JP2004180860A - Electric characteristic measuring apparatus - Google Patents

Electric characteristic measuring apparatus Download PDF

Info

Publication number
JP2004180860A
JP2004180860A JP2002350254A JP2002350254A JP2004180860A JP 2004180860 A JP2004180860 A JP 2004180860A JP 2002350254 A JP2002350254 A JP 2002350254A JP 2002350254 A JP2002350254 A JP 2002350254A JP 2004180860 A JP2004180860 A JP 2004180860A
Authority
JP
Japan
Prior art keywords
frequency
measurement
human body
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350254A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueda
伸介 上田
Ei Taniguchi
映 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002350254A priority Critical patent/JP2004180860A/en
Publication of JP2004180860A publication Critical patent/JP2004180860A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a resistance value R∞ of a frequency ∞ and the overall moisture quantity of a human body accurately calculatable by preventing the occurrence of leakage currents in a high-frequency region. <P>SOLUTION: The occurrence of a high-frequency leakage current between the human body and ground is eliminated by using a battery in a bodily moisture quantity measuring apparatus, which measures the bodily moisture quantity of the human body by making a weak current of a plurality of frequencies from a low frequency to a high frequency to flow in the human body and the bodily moisture quantity which is the body composition of the human body based on the measured multi-frequency living body impedance, as the driving power source 40 of the measuring apparatus. In addition, a switch 41 which is provided between a measuring section 2 and the driving power source 40 is turned off except measuring time. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低周波から高周波に至る複数の周波数の微弱な電流を人体に流すことにより多周波生体インピーダンスを測定し、測定した多周波生体インピーダンスに基づいて物理量を演算する電気特性測定装置に関する。
【0002】
【従来の技術】
従来より、体内の水分量などの物理量を演算する装置として、生体電気インピーダンス値を測定することにより、簡易に被験者の体内水分量を求めるものがある(例えば、特許文献1参照)。
【0003】
また、このような体温の変動を考慮した多周波生体インピーダンス測定による体水分量状態判定装置も提案されている(例えば、特許文献2参照)。
【0004】
ところで、このような多周波生体インピーダンス測定では、周波数を低周波から高周波に至る複数の周波数の交流電流を用いて生体電気インピーダンスを測定している。
【0005】
図5は、多周波生体電気インピーダンス法の測定原理を示している。
【0006】
人体の細胞は、細胞膜のため、低周波の電流は通さないが高周波の電流は通す性質がある。すなわち、多周波数でインピーダンスを計測すると、体水分量を細胞内液(筋肉組織等)量と細胞外液(血液等)量とに分けて測定することができる。
【0007】
この場合、例えば低周波である2.5kHzから高周波である350kHzまで、例えば2.5kHz刻みの周波数(140ポイント)でインピーダンスを測定すると、その測定結果は、図6に示すようにな半円弧形状となる。このような測定データの軌跡は、Cole−Coleの円と言われている。この軌跡を延長して、周波数0と周波数∞の抵抗値を算出すると、周波数0の抵抗値R0は細胞外だけを流れる抵抗値を示し、周波数∞の抵抗値R∞は細胞外と細胞内両方を流れる抵抗値を示すことになる。
【0008】
従って、抵抗値R0から細胞外液量を、抵抗値R∞から全体水分量を計算によって求めることができる。
【0009】
【特許文献1】
特開平11−318845号公報
【特許文献2】
特開2002−45346号公報
【0010】
【発明が解決しようとする課題】
ところで、上記した従来の体水分量状態判定装置では、駆動電源をAC電源から取っている。この場合、図8に示すように、アース−コンセント−AC電源−コード−装置−人体−アース、といった閉回路が形成され、人体とアースとの間に非常に大きな容量のコンデンサCが存在し、高周波域の漏れ電流が発生する。そのため、高周波域ではインピーダンスの測定に影響を与え、正確なインピーダンスを測定することができないといった問題があった。すなわち、この場合のインピーダンスの測定結果は、図7に一部一点鎖線で示すような半円弧形状61となり、高周波領域(破線で囲んだ部分)63の曲線が、漏れ電流が無い場合の曲線(実線で示す曲線)62より内側を通る曲線となる。
【0011】
このように、正確なインピーダンスを測定できなければ、インピーダンスの軌跡も正確な円弧を描けず、周波数∞の抵抗値R∞の算出値も不正確な値となり、結果として、全体水分量の正確な計算ができないといった問題があった。
【0012】
本発明はかかる問題点を解決すべく創案されたもので、その目的は、高周波域の漏れ電流の発生を防止することにより、周波数∞の抵抗値R∞の正確な算出を可能とし、結果として、全体水分量の正確な計算を可能とした電気特性測定装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明の電気特性測定装置は、低周波から高周波に至る複数の周波数の微弱な電流を人体に流すことにより多周波生体インピーダンスを測定し、測定した多周波生体インピーダンスに基づいて物理量を演算する電気特性測定装置において、前記装置の駆動電源として電池を使用することにより、人体とアースとの間の高周波の電流漏れを無くしたことを特徴としている。
【0014】
このような特徴を有する本発明によれば、駆動電源に電池を使用することにより、閉回路を形成していたアース−電源間が遮断され、その結果、人体とアースとの間の高周波の電流漏れを無くすことができる。これにより、測定データの軌跡は、Cole−Coleの円と言われる半円弧状の綺麗な軌跡を描くため、この軌跡を延長して周波数∞の抵抗値R∞を算出すると、抵抗値R∞は細胞外と細胞内両方を流れる正確な抵抗値を示すことになる。その結果、従来に比べて、全体水分量のより正確な計算が可能となる。
【0015】
また、本発明の電気特性測定装置によれば、多周波生体インピーダンスを測定する測定処理部と前記駆動電源との間に開閉スイッチを設け、測定時以外は前記開閉スイッチをオフすることを特徴としている。これにより、測定時以外の電池の消費電力を減らすことができるので、駆動電源として電池を用いた場合でも、長時間の動作が可能となる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0017】
図1は、本実施の形態の電気特性測定装置の電気的構成を示すブロック図である。
【0018】
本実施の形態の電気特性測定装置は、生体インピーダンスを測定する測定ブロックAと、測定された生体インピーダンスに基づいて体水分量を演算処理する演算処理ブロックBとに大別される。
【0019】
演算処理ブロックBは、測定及び計測処理を実行するCPU11、測定処理プログラムや計測処理プログラム、及び各種定数や演算式等を格納するROM12、各種演算結果を格納するとともに、測定処理時及び演算処理時にはワークエリアとして働くRAM13、測定結果や演算結果等を表示する表示部14、測定に関するデータや演算に関するデータを入力するキーボード等の入力部15を備えている。
【0020】
測定ブロックAは、測定処理部2及び電極部3からなる。
【0021】
測定処理部2は、基準となるクロックを発生する基準クロック発生器21、ROM12に格納されている測定処理プログラムに従いCPU11から送信されてくる測定制御信号に基づいて多くの周波数成分を含む交流信号(交流電流Ia)を発生する測定信号発生器22、発生した交流電流Iaを一定の電流で駆動するバッファ回路23、一定の電流で駆動後の交流電流Iaを出力する交流電流出力用端子23a、人体を流れてきた交流電流Ibを入力する交流電流入力用端子24a、入力された交流電流Ibを電圧に変換する電流/電圧変換器24、変換後の電圧信号Vcからノイズ成分を除去するLPF25、ノイズ成分除去後のアナログ信号である電圧信号Vcをデジタル信号に変換してCPU11に入力するためのA/D変換器26、電圧検出用端子27a,27bを有する差動増幅器27、差動増幅器27により検出された電位差信号Vpからノイズ成分を除去するLPF28、ノイズ成分除去後のアナログ信号である電位差信号Vpをデジタル信号に変換してCPU11に入力するためのA/D変換器29等を備えている。
【0022】
1対の交流電流入出力端子23a,24aには、測定ケーブル31a,32aを介して1対の電流印加用電極31,32が接続されており、1対の電圧検出用端子27a,27bには、測定ケーブル33a,34aを介して1対の電圧検出用電極33,34が接続されている。
【0023】
本実施の形態の電気特性測定装置は、図2に示すように、被験者が仰向けになった状態でベッド等の上に横になり、この状態で、一方の電流印加用電極31と電圧検出用電極33とを手の甲側の手首付近に近接させて貼り付け、他方の電流印加用電極32と電圧検出用電極34とを足の甲側の足首付近に近接させて貼り付けて使用する。すなわち、本実施の形態では、電流印加用電極31,32の間に電圧検出用電極33,34を配置した4端子法により、誤差の少ない安定した測定を実現している。
【0024】
この状態で、測定信号発生器22により、2.5kHzから350kHzまで、2.5kHz刻みの周波数成分(140ポイント)を含む交流電流Iaを発生させ、バッファ回路23、交流電流出力用端子23a、測定ケーブル31a及び電流印加用電極31を介して人体に印加する。そして、電流印加用電極32、測定ケーブル32a、交流電流入力用端子24a、電流/電圧変換器24、LPF25及びA/D変換器26を介して入力された電流信号と、電圧検出用電極33,34、測定ケーブル33a,34a、差動増幅器27、LPF28及びA/D変換器29を介して入力された電位差信号とに基づき、CPU11では、FFT(高速フーリエ変換)演算を行うことにより、一度に140ポイントのインピーダンス測定を行う。その測定データの軌跡は、図7に実線で示すような半円弧形状62のCole−Coleの円となるので、この軌跡を延長して、周波数0と周波数∞の抵抗値を算出すると、周波数0の抵抗値R0は細胞外だけを流れる抵抗値を示し、周波数∞の抵抗値R∞は細胞外と細胞内両方を流れる抵抗値を示すことになる。従って、抵抗値R0から細胞外液量を、抵抗値R∞から全体水分量を計算によって求める。なお、このような抵抗値R0, R∞の計算、及び体水分量の計算自体は従来周知の技術であり、例えば従来の技術の欄に示した特開2002−45346号公報等にも開示されているので、ここでは詳細な説明を省略する。
【0025】
上記構成において、本実施の形態では、これら測定ブロックA及び演算処理ブロックB内の各機能ブロックを駆動する駆動電源40として、AC電源ではなく、1次電池または2次電池等の電池を使用する構成としている。
【0026】
また、本実施の形態では、駆動電源40と測定ブロックAの各機能ブロックとの間に開閉スイッチ41を設け、この開閉スイッチ41の開閉制御をCPU11からの指示によって行う構成としている。すなわち、CPU11は、測定時以外は開閉スイッチ41をオフとして、測定処理部2の各機能ブロックへの電源供給を停止し、測定時のみ開閉スイッチ41をオンとして、測定処理部2の各機能ブロックに電源を供給する構成とする。これにより、測定時以外の電池の消費電力を減らすことができるので、駆動電源40として電池を用いた場合でも、長時間の動作が可能となる。また、電源供給をオフすることに加え、測定時以外のCPU12の処理速度を落とすことによって、電池の消費電力をさらに減らすことができる。
【0027】
このように、本実施の形態の電気特性測定装置によれば、駆動電源に電池を使用することにより、従来のAC電源を使用していた場合に形成されていたアース−電源間が遮断され、その結果、人体とアースとの間の高周波の電流漏れを無くすことができる。
【0028】
図3及び図4は、駆動電源に電池を用いて多周波生体インピーダンスを測定した場合と、AC電源を用いて多周波生体インピーダンスを測定した場合のそれぞれの測定データを示しており、図5は、この測定データに従ってプロットしたときの軌跡を示している。図5中実線で示す軌跡51が、駆動電源に電池を用いて多周波生体インピーダンスを測定したときの軌跡であり、一部一点鎖線で示す軌跡52が、AC電源を用いて多周波生体インピーダンスを測定したときの軌跡である。
【0029】
これにより、測定データの軌跡は、Cole−Coleの円に沿った綺麗な半円弧状の軌跡(図6中実線で示す軌跡51)を描くため、この軌跡を延長して周波数∞の抵抗値R∞を算出すると、抵抗値R∞は細胞外と細胞内両方を流れる正確な抵抗値を示すことになる。その結果、従来に比べて、全体水分量のより正確な計算が可能となる。
【0030】
【発明の効果】
本発明の電気特性測定装置によれば、駆動電源に電池を使用することにより、従来のAC電源を使用していた場合に形成されていたアース−電源間が遮断され、その結果、人体とアースとの間の高周波の電流漏れを無くすことができる。これにより、測定データの軌跡は、Cole−Coleの円に沿った綺麗な半円弧状の軌跡を描くため、この軌跡を延長して周波数∞の抵抗値R∞を算出すると、抵抗値R∞は細胞外と細胞内両方を流れる正確な抵抗値を示すことになる。その結果、従来に比べて、全体水分量などのより正確な計算が可能となる。
【0031】
また、多周波生体インピーダンスを測定する測定処理部と駆動電源である電池との間に開閉スイッチを設け、測定時以外は開閉スイッチをオフする構成としたので、測定時以外の電池の消費電力を減らすことができ、長時間の動作が可能となる。
【図面の簡単な説明】
【図1】本実施の形態の電気特性測定装置の電気的構成を示すブロック図である。
【図2】電極を人体に貼り付ける状態を示す説明図である。
【図3】駆動電源に電池を用いて多周波生体インピーダンスを測定した場合と、AC電源を用いて多周波生体インピーダンスを測定した場合のそれぞれの測定データを一覧形式にまとめて示す図表である。
【図4】駆動電源に電池を用いて多周波生体インピーダンスを測定した場合と、AC電源を用いて多周波生体インピーダンスを測定した場合のそれぞれの測定データを一覧形式にまとめて示す図表である。
【図5】駆動電源として電池とAC電源とを使用し、2.5kHzから350kHzまでを2.5kHz刻みの周波数(140ポイント)でインピーダンスを測定した測定データの軌跡を示すグラフである。
【図6】多周波生体電気インピーダンス法の測定原理を示す説明図である。
【図7】2.5kHzから350kHzまでを2.5kHz刻みの周波数(140ポイント)でインピーダンスを測定した場合の測定データの軌跡を示すグラフである。
【図8】体水分量の計測時に高周波電流が漏れる様子を説明する図である。
【符号の説明】
A 測定ブロック
B 演算処理ブロック
2 測定処理部
3 電極部
11 CPU
12 ROM
13 RAM
14 表示部
15 入力部
21 基準クロック発生器
22 測定信号発生器
23 バッファ回路
23a 交流電流出力用端子
24 電流/電圧変換器
24a 交流電流入力端子
25,28 LPF
26,29 A/D変換器
31,32 電流印加用電極
33,34 電圧検出用電極
31a,32a,33a,34a 測定ケーブル
40 駆動電源(電池)
41 開閉スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrical characteristic measuring device that measures a multi-frequency bioimpedance by passing weak currents of a plurality of frequencies from a low frequency to a high frequency through a human body, and calculates a physical quantity based on the measured multi-frequency bioimpedance.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a device for calculating a physical quantity such as a water content in a body, there is a device for easily obtaining a water content in a subject by measuring a bioelectric impedance value (for example, see Patent Document 1).
[0003]
Also, a body water content state determination device based on multi-frequency bioimpedance measurement in consideration of such fluctuations in body temperature has been proposed (for example, see Patent Document 2).
[0004]
By the way, in such multi-frequency bioimpedance measurement, bioelectric impedance is measured using alternating currents of a plurality of frequencies ranging from a low frequency to a high frequency.
[0005]
FIG. 5 shows the measurement principle of the multifrequency bioelectric impedance method.
[0006]
Since the cells of the human body are cell membranes, they have the property of not passing low-frequency currents but passing high-frequency currents. That is, when impedance is measured at multiple frequencies, the amount of body water can be measured separately for the amount of intracellular fluid (such as muscle tissue) and the amount of extracellular fluid (such as blood).
[0007]
In this case, for example, when the impedance is measured at a frequency (140 points) in steps of 2.5 kHz, for example, from a low frequency of 2.5 kHz to a high frequency of 350 kHz, the measurement result shows a semicircular arc shape as shown in FIG. It becomes. Such a locus of measurement data is called a Cole-Cole circle. By extending this trajectory and calculating the resistance values at the frequency 0 and the frequency ∞, the resistance value R0 at the frequency 0 indicates the resistance value flowing only outside the cell, and the resistance value R∞ at the frequency ∞ indicates both the extracellular and intracellular values. The resistance value flowing through the resistor.
[0008]
Therefore, the extracellular fluid amount can be calculated from the resistance value R0, and the total water content can be calculated from the resistance value R∞.
[0009]
[Patent Document 1]
JP-A-11-318845 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-45346
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional body moisture content state determination device, the driving power is taken from the AC power. In this case, as shown in FIG. 8, a closed circuit such as earth-outlet-AC power supply-cord-device-human body-earth is formed, and a capacitor C having a very large capacitance exists between the human body and the earth. Leakage current in the high frequency range occurs. For this reason, there is a problem that the measurement of impedance is affected in a high frequency range, and accurate impedance cannot be measured. That is, the measurement result of the impedance in this case is a semicircular arc shape 61 as partially shown by a dashed line in FIG. 7, and the curve of the high frequency region (portion surrounded by the broken line) 63 is the curve when there is no leakage current ( The curve passes through the inside of a curve (shown by a solid line) 62.
[0011]
As described above, if the accurate impedance cannot be measured, the locus of the impedance cannot draw an accurate arc, and the calculated value of the resistance value R∞ at the frequency ∞ becomes an inaccurate value. There was a problem that calculation was not possible.
[0012]
The present invention has been conceived in order to solve such a problem, and an object of the present invention is to prevent the occurrence of a leakage current in a high frequency range, thereby enabling an accurate calculation of a resistance value R∞ at a frequency ∞. Another object of the present invention is to provide an electrical characteristic measuring device capable of accurately calculating the total water content.
[0013]
[Means for Solving the Problems]
The electric characteristic measuring apparatus of the present invention measures a multi-frequency bioimpedance by passing weak currents of a plurality of frequencies from a low frequency to a high frequency through a human body, and calculates a physical quantity based on the measured multi-frequency bioimpedance. The characteristic measuring device is characterized in that a high-frequency current leak between a human body and the ground is eliminated by using a battery as a driving power source of the device.
[0014]
According to the present invention having such a feature, by using a battery as the driving power source, the ground-power source forming a closed circuit is cut off, and as a result, a high-frequency current between the human body and the ground is generated. Leaks can be eliminated. Accordingly, the locus of the measurement data draws a beautiful semi-arc-shaped locus called a Cole-Cole circle. If the locus is extended to calculate the resistance R 値 at the frequency 、, the resistance R∞ becomes It will show accurate resistance values flowing both outside and inside the cell. As a result, a more accurate calculation of the total water content becomes possible as compared with the related art.
[0015]
Further, according to the electrical characteristic measuring apparatus of the present invention, an open / close switch is provided between the measurement processing unit that measures multi-frequency bioimpedance and the drive power supply, and the open / close switch is turned off except during measurement. I have. As a result, the power consumption of the battery other than at the time of measurement can be reduced, so that long-time operation is possible even when a battery is used as the driving power supply.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a block diagram showing an electrical configuration of the electrical characteristic measuring device according to the present embodiment.
[0018]
The electrical characteristic measuring apparatus according to the present embodiment is roughly divided into a measurement block A for measuring bioelectrical impedance and an arithmetic processing block B for performing arithmetic processing on body water content based on the measured bioelectrical impedance.
[0019]
The arithmetic processing block B stores a CPU 11 for executing measurement and measurement processing, a ROM 12 for storing a measurement processing program and a measurement processing program, various constants and arithmetic expressions, and various arithmetic results. It includes a RAM 13 serving as a work area, a display unit 14 for displaying measurement results and calculation results, and an input unit 15 such as a keyboard for inputting data related to measurement and data related to calculation.
[0020]
The measurement block A includes a measurement processing section 2 and an electrode section 3.
[0021]
The measurement processing unit 2 includes a reference clock generator 21 that generates a reference clock, an AC signal (including many frequency components) based on a measurement control signal transmitted from the CPU 11 according to a measurement processing program stored in the ROM 12. A measuring signal generator 22 for generating the AC current Ia), a buffer circuit 23 for driving the generated AC current Ia with a constant current, an AC current output terminal 23a for outputting the AC current Ia after driving with the constant current, , An AC current input terminal 24a for inputting the AC current Ib flowing therethrough, a current / voltage converter 24 for converting the input AC current Ib to a voltage, an LPF 25 for removing noise components from the converted voltage signal Vc, and noise. A / D converter 26 for converting voltage signal Vc, which is an analog signal after removing components, into a digital signal and inputting it to CPU 11 A differential amplifier 27 having voltage detection terminals 27a and 27b, an LPF 28 for removing a noise component from the potential difference signal Vp detected by the differential amplifier 27, and a potential difference signal Vp which is an analog signal after removing the noise component is converted into a digital signal. And an A / D converter 29 for inputting the data to the CPU 11.
[0022]
A pair of current application electrodes 31, 32 are connected to the pair of AC current input / output terminals 23a, 24a via measurement cables 31a, 32a, and a pair of voltage detection terminals 27a, 27b are connected to the pair of voltage detection terminals 27a, 27b. A pair of voltage detection electrodes 33 and 34 are connected via measurement cables 33a and 34a.
[0023]
As shown in FIG. 2, the electrical characteristic measuring apparatus of the present embodiment lays down on a bed or the like with the subject lying on his / her back, and in this state, one of the current applying electrode 31 and the voltage detecting The electrode 33 is attached close to the back of the hand near the wrist, and the other current application electrode 32 and the voltage detection electrode 34 are attached close to the back of the foot near the ankle. That is, in the present embodiment, stable measurement with little error is realized by the four-terminal method in which the voltage detection electrodes 33 and 34 are arranged between the current application electrodes 31 and 32.
[0024]
In this state, the measurement signal generator 22 generates an AC current Ia including frequency components (140 points) in 2.5 kHz steps from 2.5 kHz to 350 kHz, and outputs the buffer circuit 23, the AC current output terminal 23 a, The voltage is applied to the human body via the cable 31a and the current applying electrode 31. The current signal input through the current application electrode 32, the measurement cable 32a, the AC current input terminal 24a, the current / voltage converter 24, the LPF 25, and the A / D converter 26, and the voltage detection electrode 33, The CPU 11 performs an FFT (Fast Fourier Transform) operation at a time based on the potential difference signal input via the measurement cables 33a, 34a, the differential amplifier 27, the LPF 28, and the A / D converter 29, and thereby at once. Measure the impedance at 140 points. Since the locus of the measurement data is a Cole-Cole circle having a semicircular shape 62 as shown by a solid line in FIG. 7, by extending this locus and calculating the resistance values at the frequency 0 and the frequency ∞, the frequency 0 A resistance value R0 of the frequency ∞ indicates a resistance value flowing only outside the cell, and a resistance value R∞ of the frequency ∞ indicates a resistance value flowing both outside the cell and inside the cell. Therefore, the extracellular fluid amount is calculated from the resistance value R0, and the total water content is calculated from the resistance value R∞. The calculation of the resistance values R0 and R∞ and the calculation of the body water content are conventionally well-known techniques, and are disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-45346 described in the section of the prior art. Therefore, detailed description is omitted here.
[0025]
In the above configuration, in the present embodiment, a battery such as a primary battery or a secondary battery is used as the drive power supply 40 for driving each of the functional blocks in the measurement block A and the arithmetic processing block B instead of the AC power supply. It has a configuration.
[0026]
In the present embodiment, an open / close switch 41 is provided between the drive power supply 40 and each functional block of the measurement block A, and the open / close switch 41 is controlled by an instruction from the CPU 11. That is, the CPU 11 turns off the open / close switch 41 except during measurement, stops power supply to each function block of the measurement processing unit 2, turns on the open / close switch 41 only during measurement, and turns on each function block of the measurement processing unit 2. Power is supplied to the As a result, power consumption of the battery other than at the time of measurement can be reduced, so that even when a battery is used as the driving power supply 40, long-time operation is possible. Further, in addition to turning off the power supply, the processing speed of the CPU 12 other than at the time of measurement is reduced, so that the power consumption of the battery can be further reduced.
[0027]
As described above, according to the electric characteristic measuring device of the present embodiment, by using a battery as a drive power supply, the ground-power supply formed when a conventional AC power supply is used is cut off, As a result, high frequency current leakage between the human body and the ground can be eliminated.
[0028]
FIG. 3 and FIG. 4 show measurement data of a case where multi-frequency bioimpedance is measured using a battery as a driving power source and a case where multi-frequency bioimpedance is measured using an AC power source, respectively. Shows a locus when plotted according to the measurement data. A locus 51 shown by a solid line in FIG. 5 is a locus when multi-frequency bioimpedance is measured using a battery as a drive power source, and a locus 52 partially shown by a dashed line is a locus 52 using an AC power source. It is a locus at the time of measurement.
[0029]
Thus, the locus of the measurement data draws a beautiful semi-arc-shaped locus (the locus 51 shown by a solid line in FIG. 6) along the Cole-Cole circle. When ∞ is calculated, the resistance value R∞ indicates an accurate resistance value flowing both inside and outside the cell. As a result, a more accurate calculation of the total water content becomes possible as compared with the related art.
[0030]
【The invention's effect】
According to the electric characteristic measuring apparatus of the present invention, by using a battery as a drive power supply, the ground-power supply formed when a conventional AC power supply is used is cut off. And high-frequency current leakage between them can be eliminated. Thereby, the locus of the measurement data draws a beautiful semi-arc-shaped locus along the Cole-Cole circle, and when this locus is extended to calculate the resistance R∞ at the frequency 、, the resistance R∞ becomes It will show accurate resistance values flowing both outside and inside the cell. As a result, more accurate calculation of the total water content and the like can be performed as compared with the related art.
[0031]
In addition, an open / close switch is provided between the measurement processing unit that measures multi-frequency bioimpedance and the battery that is the driving power source, and the open / close switch is turned off except during measurement. The operation can be performed for a long time.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an electrical configuration of an electrical characteristic measuring device according to an embodiment.
FIG. 2 is an explanatory diagram showing a state in which electrodes are attached to a human body.
FIG. 3 is a table summarizing respective measurement data in a case where the multi-frequency bioimpedance is measured using a battery as a driving power source and in a case where the multi-frequency bioimpedance is measured using an AC power source.
FIG. 4 is a table showing, in a list form, respective measurement data in a case where multi-frequency bioimpedance is measured using a battery as a driving power source and in a case where multi-frequency bioimpedance is measured using an AC power source.
FIG. 5 is a graph showing a locus of measurement data obtained by measuring impedance from 2.5 kHz to 350 kHz at a frequency of 2.5 kHz (140 points) using a battery and an AC power source as a driving power source.
FIG. 6 is an explanatory diagram showing a measurement principle of the multifrequency bioelectric impedance method.
FIG. 7 is a graph showing a locus of measured data when impedance is measured from 2.5 kHz to 350 kHz at a frequency (140 points) in steps of 2.5 kHz.
FIG. 8 is a diagram illustrating a state in which a high-frequency current leaks when measuring a body water content.
[Explanation of symbols]
A Measurement block B Operation processing block 2 Measurement processing unit 3 Electrode unit 11 CPU
12 ROM
13 RAM
14 Display Unit 15 Input Unit 21 Reference Clock Generator 22 Measurement Signal Generator 23 Buffer Circuit 23a AC Current Output Terminal 24 Current / Voltage Converter 24a AC Current Input Terminals 25, 28 LPF
26, 29 A / D converters 31, 32 Current application electrodes 33, 34 Voltage detection electrodes 31a, 32a, 33a, 34a Measurement cable 40 Drive power supply (battery)
41 Open / close switch

Claims (2)

低周波から高周波に至る複数の周波数の微弱な電流を人体に流すことにより多周波生体インピーダンスを測定し、測定した多周波生体インピーダンスに基づいて物理量を演算する電気特性測定装置において、前記装置の駆動電源として電池を使用することにより、人体とアースとの間の高周波の電流漏れを無くしたことを特徴とする電気特性測定装置。A multi-frequency bioimpedance is measured by passing a weak current of a plurality of frequencies from low frequency to high frequency through a human body, and an electrical characteristic measuring device that calculates a physical quantity based on the measured multifrequency bioimpedance is driven. An electric characteristic measuring apparatus characterized in that high-frequency current leakage between a human body and ground is eliminated by using a battery as a power supply. 多周波生体インピーダンスを測定する測定処理部と前記駆動電源との間に開閉スイッチが設けられており、測定時以外は前記開閉スイッチをオフすることを特徴とする請求項1に記載の電気特性測定装置。The electrical characteristic measurement according to claim 1, wherein an open / close switch is provided between the measurement processing unit that measures multi-frequency bioimpedance and the drive power supply, and the open / close switch is turned off except during measurement. apparatus.
JP2002350254A 2002-12-02 2002-12-02 Electric characteristic measuring apparatus Pending JP2004180860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350254A JP2004180860A (en) 2002-12-02 2002-12-02 Electric characteristic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350254A JP2004180860A (en) 2002-12-02 2002-12-02 Electric characteristic measuring apparatus

Publications (1)

Publication Number Publication Date
JP2004180860A true JP2004180860A (en) 2004-07-02

Family

ID=32752533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350254A Pending JP2004180860A (en) 2002-12-02 2002-12-02 Electric characteristic measuring apparatus

Country Status (1)

Country Link
JP (1) JP2004180860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319490C (en) * 2005-07-01 2007-06-06 天津大学 Analog demodulation mode type frequency-mixing bio-impedance testing system
CN100333689C (en) * 2005-07-01 2007-08-29 天津大学 Analogue demodulation mode mixing biological impedance measuring method
WO2011061967A1 (en) * 2009-11-19 2011-05-26 オリンパスメディカルシステムズ株式会社 Capsule medical device system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319490C (en) * 2005-07-01 2007-06-06 天津大学 Analog demodulation mode type frequency-mixing bio-impedance testing system
CN100333689C (en) * 2005-07-01 2007-08-29 天津大学 Analogue demodulation mode mixing biological impedance measuring method
WO2011061967A1 (en) * 2009-11-19 2011-05-26 オリンパスメディカルシステムズ株式会社 Capsule medical device system
US8602989B2 (en) 2009-11-19 2013-12-10 Olympus Medical Systems Corp. Capsule medical apparatus system

Similar Documents

Publication Publication Date Title
US11890106B2 (en) Measuring wound healing
US6496725B2 (en) Apparatus for determining degree of restoration of diseased part
US6393317B1 (en) Living body impedance measuring instrument and body composition measuring instrument
JP5635989B2 (en) Impedance measurement circuit and method
JP4101821B2 (en) Abdominal impedance type body composition meter
US8099250B2 (en) Impedance parameter values
JP4024774B2 (en) Body fat measuring device
JP2002045346A (en) Device for determining somatic moisture content by in vivo impedance measurement with multi-frequencies
JP2004255120A (en) Estimating method and measuring device for body composition
JP2002112976A5 (en)
JP5641527B2 (en) Muscle mass evaluation method and muscle mass evaluation apparatus
JPH1014899A (en) Method and device for presumption of body composition
JPS62169023A (en) Fat in body weighting meter
KR101324560B1 (en) Multi-channel impedance measuring method and device
JP3492038B2 (en) Body fat measurement device
JP2015002779A (en) Biometric device and biometric method
JP2001037735A (en) Biological impedance measuring instrument
JP2004180860A (en) Electric characteristic measuring apparatus
JP5610157B2 (en) measuring device
JP3636825B2 (en) Body fat measuring device
US20050033192A1 (en) Device for prompting to control physical condition for woman
JP3819611B2 (en) Body composition estimation device
JP3636824B2 (en) Body fat measuring device
JP3461646B2 (en) Body fat measurement device
JP3819637B2 (en) Body composition estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070322