JP2004180109A - Bidirectional equalizing method by equalizing error comparison - Google Patents

Bidirectional equalizing method by equalizing error comparison Download PDF

Info

Publication number
JP2004180109A
JP2004180109A JP2002345563A JP2002345563A JP2004180109A JP 2004180109 A JP2004180109 A JP 2004180109A JP 2002345563 A JP2002345563 A JP 2002345563A JP 2002345563 A JP2002345563 A JP 2002345563A JP 2004180109 A JP2004180109 A JP 2004180109A
Authority
JP
Japan
Prior art keywords
equalization
data
error
equalizing
comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002345563A
Other languages
Japanese (ja)
Inventor
Atsushi Murakami
篤志 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002345563A priority Critical patent/JP2004180109A/en
Publication of JP2004180109A publication Critical patent/JP2004180109A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a "bidirectional equalizing method by equalizing error comparison" for solving the problem, wherein equalizing errors becomes larger because equalization in a direction is conducted succeedingly, even after receiving a data of large error, and is capable of always employing better received data, using an equalizing method by which equalizing data of an equalizing direction with a smaller equalizing error is sequentially adopted and equalizing is conducted. <P>SOLUTION: As for equalizing data, suitability comparison is conducted for each symbol between equalized error obtained by forward equalization and the one by backward equalization. As a result, equalization processing is carried out so that equalizing data with a smaller equalizing error is adopted and accumulated sequentially, while the equalization data of larger equalization errors are stored as an object of next suitability comparison. According to this arrangement, when equalizing of data corresponding to one frame portion are formed, by making them as receiving output data, so that the problem is solved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、無線デジタル通信を行う際に、伝送路の擾乱によって生じた受信信号の歪を取り除いた受信データを得るために用いられる等化方法に関する。
【0002】
【従来の技術】
従来は、図6ブロック図例に示すように、受信入力データメモリ1、トレーニング2(UW;Unique Word;同期確立用の信号)、等化部3及び受信出力データメモリ4を備えて等化を行う等化方法において、
図7の受信入力データ構成に示すように、受信した1フレームは、UW10と受信データ部11を有し、受信データ部11には、二等分したデータ長(DATA−1、DATA−2)に分けられ、各DATAは1シンボル単位の系列で構成されている。
図7において、当該1フレームの等化は、UW10から右方向へ行う順方向等化と次の1フレームのUW12から左方向へ行う逆方向等化がある。
順方向等化と逆方向等化の双方向から順に1シンボル毎に前記受信データ部11の等化処理を行って、順方向と逆方向の等化処理されたそれぞれの等化データは受信出力データメモリ13の左端と右端の双方向から順に蓄積され、1フレーム分の蓄積終了後に出力される等化方法があった。
しかし、この方法では、等化処理を行う範囲が、予め等化を行う方向及び等化範囲が二等分したデータ長と決められていることのため、フェージング等による伝送路の大きな擾乱による影響を受けたとき、図8に示すように、誤りの極めて大きいデータ21が受信された際、等化は次のデータの等化にも使用(学習係数の更新処理)されて順次行うので、当該方向の後続等化処理において、誤りの極めて大きいデータ21での極めて大きな等化誤差22がその後の受信データ23に対する等化にも前記の大きな等化誤差の影響が出てしまうことになる。
すなわち、図8の下側グラフには、等化誤差の大小を縦軸に、受信入力の時間軸を横軸に示しており、順方向において等化誤差が極めて大きく上昇して、その後、本来は等化誤差が小さくなるところが、その後のデータ23においても等化誤差が増大することを示している。
【0003】
従来、一時記憶した受信データを伝送路の遅延特性の変動が十分に小さい範囲の短区間データ系列に分割して、最小2乗法による遅延等化を行う方法がある。(例えば、特許文献1参照。)。
また、順方向等化用DFE(Decision Feedback Equalizer;判定帰還型等化部)と逆方向等化用DFEの2つを用いて受信バッファの前方からと後方からの両方向から等化を行っている。(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開平5−48498号公報(第2頁、請求項1)
【特許文献2】
特開平11−251980号公報(第3頁、段落0013)
【0005】
【発明が解決しようとする課題】
従来方法では、前述の説明のように、フェージング等による伝送路の大きな擾乱により、一方の方向で誤りの大きいデータを受信した際、等化は当該データの等化誤差が次のデータの等化にも使用されて順次行われるので、当該方向の等化が続けられる間は、誤りの大きいデータのその後の受信データに対する等化にも前記の大きな等化誤差の影響が出てしまう欠点がある。
【0006】
本発明の目的は、従来技術の問題点とされた、誤りの大きい受信データを受信した後も引き続き同じ方向への等化が行われることにより等化誤差が大きくなる問題点を解決し、等化誤差の少ない等化方向の等化データを順次採用して等化が行われる等化方法によって、常に良い方の受信データが採用されて行くことのできる「等化誤差比較による双方向等化方法」を提供することにある。
【0007】
【発明を解決するための手段】
本発明による等化誤差比較による双方向等化方法は、受信入力データがフレーム毎に順方向等化と逆方向等化の処理が各フレームの入力順に行われる双方向等化方法において、
前記順方向等化によって得られた等化データの等化誤差と前記逆方向等化によって得られた等化データの等化誤差は、1シンボル毎に優劣比較が行われ、
該優劣比較の結果、等化誤差の小さい方の等化データは順次採用され蓄積されるとともに、該優劣比較の結果、等化誤差の大きい方の等化データは次の優劣比較の対象として残されるように等化の処理が行われ、
該等化の処理が行われた等化データにより1フレーム分の等化データが形成されたときに該等化処理された等化データはフレーム単位で取り出されて受信出力データとすることを提供することにより上記課題を解決したものである。
【0008】
【発明の実施の形態】
本発明は、図1のブロック図例に示すように、受信入力データメモリ1、トレーニング(UV)2、等化部3、受信出力データメモリ4及び比較・判定5を備えて等化を行う等化方法である。等化を順方向と逆方向の双方向から行う点では従来の技術の項で説明したものと同様であるが、等化を行う範囲を順方向と逆方向それぞれの方向の互いの1シンボル単位での等化誤差の大小を比較し、等化誤差の小さい等化方向の等化データを順次採用して等化出力を得るようにされて、得られた等化データを受信出力データメモリへ蓄積するようにするものである。これにより、等化誤差の大きい等化方向の等化データは採用されず後続の等化に対する影響を避けることができるものである。
【0009】
本発明の実施例は、図2に示されるように、先ず受信入力データの構成として、当該受信の1フレームは、UW10、受信データ部11を有し、受信データ部11は、1シンボル分の先頭データ、各シンボル分のDATA、1シンボル分の末尾データで表わされ、次に、等化処理後に選ばれた等化データを蓄積する受信出力データ13を有する。
当該フレームの等化処理には、当該フレームのUW10から受信データ部11への順方向等化及び次フレームのUW12から受信データ部11への逆方向等化として双方向からシンボル毎に順次行うものであり、順方向等化と逆方向等化のそれぞれシンボル毎に得られた等化誤差の大小を比較する等化誤差比較を有する。図2は、当該フレームの1シンボル分の先頭データと同フレームの1シンボル分の末尾データの等化誤差比較として、等化誤差比較1回目を表わしている。
【0010】
等化誤差比較1回目の等化誤差の比較結果として、図3ケースAでは、比較1回目の順方向等化側の等化誤差が小さい場合として示され、等化誤差が小さい順方向の受信データ14が、比較1回目の判定結果の等化された等化データ14aとして正確な受信データと看做されて受信出力データ13の先頭に蓄積される。
第1回目の等化結果、順方向等化の受信データ14の等化誤差が小さいので、順方向等化を継続させると採用されて、従って第2回目の等化誤差比較のため次の1シンボル分の順方向受信データ16に切り替えられて、この順方向等化が行われ等化誤差を得る。
一方、逆方向等化の受信データに関しては、そのまま第1回目に得られた等化誤差が残され第2回目の等化誤差として採用される。
このようにしてそれぞれ得られた等化誤差により第2回目の等化誤差比較が行われ、その結果得られた第2回目の等化データは受信出力データとして第1回目の等化データ14aの隣に蓄積される。
【0011】
また、等化誤差比較1回目の等化誤差の比較結果として、図3ケースBでは、比較1回目の逆方向等化側の等化誤差が小さい場合として示され、等化誤差が小さい逆方向の受信データ15が、比較1回目の判定結果の等化された等化データ15aとして正確な受信データと看做されて受信出力データ13の末尾に蓄積される。
第1回目の等化結果、逆方向等化の受信データ15の等化誤差が小さいので、逆方向等化を継続させると採用されて、従って第2回目の等化誤差比較のため次の1シンボル分の逆方向受信データ17に切り替えられて、この逆方向等化が行われ等化誤差を得る。
【0012】
一方、順方向等化の受信データに関しては、そのまま第1回目に得られた等化誤差が残され第2回目の等化誤差として採用される。
このようにしてケースBも、それぞれ得られた等化誤差により第2回目の等化誤差比較が行われ、その結果得られた第2回目の等化データは受信出力データとして第1回目の等化データ15aの隣に蓄積される。
【0013】
以下同様の方法により、双方向から等化処理を進めながら等化誤差の小さい等化データが順次採用されて、受信出力データメモリに蓄積されて1フレーム分の処理を終了するまで続けられる。
【0014】
図4では、前記図3ケースAの説明にあるように順方向等化処理の場合として、順方向等化処理が継続して行われたとする、等化誤差比較n回目の等化誤差の比較結果として、比較n回目の順方向等化側の等化誤差が極めて大きい場合として示され、等化誤差が極めて大きい順方向の受信データ31が、比較n回目の判定結果の等化された等化データは前記図3ケースBの説明にあるように、順方向等化処理の順方向等化データに代わり逆方向等化処理に切り替えられた逆方向等化データが正確な受信データと看做されて受信出力データメモリへ蓄積される。以降は等化誤差が小さい逆方向等化処理が継続されて、逆方向等化データが順次受信出力データメモリへ蓄積される。
【0015】
以上の動作の説明と同じではあるが形を変え、主な動作フローとして図5フローチャートに示す。1フレーム分の等化処理には、開始ステップ5、受信ステップ10を経て、順方向トレーニングステップ15を行う、これは当該フレームのUWから、1シンボル分の先頭データを認識し、先頭データ以降の順方向として同期確立するものである。次に順方向先頭1シンボル等化ステップ20を行い、順方向等化誤差出力ステップ25を得る。
同様に逆方向トレーニングステップ30を行う、これは次のフレームのUWから当該フレームの1シンボル分の末尾データを認識し、末尾データから溯る逆方向として同期確立するものである。次に逆方向末尾1シンボル等化ステップ35を行い、逆方向等化誤差出力ステップ40を得る。
次に、順方向等化誤差出力ステップ25と逆方向等化誤差出力ステップ40の比較として、双方向等化誤差比較ステップ45を行う。
【0016】
その結果、比較判定ステップ50、即ち順方向等化誤差と逆方向等化誤差の大小比較を行い、その結果順方向等化誤差が小と出た場合は、YES側のフローチャートに入り順方向等化データの受信出力データメモリの順方向順に蓄積ステップ55となる。次に、1フレーム分等化終了ステップ60で1フレーム分等化を終わらせたかの判定を行い。結果YESであれば、1フレーム分終了ステップ95で終わる。1フレーム分等化終了ステップ60での判定結果がNOであれば、順方向次の1シンボル等化ステップ65、順方向等化誤差出力ステップ70に入り、双方向等化誤差比較ステップ45へ戻り、繰り返し等化処理ループとなる。
【0017】
一方、比較判定ステップ50、即ち順方向等化誤差と逆方向等化誤差の大小比較を行い、その結果逆方向等化誤差が小と出た場合は、NO側のフローチャートに入り逆方向等化データの受信出力データメモリの逆方向順に蓄積ステップ75となる。次に、1フレーム分等化終了ステップ80で1フレーム分等化を終わらせたかの判定を行い。結果YESであれば、1フレーム分終了ステップ95で終わる。1フレーム分等化終了ステップ80での判定結果がNOであれば、逆方向次の1シンボル等化ステップ85、逆方向等化誤差出力ステップ90に入り、双方向等化誤差比較ステップ45へ戻り、繰り返し等化処理ループとなる。
【0018】
なお、図4、図5に示すように、トレーニング中(UWの間)は、同期確立途上の状態のために、等化誤差がはじめ大きく、次第に小さくなる経過をたどり、受信データの先頭、末尾からは、同期途上に起きる等化誤差はなくなり、本来の伝送歪による等化誤差のみとなる。
【0019】
【発明の効果】
以上のように、請求項1記載の発明によれば、フェージング等による伝送路の大きな擾乱により、誤りの大きいデータを受信した際、等化は当該データの等化誤差が次のデータの等化に影響されることを避けて等化誤差の小さい方向の等化処理を行うので、品質のよい受信データを得ることができる。
【図面の簡単な説明】
【図1】本発明の説明のブロック図である。
【図2】本発明の構成及び作用を説明する図である。
【図3】本発明の構成及び作用を説明する図である。
【図4】本発明の構成、作用及び特性を説明する図である。
【図5】本発明の作用を説明するフローチャート図である。
【図6】従来方法の説明のブロック図である。
【図7】従来方法の構成及び作用を説明する図である。
【図8】従来方法の構成、作用及び特性を説明する図である。
【符号の説明】
1 受信入力データメモリ
2 トレーニング(UW)
3 等化部
4 受信出力データメモリ
5 比較・判定
10、12 UW
11 受信データ部
13 受信出力データ
14 1シンボル分の先頭データ
15 1シンボル分の末尾データ
21、31 誤りの極めて大きいデータ
22 等化誤差(大)
23 その後のデータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an equalization method used for obtaining reception data in which distortion of a reception signal caused by disturbance of a transmission path is removed when performing wireless digital communication.
[0002]
[Prior art]
Conventionally, as shown in the block diagram of FIG. 6, equalization is provided by including a reception input data memory 1, a training 2 (UW; Unique Word; signal for establishing synchronization), an equalizer 3, and a reception output data memory 4. In the equalization method to be performed,
As shown in the reception input data configuration of FIG. 7, one received frame has a UW 10 and a reception data section 11, and the reception data section 11 has a bisected data length (DATA-1, DATA-2). And each DATA is composed of a series of one symbol unit.
In FIG. 7, the equalization of one frame includes forward equalization performed rightward from UW10 and reverse equalization performed leftward from UW12 of the next one frame.
The equalization processing of the reception data unit 11 is performed for each symbol in order from the bidirectional direction of forward equalization and reverse equalization, and the equalized data subjected to the equalization processing in the forward and reverse directions is received and output. There is an equalization method in which data is accumulated sequentially from the left end and the right end of the data memory 13 and output after the end of accumulation for one frame.
However, in this method, the range in which the equalization process is performed is determined in advance by the direction in which the equalization is performed and the data length in which the equalization range is bisected, so that the influence of a large disturbance on the transmission path due to fading or the like is caused. 8, when the data 21 having an extremely large error is received, as shown in FIG. 8, the equalization is also used for the next data equalization (learning coefficient update processing) and is performed sequentially. In the subsequent equalization processing in the direction, the extremely large equalization error 22 in the extremely erroneous data 21 also affects the subsequent equalization of the received data 23 by the large equalization error.
That is, the lower graph of FIG. 8 shows the magnitude of the equalization error on the vertical axis and the time axis of the received input on the horizontal axis, and the equalization error increases extremely in the forward direction. Indicates that although the equalization error is small, the equalization error also increases in the subsequent data 23.
[0003]
Conventionally, there is a method in which temporarily stored received data is divided into short-interval data sequences in a range in which fluctuations in delay characteristics of a transmission line are sufficiently small, and delay equalization is performed by the least squares method. (For example, refer to Patent Document 1).
Also, equalization is performed from both directions from the front and the rear of the reception buffer using two components, a DFE (Decision Feedback Equalizer; Decision Feedback Equalizer) for forward equalization and a DFE for backward equalization. . (For example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-5-48498 (page 2, claim 1)
[Patent Document 2]
JP-A-11-251980 (page 3, paragraph 0013)
[0005]
[Problems to be solved by the invention]
In the conventional method, as described above, when data having a large error in one direction is received due to a large disturbance in a transmission path due to fading or the like, the equalization error of the data is equalized to the next data. And while the equalization is continued in the direction, there is a drawback that while the equalization in the direction is continued, the large equalization error is also exerted on the equalization of the data having a large error with respect to the subsequent received data. .
[0006]
An object of the present invention is to solve the problem of the prior art, that is, the problem that the equalization error is increased by performing equalization in the same direction continuously after receiving received data with a large error, and the like. By using an equalization method in which equalization data in the equalization direction with less equalization error is sequentially adopted and equalization is performed, a better received data can always be adopted. "Bidirectional equalization by equalization error comparison" To provide a "method".
[0007]
[Means for Solving the Invention]
The bidirectional equalization method based on the equalization error comparison according to the present invention is a bidirectional equalization method in which received input data is subjected to forward equalization and reverse equalization for each frame in the input order of each frame.
The equalization error of the equalized data obtained by the forward equalization and the equalization error of the equalized data obtained by the backward equalization are compared for superiority for each symbol,
As a result of the priority comparison, the equalized data with the smaller equalization error is sequentially adopted and stored, and as a result of the priority comparison, the equalized data with the larger equalization error is left as a target of the next priority comparison. Equalization is performed so that
When one frame of equalized data is formed from the equalized data subjected to the equalization processing, the equalized data subjected to the equalization processing is extracted in units of frames and provided as reception output data. By doing so, the above problem has been solved.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in the example of the block diagram of FIG. 1, the present invention includes a reception input data memory 1, a training (UV) 2, an equalization unit 3, a reception output data memory 4, and a comparison / judgment 5, and performs equalization. Method. The point that the equalization is performed in both the forward direction and the reverse direction is the same as that described in the section of the related art, but the equalization range is set to one symbol unit in each of the forward and reverse directions. The magnitudes of the equalization errors are compared, and the equalization data in the equalization direction having the smaller equalization error is sequentially adopted to obtain an equalization output. The obtained equalization data is stored in the reception output data memory. It is intended to accumulate. As a result, the equalization data in the equalization direction having a large equalization error is not adopted, and the influence on the subsequent equalization can be avoided.
[0009]
In the embodiment of the present invention, as shown in FIG. 2, first, as a configuration of the reception input data, one frame of the reception includes a UW 10 and a reception data unit 11, and the reception data unit 11 is configured to receive one symbol. The received output data 13 is represented by head data, DATA for each symbol, and tail data for one symbol, and then stores the equalized data selected after the equalization processing.
In the equalization processing of the frame, a forward equalization from the UW 10 of the frame to the reception data unit 11 and a reverse equalization from the UW 12 to the reception data unit 11 of the next frame are sequentially performed bidirectionally for each symbol. And has an equalization error comparison that compares the magnitude of the equalization error obtained for each symbol of forward equalization and backward equalization. FIG. 2 shows the first equalization error comparison as a comparison of the equalization error between the head data for one symbol of the frame and the end data for one symbol of the same frame.
[0010]
As a comparison result of the first equalization error comparison, in FIG. 3A, the case where the equalization error on the forward equalization side in the first comparison is small, and the reception in the forward direction with the small equalization error is shown. The data 14 is regarded as accurate received data as equalized data 14 a equalized as a result of the first comparison and is stored at the head of the received output data 13.
As a result of the first equalization, the equalization error of the received data 14 of the forward equalization is small, so it is adopted that the forward equalization is continued. Therefore, the following 1 is used for the second equalization error comparison. The data is switched to the forward reception data 16 for the symbols, and this forward equalization is performed to obtain an equalization error.
On the other hand, with respect to the reception data of the backward equalization, the equalization error obtained in the first time is left as it is and is adopted as the second equalization error.
A second equalization error comparison is performed using the equalization errors thus obtained, and the second equalization data obtained as a result is the reception equalization data of the first equalization data 14a. Stored next to it.
[0011]
Further, as a result of the first equalization error comparison, the case where the equalization error on the backward equalization side in the first comparison is small in FIG. The received data 15 is regarded as accurate received data as equalized data 15a as an equalized result of the first comparison result and is stored at the end of the received output data 13.
As a result of the first equalization, the equalization error of the received data 15 of the backward equalization is small, so it is adopted that the backward equalization is continued. Therefore, the following 1 is used for the second equalization error comparison. The data is switched to the backward received data 17 for the symbol, and the backward equalization is performed to obtain an equalization error.
[0012]
On the other hand, with respect to the reception data of the forward equalization, the equalization error obtained in the first time is left as it is and is adopted as the second equalization error.
Also in case B, the second equalization error comparison is performed using the obtained equalization errors, and the second equalization data obtained as a result is the first equalization data as the reception output data. It is stored next to the coded data 15a.
[0013]
Thereafter, in the same manner, the equalization data having a small equalization error is sequentially adopted while performing the equalization processing in two directions, and is stored in the reception output data memory until the processing for one frame is completed.
[0014]
In FIG. 4, it is assumed that the forward equalization processing is continuously performed as in the case of the forward equalization processing as described in the case A of FIG. As a result, the case where the equalization error on the forward equalization side in the n-th comparison is extremely large is shown, and the reception data 31 in the forward direction with the extremely large equalization error is equalized with the determination result in the n-th comparison. As described in the case B of FIG. 3 described above, the backward equalized data switched to the backward equalization processing instead of the forward equalization data in the forward equalization processing is regarded as accurate received data. Then, the data is stored in the reception output data memory. Thereafter, the backward equalization processing with a small equalization error is continued, and the backward equalized data is sequentially accumulated in the reception output data memory.
[0015]
Although the operation is the same as that described above, the form is changed, and the main operation flow is shown in the flowchart of FIG. In the equalization processing for one frame, a forward training step 15 is performed after a start step 5 and a reception step 10. This recognizes the leading data for one symbol from the UW of the frame, and Synchronization is established in the forward direction. Next, a forward first symbol equalization step 20 is performed to obtain a forward equalization error output step 25.
Similarly, a backward training step 30 is performed, in which the end data of one symbol of the frame is recognized from the UW of the next frame, and synchronization is established as the backward direction starting from the end data. Next, the backward one-symbol equalization step 35 is performed to obtain a backward equalization error output step 40.
Next, a bidirectional equalization error comparison step 45 is performed as a comparison between the forward equalization error output step 25 and the backward equalization error output step 40.
[0016]
As a result, the comparison determination step 50, that is, the magnitude comparison between the forward equalization error and the backward equalization error is performed, and as a result, when the forward equalization error is small, The accumulation step 55 is performed in the forward direction of the reception output data memory of the coded data. Next, in one frame equalization end step 60, it is determined whether equalization for one frame has been completed. If the result is YES, the process ends at the end step 95 for one frame. If the determination result in the equalization end step 60 for one frame is NO, the process proceeds to the next one symbol equalization step 65 in the forward direction, the forward equalization error output step 70, and returns to the bidirectional equalization error comparison step 45. , Forming a repetitive equalization processing loop.
[0017]
On the other hand, a comparison determination step 50, that is, a comparison is made between the magnitudes of the forward equalization error and the backward equalization error. An accumulation step 75 is performed in the reverse order of the data reception output data memory. Next, in one frame equalization end step 80, it is determined whether equalization for one frame has been completed. If the result is YES, the process ends at the end step 95 for one frame. If the result of the determination in the one frame equalization end step 80 is NO, the operation proceeds to the next one-symbol equalization step 85 in the backward direction, the backward equalization error output step 90, and returns to the bidirectional equalization error comparison step 45. , Forming a repetitive equalization processing loop.
[0018]
As shown in FIGS. 4 and 5, during the training (during UW), the synchronization error is in the process of being established, and the equalization error begins to increase and then gradually decreases. After that, the equalization error that occurs during the synchronization is eliminated, and only the equalization error due to the original transmission distortion is generated.
[0019]
【The invention's effect】
As described above, according to the first aspect of the present invention, when data having a large error is received due to a large disturbance in a transmission path due to fading or the like, the equalization error of the data is equalized to the next data. Since the equalization process is performed in the direction where the equalization error is small while avoiding the influence of the data, it is possible to obtain high-quality reception data.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating the present invention.
FIG. 2 is a diagram illustrating the configuration and operation of the present invention.
FIG. 3 is a diagram illustrating the configuration and operation of the present invention.
FIG. 4 is a diagram illustrating the configuration, operation, and characteristics of the present invention.
FIG. 5 is a flowchart illustrating the operation of the present invention.
FIG. 6 is a block diagram for explaining a conventional method.
FIG. 7 is a diagram illustrating the configuration and operation of a conventional method.
FIG. 8 is a diagram illustrating the configuration, operation, and characteristics of a conventional method.
[Explanation of symbols]
1 Received input data memory 2 Training (UW)
3 Equalization unit 4 Received output data memory 5 Comparison / judgment 10, 12 UW
Reference Signs List 11 reception data section 13 reception output data 14 start data for one symbol 15 end data for one symbol 21, 31 extremely large error data 22 equalization error (large)
23 Subsequent data

Claims (1)

受信入力データは、フレーム毎に順方向等化と逆方向等化の処理が各フレームの入力順に行われる双方向等化方法において、
前記順方向等化によって得られた等化データの等化誤差と前記逆方向等化によって得られた等化データの等化誤差は、1シンボル毎に優劣比較が行われ、
該優劣比較の結果、等化誤差の小さい方の等化データは順次採用され蓄積されるとともに、該優劣比較の結果、等化誤差の大きい方の等化データは次の優劣比較の対象として残されるように等化の処理が行われ、
該等化の処理が行われた等化データにより1フレーム分の等化データが形成されたときに該等化処理された等化データはフレーム単位で取り出されて受信出力データとなることを特徴とする等化誤差比較による双方向等化方法。
Received input data is a bidirectional equalization method in which forward equalization and reverse equalization are performed in the input order of each frame for each frame.
The equalization error of the equalized data obtained by the forward equalization and the equalization error of the equalized data obtained by the backward equalization are compared for superiority for each symbol,
As a result of the priority comparison, the equalized data with the smaller equalization error is sequentially adopted and stored, and as a result of the priority comparison, the equalized data with the larger equalization error is left as a target of the next priority comparison. Equalization is performed so that
When one frame of equalized data is formed from the equalized data subjected to the equalization processing, the equalized data subjected to the equalization processing is extracted in units of frames and becomes reception output data. Bidirectional equalization method by comparison of equalization errors.
JP2002345563A 2002-11-28 2002-11-28 Bidirectional equalizing method by equalizing error comparison Pending JP2004180109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345563A JP2004180109A (en) 2002-11-28 2002-11-28 Bidirectional equalizing method by equalizing error comparison

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345563A JP2004180109A (en) 2002-11-28 2002-11-28 Bidirectional equalizing method by equalizing error comparison

Publications (1)

Publication Number Publication Date
JP2004180109A true JP2004180109A (en) 2004-06-24

Family

ID=32706715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345563A Pending JP2004180109A (en) 2002-11-28 2002-11-28 Bidirectional equalizing method by equalizing error comparison

Country Status (1)

Country Link
JP (1) JP2004180109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227969A (en) * 2007-05-29 2012-11-15 Hitachi Kokusai Electric Inc Equalizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227969A (en) * 2007-05-29 2012-11-15 Hitachi Kokusai Electric Inc Equalizer

Similar Documents

Publication Publication Date Title
US20050286625A1 (en) Equalizer capable of adjusting step size and equalization method thereof
US7912161B2 (en) Method and apparatus for layer 1 / layer 2 convergence declaration for an adaptive equalizer
US5933468A (en) Continuous synchronization adjustment in a telecommunications system
JP6532777B2 (en) Equalizer
JPH11261452A (en) Adaptive equalizer
JP2003503959A (en) Communication system and mobile phone
US8369396B2 (en) Communication signal receiver and signal processing method thereof
TWI243594B (en) Adaptive equalizer method and apparatus for American ATSC system
JP2004166234A (en) Equalizer device and method
US20130195154A1 (en) Transmitter Adaptation Loop Using Adjustable Gain and Convergence Detection
US8116366B2 (en) Delayed decision feedback sequence estimator
US7010269B2 (en) Pre-equalizer structure based on PN511 sequence for terrestrial DTV reception
JP2004180109A (en) Bidirectional equalizing method by equalizing error comparison
KR100446304B1 (en) Equalizer in high definition television and method thereof
US20120092049A1 (en) Equalization device, equalization method, and program
US7483481B1 (en) System and method for adaptively updating precoder taps
CN112887236B (en) Synchronization and equalization device and method for high-speed burst signal
JPH1056406A (en) Waveform equalizing processing method for equalizer
US7224724B2 (en) Reduced alphabet equalizer using iterative equalization
WO2005010772A1 (en) Windowed multiuser detection
WO2002045332A2 (en) Selection of synchronisation, channel estimation, and equalisation techniques based on the received training sequence
US20060098728A1 (en) Decision feedback equalizer for digital tv and method thereof
JP7469776B2 (en) Communication device, communication method, and communication program for performing propagation path equalization and quality estimation
CN113517934B (en) Signal processing method and related equipment
WO2024109014A1 (en) Bit-error test method and related device