JP2004179119A - Manufacturing method of positive electrode plate for alkaline storage battery - Google Patents

Manufacturing method of positive electrode plate for alkaline storage battery Download PDF

Info

Publication number
JP2004179119A
JP2004179119A JP2002347185A JP2002347185A JP2004179119A JP 2004179119 A JP2004179119 A JP 2004179119A JP 2002347185 A JP2002347185 A JP 2002347185A JP 2002347185 A JP2002347185 A JP 2002347185A JP 2004179119 A JP2004179119 A JP 2004179119A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
binder
active material
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347185A
Other languages
Japanese (ja)
Inventor
Seiya Nakai
晴也 中井
Yoshiyuki Muraoka
芳幸 村岡
Yoko Yoneyama
揚江 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002347185A priority Critical patent/JP2004179119A/en
Publication of JP2004179119A publication Critical patent/JP2004179119A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery having a high reliability and a long life with respect to a positive electrode plate for alkaline storage battery. <P>SOLUTION: The nickel electrode of an alkali storage battery comprises a conductive metal support, an active material, a conductive agent, and a binder. The manufacturing process comprises a process of turning the active material, conductive agent, and binder into a paste, a process of painting and drying the above paste on a conductive metal support, and a process of coating and drying latex-form binder 3 having superior alkaline resistance at the position corresponding to a cutting portion at the time of final treatment, and rolling and processing the above afterwards. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ蓄電池用正極板に関するものである。
【0002】
【従来の技術】
アルカリ蓄電池は、繰り返し充放電可能な電池としてポータブル機器用電源に幅広く使用されてきた。特に最近ではエネルギー密度が高く、環境面でも比較的クリーンなニッケル−水素蓄電池が主流を占めている。
【0003】
このようなアルカリ蓄電池用ニッケル正極には、発泡基板、パンチングシート、エキスパンドメタル、電解Ni箔、無電解Ni箔、圧延Ni箔、表面にNiメッキを施したFe箔などの導電性金属支持体、活物質である水酸化ニッケル、及び水酸化コバルト、オキシ水酸化コバルトなどの導電剤または、予め水酸化ニッケルの表面に水酸化コバルトなどの導電材がコートされたものや、それにアルカリ処理を行ったもの、及び結着剤より構成されている。
【0004】
そして極板作成の際は、活物質を主体とした構成物質を水、及びカルボキシメチルセルロースなどの増粘剤を使用してぺースト状にし、芯材に対して塗布・乾燥後、所定の厚みに圧延を行った後、スリッターや金型加工により既定の大きさに切断している。(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平10−12229号公報(第2頁)
【0006】
【発明が解決しようとする課題】
しかしながら、スリッターや金型等を用いて極板を切断する際、その端面の活物質が脱落しやすくなるうえに、電池を作製し充放電を繰り返すと、正極の活物質は膨潤・収縮を繰り返す。
【0007】
負極板と対向している正極板の表面部分については一定の加圧がかかっているために結着性が保たれるが、端部については活物質が膨潤した際、それを押さえる方向への加圧がかかりにくいために、密度の低下が生じ脱落してしまう。
【0008】
現在、極板群の構造は、大きく分けて2種類ある。ひとつは正極板、負極板、セパレータを構成する際、正・負極板を完全に対向させ、上下部にセパレータを約1〜2mm出しておくタイプであり、もうひとつは正・負極板の端部に約1〜2mmの無地部を設け、構成の際には無地部とセパレータの端面を同じにして構成を行い、その後、正・負極板の無地部に集電板溶接を行うことで集電効率を上げているタイプである。現在電動工具用として用いられている電池は後者の構造を取っている場合が多いが、この構造を取った場合、負極集電板と正極端部の間には絶縁物が存在しないため、正極端部の活物質が脱落した場合に、電池内で微少短絡が発生する。その結果、電池の容量低下が激しくなり、寿命が低下するという課題が生じている。
【0009】
【課題を解決するための手段】
本発明のアルカリ蓄電池用ニッケル正極は、導電性金属支持体、活物質、導電剤、及び結着剤よりなる電極であり、その製造工程には、活物質、導電剤、結着剤をペーストにする工程、及び得られたペーストを導電性金属支持体に塗布・乾燥する工程、そして加工時の切断部分に当たる位置に耐アルカリ性でフッ素ゴム、又はオレフィン系のラテックス状バインダーを塗布・乾燥後、圧延・加工工程を設けることにより、切断部分に当たる極板部分についてのポリマー占有比率を増加させる事が出来るうえに、切断、及び充放電時の正極活物質の脱落を完全に防止できるものである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0011】
(実施の形態1)
以下の内容にて電池の作製を行った。
【0012】
導電性の支持体として、例えば電解Ni箔、無電解Ni箔、圧延Ni箔、表面にNiメッキを施したFe箔などの金属箔の表面に3次元的に錐状突起を形成した金属支持体を用いることができる。その際、金属箔の厚みは10μm〜100μmであることが好ましい。
【0013】
活物質層は、水酸化ニッケルを含む活物質粉末と結着剤とを含み、活物質粉末には、アルカリ蓄電池に一般的に用いられている活物質粉末、すなわち水酸化ニッケルを主成分とする粉末を用いることができる。
【0014】
上記結着剤にはポリテトラフルオロエチレンポリマー、耐アルカリ性に優れたフッ素ゴム、又はオレフィン系のラテックス状バインダー3、又はそれらを混合したものが使用されている。
【0015】
そして幅150mmのフープ状、又は短冊状の芯材に対し水酸化ニッケルを主体とした正極構成材料をペースト状にし、ダイコートを用いて塗布を行い、熱風乾燥を行った後に、バインダー3を、加工時に切断される部分4にスプレーを用いて幅3mmで両面に塗布し、再度熱風乾燥を行い、圧延・加工を行う。
【0016】
この時の極板へのバインダー3の塗布は圧延前が好ましく、塗布前にペーストに入れると、極板中の活物質の密度が大幅に低下し、電池容量が出せなくなる。
【0017】
また圧延後に塗布する場合、塗布部分の極板厚みが厚くなり群構成時に捲きズレを起こし易く、なおかつ圧延後は極板中の空孔が少ないため、バインダー3を活物質、芯材間に十分に浸透させることができない。そのため脱落防止効果も期待できなくなる。
【0018】
またバインダー3塗布部分の幅は、0.1〜3mm、塗布量は塗布する部分の活物質に対して、バインダー3中の固形分の量が5%以上であるのが好ましく、それ以下であると十分な脱落抑制効果がだせない。
【0019】
上記、バインダー3の成分にはオレフィン系やフッ素ゴム系などの耐アルカリ性に優れたものを用いるのが好ましく、そうでないと電池内で電解液によって分解され、活物質の脱落を抑制できなくなる。
【0020】
従来、この様なアルカリ蓄電池は、正・負極板と、この両者間に介在して電気的に絶縁するセパレータとを渦巻状に巻回して構成した極板群を金属性電池ケースに収納し、この極板群にアルカリ電解液を所定量注入させた後、電池ケース上部を正・負いずれか一方極の端子を兼ねた封口板で密閉して構成される。
【0021】
ここでの負極板、セパレータ、電解液は、アルカリ蓄電池に一般的に用いられているものを用いることができる。例えば、負極板には水素吸蔵合金やカドミウム、セパレータには、スルホン化したポリプロピレン不織布やナイロン不織布などを用いることができ、電解液には水酸化カリウムを主な溶質とした比重が1.3程度の電解液を用いることができる。
【0022】
このようにして作製された電池は充放電時の正極板端部の脱落を完全に抑制させ、その結果微少短絡の発生もおさえ、信頼性に優れたニッケル−水素蓄電池を作製することができる。
【0023】
【実施例】
以下、実施例を用いて本発明をさらに詳細に説明する。
【0024】
まず活物質である水酸化ニッケル固溶体粒子を、以下の公知の方法を用いて作製した。すなわち硫酸ニッケルを主な溶質とし、硫酸コバルトおよび硫酸亜鉛を所定量だけ含有させた水溶液に、アンモニア水でpHを調整しながら水酸化ナトリウムを徐々に滴下し、球状の水酸化ニッケル固溶体粒子を析出させた。次に、得られた水酸化ニッケル固溶体粒子を水洗・乾燥し、母粒子とした。この粉末のレーザ回折式粒度計による平均粒径は10μm、BET法による比表面積は12m/gであった。
【0025】
また、正極の導電材である水酸化コバルト微粒子は、以下の公知の方法によって作製した。すなわち、水酸化ナトリウム水溶液中に、1mol/lの硫酸コバルト水溶液を徐々に加え、35℃で水溶液のpHが12を維持するように調整しながら攪拌して、水酸化コバルト微粒子(β型)を析出させた。この粒子は、SEM像から観察される平均粒径が0.2μmであり、BET法によって測定した比表面積は25m/gであった。
【0026】
次に、上記水酸化ニッケル固溶体粒子、上記水酸化コバルト微粒子、CMC溶液(カルボキシメチルセルロース溶液:固形分比1質量%)、および結着剤の水分散ディスパージョンを用いて正極活物質ペーストを作製した。ここでの結着剤としてはフッ素ゴムを用いた。
【0027】
上記、正極活物質ペーストの作製は、以下の手順で行った。まず、水酸化ニッケル固溶体粒子100質量部(重量部)と水酸化コバルト微粒子10質量部とを練合機内に投入し、攪拌羽根によって十分に練合した。
【0028】
続いて、練合を続けながらCMC溶液20質量部を練合機内に徐々に滴下していき、さらに結着剤3.0質量部を加え、含水率が17質量%である正極活物質ペーストを作製した。
【0029】
その後、上記正極活物質ペーストをニッケルからなる支持体に塗着した。支持体には、厚さ25μmのニッケル箔の両面から貫通孔を形成して交互に反対方向に錐状突起を形成し、加工後の厚みを350μmとしたフープ状で幅方向に8列の単板がとれるよう設定した支持体を用い、支持体に塗着した活物質ペーストを、110℃の熱風で10分間乾燥させた。こうして乾燥させた極板について、本発明にある通り、加工時に切断される部分の左右1.5mmについてあらかじめ耐アルカリ性に優れたフッ素ゴム系のラテックス状バインダーで、水分散タイプのものをスプレーにて塗布した。その際、塗布部分の体積あたりのバインダー3の塗布量は塗布する部分の活物質に対してバインダー3中の固形分の量が7%となるように調整し、再度乾燥した後にロールプレス機を用いて厚みが400μmになるよう圧延した。このようにして支持体と支持体に支持された活物質含有層とを形成。その後、切断加工を行い、本願発明に係る正極板Aを作製した。
【0030】
(比較例)
比較例として、本発明を実施しておらずその他は実施例と同一である従来の正極板Bを作製した。
【0031】
以上、本発明を適用し作製した正極板A、及び適用していない正極板Bについて充放電を500回繰り返した後、微少短絡の有無を確認するために20℃で72時間の放置を行った。その際の自己放電率の表を(表1)に示す。
【0032】
【表1】

Figure 2004179119
【0033】
このように本発明を用いることで電池の放置による容量低下が充放電サイクルを繰り返し行った後でも抑制することができた。
【0034】
さらに本発明である正極板Aを用いたものとそうでない正極板Bを用いたものそれぞれについて10本のセルを直列に接続したものでサイクル寿命を評価した。
【0035】
この際、充電は3Aを72分、放電は10Aにて1.0Vでカットして行い、充電と放電の間には1時間の休止を入れた。(電池容量は3A/セルのものを作製)この結果を(表2)に示す。
【0036】
【表2】
Figure 2004179119
【0037】
(表2)から明らかなように、本発明の正極板Aを用いた場合、充放電を500回繰り返した後も容量の低下が殆どないのに対し、従来例の正極板Bを用いた場合は、充放電を500回繰り返した後に、40%まで容量が低下している。これは端部の脱落が起きることにより微少短絡が発生したために、放電時の各単セルの容量ばらつきが大きくなり、その結果微少短絡の激しい単セルが過放電状態となり漏液が発生し、容量の低下が加速されたためである。それに対し本発明の正極板Aを用いた場合は微少短絡の発生がなく、各単セルの容量が安定している為、良好な寿命を示している。
【0038】
また本発明の正極板A、及び従来例の正極板Bを用いた電池で充放電を500回繰り返した後に電池を分解した所、本発明の正極板Aは端部の脱落が見当たらないのに対し、従来例の正極板Bは、端部1mm程度の活物質が完全に脱落していた。これにより端部の脱落を抑制することで微少短絡を抑制し、長寿命である電池が提供できることがわかった。
【0039】
【発明の効果】
本発明のアルカリ蓄電池用正極板を用いることにより、高信頼性、かつ長寿命な電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態におけるアルカリ蓄電池用正極板の模式平面図
【図2】本発明の一実施形態におけるアルカリ蓄電池用正極板の模式断面図
【符号の説明】
1 活物質未塗着部
2 活物質塗着部
3 バインダー塗布部
4 加工時に切断される部分[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode plate for an alkaline storage battery.
[0002]
[Prior art]
Alkaline storage batteries have been widely used as power supplies for portable devices as batteries that can be repeatedly charged and discharged. Particularly in recent years, nickel-hydrogen storage batteries, which have a high energy density and are relatively clean in terms of the environment, dominate.
[0003]
Such a nickel positive electrode for an alkaline storage battery includes a conductive substrate such as a foamed substrate, a punched sheet, an expanded metal, an electrolytic Ni foil, an electroless Ni foil, a rolled Ni foil, and a Ni-plated Fe foil. Nickel hydroxide, which is an active material, and a conductive agent such as cobalt hydroxide and cobalt oxyhydroxide, or a material in which a conductive material such as cobalt hydroxide was previously coated on the surface of nickel hydroxide, or subjected to an alkali treatment. And a binder.
[0004]
Then, at the time of preparing the electrode plate, the constituent material mainly composed of the active material is made into a paste using water and a thickener such as carboxymethylcellulose, applied to the core material and dried, and then has a predetermined thickness. After rolling, it is cut to a predetermined size by slitting or die working. (For example, refer to Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-12229 (page 2)
[0006]
[Problems to be solved by the invention]
However, when cutting the electrode plate using a slitter or a mold, the active material on the end face of the active material is likely to fall off, and when the battery is repeatedly formed and charged and discharged, the active material of the positive electrode repeatedly swells and contracts .
[0007]
The surface of the positive electrode plate facing the negative electrode plate is maintained at a constant pressure because of the constant pressure applied thereto, but the edge of the positive electrode plate is held in a direction to hold down when the active material swells. Since it is difficult to apply pressure, the density is reduced and it is dropped.
[0008]
At present, there are roughly two types of electrode group structures. One is a type in which the positive and negative electrodes are completely opposed to each other when the positive electrode plate, the negative electrode plate, and the separator are configured, and the separator is exposed at the upper and lower parts by about 1 to 2 mm. The other is the end of the positive and negative electrode plates. In the configuration, the uncoated part of about 1 to 2 mm is provided, and the configuration is performed by making the uncoated part and the end face of the separator the same, and then the current collecting plate is welded to the uncoated part of the positive / negative electrode plate. It is a type that increases efficiency. Batteries currently used for power tools often have the latter structure.However, when this structure is used, there is no insulator between the negative electrode current collector and the positive electrode end. When the active material in the extreme part falls off, a minute short circuit occurs in the battery. As a result, there is a problem that the capacity of the battery is drastically reduced and the life is shortened.
[0009]
[Means for Solving the Problems]
The nickel positive electrode for an alkaline storage battery of the present invention is an electrode composed of a conductive metal support, an active material, a conductive agent, and a binder.In the manufacturing process, the active material, the conductive agent, and the binder are added to a paste. And a step of applying and drying the obtained paste on the conductive metal support, and applying and drying an alkali-resistant fluororubber or an olefin-based latex binder at a position corresponding to a cut portion during processing, followed by rolling. By providing a processing step, not only can the polymer occupation ratio of the electrode plate portion corresponding to the cut portion be increased, but also the cutting and dropping of the positive electrode active material during charge and discharge can be completely prevented.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0011]
(Embodiment 1)
A battery was manufactured with the following contents.
[0012]
As a conductive support, for example, a metal support having three-dimensionally formed conical protrusions on the surface of a metal foil such as an electrolytic Ni foil, an electroless Ni foil, a rolled Ni foil, and a Fe foil having a surface plated with Ni. Can be used. At that time, the thickness of the metal foil is preferably 10 μm to 100 μm.
[0013]
The active material layer includes an active material powder containing nickel hydroxide and a binder, and the active material powder contains, as a main component, an active material powder generally used for an alkaline storage battery, that is, nickel hydroxide. Powder can be used.
[0014]
As the binder, a polytetrafluoroethylene polymer, a fluorine rubber excellent in alkali resistance, an olefin latex binder 3, or a mixture thereof is used.
[0015]
The hoop-shaped or strip-shaped core material having a width of 150 mm is formed into a paste of a positive electrode constituent material mainly composed of nickel hydroxide, applied using a die coat, dried with hot air, and then processed into a binder 3. The part 4 to be cut sometimes is applied to both sides with a width of 3 mm using a spray, dried again with hot air, and rolled and processed.
[0016]
At this time, the binder 3 is preferably applied to the electrode plate before rolling. If the binder 3 is added to the paste before the application, the density of the active material in the electrode plate is greatly reduced, and the battery capacity cannot be obtained.
[0017]
In addition, when coating is performed after rolling, the thickness of the electrode plate at the application portion is increased, and it is easy to cause winding deviation in a group configuration. Further, after rolling, the pores in the electrode plate are small, so that the binder 3 is sufficiently provided between the active material and the core material. Can not penetrate. For this reason, the effect of preventing falling off cannot be expected.
[0018]
Also, the width of the binder 3 applied portion is preferably 0.1 to 3 mm, and the amount of the solid content in the binder 3 is preferably 5% or more, and more preferably less than the active material of the applied portion. And the effect of suppressing falling off cannot be obtained.
[0019]
It is preferable to use an olefin-based or fluororubber-based component having excellent alkali resistance as the component of the binder 3, otherwise, it will be decomposed by the electrolytic solution in the battery, and it will not be possible to suppress the falling off of the active material.
[0020]
Conventionally, such an alkaline storage battery contains a positive / negative plate, and an electrode plate group formed by spirally winding a separator interposed between the positive and negative plates and electrically insulating the positive / negative plate in a metallic battery case, After injecting a predetermined amount of an alkaline electrolyte into the electrode plate group, the upper part of the battery case is sealed with a sealing plate serving also as a positive or negative terminal.
[0021]
Here, as the negative electrode plate, the separator, and the electrolytic solution, those generally used for alkaline storage batteries can be used. For example, a hydrogen storage alloy or cadmium can be used for the negative electrode plate, a sulfonated polypropylene non-woven fabric or a nylon non-woven fabric can be used for the separator, and the specific gravity of potassium electrolyte as a solute in the electrolyte is about 1.3. Can be used.
[0022]
The battery manufactured in this manner completely suppresses the falling off of the end of the positive electrode plate at the time of charging / discharging. As a result, it is possible to manufacture a nickel-hydrogen storage battery excellent in reliability by suppressing the occurrence of minute short circuit.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0024]
First, nickel hydroxide solid solution particles as an active material were prepared using the following known method. That is, sodium hydroxide is gradually added dropwise to an aqueous solution containing nickel sulfate as a main solute and a predetermined amount of cobalt sulfate and zinc sulfate while adjusting the pH with aqueous ammonia to precipitate spherical nickel hydroxide solid solution particles. I let it. Next, the obtained nickel hydroxide solid solution particles were washed with water and dried to obtain mother particles. The average particle size of this powder measured by a laser diffraction particle size analyzer was 10 μm, and the specific surface area measured by the BET method was 12 m 2 / g.
[0025]
In addition, the cobalt hydroxide fine particles as the conductive material of the positive electrode were prepared by the following known method. That is, a 1 mol / l aqueous solution of cobalt sulfate is gradually added to an aqueous solution of sodium hydroxide, and the mixture is stirred at 35 ° C. while maintaining the pH of the aqueous solution at 12 so as to remove the cobalt hydroxide fine particles (β type). Was deposited. These particles had an average particle size of 0.2 μm as observed from a SEM image, and had a specific surface area of 25 m 2 / g measured by the BET method.
[0026]
Next, a positive electrode active material paste was prepared using the nickel hydroxide solid solution particles, the cobalt hydroxide fine particles, a CMC solution (carboxymethylcellulose solution: solid content ratio 1% by mass), and an aqueous dispersion of a binder. . Fluororubber was used as the binder here.
[0027]
The production of the positive electrode active material paste was performed in the following procedure. First, 100 parts by mass (parts by weight) of nickel hydroxide solid solution particles and 10 parts by mass of cobalt hydroxide fine particles were charged into a kneading machine, and were sufficiently kneaded by a stirring blade.
[0028]
Subsequently, while continuing the kneading, 20 parts by mass of the CMC solution was gradually dropped into the kneading machine, and 3.0 parts by mass of the binder was further added, and a positive electrode active material paste having a water content of 17% by mass was added. Produced.
[0029]
Thereafter, the positive electrode active material paste was applied to a support made of nickel. In the support, through-holes are formed from both sides of a nickel foil having a thickness of 25 μm, and conical projections are formed alternately in opposite directions. A single hoop-shaped eight-row width of 350 μm after processing is formed. The active material paste applied to the support was dried with hot air at 110 ° C. for 10 minutes using a support set so that the plate could be removed. As described in the present invention, the thus dried electrode plate is a fluororubber-based latex binder excellent in alkali resistance in advance for 1.5 mm left and right of a portion to be cut during processing, and a water-dispersed type is sprayed. Applied. At this time, the amount of the binder 3 applied per volume of the applied portion was adjusted so that the amount of solids in the binder 3 with respect to the active material of the applied portion was 7%, and after drying again, the roll press machine was used. And rolled to a thickness of 400 μm. Thus, a support and an active material-containing layer supported by the support are formed. Thereafter, cutting was performed to produce a positive electrode plate A according to the present invention.
[0030]
(Comparative example)
As a comparative example, a conventional positive electrode plate B which is the same as the example except that the present invention was not implemented was manufactured.
[0031]
As described above, the positive electrode plate A manufactured by applying the present invention and the positive electrode plate B not applied were repeatedly charged and discharged 500 times, and then left at 20 ° C. for 72 hours in order to confirm the presence or absence of a minute short circuit. . A table of the self-discharge rate at that time is shown in (Table 1).
[0032]
[Table 1]
Figure 2004179119
[0033]
As described above, by using the present invention, it was possible to suppress a decrease in capacity due to leaving the battery even after repeated charge / discharge cycles.
[0034]
Furthermore, the cycle life of each of the battery using the positive electrode plate A according to the present invention and the battery using the positive electrode plate B not using the positive electrode was evaluated by using ten cells connected in series.
[0035]
At this time, charging was performed at 3 A for 72 minutes, and discharging was performed at 10 A with a cut at 1.0 V, with a one-hour pause between charging and discharging. (A battery having a battery capacity of 3 A / cell was prepared.) The results are shown in Table 2.
[0036]
[Table 2]
Figure 2004179119
[0037]
As is clear from (Table 2), when the positive electrode plate A of the present invention was used, there was almost no decrease in the capacity even after charging and discharging were repeated 500 times, whereas when the positive electrode plate B of the conventional example was used. Indicates that the capacity has decreased to 40% after repeating charge and discharge 500 times. This is because a minute short circuit occurred due to dropping of the end, and the capacity variation of each single cell at the time of discharge increased, resulting in an overdischarged state of the single cell with a severe short circuit, resulting in leakage and Is accelerated. On the other hand, when the positive electrode plate A of the present invention was used, there was no occurrence of minute short circuit, and the capacity of each unit cell was stable, so that a good life was exhibited.
[0038]
In addition, when the battery using the positive electrode plate A of the present invention and the conventional positive electrode plate B was repeatedly charged and discharged 500 times and then disassembled, the positive electrode plate A of the present invention did not show any drop off at the end. On the other hand, in the conventional positive electrode plate B, the active material of about 1 mm at the end was completely dropped. As a result, it has been found that a micro-short circuit can be suppressed by suppressing the falling off of the end portion, and a long-life battery can be provided.
[0039]
【The invention's effect】
By using the positive electrode plate for an alkaline storage battery of the present invention, a highly reliable and long-life battery can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a positive electrode plate for an alkaline storage battery according to one embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a positive electrode plate for an alkaline storage battery according to one embodiment of the present invention.
1 Active material uncoated portion 2 Active material coated portion 3 Binder coated portion 4 Portion cut during processing

Claims (4)

フープ状または短冊状の芯材に活物質を主としたスラリーを塗布・乾燥する工程と、
前記活物質を塗布した芯材の端部にフッ素ゴム、又はオレフィン系のラテックス状バインダーを塗布・乾燥する工程と、
その後、前記芯材の端部を切断する工程とを備えたアルカリ蓄電池用正極板の製造方法。
A step of applying and drying a slurry mainly containing an active material on a hoop-shaped or strip-shaped core material,
A step of applying and drying a fluororubber, or an olefin-based latex-like binder on the end of the core material coated with the active material,
And thereafter, cutting the end of the core material.
前記バインダーは、PH14以上のアルカリ溶液中における膨潤率が3%以下である請求項1記載のアルカリ蓄電池用正極板の製造方法。The method for producing a positive electrode plate for an alkaline storage battery according to claim 1, wherein the swelling ratio of the binder in an alkaline solution having a pH of 14 or more is 3% or less. 前記バインダーは、前記活物質を塗布した芯材の端部に0.1〜3mmの幅で塗布され、かつ塗布部分の体積あたりのバインダーの塗布量は塗布される部分の活物質に対して、バインダー中の固形分の量が5%以上である請求項1記載のアルカリ蓄電池用正極板の製造方法。The binder is applied to the end of the core material to which the active material is applied in a width of 0.1 to 3 mm, and the amount of the binder applied per volume of the applied portion is based on the active material of the applied portion. The method for producing a positive electrode plate for an alkaline storage battery according to claim 1, wherein the amount of solid content in the binder is 5% or more. 前記芯材は、導電性金属支持体が発泡基板、パンチングシート、およびエキスパンドメタル、電解Ni箔、無電解Ni箔、圧延Ni箔、表面にNiメッキを施したFe箔のいずれかである請求項1記載のアルカリ蓄電池用正極板の製造法。The core material, wherein the conductive metal support is a foamed substrate, a punched sheet, or an expanded metal, an electrolytic Ni foil, an electroless Ni foil, a rolled Ni foil, or a Fe foil having a surface plated with Ni. 2. The method for producing a positive electrode plate for an alkaline storage battery according to 1.
JP2002347185A 2002-11-29 2002-11-29 Manufacturing method of positive electrode plate for alkaline storage battery Pending JP2004179119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347185A JP2004179119A (en) 2002-11-29 2002-11-29 Manufacturing method of positive electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347185A JP2004179119A (en) 2002-11-29 2002-11-29 Manufacturing method of positive electrode plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2004179119A true JP2004179119A (en) 2004-06-24

Family

ID=32707869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347185A Pending JP2004179119A (en) 2002-11-29 2002-11-29 Manufacturing method of positive electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2004179119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123770A (en) * 2006-11-10 2008-05-29 Gs Yuasa Corporation:Kk Battery
JP2013080629A (en) * 2011-10-04 2013-05-02 Toyota Industries Corp Positive electrode and negative electrode for secondary battery, and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123770A (en) * 2006-11-10 2008-05-29 Gs Yuasa Corporation:Kk Battery
JP2013080629A (en) * 2011-10-04 2013-05-02 Toyota Industries Corp Positive electrode and negative electrode for secondary battery, and secondary battery

Similar Documents

Publication Publication Date Title
JP2001035499A (en) Electricity collecting base board for electrode of alkaline secondary battery, electrode using same, and alkaline secondary battery incorporating the electrode
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP4292125B2 (en) Positive electrode plate for alkaline storage battery and manufacturing method thereof
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
JP2017188212A (en) Zinc electrode for nickel zinc storage battery, and method for manufacturing the same
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
JP2004179119A (en) Manufacturing method of positive electrode plate for alkaline storage battery
JP3897527B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JP5061582B2 (en) battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP2020061222A (en) Negative electrode for nickel zinc battery and nickel zinc battery
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
JP5309479B2 (en) Alkaline storage battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP5023645B2 (en) Alkaline storage battery
JP2003249228A (en) Core material for electrode and its manufacturing method as well as battery
JP3955175B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and alkaline storage battery using the same
JP4531874B2 (en) Nickel metal hydride battery
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JP2003031223A (en) Positive plate for alkaline storage battery, its manufacturing method, and alkaline storage battery using the same