなるガラス原料を電気炉で1350〜1400℃に溶融し遠心力を利用した高速回転体で繊維化して得られる平均繊維径6μmのガラスウールに、回転体の周囲に配置した複数のノズルより、コロイダルシリカと水溶性フェノールからなるバインダー液を噴霧し、繊維に固形分で7wt%付着させた未硬化綿を製造した。以下、実施例4のロックウールの場合と同様に、外径約160mmのスチール製の芯管に肉厚約20mmになる様、巻きつけ200℃の硬化炉で30分加熱硬化させ、脱芯を経て連結半割型にカットした円筒形状の断熱材を製造した。続いて、円筒形状の断熱材に一般市販品のALGC(アルミガラスクロス)シートをクロロプレン接着剤で被覆し、2次断熱成形体39であるガラスウール系断熱成形体を製造した。
【0065】
実施例4と5で得られた断熱成形体の性能を表4に示す。
【表4】
Figure 2004182528
【0066】
実施例4または5において、肉厚部分の熱伝導率は同一密度に平板に成形した断熱板で評価した。表4より本発明の円筒形状の断熱成形体は、1次断熱材と比較し、耐熱性は低いが、断熱性、機械的強度、防湿性および装着被覆性に優れ、且つ、安価な断熱素材から構成されているので経済的な2次断熱成形体39として使用できる。2次断熱成形体39である実施例4、5の無機質短繊維円筒形状断熱成形体は、第1の1次断熱成形体37の外側を断熱する。
【0067】
次に、下記の断熱材を燃料改質器1に使用した場合の実施例の性能評価について述べる(実施例6−1)。
第1の1次断熱成形体37の外径が約170mm、長さが約180mm、第1の1次断熱成形体37の凹部20の内径が約90mm、深さが約130mm、第2の1次断熱成形体38の内径が約90mm、厚さが約5mm、長さが断熱成形体約390mm、2次断熱成形体39の外径が約200mm、厚さが約20mm、長さが約640mmであり、燃焼室13(燃焼温度600〜800℃)、熱交換部24、25、26を有するステンレス製の燃料改質器1に、実施例1の無機質発泡体37Aからなる第1の1次断熱成形体37、実施例3−2の無機質短繊維フェルト38A−2からなる第2の1次断熱成形体38と、実施例4のロックウール系円筒形状の2次断熱成形体39を燃料改質器1に挿入、装着、被覆し、燃料改質器1の外径が約200mm、長さが約640mmとなる様、断熱保温する。
【0068】
次に他の実施例(実施例6−2)として、実施例6−1の燃料改質器1において、無機質発泡体37Aの代わりに実施例2で用いた無機質多孔体37Bを用い、実施例3−2で用いた無機質短繊維フェルト38A−2の代わりに、実施例3−1で用いた無機質短繊維フェルト38A−1を用い、断熱保温する。
【0069】
実施例6−1、6−2で、燃料ガス生成試験を実施したところ、生成効率も高く、燃焼室の温度が600〜800℃である、断熱保温した燃料改質器1の外側温度は40〜50℃と低く、本発明に係る実施の形態の断熱成形体37、38、39による断熱保温は良好な結果を示した。
【0070】
以上、実施例(1〜6)で述べた様に、燃料改質器1の断熱保温に関し、本実施例の第1の1次断熱成形体37として無機質発泡体37A、無機質多孔体37B、1次断熱成形体38として円環形状の無機質短繊維フェルト38A−1、38A−2と、円筒形状の2次断熱成形体39の組み合せからなる断熱材を燃料改質器1に挿入、装着、被覆することで燃料ガス発生効率を高める高温断熱保温が可能となる。また、実施例(1〜6)の断熱成形体37、38、39は、軽量でメンテナンス性も良く、燃料改質器1への挿入、装着、被覆が容易で、且つ、安価な素材をベースに構成されているので、経済的な断熱保温が可能で実用性に優れるという効果を発揮する。第1の1次断熱成形体37として、無機質組合せ体37Cを用い、あるいは第2の1次断熱成形体38として、無機質短繊維フェルト38A−3を用いても同様の効果が得られる。
【0071】
【発明の効果】
以上のように本発明によれば、燃料処理装置は、燃焼室と、第1の1次断熱材と、2次断熱材とを備えるので、高い断熱性を有する固形の第1の1次断熱材により燃焼熱が燃焼室から装置外部に漏れるのを少なくして燃焼室の燃焼温度を適切な値に維持することができ、柔軟性を有し加工性に優れた布状の2次断熱材により、強度が不十分な第1の1次断熱材の外側を覆い断熱し、第1の1次断熱材の断熱性能を補強し、さらに第1の1次断熱材を外的衝撃に対し強くすることができる。
【図面の簡単な説明】
【図1】本発明の燃料改質器の構成を示す断面図である。
【符号の説明】
1 燃料改質器
3 開口部
11 燃焼原料導入部
12 バーナー
13 燃焼室
13A 燃焼円筒体
14 改質触媒層
15 シフト触媒層
16 選択酸化触媒層
17 第1の1次断熱部
18 第2の1次断熱部
19 2次断熱部
20 凹部
21 燃焼排気ガス流路
22 原料ガス流路
23 改質ガス流路
24、25、26 熱交換部
31 原料導入口
32 燃焼排ガス
33 原料ガス供給口
34 改質ガス出口
35 選択酸化用空気供給口
36 天井部
37 第1の1次断熱成形体
37A 無機質発泡体
37B 無機質多孔体
37C 無機質組合せ体
38 第2の1次断熱成形体
38A 無機質短繊維フェルト
39 2次断熱成形体
40 外皮材
41〜47 隔壁
D 燃焼用ガス
E 燃焼用空気
F 燃焼排気ガス
G 原料ガス
H 水
J 燃料ガス
M 改質ガス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel processing apparatus for processing a raw material gas to obtain a fuel gas to be supplied to a fuel cell, and more particularly to a fuel processing apparatus provided with an adiabatic formed body that insulates and keeps a combustion portion insulated or thermally isolated. is there.
[0002]
[Prior art]
In the case of a fuel processor that generates hydrogen for polymer electrolyte fuel cells from fossil fuels such as natural gas and kerosene, the combustion section of the system is used to increase the raw material processing efficiency and maintain an appropriate temperature balance inside the device. The condition is to maintain and stabilize the catalyst layer, the heat exchange part and the like at a high temperature of 100 ° C. to 800 ° C. or more. In order to satisfy this condition, a non-combustible, heat-resistant, heat-insulating molded body having a non-combustible, heat-resistant, heat-insulating property is fitted and inserted into the combustion section, catalyst layer, heat exchange section, etc. of the fuel processor, according to their shape and structure. Or need to be coated. As an example that satisfies this requirement, there is a fuel processing apparatus equipped with an adiabatic molded body obtained by compression-molding ultrafine silica powder such as silica fume and covering the adiabatic heat.
[0003]
[Problems to be solved by the invention]
However, such a heat-insulating molded body, although satisfying the heat resistance and the heat insulating property, is expensive, and is formed by a method such as compression molding. In some cases, it is difficult and the surface hardness and strength of the heat-insulated molded article are low, so that the heat-insulated molded article is vulnerable to external impact, and the practicability may not be sufficient. In addition, these solid insulation materials are difficult to fix, and were conventionally fixed with tape or the like.However, a gap is generated between the solid insulation materials or between the container and the fixed insulation material due to thermal expansion, and heat is transferred to the outside. There was a runaway phenomenon. Further, when filling a narrow space or the like, a gap is formed between the heat insulating material and the device, and the heat insulating performance may be reduced.
[0004]
The present invention relates to the above technical problems, has high heat resistance, high heat insulation, good moldability, strong against external impact, easy to fix to the fuel processor, or in the fuel processor. It is an object of the present invention to provide a fuel processing apparatus provided with a heat-insulating molded body that can be easily filled in a narrow space or the like without generating a gap.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a fuel processing apparatus 1 according to the first aspect of the present invention, for example, as shown in FIG. 1, processes a raw material gas G to reform a fuel gas J containing hydrogen as a main component. In the processing apparatus 1, a combustion chamber 13 that generates heat used for the reforming; a solid first heat insulating material 17 that insulates the combustion chamber 13 from the outside; and a first primary heat insulating material 17 And a cloth-like secondary heat insulating material 19 that covers the outside of the device and insulates the outside.
[0006]
With this configuration, the fuel processing device 1 includes the combustion chamber 13, the first primary heat insulator 17, and the second heat insulator 19, so that the first primary heat insulator 17 and the second heat insulator 19. Combining with 19, solid first primary heat insulating material 17 having high heat insulating property prevents combustion heat from leaking from combustion chamber 13 to the outside of the apparatus, and maintains the combustion temperature of combustion chamber 13 at an appropriate value. The heat insulation is performed by covering the outside of the first heat insulating material 17 having insufficient strength with the cloth-like secondary heat insulating material 19 having flexibility and excellent workability. 17 can be reinforced and the first primary heat insulating material 17 can be strengthened against external impact. The phrase “the secondary heat insulating material 19 covers the outside of the first primary heat insulating material 17” means not only that the secondary heat insulating material 19 directly covers the outside of the first primary heat insulating material 17, but also The concept includes a case where there is an intervening material between the secondary heat insulating material 19 and the first primary heat insulating material 17 and the secondary heat insulating material 19 covers the outside of the intervening material.
[0007]
The fuel processing apparatus 1 according to the second aspect of the present invention is the fuel processing apparatus according to the first aspect, wherein, for example, as shown in FIG. An inorganic foamed body 37A obtained by foaming and curing the mixture blended in the above is used; as the secondary heat insulating material 19, a secondary heat insulating molded body 39 molded from inorganic fibers is used.
[0008]
With this configuration, since the fuel processing apparatus 1 uses the inorganic foam 37A and the secondary heat-insulating molded body 39, the fuel processing apparatus 1 combines the inorganic foam 37A and the secondary heat-insulating molded body 39 to provide excellent heat resistance and high temperature. The inorganic foam 37A having good heat insulating properties and capable of being integrally molded prevents combustion heat from leaking from the combustion chamber 13 to the outside of the apparatus, and can maintain the combustion temperature of the combustion chamber 13 at an appropriate value. The secondary insulation molding 39 having good workability and strength insulates the outside of the inorganic foam 37A having insufficient strength, reinforces the heat insulation performance of the inorganic foam 37A, and furthermore, externally disposes the inorganic foam 37A. It can be strong against impact.
[0009]
The fuel processing apparatus 1 according to the third aspect of the present invention is the fuel processing apparatus according to the first aspect, wherein, for example, as shown in FIG. An inorganic porous body 37B obtained by compression-molding the blended mixture is used; a secondary heat-insulating molded body 39 molded from inorganic fibers is used as the secondary heat-insulating material 19.
[0010]
With this configuration, since the fuel processing apparatus 1 uses the inorganic porous body 37B and the secondary heat-insulating molded body 39, the fuel processing apparatus 1 combines the inorganic porous body 37B and the secondary heat-insulating molded body 39 to provide excellent heat resistance and high temperature. The combustion heat can be prevented from leaking from the combustion chamber 13 to the outside of the device by the inorganic foam 37A having good heat insulating properties in the above, the combustion temperature of the combustion chamber 13 can be maintained at an appropriate value, and good workability and The secondary heat insulating material 19 having strength insulates the outside of the inorganic porous body 37B which is fragile and difficult to fix, strengthens the inorganic foam 37A against external impacts, and ensures that the inorganic foam 37A is transferred to the fuel processing apparatus 1. Can be fixed.
[0011]
In order to achieve the above object, a fuel processing apparatus 1 according to a fourth aspect of the present invention provides a fuel for processing a raw material gas G to reform it into a fuel gas J containing hydrogen as a main component, as shown in FIG. A combustion chamber 13 that generates heat used for the reforming; a first solid thermal insulator 17 that insulates the combustion chamber 13 from the outside; a combustion chamber 13 and the inside of the fuel processing apparatus 1 And a cloth-like second primary heat insulating material 18 that insulates between other parts.
[0012]
With this configuration, the fuel processing device 1 includes the combustion chamber 13, the first primary heat insulator 17, and the second primary heat insulator 18, so that the first primary heat insulator 17 and the second The first primary heat insulating material 17 prevents the heat of combustion from leaking from the combustion chamber 13 to the outside of the apparatus, and maintains the combustion temperature of the combustion chamber 13 at an appropriate value. Insulation between the combustion chamber 13 and other parts of the fuel processor 1 is insulated by the second primary heat insulating material 18, the combustion temperature of the combustion chamber 13 is maintained at an appropriate value, and the temperature of the other parts is maintained at another value. A lower temperature suitable for the part can be provided. The combustion chamber 13 is insulated from the outside by the solid first heat insulating material 17 having high heat insulation performance and heat resistance performance, and the heat insulation between the combustion chamber 13 and other parts is performed by the combustion chamber 13. The first primary heat insulator 17 and the second primary heat insulator 17 are inserted into a space formed between the first and second heat insulators 13 and 13 in the space formed between the first and second heat insulators. 18 can be used properly for efficient heat insulation. It should be noted that the other parts in the fuel processing device 1 refer to parts in the combustion fuel processing 1 that need to be at a lower temperature than the combustion chamber 13.
[0013]
In order to achieve the above object, a fuel processing apparatus 1 according to a fifth aspect of the present invention provides a fuel processing apparatus for processing a raw material gas G into a fuel gas J containing hydrogen as a main component as shown in FIG. The processing apparatus 1 includes: a combustion chamber 13 that generates heat used for the reforming; and a solid first heat insulating material 17 that insulates the combustion chamber 13 from the outside; As the heat insulating material 17, an inorganic foamed body 37A obtained by foaming and curing a mixture containing silica-alumina-based fine particle powder is used.
[0014]
With this configuration, the fuel processing device 1 includes the combustion chamber 13 and the first primary heat insulating material 17 and uses the inorganic foam 37A as the first primary heat insulating material 17, so that excellent heat resistance is obtained. It is possible to prevent the heat of combustion from leaking from the combustion chamber 13 to the outside of the apparatus by the integrally foamable inorganic foam 37A having good heat insulating properties at high temperatures and maintain the combustion temperature of the combustion chamber 13 at an appropriate value. it can.
[0015]
In order to achieve the above object, a fuel processing apparatus 1 according to a sixth aspect of the present invention provides a fuel processing apparatus for processing a raw material gas G into a fuel gas J containing hydrogen as a main component as shown in FIG. A combustion chamber 13 that generates heat used for the reforming; a cloth-like second primary heat insulating material 18 that insulates between the combustion chamber 13 and other parts in the fuel processing apparatus 1; An inorganic short fiber felt 38A in which a mixture of inorganic short fibers and a heat-expanding material is formed into a felt shape as the second primary heat insulating material 18;
[0016]
With such a configuration, the fuel processing apparatus 1 includes the combustion chamber 13 and the second primary heat insulating material 18; as the second primary heat insulating material 18, excellent heat resistance and favorable high-temperature Since the inorganic short fiber felt 38A having heat insulating properties is used, the combustion chamber 13 is insulated from the other parts of the fuel processing apparatus 1 to maintain the combustion temperature of the combustion chamber 13 at an appropriate value. Can be set to a low temperature suitable for other parts. The insulation between the combustion chamber 13 and the other parts is inserted into the space formed between the combustion chamber 13 and the other parts, and has flexibility, excellent workability, and powdered under high temperature. Since the heat treatment is performed with the inorganic short fiber felt 38A that expands and expands, efficient heat insulation can be performed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing a schematic configuration of a fuel reformer 1 as a fuel processing apparatus according to an embodiment of the present invention. As shown in the figure, a substantially columnar fuel reformer 1 is installed vertically, and includes a combustion raw material introduction part 11, a burner 12 (a combustion flame is shown by a dashed line), a combustion chamber 13, and a reformer. The catalyst layer 14, the shift catalyst layer 15, the selective oxidation catalyst layer 16, the first primary heat insulating portion 17, the second primary heat insulating portion 18, the secondary heat insulating portion 19, the partition 41, and the partition 42, a partition 43, a partition 44, a partition 45, a partition 46, and a partition 47. These components other than the combustion material introduction part 11 and the secondary heat insulating part 19 are accommodated in the cylindrical secondary heat insulating part 19.
[0018]
The combustion material introduction section 11 is provided at the upper center of the fuel reformer 1 and has a material introduction port 31. Combustion materials (combustion gas D and combustion air E) are introduced from the material introduction port 31. The burner 12 is connected to the opening 3 formed at the upper center of the fuel reformer 1 and directly below the combustion material introduction section 11, suspended along the central axis of the fuel reformer 1, and used for combustion. The gas D is burned. The combustion chamber 13 has a cylindrical combustion cylinder 13A as a peripheral wall surrounding the periphery thereof, and houses the burner 12. The combustion chamber 13 burns the combustion gas D with the burner 12 and generates heat used for reforming the raw material gas G. The reforming catalyst layer 14 has an annular shape and is arranged outside the combustion cylinder 13A (outside in the radial direction of the fuel reformer 1). The reforming catalyst layer 14 is directly sandwiched between the partition walls 41 on the inside and the partition wall 42 on the outside, and is housed between the partition walls 41 and 42.
[0019]
The first primary heat insulating portion 17 is a solid first primary heat insulating molded body 37 formed by molding the first primary heat insulating material. Since the first primary heat-insulating molded body 37 is solid, it has high brittle heat insulation and heat resistance. Since the first primary heat-insulating molded body 37 is solid, it has insufficient moldability and is not suitable for filling a narrow filling space. Therefore, the first primary adiabatic molded body 37 is filled in a wide filling space below the fuel reformer 1 as shown in the figure. The first primary heat-insulating molded body 37 forms (1) an inorganic foamed body 37A, (2) an inorganic porous body 37B, and an inorganic foamed body 37A by the composition of the first primary heat-insulating material as described later. (3) Inorganic combination body 37C formed by combining the first heat insulation material to be formed and the first heat insulation material to form the inorganic porous body 37B in a block manner.
[0020]
The first primary heat insulating portion 17 has a cylindrical shape having a cylindrical concave portion 20 at an upper portion, and is in contact with a lower surface of a secondary heat insulating molded body 39 and a lower portion of an inner wall surface described below at a lower portion of the fuel reformer 1. Is arranged. The lower part of the combustion chamber 13 and the lower part of the reforming catalyst layer 14 are accommodated in the recess 20. The recess 20 is disposed in contact with the outer peripheral surface 43A of the partition 43 or with a gap of about 1 mm from the outer peripheral surface 43A. That is, the secondary heat-insulating molded body 39 covers the outside of the first primary heat-insulating portion 17 and performs heat insulation.
[0021]
The second primary heat-insulating section 18 is different from the first primary heat-insulating material forming the first primary heat-insulating molded body 37, and is a cloth-like second first heat-insulating material formed. This is the next heat insulating molded body 38. The heat-insulating molded body is cloth-like, and the heat-insulating molded body has a fibrous structure and can be freely deformed, and the length in the thickness direction is significantly shorter than the length in the vertical and horizontal directions, and the shape is deformed. Means that the components are stable and do not deteriorate or scatter. Since the second primary heat-insulating molded body 38 is cloth-like, it has flexibility, a narrow filling port, and can be easily inserted into a narrow filling space having a large slenderness ratio (ratio between the insertion length and the width of the filling port). Can be filled. The second primary heat-insulated molded body 38 is an inorganic short fiber felt 38A formed into an annular shape, and is outside the reforming catalyst layer 14 (outside in the radial direction of the fuel reformer 1) and It is arranged above the primary heat insulating part 17. The inorganic short fiber felt 38 </ b> A is directly sandwiched between the partition walls 43 on the inside and the partition wall 44 on the outside, and is housed between the partition walls 43 and 44.
[0022]
The shift catalyst layer 15 has an annular shape and is arranged outside the second primary heat insulating portion 18 (outside in the radial direction of the fuel reformer 1). The shift catalyst layer 15 is directly sandwiched between the partition walls 45 on the inside and the partition wall 45 on the outside, and is accommodated between the partition walls 44. The selective oxidation catalyst layer 16 has an annular shape and is arranged outside the shift catalyst layer 15 (outside in the radial direction of the fuel reformer 1). The selective oxidation catalyst layer 16 is housed between the partition 46 and the vertical portion 47A of the partition 47. The secondary heat-insulating molded body 39 is arranged outside the selective oxidation catalyst layer 16. The secondary heat-insulating molded body 39 is arranged in contact with the outside of the vertical portion 47A of the partition wall 47. The partitions 41 to 47 are preferably made of a stainless steel plate. The secondary heat insulating portion 19 is a secondary heat insulating molded body 39 made of a secondary heat insulating material of short fiber heat insulating material and having a substantially cylindrical container structure. The elements of the fuel reformer 1 are housed inside.
[0023]
The fuel reformer 1 further includes a combustion exhaust gas passage 21, a raw material gas passage 22, and a reformed gas passage 23. A pipe-shaped combustion exhaust gas outlet 32, a raw material gas supply port 33, a reformed gas outlet 34, and a selective oxidation air supply port 35 penetrate through the side wall surface of the secondary heat-insulating molded body 39 having a container structure. A hole is provided.
[0024]
The combustion exhaust gas passage 21 is formed in an annular shape between the combustion cylinder 13 </ b> A and the partition wall 41, and further has a partition wall 47 above the fuel reformer 1 and in contact with the ceiling 36 of the secondary heat insulating portion 19. It is formed in a thin disk shape just below the horizontal portion 47B. The combustion exhaust gas F of the raw material gas G burned by the burner 12 is exhausted from the combustion exhaust gas outlet 32 to the outside of the fuel reformer 1 through the combustion exhaust gas passage 21. The combustion exhaust gas F heats the reforming catalyst layer 14 while passing through the combustion exhaust gas passage 21, and the heated reforming catalyst layer 14 is in the range of 300 ° C to 800 ° C. Further, as will be described later, a part of the raw material gas passage 22 passes directly below the disc-shaped combustion exhaust gas passage 21, and the combustion exhaust gas F is supplied to the raw material gas before contacting the reforming catalyst layer 14. Preheat gas G.
[0025]
The source gas passage 22 is formed above the fuel reformer 1 and directly below the combustion exhaust gas passage 21. The source gas flow path 22 has an annular flow path 22A and an annular flow path 22B in the middle thereof. In the flow path 22A, the source gas G descends between the selective oxidation catalyst layer 16 and the shift catalyst layer 15, and heat exchange between the source gas G and the selective oxidation catalyst layer 16 via the partition wall 46 is performed. The raw material gas G passes through the exchange unit 25 and is preheated by the selective oxidation catalyst layer 16. In the flow path 22B, the raw material gas G is further inverted and rises between the selective oxidation catalyst layer 16 and the shift catalyst layer 15, and heat exchange between the raw material gas G and the shift catalyst layer 15 is performed via the partition wall 45. The raw material gas G passes through the heat exchange section 26 and is preheated by the shift catalyst layer 15.
[0026]
The source gas G to which the water H has been added enters the source gas flow channel 22 from the source gas supply port 33, and is supplied to the reforming catalyst layer 14 through the source gas flow channel 22. The reformed gas channel 23 includes an annular channel 23 </ b> A formed between the first primary heat insulating portion 17 and the reforming catalyst layer 14, and further includes a flow channel formed above the shift catalyst layer 15. It is configured to include a passage 23B, a passage 23C formed below the shift catalyst layer 15 and the selective oxidation catalyst layer 16, and a passage 23D formed above the selective oxidation catalyst layer 16. The shift catalyst layer 15 and the selective oxidation catalyst layer 16 also form part of the reformed gas channel 23.
[0027]
The raw material gas G and the water H are heated from 100 ° C. to 500 ° C. while passing through the heat exchange part 25 and the heat exchange part 26 which are the raw material gas flow paths 22 sandwiched between the selective oxidation catalyst layer 16 and the shift catalyst layer 15. Preheated. The raw material gas G is reformed by the reforming reaction in the reforming catalyst layer 14 and H 2 And a reformed gas M containing CO as a main component. The reformed gas M is sent from the reforming catalyst layer 14 to the shift catalyst layer 15 through the flow paths 23A and 23B, and CO in the reformed gas M is converted into H by the shift (transformation) reaction in the shift catalyst layer 15. 2 And CO 2 And the CO in the reformed gas M decreases. The reformed gas M is sent from the shift catalyst layer 15 to the selective oxidation catalyst layer 16 through the flow path 23C, and CO in the reformed gas M is sent from the selective oxidation catalyst layer 16 through the selective oxidation air supply port 35. CO is oxidized and removed by the selective oxidation reaction with the produced air K, and H 2 Is the fuel gas J whose main component is The reformed gas M from which CO has been removed is discharged from the reformed gas outlet 34 to the outside of the fuel reformer 1 through the flow path 23D. Further, the reformed gas M is supplied to a polymer electrolyte fuel cell (not shown) by H 2 Is sent as fuel gas J whose main component is, and fuel cell power generation is performed.
[0028]
The first primary adiabatic part 17 is provided with a high-temperature part, that is, (1) the combustion chamber 13, (2) the reforming catalyst layer 14, and heat exchange between the combustion exhaust gas F and the reforming catalyst layer 14 via the partition wall 41. (3) The heat of the heat exchange section 24 is prevented from escaping to the outside (outside of the fuel reformer 1, the same applies hereinafter) (the first primary heat insulation). The second primary heat insulating portion 18 thermally insulates and holds the radial outer periphery of the high-temperature portion (same as the radial outer periphery of the fuel reformer 1), and has a substantially cylindrical high-temperature portion and a circle positioned around the high-temperature portion. The ring-shaped low-temperature portion, that is, (1) the shift catalyst layer 15, (2) the selective oxidation catalyst layer 16, and (3) the heat exchange portions 24 and 25 are separated (the second primary heat insulation). The low temperature section is another part in the fuel processor of the present invention. The secondary heat-insulating section 19 is formed so as to constitute the outer wall of the fuel reformer 1 in a cylindrical shape, and covers the outside of the first primary heat-insulating molded body 37 to insulate the heat. It does not escape from the surface (secondary insulation).
[0029]
Note that, in the present invention, the first primary heat insulation means that the heat of the high temperature part where the combustion chamber 13 and the like does not escape to the outside as described above, and the second primary heat insulation means that the combustion chamber 13 Means to insulate and thermally separate a high-temperature portion such as that described above and a low-temperature portion surrounding the shift catalyst layer 15 and the like.
[0030]
Next, the heat insulating material used for the first primary heat insulating portion 17, the second primary heat insulating portion 18, and the secondary heat insulating portion 19 will be described in more detail.
The first primary heat-insulating material forms the first primary heat-insulating molded body 37 that forms the first primary heat-insulating portion 17. The first primary heat-insulating molded body 37 is mounted and covered inside the fuel reformer 1, and enables heat insulation to the outside of the high-temperature portion (600 to 800 ° C.). The first primary heat-insulating molded body 37 is solid-formed into a three-dimensional shape.
[0031]
The second primary heat-insulating member forms a second primary heat-insulating molded body 38 that forms the second primary heat-insulating portion 18. The second primary heat-insulating molded body 38 is formed into an annular shape and a cloth shape, inserted and mounted between the high-temperature part and the low-temperature part, and insulates the high-temperature part and the low-temperature part to separate them thermally. Is possible. By using the first first heat-insulated molded body 37 and the second primary heat-insulated molded body 38, the temperature of the high-temperature part is maintained, the heat between the high-temperature part and the low-temperature part is insulated, and the temperature is reduced. By separating, the fuel reformer 1 can efficiently process the raw material gas G and efficiently produce the fuel gas J.
[0032]
Further, the second heat insulating material forms the secondary heat insulating molded body 39. The secondary heat-insulating molded body 39 is formed into a cylindrical shape, mounted and covered over the outer peripheral portion (side surface, top surface, bottom surface) of the fuel reformer 1 subjected to primary heat insulation. It is possible to reduce the temperature of the surface to a temperature that does not cause burns even if touched.
[0033]
The first primary heat-insulating molded body 37 includes (1) an inorganic foam body 37A mainly composed of fine-particle silica / alumina-based fine powder or (2) an inorganic porous body 37B mainly composed of ultrafine silica powder. Further, there is (3) an inorganic combination body 37C formed by block-wise combining a heat insulation material forming the inorganic foam 37A and a heat insulation forming the inorganic porous body 37B.
The second primary heat-insulating molded body 38 includes an inorganic short fiber felt 38A mainly composed of rock wool or ceramic wool, or a mixed wool obtained by mixing these.
[0034]
For the secondary heat-insulating molded body 39, rock wool as an inorganic short fiber or glass wool as an inorganic short fiber is formed into a cylindrical shape, and a skin material 40 such as ALGC (aluminum glass cloth) is further formed with an outer peripheral portion (side surface, For the piping of the combustion exhaust gas F, the raw material gas G, the fuel gas J, and the selective oxidizing air K (raw material introduction port 31, combustion exhaust gas outlet 32, raw material gas supply port 33, reformed gas outlet) 34, a hole of a piping nozzle connected to the selective oxidation air supply port 35 is formed.
[0035]
The primary heat insulating material (the first primary heat insulating material and the second primary heat insulating material) is made of an inorganic material having low mechanical strength but excellent heat resistance. The temperature of the outer surface of the fuel reformer 1 which is first-insulated (first primary insulation and second primary insulation) is set to 100 ° C. with respect to the internal high-temperature part temperature of 600 to 800 ° C. To 200 ° C. In addition, the secondary heat insulating material is slightly inferior in heat resistance to the primary heat insulating material, but is made of a material that is inexpensive and has practical strength, is easy to be attached to the fuel reformer 1, and is easily covered. The purpose is to keep the heat insulation in a temperature range of 300 ° C. or less and also to protect the primary heat-insulating molded body 37.
As described above, the primary heat insulation and the secondary heat insulation can increase the production efficiency of the fuel reformer 1 and make it possible to supply the fuel reformer 1 provided with the heat-insulating molded body excellent in practicality.
[0036]
The first primary heat-insulating molded body 37 is made of a mixture of silica-alumina-based fine particle powder, heat ray reflective material, heat-resistant fiber, foam stabilizer, and hardening material at about 500 kg / m. 3 Inorganic foam 37A formed by foaming and curing at the following density may be used.
[0037]
The first primary heat-insulating molded body 37 is prepared by mixing a mixture of silica-based fine particle powder, heat-resistant fiber, and a heat ray reflective material at about 500 kg / m. 3 The inorganic porous body 37B may be formed by compression molding at the following density.
[0038]
The second primary heat-insulating molded body 38 may be an inorganic short fiber felt 38A obtained by molding a mixture of inorganic short fibers and a heat-expanding material into a felt shape. The inorganic short fiber may be selected from the group consisting of rock wool, ceramic wool, or a mixed fiber of rock wool and ceramic wool. The inorganic short fiber may be one subjected to a de-shot process. The inorganic short fiber felt 38A is obtained by mixing an inorganic fiber selected from the group consisting of rock wool, ceramic wool, or a mixed fiber of rock wool and ceramic wool, a sintered material, a binder, and a heat expansion material. May be formed into a felt shape.
[0039]
The secondary heat-insulating molded body 39 is preferably formed by molding and curing inorganic short fibers to which a binder has been attached into a cylindrical shape, and attaching a nonflammable cloth to the outer periphery of the cylindrical molded body. The inorganic short fibers are preferably rock wool short fibers or glass wool short fibers. As the binder, a binder selected from the group consisting of a water-soluble phenol resin, a melamine resin, and corodyl silica may be used.
[0040]
Hereinafter, a first primary heat-insulated molded body 37 that performs first primary heat insulation, a second primary heat-insulated molded body 38 that performs second primary heat insulation, and a secondary heat-insulated molded body 39 that performs secondary heat insulation will be described. It will be described in detail.
The heat insulating material of the first primary heat insulating portion 17 is formed of a first primary heat insulating molded body 37. The first primary heat-insulating molded body 37 is composed of a silica-alumina-based fine particle powder as a main component, a heat ray reflective material, a heat-resistant fiber, a fine particle lightening material, and an organic binder in an amount of 100 parts by weight of a matrix material. A mixture obtained by mixing 50 to 100 parts by weight of a curing agent, 5 to 15 parts by weight of a foaming agent, and 0.1 to 0.2 parts by weight of a foam stabilizer is stirred and mixed to form a predetermined shape as shown in the figure. The inorganic foam 37A can be produced by injecting the mixture into a mold.
[0041]
The silica / alumina-based fine particle powder contains metakaolin, bauxite, amorphous silica, fly ash, cement and the like as components. As the heat ray reflective material, fine particles of titanium oxide may be used. As the heat-resistant fiber, glass-shopped fiber may be used as both the dimension stabilizer and the reinforcing material. Perlite, glass balloons, shirasu balloons, and the like may be used as the particle lightening material. As an organic binder for improving the strength of the inorganic foam 37A, a water-soluble modified acrylic resin, Poval, or the like is used. As the curing agent, a sodium or potassium alkali metal silicate is preferably used. As the foaming agent, aluminum powder or aqueous hydrogen peroxide may be used, and as the foam stabilizer, casein, silicone resin, castor oil ethylene / propylene oxide, or the like may be used.
[0042]
After the injection, foaming and curing are carried out at a temperature of 50 to 70 ° C. for 30 minutes to 2 hours, followed by curing and drying at a temperature of about 100 ° C. for about 2 hours, and further, 500 to 600 for the purpose of imparting heat resistance and dimensional stability. By heat-treating at a temperature of ° C for a short time, the inorganic foam 37A can be manufactured. The density and thermal conductivity of the inorganic foam 37A thus produced depend on the type of the foam stabilizer, the blending amount of the foaming agent, the blending amount of the lightening agent, and the like. ~ 500kg / m 3 It is preferable to be in the range of 200 to 300 kg / m. 3 Is more preferable, and a performance of 0.030 to 0.060 W / mK can be obtained as a thermal conductivity which is a measure of heat insulation. In addition, the heat resistance temperature of the inorganic foam 37A is as high as about 1000 ° C., and is a heat insulating material that satisfies the conditions suitable for heat insulation of the above-described high-temperature portion (600 to 800 ° C.) as primary heat insulation.
[0043]
The first primary heat insulating portion 17 may be a first primary heat insulating molded body 37 of another embodiment described below. A primary heat-insulating molded body 37 according to another embodiment is an inorganic porous body manufactured by compression-molding a mixture obtained by blending a heat-reflecting material and heat-resistant fiber with silica-based fine particle powder as a main component into a predetermined shape. 37B. As the silica-based fine particle powder, silica fume or the like, which is ultrafine silica powder, is used. Fine particles of titanium oxide and zirconium oxide are preferably used as the heat ray reflective material. The heat-resistant fiber also functions as a reinforcing material, and glass chopped fiber may be used. The inorganic porous body 37B is preferably used at a low density because the material is expensive. However, the density is 200 to 500 kg / m2 from the viewpoint of shape retention and economy. 3 And more preferably in the range of 200 to 300 kg / m. 3 It is more preferable to be within the range. With a density in this range, a performance of 0.020 to 0.030 W / mK can be obtained as the thermal conductivity. In addition, the heat resistance temperature is as high as about 1000 ° C., and although it is expensive as a material, it is capable of excellent high-temperature insulation and satisfies the condition as primary insulation.
[0044]
The inorganic foam 37A or the inorganic porous body 37B is lightweight, has excellent heat resistance and heat insulation properties, and has sufficient performance for heat insulation and heat retention at a high temperature of 600 to 800 ° C. in the combustion chamber 13 and the like of the fuel reformer 1. However, the first primary heat-insulated molded body 37, which is the inorganic foamed body 37A or the inorganic porous body 37B, has low strength and low surface hardness, and has insufficient cutting workability. The combination of the secondary heat-insulating molded body 39 for thermally insulating the primary heat-insulating molded body 37 is also preferable from the viewpoint of economy.
[0045]
The fuel reformer 1 according to the present embodiment has a narrow cylindrical shape for adiabatic heat retention that separates a temperature range inside the fuel reformer 1 (separates a high-temperature portion and a low-temperature portion) as second primary heat insulation. It is possible to use a felt-shaped second primary heat-insulated body that can be easily inserted or mounted in the gap.
[0046]
The heat insulating material of the second primary heat insulating portion 18 is formed of a felt-shaped second primary heat insulating molded body 38 that can be easily inserted and mounted. The second primary heat-insulated molded body 38 of the present embodiment is composed of 100 parts by weight of inorganic short fibers, 5 to 40 parts by weight of a heat-expandable inorganic powder, 5 to 15 parts by weight of a sinterable inorganic powder, and a bonding aid. A slurry obtained by dispersing a mixture comprising 10 parts by weight or less of a binder, preferably 7 parts by weight or less from the viewpoint of nonflammability in water, using a papermaking machine similar to a circular or long net type papermaking machine. Inorganic short fiber felt 38A manufactured by felt-shaped papermaking, drying and curing can be obtained.
[0047]
The inorganic short fibers constituting the inorganic short fiber felt 38A are rock wool or ceramic wool, and are used alone or in combination. Rock wool is SiO 2 35-55wt%, Al 2 O 3 10-20 wt%, MgO5-40 wt%, CaO5-40 wt%, FeO0-10 wt%, Cr 2 O 3 , Na 2 O, K 2 O, TiO 2 , MnO, etc., a mixture of raw minerals consisting of 0 to 10 wt% of a minor component, 2 47-52wt%, Al 2 O 3 47-52wt%, CaO, MgO, TiO 2 , ZrO 2 A mixture of raw minerals comprising a total of 0 to 10 wt% of trace components such as is melted in a cupola furnace or an electric furnace at a temperature of 1400 to 1600 ° C, and fiberized by a blowing method or a spinning method using a high-speed rotating body to obtain a fiber. Can be Such inorganic short fibers contain non-fibrillated particles called shots in an amount of about 30 wt%, and are used in a de-shot-processed form.
[0048]
As the heat-expandable inorganic powder (heat-expandable material), unfired vermiculite powder, expandable graphite, or the like may be used. As the sinterable inorganic powder, sinterable inorganic powder such as borax, sepiolite, attapulgite, low melting point glass frit, potassium titanate whisker and the like may be used. An acrylic resin, a modified acrylic resin, a vinyl acetate resin, a phenol resin, colloidal silica, or the like is used as the organic binder and the inorganic binder. As the bonding aid, polyethylene pulp, polyethylene / polypropylene composite fiber, nylon fiber, or the like may be used.
[0049]
The inorganic short fiber felt 38A has a thickness of 2 to 5 mm and a basis weight of 300 to 2000 g / m, depending on the shape to be inserted and mounted. 2 Is appropriate, the thermal conductivity of the felt after heating and firing is in the range of 0.030 to 0.050 W / mK, the heat resistance is as high as 700 to 1000 ° C., and the high temperature part inside the fuel reformer 1 is kept at a low temperature. It can be used as an insertion-type second primary heat-insulated molded body 38 for performing heat insulation and heat insulation separated from the portion.
[0050]
The heat insulating material of the secondary heat insulating portion 19 is formed of a secondary heat insulating molded body 39. The basic form of the secondary heat-insulated molded body obtained by molding rock wool or glass wool short fiber as an inorganic short fiber into a cylindrical shape is the rock wool described above, or the composition is SiO. 2 60-72wt%, Al 2 O 3 1-5 wt%, MgO0-5 wt%, CaO6-11 wt%, B 2 O 3 0-7 wt%, R 2 O (Na 2 O + K 2 O) It can be produced by a facility for producing a glass wool heat insulating cylinder composed of 14 to 19 wt%. Such a secondary heat-insulating molded body 39 is obtained by melting the raw material having the composition of rock wool or glass wool described above in a cupola furnace or an electric furnace, and subsequently forming fibers using a high-speed rotating body. Water-soluble melamine resin and colloidal silica are sprayed with a water-soluble binder solution containing a wax-based water repellent and a silane coupling agent as necessary, and the mat attached to the fibers is wound around a cylindrical core tube. After heating and curing at a temperature of 150 to 250 ° C. for 5 to 20 minutes, and cutting and decentering, a connected half-split cylindrical heat insulating material is manufactured. Such a cylindrical heat insulating material has a density of 80 to 150 kg / m. 3 And a heat conductivity of 0.030 to 0.050 W / mK, and a heat resistance suitable for a temperature range of 300 to 700 ° C. In addition, the cylindrical heat insulating material described above is applied with an outer skin material 40 such as ALGC (aluminum glass cloth) as a non-combustible cloth and ALK (aluminum kraft paper) as a non-combustible cloth, and also performs a drilling process for piping. Then, the fuel reformer 1 is processed into a secondary heat-insulated molded body 39, and is fitted and covered in a cylindrical shape to cover the fuel reformer 1 subjected to primary heat insulation.
[0051]
As described above, the fuel reforming that generates the fuel gas J in which the first primary heat-insulated molded body 37, the second primary heat-insulated molded body 38, and the second heat-insulated molded body 39 of the present invention are inserted, mounted, and covered. The outer surface temperature of the fuel reformer 1 is reduced to 30 to 50 ° C. with respect to the internal temperature of the reactor 1 of 600 to 800 ° C., and has excellent adiabatic heat retention, light weight, and excellent maintainability. Demonstrate. In addition, the workability of inserting, mounting, and covering the first primary heat-insulated molded body 37, the second primary heat-insulated molded body 38, and the secondary heat-insulated molded body 39 is satisfactory, and the economy and practicality are satisfied. Even when the container expands and contracts due to repeated stoppages, the container flexibly follows and exhibits good heat insulating properties, thereby solving the technical problem of the present invention.
[0052]
【Example】
Hereinafter, a first primary heat-insulating molded body 37 formed from the first primary heat-insulating material and a second primary heat-insulating molded body formed from the second primary heat-insulating material for the fuel processor of the present invention. 38, a secondary heat-insulating molded body 39 formed from a secondary heat-insulating material will be described with reference to examples. An example of the inorganic foam body 37A (first primary heat-insulated molded body 37) will be described (Example 1).
40 g of potassium silicate having a concentration of 40 wt. 50 g and 30 g of 17 wt% hydrogen peroxide solution were stirred at room temperature for 3 minutes and poured into a steel mold having a size of about 250 mm (length) × about 250 mm (width) × about 20 mm (thickness). And seal with lid. Subsequently, the mold was placed in a dryer at 50 ° C., and subjected to foaming and curing for 1 hour, followed by demolding to obtain an inorganic foam 37A. The foam 37A is cured at room temperature for 24 hours, dried at 100 ° C. for 2 hours after curing, and then heat-treated at 600 ° C. for 10 minutes to produce a final inorganic foam 37A.
[0053]
Table 1 shows the performance of the obtained inorganic foam 37A.
[Table 1]
Figure 2004182528
[0054]
The test method of the inorganic foam 37A shown in Table 1 is as follows. The thermal conductivity is evaluated by measuring the thermal conductivity by the flat plate method of JIS A1412. The heat-resistant temperature is evaluated as a temperature at which 2% dimensional shrinkage occurs when heated at a rate of 10 ° C./min in an electric furnace. The compressive strength is evaluated as the maximum compressive strength obtained by 5% compressive deformation.
As shown in Table 1, the inorganic foam 37A of the present invention is lightweight, has excellent heat resistance and heat insulating properties, satisfies the appropriate conditions for primary heat insulation, and can be foam-molded into a predetermined shape. It is understood that it can be used as the molded body 37.
[0055]
Next, an example of the inorganic porous body 37B will be described (Example 2).
A mixture of 100 parts by weight of ultrafine silica aerosil having a particle size of 50 nm or less and 50 parts by weight of fine particle titanium oxide having a particle size of 1 μm or less and 8 parts by weight of glass chopped fiber manufactured by Microtherm Japan Co., Ltd. One part by weight of ammonium is blended, compression molded at room temperature, and then cured under pressure at 125 ° C. to produce an inorganic porous material having a size of about 250 mm (length) × about 250 mm (width) × about 20 mm (width). did. (Note: It corresponds to the manufacturing method of Microtherm block type of Microtherm Japan)
[0056]
Table 2 shows the performance of the obtained inorganic porous body 37B (first primary heat-insulated molded body 37).
[Table 2]
Figure 2004182528
[0057]
The test method of the inorganic porous body 37B shown in Table 2 is as follows. The thermal conductivity is evaluated by measuring the thermal conductivity by the JIS A 1412 flat plate method. The heat-resistant temperature is evaluated as a temperature at which 2% dimensional shrinkage occurs when heated at a rate of 10 ° C./min in an electric furnace.
As shown in Table 2, the inorganic porous body 37B is excellent in heat resistance and heat insulation, and satisfies the appropriate conditions for primary heat insulation. It is preferable to partially use them.
[0058]
Next, an example of the inorganic short fiber felt 38A-1 (same shape as reference numeral 38A in the drawing) (second primary heat-insulating molded body 38) will be described (Example 3-1).
SiO 2 48wt%, CaOlwt%, MgO28wt%, Al 2 O 3 Rock wool granular cotton consisting of 19 wt% and a total of 4 wt% of other trace components is dispersed in water, defibrated and cut with a pulper, and subsequently, de-shot by a cleaner, and 40 wt% of rock wool having a fiber length of 100 to 1000 μm. 40 wt% of unfired vermiculite having a particle size of 0.5 to 2.0 mm, 10 wt% of defibrated and purified sepiolite, 3 wt% of a mixture of potassium titanate and pulp, and a polyethylene-polypropylene composite fiber having a fiber length of about 10 mm and 3 denier A mixture of 5 wt% of a thermally self-crosslinking acrylic resin emulsion having a solid content of 2 wt% and a glass transition temperature of −14 ° C. and a solid content of 45 wt% is dispersed by a mixer to prepare an aqueous slurry of about 1 wt%. The aqueous slurry was paper-formed with a funnel-form paper machine, dried by suction at 150 ° C. for 20 minutes, and a felt having a thickness of about 5 mm was produced. Then 20g / m 2 Inorganic short fiber felt 38A-1 was produced by subjecting a polyester fiber nonwoven fabric to nid punching.
[0059]
An inorganic short fiber felt 38A-2 (having the same shape as reference numeral 38A in the figure) (second primary heat-insulating molded body 38) of another embodiment will be described (Example 3-2).
70% by weight of rock wool of Example 1, 10% by weight of expandable graphite having an average particle size of about 1.5 mm, 10% by weight of defibrated and purified sepiolite, 3% by weight of a mixture of potassium titanate and pulp, fiber length of about 10 mm, 3 denier A mixture consisting of 2 wt% of a polyethylene-polypropylene composite fiber and 5 wt% of a thermal self-crosslinking acrylic resin emulsion having a glass transition temperature of -14 ° C. and a solid content of 45 wt% was prepared in the same manner as in Example (3-1). Inorganic short fiber felt 38A-2 was produced.
[0060]
Still another example of the inorganic short fiber felt 38A-3 (the same shape as the reference numeral 38A in the drawing) will be described (Example 3-3).
SiO 2 48wt%, Al 2 O 3 Ceramic wool consisting of 48 wt% and other trace components of 4 wt% is treated in the same manner as the rock wool of Example 1 of the inorganic foam, and the shot is obtained. The resulting fiber wool having a fiber length of 100 to 1000 μm is 40 wt%. Ingredient short fiber felt 38A-3 having a thickness of about 5 mm was manufactured in the same manner as in Example (3-1) for the components and the manufacturing method.
[0061]
Table 3 shows the performance of the inorganic short fiber felts 38A-1 to 38A-3 obtained in Examples (3-1) to (3-3).
[Table 3]
Figure 2004182528
[0062]
The test method for the inorganic short fiber felts 38A-1 to 38A-3 shown in Table 3 is as follows. The fire resistance is evaluated by a base material test and a surface test according to JIS A 1321. The heat-resistant temperature is an evaluation as a temperature at which the longitudinal and lateral dimensions of the felt shrink by 5% when heated at a heating rate of 10 ° C./min in an electric furnace. The coefficient of thermal expansion is the coefficient of expansion in the thickness direction of the felt when subjected to heat treatment at 600 ° C. for 2 minutes in an electric furnace. The thermal conductivity is an evaluation based on the thermal conductivity according to the JIS A1412 flat plate method. From Table 3, it is understood that the inorganic short fiber felt 38A of the present embodiment is a sheet having heat resistance, heat insulating properties, and flexibility, and can be used as the insertion-type second primary heat-insulating molded body 38.
[0063]
Next, an example of the inorganic short fiber cylindrical heat-insulating molded body (secondary heat-insulating molded body 39) will be described (Example 4).
SiO 2 40wt%, Al 2 O 3 An average obtained by melting a rock wool raw material composed of 13 wt%, MgO 5 wt%, CaO 37 wt%, and a total of 5 wt% of other trace components at 1450 to 1500 ° C. in an electric furnace and fibrillating with a two-wheel high-speed rotating body using centrifugal force. A binder liquid composed of colloidal silica and a water-soluble melamine resin was sprayed onto rock wool having a fiber diameter of 4 μm from a plurality of nozzles arranged around the rotating body to produce uncured cotton adhered to the fiber at a solid content of 5 wt%. . Then, it is wound around a steel core tube with an outer diameter of about 160 mm and heated and cured in a curing furnace at 200 ° C. for 30 minutes to a thickness of about 20 mm. Lumber was manufactured. Subsequently, a commercially available ALGC (aluminum glass cloth) sheet is coated on the cylindrical heat insulating material with a chloroprene adhesive to produce a rock wool-based heat insulating molded body 39 as the secondary heat insulating molded body 39.
[0064]
Another example of the inorganic short fiber cylindrical heat-insulated molded body (secondary heat-insulated molded body 39) will be described (Example 5).
SiO 2 63wt%, Al 2 O 3 3wt%, MgO3wt%, CaO7wt%, B 2 O 3 5wt%, K 2 O5wt%, Na 2 A glass raw material comprising 12 wt% of O and a total of 2 wt% of other trace components is melted in an electric furnace at 1350 to 1400 ° C. and fiberized by a high-speed rotating body utilizing centrifugal force. Was sprayed with a binder liquid composed of colloidal silica and water-soluble phenol from a plurality of nozzles arranged around the, and uncured cotton having a solid content of 7 wt% attached to the fiber was produced. Thereafter, as in the case of the rock wool of Example 4, the core was wound around a steel core tube having an outer diameter of about 160 mm so as to have a wall thickness of about 20 mm, and was heated and cured in a curing furnace at 200 ° C. for 30 minutes to remove the core. Then, a cylindrical heat insulating material cut into a connecting half-type was manufactured. Subsequently, a commercially available ALGC (aluminum glass cloth) sheet was coated on the cylindrical heat insulating material with a chloroprene adhesive to produce a glass wool-based heat insulating molded body as the secondary heat insulating molded body 39.
[0065]
Table 4 shows the performance of the heat-insulated molded articles obtained in Examples 4 and 5.
[Table 4]
Figure 2004182528
[0066]
In Example 4 or 5, the thermal conductivity of the thick portion was evaluated using a heat insulating plate formed into a flat plate at the same density. Table 4 shows that the cylindrical heat-insulated molded article of the present invention has low heat resistance as compared with the primary heat-insulating material, but has excellent heat-insulating properties, mechanical strength, moisture-proofing properties and covering properties, and is inexpensive. , It can be used as an economical secondary heat-insulating molded body 39. The inorganic short fiber cylindrical heat-insulating molded bodies of Examples 4 and 5, which are the secondary heat-insulating molded bodies 39, insulate the outside of the first primary heat-insulating molded body 37.
[0067]
Next, a description will be given of a performance evaluation of an example when the following heat insulating material is used for the fuel reformer 1 (Example 6-1).
The outer diameter of the first primary heat-insulated molded body 37 is about 170 mm, the length is about 180 mm, the inner diameter of the concave portion 20 of the first primary heat-insulated molded body 37 is about 90 mm, the depth is about 130 mm, and the second The inner diameter of the secondary insulation molded body 38 is about 90 mm, the thickness is about 5 mm, the length is about 390 mm, the outer diameter of the secondary insulation molded body 39 is about 200 mm, the thickness is about 20 mm, and the length is about 640 mm. In the stainless steel fuel reformer 1 having the combustion chamber 13 (combustion temperature of 600 to 800 ° C.) and the heat exchange units 24, 25, and 26, the first primary made of the inorganic foam 37A of the first embodiment is provided. The heat-insulating molded body 37, the second primary heat-insulating molded body 38 made of the inorganic short fiber felt 38A-2 of the embodiment 3-2, and the rock wool cylindrical secondary heat-insulating molded body 39 of the fourth embodiment are fuel modified. Inserted into the reformer 1, attached, covered, and the outer diameter of the fuel reformer 1 200mm, such that a length of about 640mm, the Heat Insulation.
[0068]
Next, as another example (Example 6-2), in the fuel reformer 1 of Example 6-1, the inorganic porous body 37B used in Example 2 was used instead of the inorganic foam 37A. Instead of the inorganic short fiber felt 38A-2 used in 3-2, the inorganic short fiber felt 38A-1 used in Example 3-1 is used for heat insulation.
[0069]
When the fuel gas generation test was performed in Examples 6-1 and 6-2, the generation efficiency was high, and the temperature of the combustion chamber was 600 to 800 ° C. The temperature was as low as 5050 ° C., and the heat insulation and heat insulation by the heat insulating molded bodies 37, 38, and 39 of the embodiment of the present invention showed good results.
[0070]
As described above in relation to the embodiments (1 to 6), regarding the heat insulation and heat retention of the fuel reformer 1, the inorganic foamed body 37A, the inorganic porous body 37B, A heat insulating material composed of a combination of annular inorganic short fiber felts 38A-1 and 38A-2 and a cylindrical secondary heat insulating molded body 39 is inserted into the fuel reformer 1 as the secondary heat insulating molded body 38, and attached and covered. By doing so, high-temperature adiabatic heat retention that increases the fuel gas generation efficiency becomes possible. Further, the heat-insulated molded bodies 37, 38, and 39 of the examples (1 to 6) are based on an inexpensive material that is lightweight, has good maintainability, can be easily inserted into, attached to, and covered with the fuel reformer 1. Because of this, it is possible to achieve an effect that economical heat insulation and heat insulation are possible and practicality is excellent. Similar effects can be obtained by using the inorganic combination body 37C as the first primary heat insulating molded body 37 or using the inorganic short fiber felt 38A-3 as the second primary heat insulating molded body 38.
[0071]
【The invention's effect】
As described above, according to the present invention, since the fuel processing device includes the combustion chamber, the first primary heat insulating material, and the secondary heat insulating material, the solid first primary heat insulating material having high heat insulating properties is provided. The material makes it possible to reduce the leakage of combustion heat from the combustion chamber to the outside of the device, to maintain the combustion temperature in the combustion chamber at an appropriate value, and to provide a flexible and workable cloth-like secondary heat insulating material. Thereby, the outside of the first primary heat insulating material having insufficient strength is covered and insulated, the heat insulating performance of the first primary heat insulating material is reinforced, and the first primary heat insulating material is resistant to external impact. can do.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of a fuel reformer of the present invention.
[Explanation of symbols]
1 fuel reformer
3 opening
11 Combustion material introduction section
12 burners
13 Combustion chamber
13A combustion cylinder
14 Reforming catalyst layer
15 Shift catalyst layer
16 Selective oxidation catalyst layer
17 1st primary heat insulation part
18 Second primary insulation
19 Secondary insulation
20 recess
21 Combustion exhaust gas passage
22 Source gas flow path
23 Reformed gas channel
24, 25, 26 heat exchange unit
31 Raw material inlet
32 Combustion exhaust gas
33 Source gas supply port
34 Reformed gas outlet
35 Air supply port for selective oxidation
36 Ceiling
37 First primary heat-insulated molded body
37A inorganic foam
37B inorganic porous material
37C Inorganic combination
38 Second primary heat-insulated molded body
38A inorganic short fiber felt
39 Secondary insulation molding
40 skin material
41-47 partition
D Combustion gas
E Air for combustion
F Combustion exhaust gas
G Raw material gas
H water
J fuel gas
M reformed gas

Claims (6)

原料ガスを処理して水素を主成分とする燃料ガスに改質する燃料処理装置において;
前記改質に利用する熱を発生する燃焼室と;
前記燃焼室を外部に対して断熱する固形の第1の1次断熱材と;
前記第1の1次断熱材の外側を覆い断熱する布状の2次断熱材とを備える:
燃料処理装置。
A fuel processing apparatus for processing a raw material gas to reform it into a fuel gas containing hydrogen as a main component;
A combustion chamber for generating heat used for the reforming;
A first solid thermal insulator that insulates the combustion chamber from the outside;
A cloth-like secondary heat insulator covering and insulating the outside of the first primary heat insulator.
Fuel processor.
前記第1の1次断熱材として、シリカ・アルミナ系微粒子粉末を含んで配合した混合物を発泡させ硬化させた無機質発泡体を用い;
前記2次断熱材として無機質繊維から成形した2次断熱成形体を用いる;
請求項1に記載の燃料処理装置。
An inorganic foam obtained by foaming and curing a mixture containing silica-alumina-based fine particle powder as the first primary heat insulating material;
Using a secondary heat-insulated molded article formed from inorganic fibers as the secondary heat-insulating material;
The fuel processor according to claim 1.
前記第1の1次断熱材として、シリカ系微粒子粉末を含んで配合した混合物を圧縮成形させた無機質多孔体を用い;
前記2次断熱材として無機質繊維から成形した2次断熱成形体を用いる;
請求項1に記載の燃料処理装置。
As the first primary heat insulating material, an inorganic porous body obtained by compression molding a mixture containing silica-based fine particle powder is used;
Using a secondary heat-insulated molded article formed from inorganic fibers as the secondary heat-insulating material;
The fuel processor according to claim 1.
原料ガスを処理して水素を主成分とする燃料ガスに改質する燃料処理装置において;
前記改質に利用する熱を発生する燃焼室と;
前記燃焼室を外部に対して断熱する固形の第1の1次断熱材と;
前記燃焼室と前記燃料処理装置内の他の部分との間を断熱する布状の第2の1次断熱材とを備える;
燃料処理装置。
A fuel processing apparatus for processing a raw material gas to reform it into a fuel gas containing hydrogen as a main component;
A combustion chamber for generating heat used for the reforming;
A first solid thermal insulator that insulates the combustion chamber from the outside;
A cloth-like second primary heat insulating material that insulates between the combustion chamber and other parts in the fuel processing device;
Fuel processor.
原料ガスを処理して水素を主成分とする燃料ガスに改質する燃料処理装置において;
前記改質に利用する熱を発生する燃焼室と;
前記燃焼室を外部に対して断熱する固形の第1の1次断熱材とを備え;
前記第1の1次断熱材として、シリカ・アルミナ系微粒子粉末を含んで配合した混合物を発泡させ硬化させた無機質発泡体を用いる;
燃料処理装置。
A fuel processing apparatus for processing a raw material gas to reform it into a fuel gas containing hydrogen as a main component;
A combustion chamber for generating heat used for the reforming;
A first solid thermal insulator that insulates the combustion chamber from the outside;
An inorganic foam obtained by foaming and curing a mixture containing silica-alumina-based fine particle powder is used as the first primary heat insulating material;
Fuel processor.
原料ガスを処理して水素を主成分とする燃料ガスに改質する燃料処理装置において;
前記改質に利用する熱を発生する燃焼室と;
前記燃焼室と前記燃料処理装置内の他の部分との間を断熱する布状の第2の1次断熱材とを備え;
前記第2の1次断熱材として、無機質短繊維と加熱膨張材とを含んで配合した混合物をフェルト状に成形させた無機質短繊維フェルトを用いる;
燃料処理装置。
A fuel processing apparatus for processing a raw material gas to reform it into a fuel gas containing hydrogen as a main component;
A combustion chamber for generating heat used for the reforming;
A cloth-like second primary heat insulating material that insulates between the combustion chamber and other parts in the fuel processing device;
As the second primary heat insulating material, an inorganic short fiber felt obtained by molding a mixture containing inorganic short fibers and a heat expansion material into a felt shape is used;
Fuel processor.
JP2002351030A 2002-12-03 2002-12-03 Fuel treating equipment Pending JP2004182528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351030A JP2004182528A (en) 2002-12-03 2002-12-03 Fuel treating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351030A JP2004182528A (en) 2002-12-03 2002-12-03 Fuel treating equipment

Publications (1)

Publication Number Publication Date
JP2004182528A true JP2004182528A (en) 2004-07-02

Family

ID=32753052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351030A Pending JP2004182528A (en) 2002-12-03 2002-12-03 Fuel treating equipment

Country Status (1)

Country Link
JP (1) JP2004182528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118467A1 (en) * 2004-06-02 2005-12-15 Ebara Ballard Corporation Fuel treating device
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2009509299A (en) * 2005-09-16 2009-03-05 アイダテック, エル.エル.シー. Heat-prepared hydrogen generation fuel cell system
JP2012220174A (en) * 2011-04-14 2012-11-12 Toshiba Corp Heating equipment structure
JP6009706B1 (en) * 2015-10-26 2016-10-19 ファイア・アップ株式会社 Combustion furnace
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118467A1 (en) * 2004-06-02 2005-12-15 Ebara Ballard Corporation Fuel treating device
JP2009509299A (en) * 2005-09-16 2009-03-05 アイダテック, エル.エル.シー. Heat-prepared hydrogen generation fuel cell system
US8691463B2 (en) 2005-09-16 2014-04-08 Dcns Sa Thermally primed hydrogen-producing fuel cell system
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2012220174A (en) * 2011-04-14 2012-11-12 Toshiba Corp Heating equipment structure
JP6009706B1 (en) * 2015-10-26 2016-10-19 ファイア・アップ株式会社 Combustion furnace
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations
US11831051B2 (en) 2020-05-21 2023-11-28 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations

Similar Documents

Publication Publication Date Title
JP6592050B2 (en) Composite material of airgel and fiber vat
KR101608497B1 (en) Thermal insulation and method of producing the same
KR20220110803A (en) Components and systems for managing thermal runaway in electric vehicle batteries
KR101646423B1 (en) Method for producing hydrophobic, heat-insulating mouldings
KR20220109454A (en) Airgel-based compositions and systems for thermal management of electric vehicles
TW200407497A (en) Exhaust gas treatment device and method for making the same
JP4616482B2 (en) Microporous insulation
US20160244371A1 (en) Thermal insulator and method of manufacturing the same
JP2007211963A (en) Inorganic fiber block
JP2013049610A (en) Molding, covered body, method for producing molding, and heat insulation method
JP2002533286A5 (en)
JP2004182528A (en) Fuel treating equipment
JP2024516494A (en) Composite Article Comprising Aerogel Particles and Ceramic Fibers - Patent application
EP1772427A1 (en) Fuel treating device
EP1770324B1 (en) Heat insulating material
JP2005335982A (en) Fuel treating apparatus and fuel cell power generation system
JP2006096597A (en) Fuel treating equipment, fuel cell power generation system and insulated body
Hu et al. Microscopic regulation of plant morphological pores on mechanical properties of porous mullite materials
JP2004138057A (en) Exhaust construction of internal combustion engine, and method for manufacturing the same
JP2007211958A (en) Inorganic fiber block
Zhang et al. Flexible Silica Aerogel Composites for Thermal Insulation under High-Temperature and Thermal–Force Coupling Conditions
JP5709726B2 (en) Refractory insulation and method for producing the same
JPH11241297A (en) Thermally insulating sheet
JP2622532B2 (en) Method of improving heat resistance of heat-resistant protective tube and heat-resistant protective tube
Kang et al. Preparation of Magnesia Insulation Materials by Calcination of Walnut Shell Powder by Silica Sol Impregnation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310