JP2004180033A - Dielectric resonator and resonant frequency adjustment method therefor - Google Patents

Dielectric resonator and resonant frequency adjustment method therefor Download PDF

Info

Publication number
JP2004180033A
JP2004180033A JP2002344679A JP2002344679A JP2004180033A JP 2004180033 A JP2004180033 A JP 2004180033A JP 2002344679 A JP2002344679 A JP 2002344679A JP 2002344679 A JP2002344679 A JP 2002344679A JP 2004180033 A JP2004180033 A JP 2004180033A
Authority
JP
Japan
Prior art keywords
adjustment
transmission line
dielectric resonator
ground electrode
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002344679A
Other languages
Japanese (ja)
Inventor
Tatsuya Tateishi
立也 立石
Ko Matsuo
香 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002344679A priority Critical patent/JP2004180033A/en
Publication of JP2004180033A publication Critical patent/JP2004180033A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric resonator which is enabled to have a resonant frequency adjusted in a wide range and enables precise adjustment to be efficiently performed in combination with rough adjustment and fine adjustment. <P>SOLUTION: A plurality of adjustment conductors 41 which cross a transmission line 30 and are opposed to ground electrodes 21 and 22 and the transmission line 30 are arranged in a laminated body 10, and connections between the adjustment conductors 41 and a ground electrode 23 are disconnected in accordance with the adjustment amount of a resonant frequency by forming notches 40. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、通信機器、電子機器等の共振回路や高周波回路用フィルタ等に使用される誘電体共振器に関するものである。
【0002】
【従来の技術】
複数の誘電体層を積層し、それら誘電体層間に伝送線路を形成し、積層体の外周面にグランド電極を形成してなる誘電体共振器は、薄型で、しかも高機能化への対応が比較的容易であることから、通信機器や電子機器の共振回路、高周波回路用フィルタ等に幅広く用いられている。
【0003】
かかる誘電体共振器の構造を図4及び図5(a)(b)に示す。図4は誘電体共振器の斜視図、図5(a)(b)は図4のB−B´線断面図であり、同図に示し誘電体共振器100は、誘電体層101a〜101iで構成した積層体102の両主面及び側面にグランド電極103、104を形成するとともに、積層体102の略中央の誘電体層101d、101e間に伝送線路105を形成した構造を有している。
【0004】
そして、前記伝送線路105は、その一端がグランド電極104に短絡し、他端は誘電体層101d、101e間に面方向に延出されており、かかる伝送線路105とグランド電極103,104との間で容量成分と誘導成分とを形成することによって所定のL−C共振回路が構成される(例えば、特許文献1参照。)。
【0005】
このような誘電体共振器100は、セラミックグリーンシートに導電性ペーストを用いて内部配線パターンを形成し、これらのグリーンシートを積層して、誘電体層と内部配線とを同時焼成することにより製造される。従って、セラミックス及び導体材料の原料ロットや内部配線パターンの形成ばらつき,焼成条件のばらつき等の影響を受け、本来であれば誘電体層の誘電率とストリップラインの寸法によって定まるはずの共振周波数が実際には個々の製品毎に異なって設計値よりずれてしまい、十分な共振特性を得られないことがあった。
【0006】
そこで、製品の組み立て後に共振周波数を調整する工程が必要不可欠となっている。
このため、従来の誘電体共振器100においては、図5(b)に示すように、グランド電極103の伝送線路105と対向する領域111をレーザーやサンドブラスト等の手法でトリミングし、グランド電極103に所定の切り欠き111を形成することによって共振周波数を調整する手法が一般的に採用されている。
【0007】
【特許文献1】
特開2001−102823号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述の従来の誘電体共振器100においては、伝送線路105と対向するグランド電極103のトリミングだけでは、共振周波数の変化の度合が小さく、微調整しか行うことができないという不都合があった。それ故、製品毎の共振周波数のばらつき範囲を十分にカバーすることができず、調整不足による不良品を発生する等して、生産性の低下を招いていた。
【0009】
また、上述した従来の誘電体共振器100においては、トリミングによる切り欠き111が誘電体共振器100の主面上に位置していることから、周波数調整作業を行った後で誘電体共振器100の主面上にシールドカバーを取着させると、シールドカバーと切り欠き111との間に浮遊容量が発生し、共振周波数が変動するという欠点が誘発される。
【0010】
本発明は上述の課題に鑑み案出されたもので、その目的は、共振周波数の調整範囲を広げることができるとともに、調整作業を終えた後でシールドカバーを取着させる場合であっても、共振周波数の変動を有効に防止することが可能な誘電体共振器を提供することにある。
【0011】
【課題を解決するための手段】
本発明の誘電体共振器は、複数の誘電体層を積層してなる積層体の両主面、側面及び端面にグランド電極を被着させるとともに、前記積層体の内部に、前記グランド電極に前記積層体の端面で電気的に接続される伝送線路を配設した誘電体共振器において、前記伝送線路と前記積層体の少なくとも一方の主面との間に、前記伝送線路と交差し、且つ一端側を積層体の前記側面まで延在させた複数個の調整用導体を配設するとともに、前記積層体の側面に、複数個の調整用導体のうち少なくとも1個と前記グランド電極とを断線させる切り欠きを形成したことを特徴とするものである。
【0012】
また、本発明の誘電体共振器の共振周波数調整方法は、複数の誘電体層を積層してなる積層体の両主面、側面及び端面にグランド電極を被着させるとともに、前記積層体の内部に、前記グランド電極に積層体の端面で電気的に接続される伝送線路を、該伝送線路と前記積層体の少なくとも一方の主面との間に、前記伝送線路と交差し、且つ一端側を前記積層体の側面まで延在して前記グランド電極に接続した複数個の調整用導体を有する誘電体共振器を準備し、前記誘電体共振器の積層体側面に、複数個の調整用導体のうち少なくとも1個と前記グランド電極とを断線させる切り欠きを形成し、伝送線路−グランド電極間の静電容量を変化させることにより誘電体共振器の共振周波数を目標周波数領域内に設定することを特徴とするものである。
【0013】
本発明によれば、伝送線路と積層体の少なくとも一方の主面との間に、伝送線路と交差し、且つ一端側を積層体の側面まで延在させた複数個の調整用導体を配設するとともに、積層体の側面に、複数個の調整用導体のうち少なくとも1個とグランド電極とを断線させる切り欠きを形成している。この切り欠きの形成で、調整用導体とグランド電極とを断線することにより、伝送線路と調整用導体とで形成された容量成分を消失させることになり、共振周波数の調整が可能になる。
【0014】
また、本発明によれば、調整用導体は複数配設されているため、広い範囲での共振周波数の調整が可能となり、かつ、所望の共振周波数の調整量に応じてグランド電極と断線させる調整用導体を選択することにより、粗調整と微調整を組み合わすことができ、精度の良い調整を効率良く行うことができる。
【0015】
更に、本発明によれば、切り欠きの形成は積層体の側面で行うため、誘電体共振器の主面上にシールドカバーが形成されても浮遊容量の発生等による影響はなく、調整した共振周波数が変動することもない。また、伝送線路と対向するグランド電極に切り欠きを形成する従来の手法と本発明の調整方法とを併用した場合においても、誘電体共振器の主面上にシールドカバーを取り付けた後で、積層体の側面に切り欠きを形成して周波数調整を行うようにすれば、共振周波数を精度良く得ることができる。
【0016】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。
図1は本発明の一例である誘電体共振器の外観斜視図であり、図2(a)は図1の上面図、図2(b)は図1のA−A´線断面図である。
【0017】
同図に示す誘電体共振器1は、誘電体層から成る積層体10の両主面、側面及び端面にグランド電位に保持されるグランド電極21、22,23を被着・形成させるとともに、積層体10の誘電体層間に伝送線路30を形成した構造を有している。
【0018】
積層体10は、図2(a)(b)に示すように、1層あたり50〜300μm程度の厚みをもった誘電体層11a〜11iを厚み方向に積層して成り、これら誘電体層11a〜11iの材質としては、誘電体セラミック材料と低温焼成を可能とする酸化物や低融点ガラス材料で構成されたガラスセラミック材料等が好適に用いられる。このようなガラスセラミック材料の誘電体セラミック材料としては、例えばBaO−TiO系セラミック材料、Ca−TiO系セラミック材料、MgO−TiO系セラミック材料等が、また、低温焼成するための酸化物としては、例えばBiVO、CuO、LiO、B等が用いられる。
【0019】
グランド電極21,22,23は、Ag、Ag−Pd、Cu等の金属を主成分とする導体材料からなり、積層体10の一主面に形成されたグランド電極21と、積層体10の他主面に形成されたグランド電極22、及び、積層体10の側面及び端面全面に形成されたグランド電極23とで構成されている。
【0020】
伝送線路30は、セラミックグリーンシートにAg、Ag−Pd、Cuなどを主成分とする導体材料を従来周知のスクリーン印刷等によって所定パターンに印刷・塗布し、これを誘電体層と同時に焼成することによって形成され、誘電体層11d、11e間で上下のグランド電極21、22に対向して配設されている。また、伝送線路30の一端側は積層体10端面のグランド電極23に接続されており、他端側は誘電体層11d、11e間で開放端となっている。
【0021】
このような伝送線路30とグランド電極21、22、23との間には容量成分と誘導成分とが形成されるようになっており、これによって所定のL−C共振回路が構成される。
【0022】
また、調整用導体41(41a、41b、41c)は、グリーンシートにAg、Ag−Pd、Cu等の金属を主成分とする導体ペーストを従来周知のスクリーン印刷等によって所定パターンに印刷・塗布し、これを誘電体層11と同時に焼成することにより形成される。これらの調整用導体41は、伝送線路30と積層体10の少なくとも一方の主面との間、具体的には、誘電体層11b、11c間に伝送線路30と交差し、かつ、上下のグランド電極21、22及び伝送線路30と対向するようにして配設される。そしてこれら調整用導体41(41a、41b、41c)の一端側は積層体10の側面まで延在されている。
【0023】
このような調整用導体41(41a、41b、41c)と上述した伝送線路30との間には容量成分が形成されるようになっており、これがL−C共振回路の容量成分の一部を構成している。
【0024】
ここで、積層体10の調整用導体41(41a、41b、41c)と接続するグランド電極23には、切り欠き40(40a、40b、40c)が形成されている。この切り欠き40(40a、40b、40c)によって、グランド電極23と調整用導体41(41a、41b、41c)との接続を断線させておくことで、伝送線路30と調整用導体41(41a、41b、41c)との間の静電容量を所定の大きさに設定することができる。
【0025】
この静電容量は前記L−C共振回路の容量成分の一部をなすため、切り欠き40(40a、40b、40c)によって、L−C共振回路の容量値が減少する結果、共振周波数を上昇させることができる。
【0026】
この時、切り欠き40(40a、40b、40c)によって断線される調整用導体41(41a、41b、41c)は、伝送線路30の積層体10端面のグランド電極23に接続される一方端からの距離Dに応じて、共振周波数の調整量が異なる。即ち、伝送線路30とグランド電極23とが電気的に接続されている積層体10の端面(短絡面)から離れた位置、つまり距離Dが大きい位置にある調整用導体41ほど、その断線時に上昇する共振周波数の変化量は大きくなる。従って、調整用導体41を距離Dの異なる位置に複数用意しておき、所望の調整したい周波数量に応じて断線する調整用導体41を選択し、接続部のグランド電極23に切り欠き40を形成することによって、最適な共振周波数の調整量を得ることができる。
【0027】
従って、距離Dを大きくとった位置での調整用導体41の断線によって調整量の大きい粗調整を行い、その後、距離Dの小さい位置での調整用導体41の断線によって微調整を行えば、広い範囲での調整が可能となり、かつ、精度の良い調整を効率良く行うことができる。
【0028】
また図3に示すように、積層体10の主面にシールドカバー51を取り付ける場合に、シールドカバー51との間で発生する浮遊容量によって誘電体共振器の共振周波数が変動しても、シールドカバー51を取り付けた後で上述の周波数調整を行うようにすれば、共振周波数を精度良く得ることができ、しかも積層体10の側面はシールドカバー51で覆っておく必要がなく、積層体10の側面は常に露出した状態となっていることから、周波数の調整作業に際してシールドカバー51が調整作業の邪魔になることもない。
【0029】
【発明の効果】
本発明によれば、伝送線路と積層体の少なくとも一方の主面との間に、伝送線路と交差し、且つ一端側を積層体の側面まで延在させた複数個の調整用導体を配設するとともに、積層体の側面に、複数個の調整用導体のうち少なくとも1個とグランド電極とを断線させる切り欠きを形成している。この切り欠きの形成で、調整用導体とグランド電極とを断線することにより、伝送線路と調整用導体とで形成された容量成分を消失させることになり、共振周波数の調整が可能になる。
【0030】
また、本発明によれば、調整用導体は複数配設されているため、広い範囲での共振周波数の調整が可能となり、かつ、所望の共振周波数の調整量に応じてグランド電極と断線させる調整用導体を選択することにより、粗調整と微調整を組み合わすことができ、精度の良い調整を効率良く行うことができる。
【0031】
更に、本発明によれば、切り欠きの形成は積層体の側面で行うため、誘電体共振器の主面上にシールドカバーが形成されても浮遊容量の発生等による影響はなく、調整した共振周波数が変動することもない。また、伝送線路と対向するグランド電極に切り欠きを形成する従来の手法と本発明の調整方法とを併用した場合においても、誘電体共振器の主面上にシールドカバーを取り付けた後で、積層体の側面に切り欠きを形成して周波数調整を行うようにすれば、共振周波数を精度良く得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る誘電体共振器の外観斜視図である。
【図2】(a)は図1の誘電体共振器の上面図であり、(b)は図1の誘電体共振器の断面図である。
【図3】本発明の他の実施形態に係る誘電体共振器の断面図である。
【図4】従来の誘電体共振器の外観斜視図である。
【図5】(a)は図4の誘電体共振器の共振周波数調整前の断面図であり、(b)は図4の誘電体共振器の共振周波数調整後の断面図である。
【符号の説明】
1・・・誘電体共振器
10・・・積層体
11・・・誘電体層
21,22,23・・・グランド電極
30・・・伝送線路
40・・・切り欠き
41・・・調整用導体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric resonator used for a resonance circuit of a communication device or an electronic device, a filter for a high-frequency circuit, or the like.
[0002]
[Prior art]
A dielectric resonator that is formed by laminating a plurality of dielectric layers, forming a transmission line between the dielectric layers, and forming a ground electrode on the outer peripheral surface of the laminated body is thin and capable of supporting high functionality. Since it is relatively easy, it is widely used in resonance circuits of communication devices and electronic devices, filters for high-frequency circuits, and the like.
[0003]
FIGS. 4 and 5A and 5B show the structure of such a dielectric resonator. FIG. 4 is a perspective view of the dielectric resonator, and FIGS. 5A and 5B are cross-sectional views taken along the line BB ′ of FIG. 4, and the dielectric resonator 100 shown in FIG. 4 includes dielectric layers 101a to 101i. The ground electrodes 103 and 104 are formed on both main surfaces and side surfaces of the laminated body 102 composed of the above, and the transmission line 105 is formed between the dielectric layers 101d and 101e substantially at the center of the laminated body 102. .
[0004]
The transmission line 105 has one end short-circuited to the ground electrode 104 and the other end extended in the plane direction between the dielectric layers 101d and 101e. A predetermined LC resonance circuit is formed by forming a capacitive component and an inductive component between them (for example, see Patent Document 1).
[0005]
Such a dielectric resonator 100 is manufactured by forming an internal wiring pattern on a ceramic green sheet using a conductive paste, laminating these green sheets, and simultaneously firing the dielectric layer and the internal wiring. Is done. Therefore, the resonance frequency, which is supposed to be determined by the dielectric constant of the dielectric layer and the dimensions of the strip line, is actually affected by variations in the formation of the raw material lots of ceramics and conductive materials, internal wiring patterns, and variations in firing conditions. In some cases, each product differs from the design value differently, and sufficient resonance characteristics may not be obtained.
[0006]
Therefore, a process of adjusting the resonance frequency after assembling the product is indispensable.
For this reason, in the conventional dielectric resonator 100, as shown in FIG. 5B, a region 111 of the ground electrode 103 facing the transmission line 105 is trimmed by a method such as laser or sand blast, and the ground electrode 103 is trimmed. A method of adjusting the resonance frequency by forming the predetermined notch 111 is generally adopted.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-102823
[Problems to be solved by the invention]
However, in the above-described conventional dielectric resonator 100, there is an inconvenience that only the trimming of the ground electrode 103 facing the transmission line 105 causes a small change in the resonance frequency, and only fine adjustment can be performed. For this reason, the variation range of the resonance frequency for each product cannot be sufficiently covered, and a defective product due to insufficient adjustment has been generated, resulting in a decrease in productivity.
[0009]
Further, in the above-described conventional dielectric resonator 100, since the notch 111 formed by trimming is located on the main surface of the dielectric resonator 100, the dielectric resonator 100 is subjected to the frequency adjustment operation. When a shield cover is attached on the main surface of the, a stray capacitance is generated between the shield cover and the notch 111, and a drawback that the resonance frequency fluctuates is induced.
[0010]
The present invention has been devised in view of the above-described problems, and its purpose is to extend the adjustment range of the resonance frequency, and to attach the shield cover after the adjustment work, An object of the present invention is to provide a dielectric resonator capable of effectively preventing a change in resonance frequency.
[0011]
[Means for Solving the Problems]
The dielectric resonator according to the present invention is configured such that a ground electrode is attached to both main surfaces, side surfaces, and end surfaces of a multilayer body formed by stacking a plurality of dielectric layers, and the ground electrode is provided inside the multilayer body. In a dielectric resonator provided with a transmission line electrically connected to an end face of the laminate, the dielectric resonator intersects the transmission line between the transmission line and at least one main surface of the laminate and has one end. A plurality of adjustment conductors whose sides extend to the side surface of the multilayer body are provided, and at least one of the plurality of adjustment conductors and the ground electrode are disconnected on the side surface of the multilayer body. A notch is formed.
[0012]
The method of adjusting the resonance frequency of a dielectric resonator according to the present invention may further include depositing a ground electrode on both principal surfaces, side surfaces, and end surfaces of a laminate formed by laminating a plurality of dielectric layers, and A transmission line electrically connected to the ground electrode at an end face of the laminate, between the transmission line and at least one main surface of the laminate, intersecting with the transmission line, and having one end side A dielectric resonator having a plurality of adjustment conductors extending to the side surface of the laminate and connected to the ground electrode is prepared, and a plurality of adjustment conductors are provided on the side surface of the laminate of the dielectric resonator. A notch for disconnecting at least one of the ground electrodes and the ground electrode is formed, and the capacitance between the transmission line and the ground electrode is changed to set the resonance frequency of the dielectric resonator in a target frequency region. Features .
[0013]
According to the present invention, between the transmission line and at least one main surface of the laminate, a plurality of adjustment conductors intersecting the transmission line and having one end extending to the side surface of the laminate are provided. In addition, a cutout for disconnecting at least one of the plurality of adjustment conductors from the ground electrode is formed on the side surface of the laminate. When the notch is formed, the capacitance component formed by the transmission line and the adjustment conductor is eliminated by disconnecting the adjustment conductor and the ground electrode, and the resonance frequency can be adjusted.
[0014]
Further, according to the present invention, since a plurality of adjustment conductors are provided, it is possible to adjust the resonance frequency in a wide range, and to adjust the disconnection from the ground electrode according to the desired adjustment amount of the resonance frequency. By selecting the conductor for use, coarse adjustment and fine adjustment can be combined, and highly accurate adjustment can be efficiently performed.
[0015]
Further, according to the present invention, since the notch is formed on the side surface of the laminated body, even if a shield cover is formed on the main surface of the dielectric resonator, there is no influence due to generation of stray capacitance and the like, The frequency does not change. Further, even when the conventional method of forming a notch in the ground electrode facing the transmission line and the adjustment method of the present invention are used together, after the shield cover is attached on the main surface of the dielectric resonator, If a notch is formed in the side surface of the body to adjust the frequency, the resonance frequency can be obtained with high accuracy.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an external perspective view of a dielectric resonator as an example of the present invention. FIG. 2A is a top view of FIG. 1, and FIG. 2B is a cross-sectional view taken along line AA 'of FIG. .
[0017]
In the dielectric resonator 1 shown in FIG. 1, ground electrodes 21, 22, and 23 held at a ground potential are attached to and formed on both main surfaces, side surfaces, and end surfaces of a laminated body 10 made of a dielectric layer. It has a structure in which a transmission line 30 is formed between dielectric layers of the body 10.
[0018]
As shown in FIGS. 2A and 2B, the laminated body 10 is formed by laminating dielectric layers 11a to 11i having a thickness of about 50 to 300 μm per layer in the thickness direction. As materials 11 to 11i, a glass ceramic material made of a dielectric ceramic material, an oxide capable of being fired at a low temperature, or a low-melting glass material is preferably used. Examples of such a dielectric ceramic material of a glass ceramic material include BaO—TiO 2 ceramic materials, Ca—TiO 2 ceramic materials, and MgO—TiO 2 ceramic materials, and oxides for low-temperature firing. For example, BiVO 4 , CuO, Li 2 O, B 2 O 3 or the like is used.
[0019]
The ground electrodes 21, 22, and 23 are made of a conductive material containing a metal such as Ag, Ag—Pd, or Cu as a main component. A ground electrode 22 is formed on the main surface, and a ground electrode 23 is formed on the entire side surface and end surface of the laminate 10.
[0020]
The transmission line 30 is formed by printing and applying a conductor material mainly composed of Ag, Ag-Pd, Cu, or the like in a predetermined pattern on a ceramic green sheet by a conventionally known screen printing or the like, and firing it at the same time as the dielectric layer. And is disposed opposite to the upper and lower ground electrodes 21 and 22 between the dielectric layers 11d and 11e. One end of the transmission line 30 is connected to the ground electrode 23 on the end face of the multilayer body 10, and the other end is an open end between the dielectric layers 11d and 11e.
[0021]
A capacitance component and an inductive component are formed between the transmission line 30 and the ground electrodes 21, 22, and 23, thereby forming a predetermined LC resonance circuit.
[0022]
The adjusting conductors 41 (41a, 41b, 41c) are formed by printing and applying a conductor paste mainly composed of a metal such as Ag, Ag-Pd, or Cu on a green sheet in a predetermined pattern by screen printing or the like, which is conventionally known. This is formed by firing simultaneously with the dielectric layer 11. These adjustment conductors 41 intersect with the transmission line 30 between the transmission line 30 and at least one main surface of the laminated body 10, specifically, between the dielectric layers 11b and 11c, and form upper and lower grounds. The electrodes are arranged so as to face the electrodes 21 and 22 and the transmission line 30. One ends of these adjustment conductors 41 (41 a, 41 b, 41 c) extend to the side surfaces of the multilayer body 10.
[0023]
A capacitance component is formed between the adjusting conductor 41 (41a, 41b, 41c) and the transmission line 30 described above, and this forms a part of the capacitance component of the LC resonance circuit. Make up.
[0024]
Here, cutouts 40 (40a, 40b, 40c) are formed in the ground electrode 23 connected to the adjustment conductors 41 (41a, 41b, 41c) of the multilayer body 10. The cutout 40 (40a, 40b, 40c) disconnects the connection between the ground electrode 23 and the adjustment conductor 41 (41a, 41b, 41c), so that the transmission line 30 and the adjustment conductor 41 (41a, 41a, 41b, 41c) can be set to a predetermined value.
[0025]
Since this capacitance forms a part of the capacitance component of the LC resonance circuit, the notch 40 (40a, 40b, 40c) reduces the capacitance value of the LC resonance circuit, thereby increasing the resonance frequency. Can be done.
[0026]
At this time, the adjustment conductor 41 (41a, 41b, 41c) disconnected by the notch 40 (40a, 40b, 40c) is connected to the ground electrode 23 on the end face of the laminated body 10 of the transmission line 30 from one end. The adjustment amount of the resonance frequency varies depending on the distance D. That is, the position of the adjustment conductor 41 farther from the end surface (short-circuit surface) of the laminated body 10 where the transmission line 30 and the ground electrode 23 are electrically connected, that is, the position where the distance D is larger, increases when the disconnection occurs. The amount of change in the resonance frequency increases. Therefore, a plurality of the adjusting conductors 41 are prepared at different positions of the distance D, and the adjusting conductor 41 to be disconnected is selected according to a desired frequency amount to be adjusted, and the notch 40 is formed in the ground electrode 23 of the connection portion. By doing so, it is possible to obtain an optimum adjustment amount of the resonance frequency.
[0027]
Therefore, if the coarse adjustment with a large adjustment amount is performed by disconnection of the adjustment conductor 41 at a position where the distance D is large, and then the fine adjustment is performed by disconnection of the adjustment conductor 41 at a position where the distance D is small, a wide range is obtained. Adjustment within the range becomes possible, and highly accurate adjustment can be efficiently performed.
[0028]
Further, as shown in FIG. 3, when the shield cover 51 is attached to the main surface of the laminated body 10, even if the resonance frequency of the dielectric resonator fluctuates due to the stray capacitance generated between the shield cover 51 and the shield cover 51, If the above-mentioned frequency adjustment is performed after the attachment of the stack 51, the resonance frequency can be obtained with high accuracy, and the side of the stack 10 does not need to be covered with the shield cover 51. Is always exposed, so that the shield cover 51 does not hinder the adjustment operation when adjusting the frequency.
[0029]
【The invention's effect】
According to the present invention, between the transmission line and at least one main surface of the laminate, a plurality of adjustment conductors intersecting the transmission line and having one end extending to the side surface of the laminate are provided. In addition, a cutout for disconnecting at least one of the plurality of adjustment conductors from the ground electrode is formed on the side surface of the laminate. When the notch is formed, the capacitance component formed by the transmission line and the adjustment conductor is eliminated by disconnecting the adjustment conductor and the ground electrode, and the resonance frequency can be adjusted.
[0030]
Further, according to the present invention, since a plurality of adjustment conductors are provided, it is possible to adjust the resonance frequency in a wide range, and to adjust the disconnection from the ground electrode according to the desired adjustment amount of the resonance frequency. By selecting the conductor for use, coarse adjustment and fine adjustment can be combined, and highly accurate adjustment can be efficiently performed.
[0031]
Further, according to the present invention, since the notch is formed on the side surface of the laminated body, even if a shield cover is formed on the main surface of the dielectric resonator, there is no influence due to generation of stray capacitance and the like, The frequency does not change. Further, even when the conventional method of forming a notch in the ground electrode facing the transmission line and the adjustment method of the present invention are used together, after the shield cover is attached on the main surface of the dielectric resonator, If a notch is formed in the side surface of the body to adjust the frequency, the resonance frequency can be obtained with high accuracy.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a dielectric resonator according to one embodiment of the present invention.
2A is a top view of the dielectric resonator of FIG. 1, and FIG. 2B is a cross-sectional view of the dielectric resonator of FIG.
FIG. 3 is a sectional view of a dielectric resonator according to another embodiment of the present invention.
FIG. 4 is an external perspective view of a conventional dielectric resonator.
5A is a cross-sectional view of the dielectric resonator of FIG. 4 before adjusting the resonance frequency, and FIG. 5B is a cross-sectional view of the dielectric resonator of FIG. 4 after adjusting the resonance frequency.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dielectric resonator 10 ... Laminated body 11 ... Dielectric layers 21, 22, 23 ... Ground electrode 30 ... Transmission line 40 ... Notch 41 ... Adjustment conductor

Claims (2)

複数の誘電体層を積層してなる積層体の両主面、側面及び端面にグランド電極を被着させるとともに、前記積層体の内部に、前記グランド電極に前記積層体の端面で電気的に接続される伝送線路を配設した誘電体共振器において、
前記伝送線路と前記積層体の少なくとも一方の主面との間に、前記伝送線路と交差し、且つ一端側を積層体の前記側面まで延在させた複数個の調整用導体を配設するとともに、前記積層体の側面に、複数個の調整用導体のうち少なくとも1個と前記グランド電極とを断線させる切り欠きを形成したことを特徴とする誘電体共振器。
Ground electrodes are applied to both main surfaces, side surfaces, and end surfaces of the laminate formed by laminating a plurality of dielectric layers, and are electrically connected to the ground electrodes at the end surfaces of the laminate inside the laminate. In the dielectric resonator provided with the transmission line to be
Between the transmission line and at least one main surface of the laminate, a plurality of adjustment conductors intersecting the transmission line and having one end extending to the side surface of the laminate are provided. And a notch for disconnecting at least one of a plurality of adjusting conductors and the ground electrode from a side surface of the laminated body.
複数の誘電体層を積層してなる積層体の両主面、側面及び端面にグランド電極を被着させるとともに、前記積層体の内部に、前記グランド電極に積層体の端面で電気的に接続される伝送線路を、該伝送線路と前記積層体の少なくとも一方の主面との間に、前記伝送線路と交差し、且つ一端側を前記積層体の側面まで延在して前記グランド電極に接続した複数個の調整用導体を有する誘電体共振器を準備し、
前記誘電体共振器の積層体側面に、複数個の調整用導体のうち少なくとも1個と前記グランド電極とを断線させる切り欠きを形成し、伝送線路−グランド電極間の静電容量を変化させることにより誘電体共振器の共振周波数を目標周波数領域内に設定することを特徴とする誘電体共振器の共振周波数調整方法。
A ground electrode is applied to both main surfaces, side surfaces, and end surfaces of a laminate formed by laminating a plurality of dielectric layers, and the inside of the laminate is electrically connected to the ground electrode at an end surface of the laminate. A transmission line intersecting the transmission line between the transmission line and at least one main surface of the laminate, and extending at one end to a side surface of the laminate to be connected to the ground electrode. Prepare a dielectric resonator having a plurality of adjustment conductors,
Forming a notch on at least one of a plurality of adjusting conductors and the ground electrode on a side surface of the laminated body of the dielectric resonator to change a capacitance between a transmission line and a ground electrode. The resonance frequency of the dielectric resonator is set within a target frequency range by using the method described above.
JP2002344679A 2002-11-27 2002-11-27 Dielectric resonator and resonant frequency adjustment method therefor Pending JP2004180033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344679A JP2004180033A (en) 2002-11-27 2002-11-27 Dielectric resonator and resonant frequency adjustment method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344679A JP2004180033A (en) 2002-11-27 2002-11-27 Dielectric resonator and resonant frequency adjustment method therefor

Publications (1)

Publication Number Publication Date
JP2004180033A true JP2004180033A (en) 2004-06-24

Family

ID=32706058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344679A Pending JP2004180033A (en) 2002-11-27 2002-11-27 Dielectric resonator and resonant frequency adjustment method therefor

Country Status (1)

Country Link
JP (1) JP2004180033A (en)

Similar Documents

Publication Publication Date Title
US9166549B2 (en) High-frequency filter
US20080143458A1 (en) Filter element and method for manufacturing the same
EP2439844A2 (en) Bulk acoustic wave resonator, bulk acoustic wave filter and their corresponding methods of manufacture
KR101815443B1 (en) Composite electronic component and resistance element
JP2004180032A (en) Dielectric filter
JP2002246503A (en) Electronic component and its manufacturing method
JP2004180033A (en) Dielectric resonator and resonant frequency adjustment method therefor
JP2004179911A (en) Dielectric resonator
JPH06204075A (en) Stacked ceramic electronic component for high frequency and its manufacture
JP4280131B2 (en) Multilayer filter
JP2004289297A (en) Stripline resonator
JP2003078377A (en) Lc combined chip component
JP3628213B2 (en) Stripline resonator
JPH0660134U (en) Multilayer chip EMI removal filter
KR20070090677A (en) Laminated chip device and method of manufacturing thereof
JP3469339B2 (en) High frequency filter
JP2004032558A (en) Dielectric resonator
JPH0746075A (en) Lc composite parts
JPH0936603A (en) Antenna switch
JP2002033634A (en) Lc filter
JPH06132704A (en) Laminated dielectric filter
JP2004032555A (en) High-frequency component
JP3860800B2 (en) Trap device with built-in trap circuit
JP2000349532A (en) Antenna system
JPH11265822A (en) Integrated impedance element