JP2004178995A - Electrolyte film for solid polymer fuel cell and its manufacturing method - Google Patents

Electrolyte film for solid polymer fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2004178995A
JP2004178995A JP2002344233A JP2002344233A JP2004178995A JP 2004178995 A JP2004178995 A JP 2004178995A JP 2002344233 A JP2002344233 A JP 2002344233A JP 2002344233 A JP2002344233 A JP 2002344233A JP 2004178995 A JP2004178995 A JP 2004178995A
Authority
JP
Japan
Prior art keywords
membrane
fuel cell
exchange resin
vinylidene fluoride
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002344233A
Other languages
Japanese (ja)
Inventor
Hitohide Sugiyama
仁英 杉山
Hiromi Totsuka
博己 戸塚
Masanori Takahata
正則 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2002344233A priority Critical patent/JP2004178995A/en
Publication of JP2004178995A publication Critical patent/JP2004178995A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin reinforcing film with a uniform thickness having an equal strength in both longitudinal and lateral directions and to provide an electrolyte film for a solid polymer fuel cell with excellent power generating characteristics and fit for mass production. <P>SOLUTION: The electrolyte film for the solid polymer fuel cell is composed of a porous film with a polyvinylidene fluoride compound as a main component and cation-exchange resin. To be more specific, the cation-exchange resin is contained and/or laminated in a gap and/or on the surface of the porous film with the polyvinylidene fluorine compound as a main component. The polyvinylidene fluoride compound is either a homopolymer of vinylidene fluoride or a copolymer consisting of vinylidene and one or more kinds of ethylene tetrafluoride, propylene hexafluoride, and ethylene. A mixture of one kind each or two or more kinds of the homopolymer and the copolymer is preferable. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、固体高分子型燃料電池用電解質膜及びその製造方法に関するものである。
【0002】
【従来の技術】
燃料電池は、燃料と酸化剤とを連続的に供給接触させ、これらが反応したときの化学エネルギーを電力として取り出す発電システムである。燃料電池は、これに用いる電解質の種類によって、低温で動作するアルカリ型、リン酸型、固体高分子型と、高温で動作する溶融炭酸塩型、固体酸化物電解質型とに大別される。
【0003】
これらの中で、固体高分子型燃料電池は、固体高分子固体電解質として作用する隔膜の両面に、触媒が担持されたガス拡散電極を接合し、一方のガス拡散電極が存在する側の室(燃料室)に燃料である水素を、他方のガス拡散電極が存在する側の室(酸化剤室)に酸化剤である酸素や空気等の酸素含有ガスをそれぞれ供給し、両ガス拡散電極間に外部負荷回路を接続することにより、燃料電池として作用させる。
【0004】
固体高分子型燃料電池において、上記隔膜には、通常、プロトン伝導性を有する電解質膜(陽イオン交換膜)が使用される。そして、この電解質膜には、電気抵抗が小さいこと、保水性が高いこと、ガス透過性が低いこと、長期の使用に対して安定であること、物理的な強度が強いことなどが要求される。
【0005】
従来、固体高分子型燃料電池用電解質として使用される電解質膜としては、厚さが100μm〜200μmのスルホン酸基を有するパーフルオロカーボン重合体膜が主に使用されている。しかし、この膜は、化学的な安定性には優れているが、実用上充分満足する出力密度が得られなく、また、機械的強度が不十分であるために薄膜化による電気抵抗の低減が困難であった。機械的強度が低いことは、燃料電池の発電時に導入される水素や酸素による外力に耐えきれず、変形または破壊を生じ、発電能力を失うことに繋がる。さらには、保水することによる電解質の膨潤並びに形状変化が大きく加工性及び取り扱い性が悪いばかりか、燃料電池の長期安定性に悪影響をおよぼすという問題を有していた。
【0006】
上記の問題を解決する方法として、ポリテトラフルオロエチレン(以下、PTFEという)多孔質膜にスルホン酸基を有するフッ素系イオン交換ポリマーを含浸する方法が提案されている(例えば、特許文献1参照)。この方法では、電解質膜の厚さは薄くできるものの多孔体状のPTFEでは膜の電気抵抗が充分に低下しない問題があった。また、PTFE多孔質膜は、延伸法によって多孔質化されるため、シート状に加工する際の流れ方向(以下、MDという)及びMDに垂直にクロスする方向(以下、TDという)との延伸度合いの違いにより、MDとTDにおける機械的強度が異なり、このような強度異方性は、燃料電池内部で歪みが生じやすく、電解質膜の変形、破壊を生じやすいという問題を有していた。
【0007】
これを解決する方法として、電解質膜がフィブリル状、織布状、又は不織布状のパーフルオロカーボン重合体で補強された電解質膜が提案された(例えば、特許文献2参照)。しかしながら、この膜の厚さはせいぜい100〜200μmであり、薄膜化が困難であって、且つ厚さムラがあるため、発電特性や量産性の点で問題を有していた。
【0008】
一方、フィブリル繊維径が1μm以下のフィブリル数が全フィブリル数の70%以上を占めることを特徴とするフルオロカーボン重合体のフィブリル繊維で補強された、スルホン酸基を有するパーフルオロカーボン系電解質膜が提案されている(例えば、特許文献3参照)。この電解質膜は、従来のパーフルオロカーボン系電解質膜と比べて、保水率、イオン交換容量が同等であり、引張破壊応力は高い。しかしながら、シート状に加工する際のMDにフィブリル繊維が配向することで、MDとTDにおける機械的強度が異なりやすく、上述と同様な問題を有していた。
【0009】
【特許文献1】
特公平5−75835号公報
【特許文献2】
特開平6−231779号公報
【特許文献3】
特開2001−345111号公報
【0010】
【発明が解決しようとする課題】
本発明は、前記従来の電解質膜の問題に鑑みてなされたものであって、MD及びTDの両方向で均等な強度を有した薄くて厚さの均一な電解質膜及びその製造方法を提供し、発電特性に優れ、量産が可能な固体高分子型燃料電池用電解質膜を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の固体高分子型燃料電池用電解質膜は、フッ化ビニリデン樹脂化合物を主成分とする多孔質膜と、陽イオン交換樹脂とから構成されることを特徴とする。
また、本発明の請求項2による固体高分子型燃料電池用電解質膜は、フッ化ビニリデン樹脂化合物を主成分とする多孔質膜の空隙内および/またはその表面に、陽イオン交換樹脂を含有および/または積層したことを特徴とする。
【0012】
また、その製造方法の一つは、フッ化ビニリデン樹脂化合物を主成分とする多孔質膜の内部に陽イオン交換樹脂の溶液を含浸した後、乾燥することを特徴とする。
【0013】
更に、その製造方法の他の方法として、フッ化ビニリデン樹脂化合物を主成分とする多孔質膜と陽イオン交換樹脂からなる膜とを、加熱加圧ラミネート法によって積層することを特徴とする。
【0014】
【発明の実施の形態】
以下に本発明の固体高分子型燃料電池用電解質膜について説明する。
本発明の固体高分子型燃料電池用電解質膜(以下、電解質膜という)は、フッ化ビニリデン樹脂化合物を主成分とする多孔質膜と、陽イオン交換樹脂とから構成され、より詳しくは、フッ化ビニリデン樹脂化合物を主成分とする多孔質膜の空隙内および/またはその表面に、プロトン伝導性電解質となる陽イオン交換樹脂を含有および/または積層した陽イオン交換膜である。本発明においては、前記多孔質膜の表面に陽イオン交換樹脂を積層させる場合、膜の一方の表面のみに積層させることも可能であり、また、膜の両面に積層させることも可能である。
【0015】
多孔質膜を形成するフッ化ビニリデン樹脂化合物としては、フッ化ビニリデンのホモポリマー、または四フッ化エチレン、六フッ化プロピレン、エチレンのいずれか1種類以上とフッ化ビニリデンとからなるコポリマーを含むものが好ましい。これらのポリマーは電気化学的に安定で耐酸性が極めて優れているため、燃料電池内部に置かれても、長期安定性において優れている。また、これらホモポリマーまたはコポリマーはそれぞれ単独で用いてもよいし、また、少なくとも1種以上のホモポリマーと1種以上のコポリマーの混合物であってもよいし、更にまた、少なくとも1種以上のホモポリマー同士や、コポリマー同士の混合物であっても好適に本発明を実施することができる。特に、フッ化ビニリデンのホモポリマーは、耐熱性が高く、機械的強度が良好であるために好ましい。
【0016】
このようなフッ化ビニリデン樹脂化合物は、フッ化ビニリデンを含むモノマーの付加重合反応により得られ、その重合方法としては、公知の技術を用いることができる。すなわちラジカル重合、カチオン重合、アニオン重合、光・放射線重合などにより得ることができる。本発明において好適に用いられるフッ化ビニリデン樹脂化合物の分子量は、重量平均分子量において10万から100万であるが、これに限定されるものではない。
【0017】
フッ化ビニリデン樹脂化合物を主成分とする多孔質膜を形成する方法としては、種々の技術が適応できる。例えば、相分離法、乾燥法、抽出法、発泡法等が挙げられる。これらの方法は、フッ化ビニリデン樹脂化合物を溶剤に溶解した溶液またはスラリーを用いて、基材上にコーティングし、乾燥して膜を形成する。この場合のコーティングするための手段は特に限定されるものではなく、適宜決定すればよい。一般に、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が使用されている。例えば、乾燥法により多孔質膜を形成する方法については、用いるフッ化ビニリデン樹脂化合物の良溶媒および貧溶媒を用いて該化合物を溶解させることが必要であり、この時、貧溶媒の方が良溶媒に比べて高沸点のものを選択する。このようにして得られた溶液を基材にコーティングした後、乾燥を行うことで、良溶媒が貧溶媒より先に蒸発し、溶解度が低下したフッ化ビニリデン樹脂化合物が析出を開始し、貧溶媒の存在体積相当の空孔率を有する多孔質構造をとることとなる。もう一つの例として、抽出法で多孔質膜を形成する方法については、用いるフッ化ビニリデン樹脂化合物の良溶媒を用いて該化合物を溶解させ、得られた溶液を基材にコーティングした後、用いるフッ化ビニリデン樹脂化合物の貧溶媒となる溶媒中に浸漬し、しかるのちフッ化ビニリデン樹脂化合物中の良溶媒を抽出し貧溶媒と置換することで、多孔質構造を得ることができる。上述ようにして基材上に得られた多孔質膜を基材より剥離することで、多孔質膜を得ることができる。
【0018】
また、本発明における多孔質膜は、前記のフッ化ビニリデン樹脂化合物を主成分とするものであるが、その他にテトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロアルキルビニルエーテル等のパーフルオロオレフィンまたはパーフルオロ環状重合体等の単独又は共重合体を含有させてもよい。また、上記パーフルオロオレフィンまたはパーフルオロ環状重合体等の単独又は共重合体の多孔質膜をフッ化ビニリデン樹脂化合物の多孔質膜に積層したものでもよい。また、多孔質膜には、必要に応じて、電気化学的に安定な粒子、繊維状物を含有させて機械強度、寸法安定性を向上することも可能である。このような粒子の例としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウム等の無機粒子、フェノール樹脂粒子、ポリイミド樹脂粒子、ベンゾグアナミン樹脂粒子、メラミン樹脂、ポリオレフィン樹脂、フッ素樹脂粒子等の有機粒子が挙げられ、繊維状物の例としては、アパタイト繊維、酸化チタン繊維、金属酸化物のウィスカー等の無機繊維状物、アラミド繊維、ポリベンゾオキサゾール繊維などの有機繊維状物が挙げられるがこれらに限定されるのもではない。また、これらの粒子、繊維状物の形状及び粒径に特に制限はなく、適宜に選択して用いることができる。
【0019】
このようにして得られた多孔質膜の孔構造を測る尺度としては空隙率、透気度、密度があり、本発明におけるフッ化ビニリデン樹脂化合物を主成分とする多孔質膜の空隙率は30〜90%の範囲内が好適であり、より好適には50〜90%であり、なおさら好適には70〜90%である。30%未満では内部に含有できる陽イオン交換樹脂の量が少なすぎ、得られた電解質膜のイオン交換容量が低下するため好ましくない。90%を超える場合には機械的強度の低下が著しく、補強材としての効果がない。透気度は1〜1000秒/100cc、密度は0.15〜1.3g/cmが同様の理由で好適となる。
【0020】
なお、多孔質膜の内部の孔に陽イオン交換樹脂を含有させる場合、多孔質膜の空隙率が高く、より多くの陽イオン交換樹脂を含有させることが好ましい。例えば、空隙率が50%以上の多孔質膜にイオン交換容量が約1.0モル/kg乾燥重量の陽イオン交換樹脂を含有させれば、0.5モル/kg乾燥重量以上のイオン交換容量を有する電解質膜を得ることができる。
【0021】
本発明の電解質膜は、そのイオン交換容量が0.5モル/kg乾燥重量〜1.3モルkg乾燥重量であることが好ましい。イオン交換容量が0.5モル/kg乾燥重量より低い場合には、得られる電解質膜の電気抵抗が大きくなることがあり、1.3モルkg乾燥重量より高い場合には、電解質膜の機械的強度が不十分となることがある。イオン交換容量のより好ましい範囲としては、0.7モル/kg乾燥重量〜1.3モルkg乾燥重量である。
【0022】
本発明に用いられるプロトン伝導性電解質となる陽イオン交換樹脂としては、陽イオン交換基を有する化合物であれば、何れの化合物を用いることが可能であるが、この際の陽イオン交換基としては、カルボン酸基、スルホン酸基等を挙げることができる。その具体例は、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂、カルボン酸基を有するパーフルオロカーボン系イオン交換樹脂等のフッ素系イオン交換樹脂、リン酸を含有したポリベンズイミダゾール、スルホン酸化ポリスチレン、スルホン酸化スチレン−ビニルベンゼン共重合体、スルホン酸を有するポリスルホン、スルホン酸を有するポリエーテルスルホン等が挙げられるが、これらに限定されるものではない。特に本発明においては、燃料電池の耐久性の観点から、耐酸性、耐熱性、化学的的安定性、電気的安定性等に優れたスルホン酸基を有するパーフルオロカーボン系イオン交換樹脂が最も好適に用いられ、さらに、この陽イオン交換樹脂はイオン交換容量の点でも優れる。スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂として市販されているものに、DuPont社の商品名ナフィオンが挙げられる。
【0023】
本発明の電解質膜の膜厚は、5〜95μmが好ましく、より好ましくは10〜75μmであり、最も好ましくは15〜65μmである。膜厚が5μm未満の場合は、電解質膜の機械的強度が不十分となり、95μmを超えると、電気抵抗が大きくなり好ましくない。
【0024】
本発明の電解質膜は、シート状に加工する際の流れ方向(MD)及びMDに垂直にクロスする方向(TD)の引張弾性率が共に150MPa以上であることが好ましい。引張弾性率は膜の機械的強度の指標の一つであり、外力に対しての歪み難さを示している。つまり、弾性率が高いほど歪み(変形)が生じにくい。引張弾性率が150MPa未満であると、燃料電池の発電時に導入される水素や酸素による外力によって電解質膜が歪み(変形)を生じ発電能力を失うことに繋がる。また、陽イオン交換樹脂は、保水することにより膨潤し体積変化を生じるが、燃料電池内部では保水率が常に一定となるわけではなく、変動している。つまり、陽イオン交換樹脂は発電状態、停止状態を繰り返す中で、収縮・膨張を繰り返そうとする。そこで、150MPa以上の弾性率を有する電解質膜は、この収縮・膨張を抑制し、ひいては、保水率を一定に維持する役割を果たすので好ましい。
【0025】
更に、本発明の電解質膜は、MD及びTDの引張降伏応力の比(MDの引張降伏応力/TDの引張降伏応力)が、0.80〜1.25であることが好ましい。引張降伏応力とは、与えられた外力に対し弾性変形が限界に達し塑性変形を生じる点であり、これ以上の外力によって与えられた歪み(変形)は、外力が途絶えたとしても残留歪みとして元に戻ることはない。つまり、引張降伏応力は高い方が好ましく、更にその歪みが面積方向のいかなる方向に対しても均一である方が、局所的な変形、破壊が起こりにくく好ましい。したがって、この比が0.8未満あるいは1.25を超えた場合、電解質膜の強度が等方的とはいえず、このような強度の異方性は、スタック構造とした場合の燃料電池内部で局所的な歪みが生じやすく、電解質膜の変形、破壊を生じやすくなるため好ましくない。
【0026】
次に、本発明の電解質膜の製造方法について説明する。
初めに、フッ化ビニリデン樹脂化合物からなる多孔質膜を形成する具体的な方法について説明する。最初にフッ化ビニリデン樹脂化合物を溶媒に分散させる。この溶媒としてはフッ化ビニリデン樹脂化合物が溶解する良溶媒を選択しなければならず、例として、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、N,N−ジメチルスルホキシド等を使用することができる。分散、溶解方法としては市販の攪拌機を使用して良い。本発明に用いられるフッ化ビニリデン樹脂化合物はN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、N,N−ジメチルスルホキシドに室温で容易に溶解するので、特に加熱する必要はない。分散溶液の濃度としては、得るべき多孔質膜の特性を考慮に入れ適宜変更する必要がある。次いで、この溶液に上記良溶媒より沸点が高く、フッ化ビニリデン樹脂化合物が溶解しない貧溶媒を添加混合する。このような第二の溶媒として、フタル酸ジブチル等のフタル酸エステル、エチレングリコール等のグリコール類を選択することが可能である。得られた溶液を、例えば、ポリオレフィンフィルム、ポリエステルフィルム、ポリテトラフルオロエチレンフィルム等の樹脂フィルム又は各種ガラス等の基体上にディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等により塗布することでシート状の被覆物を得る。これらの基体は、離型処理、易接着処理などの表面処理を施したものでもよく、塗布方法により適宜選択すれば良い。塗布により得られたシート状の被覆物を構成する溶媒を乾燥により蒸発もしくは置換させることにより、多孔質構造を有する膜が形成され、それを基体から剥離することにより本発明に用いられる多孔質膜の単体を得ることができる。
【0027】
次いで、多孔質膜の内部に陽イオン交換樹脂を含浸させる方法について説明する。まず、先述の方法によってフッ化ビニリデン樹脂化合物からなる多孔質膜を準備する。一方で、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂等の陽イオン交換樹脂を溶媒に溶解した溶液を調製する。陽イオン交換樹脂の溶液の濃度は特に限定されないが、5〜30重量%程度で調整する。このような溶液は、例えば、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂の5重量%溶液としてデュポン社製の商品名:ナフィオン溶液が市販されている。このナフィオン溶液を濃縮することにより、種々の濃度のスルホン酸基を有するパーフルオロカーボン系イオン交換樹脂溶液を調製することが可能である。多孔質膜の内部に陽イオン交換樹脂を含浸させる具体的な例として、陽イオン交換樹脂の溶液中に多孔質膜を浸漬し乾燥するディップ法、陽イオン交換樹脂の溶液をスプレーし乾燥するスプレー法等が適宜用いられる。これらの方法を複数回繰り返すことによって、内部に含浸させる陽イオン交換樹脂の量を多くすることもできる。
【0028】
また、多孔質膜の表面に陽イオン交換樹脂を積層させる方法を説明する。その一つの方法として、先述の陽イオン交換樹脂溶液によるディップ法またはスプレー法等によって、多孔質膜の内部の空隙に対して過剰に陽イオン交換樹脂を含浸させることにより多孔質膜の表面に陽イオン交換樹脂を積層させることができる。これを両面に対して繰り返し行えば、両面に陽イオン交換樹脂を積層させることができる。ただし、この場合、多孔質膜内部にも陽イオン交換樹脂は取り込まれる。
【0029】
多孔質膜の表面に陽イオン交換樹脂を積層させるもう一つの方法としては、フッ化ビニリデン樹脂化合物からなる多孔質膜と、陽イオン交換樹脂からなる膜とを、加熱加圧ラミネート法によって積層する方法が挙げられる。陽イオン交換樹脂からなる膜は、先述の陽イオン交換樹脂溶液をキャスト法等によって成膜することも可能であり、また、デュポン社製の商品名:ナフィオン112膜(スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂膜)として市販されている。加熱加圧ラミネートの条件は適宜選択できるが、用いたフッ化ビニリデン樹脂化合物の融点を考慮して、80〜200℃程度の温度条件が好ましい。ラミネートの際、多孔質膜と陽イオン交換樹脂からなる膜を各1枚ずつ積層してラミネートすれば、多孔質膜の片面に陽イオン交換樹脂を積層することが可能である。また、多孔質膜の両側に陽イオン交換樹脂を配置するように積層しラミネートを行えば、多孔質膜の両表面に陽イオン交換樹脂を積層させた電解質膜を得ることができる。この際に用いる多孔質膜として、既に内部の空隙に先述の方法で陽イオン交換樹脂を含浸させたものを用いることも可能であり、この場合、ラミネート時の接着性が良好になるため好ましい。
【0030】
以上のようにして得られた本発明の電解質膜を所望の厚さにするため、あるいは膜厚を均一にするため、真空脱気しつつホットプレスにより加熱加圧処理して成形することが好ましい。この方法では、真空脱気により膜中に存在する気泡が除去されるので、電気抵抗がより低くなると共に、膜の強度がより向上する。また、加熱加圧処理により、膜の厚さが均一になると共に、フッ化ビニリデン樹脂化合物からなる多孔質膜と陽イオン交換樹脂との密着性が更に向上する。
【0031】
【実施例】
以下に、実施例及び比較例に基づいて本発明を更に詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。
【0032】
実施例1
重量平均分子量10万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が20重量%になるように調製したものをポリプロピレンフィルムからなる基体上にキャストし、乾式法により厚さ70μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。次に基体上の多孔質膜を剥離してフッ化ビニリデン樹脂化合物からなる多孔質膜の単膜を得た。この多孔質膜の空隙率は49%、透気度は50秒/100cc、密度は0.90g/cmであった。
この多孔質膜を、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂の5重量%溶液(デュポン社製、商品名:ナフィオン溶液)中に浸漬させながら、多孔質膜中の気泡を取り除くために真空脱気を行い、乾燥させた。この含浸多孔質膜に真空プレスを行い、厚さ70μmの本発明の電解質膜を得た。
【0033】
実施例2
重量平均分子量50万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が15重量%になるように調製したものをポリプロピレンフィルムからなる基体上にキャストし、乾式法により厚さ50μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。次に基体上の多孔質膜を剥離してフッ化ビニリデン樹脂化合物からなる多孔質膜の単膜を得た。この多孔質膜の空隙率は61%、透気度は24秒/100cc、密度は0.69g/cmであった。
この多孔質膜を、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂の5重量%溶液(デュポン社製、商品名:ナフィオン溶液)中に浸漬させながら、多孔質膜中の気泡を取り除くために真空脱気を行い、乾燥させた。この含浸多孔質膜に真空プレスを行い、厚さ50μmの本発明の電解質膜を得た。
【0034】
実施例3
重量平均分子量100万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調製したものをポリプロピレンフィルムからなる基体上にキャストし、乾式法により厚さ25μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。次に基体上の多孔質膜を剥離してフッ化ビニリデン樹脂化合物からなる多孔質膜の単膜を得た。この多孔質膜の空隙率は71%、透気度は2秒/100cc、密度は0.52g/cmであった。
この多孔質膜を、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂の5重量%溶液(デュポン社製、商品名:ナフィオン溶液)中に浸漬させながら、多孔質膜中の気泡を取り除くために真空脱気を行い、乾燥させた。この含浸操作を3回繰り返し行った後、この含浸多孔質膜に真空プレスを行い、厚さ30μmの本発明の電解質膜を得た。
【0035】
実施例4
重量平均分子量35万のフッ化ビニリデンホモポリマーと重量平均分子量20万のフッ化ビニリデン−六フッ化プロピレンコポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が9重量%、フッ化ビニリデン−六フッ化プロピレンコポリマー成分が1重量%になるように調製したものをポリプロピレンフィルムからなる基体上にキャストし、乾式法により厚さ30μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。次に基体上の多孔質膜を剥離してフッ化ビニリデン樹脂化合物からなる多孔質膜の単膜を得た。この多孔質膜の空隙率は58%、透気度は40秒/100cc、密度は0.74g/cmであった。
この多孔質膜を、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂の5重量%溶液(デュポン社製、商品名:ナフィオン溶液)中に浸漬させながら、多孔質膜中の気泡を取り除くために真空脱気を行い、乾燥させた。
一方、上記5重量%のスルホン酸基を有するパーフルオロカーボン系イオン交換樹脂溶液をポリプロピレンフィルム上にキャストし、乾燥させ溶媒を取り除き、基体上から剥離することで厚さ10μmの陽イオン交換樹脂からなる膜を得た。
上記陽イオン交換樹脂を含浸した多孔質膜と、陽イオン交換樹脂からなる膜とを積層し、150℃の熱ラミネートを行い、厚さ40μmの本発明の電解質膜を得た。
【0036】
実施例5
重量平均分子量30万のフッ化ビニリデン−六フッ化プロピレンコポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデン−六フッ化プロピレンコポリマー成分が10重量%になるように調整したものをポリプロピレンフィルムからなる基体上にキャストし、乾式法により厚さ25μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。次に基体上の多孔質膜をポリプロピレンフィルムから剥離してフッ化ビニリデン樹脂化合物からなる多孔質膜の単膜を得た。この多孔質膜の空隙率は62%、透気度は20秒/100cc、密度は0.68g/cmであった。
一方、膜厚が50μmのスルホン酸基を有するパーフルオロカーボン系イオン交換樹脂膜(デュポン社製、商品名:ナフィオン112膜)を陽イオン交換樹脂からなる膜として準備した。
前記多孔質膜を、上記準備した2枚の陽イオン交換樹脂からなる膜の間に配置されるように積層し、150℃の熱ラミネートを行い、厚さ125μmの本発明の電解質膜を得た。
【0037】
比較例1
スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂の5重量%溶液(デュポン社製、商品名:ナフィオン溶液)を濃度が20重量%になるように濃縮して陽イオン交換樹脂溶液を作製し、これをポリプロピレンフィルムからなる基体上にキャストし、乾燥させ溶媒を取り除き、該基体上から陽イオン交換樹脂膜を剥離した後、真空プレスすることで厚さ50μmの比較用の電解質膜を得た。
【0038】
比較例2
スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂の5重量%溶液(デュポン社製、商品名:ナフィオン溶液)を濃度が10重量%になるように濃縮して陽イオン交換樹脂溶液を作製し、これをポリプロピレンフィルムからなる基体上にキャストし、乾燥させ溶媒を取り除き、該基体上から陽イオン交換樹脂膜を剥離した後、真空プレスすることで厚さ30μmの比較用の電解質膜を得た。
【0039】
比較例3
市販の電解質膜(デュポン社製、商品名:ナフィオン112膜、厚さ:50μm)を比較用の電解質膜として準備した。
【0040】
比較例4
市販の電解質膜(旭硝子社製、商品名:フレミオン、スルホン酸型パーフルオロカーボン重合体をPTFEフィブリルで補強したもの、厚さ:50μm)を比較用の電解質膜として準備した。
【0041】
前記実施例及び比較例で得られた電解質膜を、下記に示すように評価した。
(1)引張弾性率およびMDとTDの引張降伏応力の比
前記実施例及び比較例の電解質膜についてJIS K7161に準拠しMDおよびTDのそれぞれについて引張弾性率、引張降伏応力を測定した。得られた引張降伏応力からMDとTDの引張降伏応力の比(MDの引張降伏応力/TDの引張降伏応力)を算出し、その結果を表1に示した。測定環境、測定装置及び測定条件は次のとおりである。
環境:25℃、65%RH
測定機:ORIENTEC社製 UCT−500
初期試料長:10mm
引張速度:50mm/min
(2)イオン交換容量
前記実施例及び比較例の電解質膜を1Nの水酸化ナトリウム水溶液に12時間浸漬させた後、1Nの塩酸水溶液に24時間浸漬させた。次いで、蒸留水で洗浄した後、1Nの水酸化ナトリウム水溶液に12時間浸漬させ、水素イオンを溶液中に浸出させた。この溶液を水酸化ナトリウム水溶液にて中和滴定してイオン交換容量を算出し、その結果を表1に示した。
【0042】
【表1】

Figure 2004178995
【0043】
表1に示される通り、実施例1〜5にかかる本発明の電解質膜では、機械的強度において異方性の少ないフッ化ビニリデン樹脂化合物からなる多孔質膜を用いて補強されているため、MT及びTDの何れの方向においても150MPa以上の高い引張弾性率を有しており、また、引張降伏応力の比が1.05〜1.19の範囲内であるので、機械的強度に異方性がほとんどないことが確認された。一方、比較例1または2の電解質膜においては、機械的強度の異方性はみられないものの、補強材による補強がなされていないため、引張弾性率が何れも低いものであった。また、比較例3または4の電解質膜においては、引張弾性率が充分といえないばかりか、引張降伏応力の比が1.05〜1.19の範囲にはなく、機械的強度において異方性を示す膜であることが確認された。また、比較例4の電解質膜は、フィブリルで補強されているにもかかわらず、フィブリル間同士の結合がないため、充分な補強効果が得られていない。また、実施例1〜5の本発明の電解質膜は、実用上充分な0.7モル/kg乾燥重量以上というイオン交換容量を有していた。
【0044】
【発明の効果】
本発明の固体高分子型燃料電池用電解質膜では、プロトン伝導性電解質となる陽イオン交換樹脂がフッ化ビニリデン樹脂化合物を主成分とする多孔質膜によって補強されることにより、機械的強度の異方性がなく、面積方向の何れの方向にも均一に高い強度を有しており、故に、膜厚を薄くした場合にでも優れた機械的強度を維持でき、外力による変形、破損を抑制することができる。それにより、薄膜化が可能であり、燃料電池内部での電気抵抗を低減する優れた効果を有し、発電効率の高い燃料電池を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art A fuel cell is a power generation system in which a fuel and an oxidant are continuously supplied and brought into contact with each other, and chemical energy generated when these react with each other is taken out as electric power. Fuel cells are roughly classified into an alkaline type, a phosphoric acid type, and a solid polymer type that operate at a low temperature, a molten carbonate type and a solid oxide electrolyte type that operate at a high temperature, depending on the type of electrolyte used for the fuel cell.
[0003]
Among them, the polymer electrolyte fuel cell is configured such that a gas diffusion electrode carrying a catalyst is bonded to both sides of a diaphragm acting as a solid polymer solid electrolyte, and a chamber on the side where one gas diffusion electrode is present ( Hydrogen as fuel is supplied to the fuel chamber, and oxygen-containing gas such as oxygen or air is supplied to the chamber (oxidant chamber) on the side where the other gas diffusion electrode is located. By connecting an external load circuit, it functions as a fuel cell.
[0004]
In a polymer electrolyte fuel cell, an electrolyte membrane (cation exchange membrane) having proton conductivity is usually used for the above-mentioned diaphragm. The electrolyte membrane is required to have low electric resistance, high water retention, low gas permeability, stability for long-term use, high physical strength, and the like. .
[0005]
Conventionally, as an electrolyte membrane used as an electrolyte for a polymer electrolyte fuel cell, a perfluorocarbon polymer membrane having a sulfonic acid group and having a thickness of 100 μm to 200 μm is mainly used. However, although this film is excellent in chemical stability, it does not provide a practically satisfactory output density, and its mechanical strength is insufficient. It was difficult. When the mechanical strength is low, the fuel cell cannot withstand the external force due to hydrogen or oxygen introduced at the time of power generation, causing deformation or destruction, leading to loss of power generation capability. In addition, the electrolyte has a problem that the swelling and the shape change of the electrolyte due to the water retention are so large that not only the workability and the handling property are poor but also the long-term stability of the fuel cell is adversely affected.
[0006]
As a method for solving the above problem, a method has been proposed in which a porous polytetrafluoroethylene (hereinafter, referred to as PTFE) membrane is impregnated with a fluorinated ion exchange polymer having a sulfonic acid group (for example, see Patent Document 1). . In this method, although the thickness of the electrolyte membrane can be reduced, there is a problem that the electrical resistance of the membrane is not sufficiently reduced in the case of porous PTFE. Further, since the PTFE porous membrane is made porous by a stretching method, it is stretched in a flow direction (hereinafter, referred to as MD) and a direction perpendicular to MD (hereinafter, referred to as TD) in processing into a sheet. The mechanical strength differs between the MD and the TD depending on the degree of the difference, and such strength anisotropy has a problem that distortion is easily generated inside the fuel cell, and deformation and breakage of the electrolyte membrane are easily generated.
[0007]
As a method for solving this, an electrolyte membrane has been proposed in which the electrolyte membrane is reinforced with a fibril-shaped, woven or non-woven perfluorocarbon polymer (for example, see Patent Document 2). However, the thickness of this film is at most 100 to 200 μm, and it is difficult to make the film thinner, and there is unevenness in the thickness. Therefore, there is a problem in terms of power generation characteristics and mass productivity.
[0008]
On the other hand, there has been proposed a perfluorocarbon electrolyte membrane having a sulfonic acid group, reinforced with fibril fibers of a fluorocarbon polymer, wherein the number of fibrils having a fibril fiber diameter of 1 μm or less accounts for 70% or more of the total number of fibrils. (For example, see Patent Document 3). This electrolyte membrane has the same water retention and ion exchange capacity and a higher tensile fracture stress than the conventional perfluorocarbon-based electrolyte membrane. However, when the fibril fibers are oriented in the MD when processed into a sheet, the mechanical strength in the MD and the mechanical strength in the TD tend to be different, which has the same problem as described above.
[0009]
[Patent Document 1]
Japanese Patent Publication No. 5-75835
[Patent Document 2]
JP-A-6-231779
[Patent Document 3]
JP 2001-345111 A
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the problem of the conventional electrolyte membrane, and provides a thin and uniform electrolyte membrane having uniform strength in both MD and TD directions, and a method for manufacturing the same. An object of the present invention is to provide an electrolyte membrane for a polymer electrolyte fuel cell which has excellent power generation characteristics and can be mass-produced.
[0011]
[Means for Solving the Problems]
The electrolyte membrane for a polymer electrolyte fuel cell of the present invention is characterized by comprising a porous membrane containing a vinylidene fluoride resin compound as a main component and a cation exchange resin.
Further, the electrolyte membrane for a polymer electrolyte fuel cell according to claim 2 of the present invention contains a cation exchange resin in a void of a porous membrane containing a vinylidene fluoride resin compound as a main component and / or in a surface thereof. And / or laminated.
[0012]
One of the manufacturing methods is characterized by impregnating a solution of a cation exchange resin into a porous membrane containing a vinylidene fluoride resin compound as a main component, and then drying.
[0013]
Further, as another method of the production method, a porous film mainly composed of a vinylidene fluoride resin compound and a film composed of a cation exchange resin are laminated by a heat and pressure laminating method.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the electrolyte membrane for a polymer electrolyte fuel cell of the present invention will be described.
The electrolyte membrane for a polymer electrolyte fuel cell of the present invention (hereinafter, referred to as an electrolyte membrane) is composed of a porous membrane mainly composed of a vinylidene fluoride resin compound and a cation exchange resin. A cation exchange membrane in which a cation exchange resin serving as a proton conductive electrolyte is contained and / or laminated in the voids and / or the surface of a porous membrane mainly containing a vinylidene fluoride resin compound. In the present invention, when a cation exchange resin is laminated on the surface of the porous membrane, it can be laminated on only one surface of the membrane, or can be laminated on both sides of the membrane.
[0015]
Examples of the vinylidene fluoride resin compound forming the porous film include a homopolymer of vinylidene fluoride, or a copolymer containing at least one of ethylene tetrafluoride, propylene hexafluoride, and ethylene and vinylidene fluoride. Is preferred. Since these polymers are electrochemically stable and extremely excellent in acid resistance, they have excellent long-term stability even when placed inside a fuel cell. Each of these homopolymers or copolymers may be used alone, or may be a mixture of at least one or more homopolymers and one or more copolymers. The present invention can be suitably carried out using a mixture of polymers or copolymers. In particular, a homopolymer of vinylidene fluoride is preferable because of its high heat resistance and good mechanical strength.
[0016]
Such a vinylidene fluoride resin compound is obtained by an addition polymerization reaction of a monomer containing vinylidene fluoride, and a known technique can be used as the polymerization method. That is, it can be obtained by radical polymerization, cationic polymerization, anionic polymerization, light / radiation polymerization, or the like. The molecular weight of the vinylidene fluoride resin compound suitably used in the present invention is 100,000 to 1,000,000 in weight average molecular weight, but is not limited thereto.
[0017]
Various techniques can be applied as a method for forming a porous film containing a vinylidene fluoride resin compound as a main component. For example, a phase separation method, a drying method, an extraction method, a foaming method and the like can be mentioned. In these methods, a solution or slurry in which a vinylidene fluoride resin compound is dissolved in a solvent is coated on a substrate and dried to form a film. The means for coating in this case is not particularly limited, and may be determined as appropriate. Generally, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method and the like are used. For example, in the method of forming a porous film by a drying method, it is necessary to dissolve the vinylidene fluoride resin compound using a good solvent and a poor solvent for the compound to be used. At this time, the poor solvent is better. Select one with a higher boiling point than the solvent. After coating the substrate obtained with the solution thus obtained, by drying, the good solvent evaporates earlier than the poor solvent, and the vinylidene fluoride resin compound having reduced solubility starts to precipitate, and the poor solvent Takes a porous structure having a porosity corresponding to the existing volume. As another example, for a method of forming a porous membrane by an extraction method, a vinylidene fluoride resin compound to be used is dissolved using a good solvent of the compound, and the obtained solution is coated on a substrate and used. A porous structure can be obtained by immersing in a solvent that is a poor solvent for the vinylidene fluoride resin compound, and then extracting the good solvent in the vinylidene fluoride resin compound and replacing it with the poor solvent. By peeling the porous film obtained on the substrate as described above from the substrate, a porous film can be obtained.
[0018]
Further, the porous membrane in the present invention has the above-mentioned vinylidene fluoride resin compound as a main component, and in addition, perfluoroethylene such as tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. A homo- or copolymer such as an olefin or a perfluorocyclic polymer may be contained. Further, a porous film of a homopolymer or a copolymer of the above perfluoroolefin or perfluorocyclic polymer may be laminated on a porous film of a vinylidene fluoride resin compound. Further, if necessary, electrochemically stable particles and fibrous materials can be contained in the porous film to improve mechanical strength and dimensional stability. Examples of such particles include inorganic particles such as silicon oxide, aluminum oxide, titanium oxide and magnesium oxide, phenol resin particles, polyimide resin particles, benzoguanamine resin particles, melamine resin, polyolefin resin, and organic particles such as fluororesin particles. Examples of the fibrous material include apatite fiber, titanium oxide fiber, inorganic fibrous material such as whisker of metal oxide, aramid fiber, and organic fibrous material such as polybenzoxazole fiber. It is not limited. The shape and particle size of these particles and fibrous materials are not particularly limited, and can be appropriately selected and used.
[0019]
The porosity, air permeability, and density are the scales for measuring the pore structure of the porous membrane thus obtained. The porosity of the porous membrane containing a vinylidene fluoride resin compound as a main component in the present invention is 30%. It is preferably in the range of ~ 90%, more preferably 50-90%, and even more preferably 70-90%. If it is less than 30%, the amount of the cation exchange resin that can be contained therein is too small, and the ion exchange capacity of the obtained electrolyte membrane is undesirably reduced. If it exceeds 90%, the mechanical strength is significantly reduced, and there is no effect as a reinforcing material. Air permeability is 1 to 1000 sec / 100 cc, density is 0.15 to 1.3 g / cm 3 Is suitable for the same reason.
[0020]
When a cation exchange resin is contained in the pores inside the porous membrane, it is preferable that the porosity of the porous membrane is high and that more cation exchange resin is contained. For example, if a cation exchange resin having an ion exchange capacity of about 1.0 mol / kg dry weight is contained in a porous membrane having a porosity of 50% or more, an ion exchange capacity of 0.5 mol / kg dry weight or more is obtained. Can be obtained.
[0021]
The electrolyte membrane of the present invention preferably has an ion exchange capacity of 0.5 mol / kg dry weight to 1.3 mol kg dry weight. When the ion exchange capacity is lower than 0.5 mol / kg dry weight, the obtained electrolyte membrane may have a large electric resistance. When the ion exchange capacity is higher than 1.3 mol kg dry weight, the mechanical resistance of the electrolyte membrane may be increased. The strength may be insufficient. A more preferable range of the ion exchange capacity is 0.7 mol / kg dry weight to 1.3 mol kg dry weight.
[0022]
As the cation exchange resin serving as the proton conductive electrolyte used in the present invention, any compound can be used as long as it has a cation exchange group. Carboxylic acid group, sulfonic acid group and the like. Specific examples thereof include a perfluorocarbon ion exchange resin having a sulfonic acid group, a fluorine ion exchange resin such as a perfluorocarbon ion exchange resin having a carboxylic acid group, polybenzimidazole containing phosphoric acid, sulfonated polystyrene, and sulfone. Examples include, but are not limited to, styrene oxide-vinylbenzene copolymer, polysulfone having sulfonic acid, polyethersulfone having sulfonic acid, and the like. In particular, in the present invention, from the viewpoint of the durability of the fuel cell, a perfluorocarbon ion exchange resin having a sulfonic acid group having excellent acid resistance, heat resistance, chemical stability, and electrical stability is most preferable. Used, and this cation exchange resin is also excellent in terms of ion exchange capacity. A commercially available perfluorocarbon ion exchange resin having a sulfonic acid group includes Nafion (trade name, manufactured by DuPont).
[0023]
The thickness of the electrolyte membrane of the present invention is preferably 5 to 95 μm, more preferably 10 to 75 μm, and most preferably 15 to 65 μm. When the film thickness is less than 5 μm, the mechanical strength of the electrolyte membrane becomes insufficient, and when it exceeds 95 μm, the electric resistance increases, which is not preferable.
[0024]
The electrolyte membrane of the present invention preferably has a tensile modulus of 150 MPa or more in both the flow direction (MD) and the direction perpendicular to MD (TD) when processed into a sheet. The tensile modulus is one of the indicators of the mechanical strength of a film, and indicates the degree of difficulty in distortion due to an external force. That is, distortion (deformation) is less likely to occur as the elastic modulus is higher. When the tensile modulus is less than 150 MPa, the electrolyte membrane is distorted (deformed) by external force due to hydrogen or oxygen introduced at the time of power generation of the fuel cell, leading to loss of power generation capability. Further, the cation exchange resin swells and changes its volume by retaining water, but the water retention rate is not always constant but fluctuates inside the fuel cell. In other words, the cation exchange resin tries to repeat contraction and expansion while repeating the power generation state and the stop state. Therefore, an electrolyte membrane having an elastic modulus of 150 MPa or more is preferable because it suppresses the contraction and expansion, and eventually plays a role in maintaining a constant water retention rate.
[0025]
Further, the electrolyte membrane of the present invention preferably has a ratio of tensile yield stress of MD and TD (tensile yield stress of MD / tensile yield stress of TD) of 0.80 to 1.25. Tensile yield stress is a point at which elastic deformation reaches a limit with respect to an applied external force and causes plastic deformation. Distortion (deformation) given by an external force higher than this value remains as a residual strain even if the external force stops. Never go back to That is, it is preferable that the tensile yield stress is high, and it is preferable that the strain is uniform in any direction in the area direction because local deformation and destruction do not easily occur. Therefore, when this ratio is less than 0.8 or exceeds 1.25, the strength of the electrolyte membrane cannot be said to be isotropic, and such anisotropy of strength is caused by the internal However, it is not preferable because local distortion easily occurs and the electrolyte membrane is easily deformed or broken.
[0026]
Next, a method for producing the electrolyte membrane of the present invention will be described.
First, a specific method for forming a porous film made of a vinylidene fluoride resin compound will be described. First, a vinylidene fluoride resin compound is dispersed in a solvent. As this solvent, a good solvent in which the vinylidene fluoride resin compound is dissolved must be selected. For example, N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, N, N -Dimethyl sulfoxide and the like can be used. As a dispersing and dissolving method, a commercially available stirrer may be used. The vinylidene fluoride resin compound used in the present invention is easily dissolved in N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, and N, N-dimethylsulfoxide at room temperature. do not have to. It is necessary to appropriately change the concentration of the dispersion solution in consideration of the characteristics of the porous membrane to be obtained. Next, a poor solvent having a boiling point higher than that of the good solvent and in which the vinylidene fluoride resin compound is not dissolved is added to the solution. As such a second solvent, phthalic acid esters such as dibutyl phthalate and glycols such as ethylene glycol can be selected. The obtained solution is, for example, a diolefin coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method on a substrate such as a resin film such as a polyolefin film, a polyester film, or a polytetrafluoroethylene film or various kinds of glass. A sheet-like coating is obtained by applying the composition by a screen printing method or the like. These substrates may have been subjected to a surface treatment such as a mold release treatment and an easy adhesion treatment, and may be appropriately selected according to a coating method. A film having a porous structure is formed by evaporating or replacing the solvent constituting the sheet-like coating obtained by coating by drying, and the porous film used in the present invention by peeling it off from the substrate Can be obtained by itself.
[0027]
Next, a method of impregnating the inside of the porous membrane with the cation exchange resin will be described. First, a porous film made of a vinylidene fluoride resin compound is prepared by the method described above. On the other hand, a solution in which a cation exchange resin such as a perfluorocarbon ion exchange resin having a sulfonic acid group is dissolved in a solvent is prepared. The concentration of the cation exchange resin solution is not particularly limited, but is adjusted to about 5 to 30% by weight. As such a solution, for example, a Nafion solution (trade name, manufactured by DuPont) is commercially available as a 5% by weight solution of a perfluorocarbon ion exchange resin having a sulfonic acid group. By concentrating the Nafion solution, it is possible to prepare perfluorocarbon ion exchange resin solutions having various concentrations of sulfonic acid groups. Specific examples of impregnating the cation exchange resin inside the porous membrane include a dipping method in which the porous membrane is immersed in a solution of the cation exchange resin and dried, and a spray in which the cation exchange resin solution is sprayed and dried. A method or the like is appropriately used. By repeating these methods a plurality of times, the amount of the cation exchange resin to be impregnated inside can be increased.
[0028]
A method for laminating a cation exchange resin on the surface of the porous membrane will be described. As one of the methods, the pores inside the porous membrane are excessively impregnated with the cation exchange resin by a dip method or a spray method using the above-described cation exchange resin solution, so that the surface of the porous membrane is positively exposed. An ion exchange resin can be laminated. If this is repeated for both surfaces, a cation exchange resin can be laminated on both surfaces. However, in this case, the cation exchange resin is also taken into the inside of the porous membrane.
[0029]
Another method of laminating a cation exchange resin on the surface of a porous membrane is to laminate a porous membrane composed of a vinylidene fluoride resin compound and a membrane composed of a cation exchange resin by a heat and pressure lamination method. Method. The membrane made of a cation exchange resin can be formed by casting the cation exchange resin solution described above by a casting method or the like. Further, a trade name: Nafion 112 membrane (manufactured by DuPont) (perfluorocarbon having a sulfonic acid group) (Commercial ion exchange resin membrane). The conditions for the heating and pressing lamination can be appropriately selected, but a temperature condition of about 80 to 200 ° C. is preferable in consideration of the melting point of the vinylidene fluoride resin compound used. At the time of lamination, the cation exchange resin can be laminated on one side of the porous membrane by laminating and laminating a porous membrane and a membrane made of a cation exchange resin one by one. Further, by laminating and laminating the cation exchange resin so as to be disposed on both sides of the porous membrane, an electrolyte membrane having the cation exchange resin laminated on both surfaces of the porous membrane can be obtained. As the porous membrane used at this time, it is also possible to use a porous membrane in which the internal voids have already been impregnated with the cation exchange resin by the above-described method. In this case, the adhesiveness at the time of lamination is improved, which is preferable.
[0030]
In order to make the electrolyte membrane of the present invention obtained as described above a desired thickness, or to make the film thickness uniform, it is preferable that the electrolyte membrane is heated and pressed by a hot press while being degassed under vacuum and molded. . In this method, bubbles existing in the film are removed by vacuum degassing, so that the electric resistance is further reduced and the strength of the film is further improved. Further, the heating and pressurizing treatment makes the thickness of the film uniform, and further improves the adhesion between the porous film made of the vinylidene fluoride resin compound and the cation exchange resin.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples. However, the present invention is not limited to these examples.
[0032]
Example 1
Polyvinylidene fluoride homopolymer having a weight average molecular weight of 100,000 was dissolved in 1-methyl-2-pyrrolidone, and dibutyl phthalate was added thereto to prepare a vinylidene fluoride homopolymer component at 20% by weight. , And a 70 μm-thick vinylidene fluoride homopolymer porous film was formed by a dry method. Next, the porous film on the substrate was peeled off to obtain a single porous film made of a vinylidene fluoride resin compound. The porosity of this porous membrane is 49%, the air permeability is 50 seconds / 100 cc, and the density is 0.90 g / cm. 3 Met.
While immersing the porous membrane in a 5% by weight solution of perfluorocarbon ion exchange resin having a sulfonic acid group (manufactured by DuPont, trade name: Nafion solution), vacuum was applied to remove air bubbles in the porous membrane. Degassed and dried. This impregnated porous membrane was subjected to vacuum pressing to obtain an electrolyte membrane of the present invention having a thickness of 70 μm.
[0033]
Example 2
A polypropylene film obtained by dissolving a vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 in 1-methyl-2-pyrrolidone and adding dibutyl phthalate so that the vinylidene fluoride homopolymer component becomes 15% by weight. And a 50 μm thick vinylidene fluoride homopolymer porous film was formed by a dry method. Next, the porous film on the substrate was peeled off to obtain a single porous film made of a vinylidene fluoride resin compound. The porosity of this porous membrane is 61%, the air permeability is 24 seconds / 100 cc, and the density is 0.69 g / cm. 3 Met.
While immersing the porous membrane in a 5% by weight solution of perfluorocarbon ion exchange resin having a sulfonic acid group (manufactured by DuPont, trade name: Nafion solution), vacuum was applied to remove air bubbles in the porous membrane. Degassed and dried. This impregnated porous membrane was subjected to vacuum pressing to obtain an electrolyte membrane of the present invention having a thickness of 50 μm.
[0034]
Example 3
Polyvinylidene fluoride homopolymer having a weight average molecular weight of 1,000,000 was dissolved in 1-methyl-2-pyrrolidone, and dibutyl phthalate was added to prepare a vinylidene fluoride homopolymer component at 10% by weight. And a 25 μm-thick vinylidene fluoride homopolymer porous film was formed by a dry method. Next, the porous film on the substrate was peeled off to obtain a single porous film made of a vinylidene fluoride resin compound. The porosity of this porous membrane is 71%, the air permeability is 2 seconds / 100 cc, and the density is 0.52 g / cm. 3 Met.
While immersing the porous membrane in a 5% by weight solution of perfluorocarbon ion exchange resin having a sulfonic acid group (manufactured by DuPont, trade name: Nafion solution), vacuum was applied to remove air bubbles in the porous membrane. Degassed and dried. After repeating this impregnation operation three times, the impregnated porous membrane was subjected to vacuum pressing to obtain an electrolyte membrane of the present invention having a thickness of 30 μm.
[0035]
Example 4
A vinylidene fluoride homopolymer having a weight average molecular weight of 350,000 and a vinylidene fluoride-hexafluoropropylene copolymer having a weight average molecular weight of 200,000 are dissolved in 1-methyl-2-pyrrolidone, and dibutyl phthalate is added thereto to add vinylidene fluoride homopolymer. A polymer prepared to have a polymer component of 9% by weight and a vinylidene fluoride-propylene hexafluoride copolymer component of 1% by weight was cast on a substrate made of a polypropylene film, and a vinylidene fluoride homogenate having a thickness of 30 μm was obtained by a dry method. A polymer porous membrane was formed. Next, the porous film on the substrate was peeled off to obtain a single porous film made of a vinylidene fluoride resin compound. The porosity of this porous membrane is 58%, the air permeability is 40 seconds / 100 cc, and the density is 0.74 g / cm. 3 Met.
While immersing the porous membrane in a 5% by weight solution of perfluorocarbon ion exchange resin having a sulfonic acid group (manufactured by DuPont, trade name: Nafion solution), vacuum was applied to remove air bubbles in the porous membrane. Degassed and dried.
On the other hand, the perfluorocarbon ion exchange resin solution having 5% by weight of sulfonic acid groups is cast on a polypropylene film, dried, the solvent is removed, and the cation exchange resin having a thickness of 10 μm is peeled off from the substrate. A membrane was obtained.
The porous membrane impregnated with the cation exchange resin and a membrane made of the cation exchange resin were laminated and heat-laminated at 150 ° C. to obtain an electrolyte membrane of the present invention having a thickness of 40 μm.
[0036]
Example 5
A vinylidene fluoride-propylene hexafluoride copolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone, and dibutyl phthalate is added to make the vinylidene fluoride-propylene hexafluoride copolymer component 10% by weight. The thus-prepared product was cast on a substrate made of a polypropylene film, and a 25 μm-thick vinylidene fluoride homopolymer porous film was formed by a dry method. Next, the porous film on the substrate was peeled off from the polypropylene film to obtain a single porous film made of a vinylidene fluoride resin compound. The porosity of this porous membrane is 62%, the air permeability is 20 seconds / 100 cc, and the density is 0.68 g / cm. 3 Met.
On the other hand, a perfluorocarbon ion exchange resin membrane having a sulfonic acid group having a film thickness of 50 μm (trade name: Nafion 112 membrane, manufactured by DuPont) was prepared as a membrane made of a cation exchange resin.
The porous membrane was laminated so as to be disposed between the two membranes made of the cation exchange resin prepared above, and subjected to thermal lamination at 150 ° C. to obtain an electrolyte membrane of the present invention having a thickness of 125 μm. .
[0037]
Comparative Example 1
A 5% by weight solution of a perfluorocarbon ion exchange resin having a sulfonic acid group (Dupont, trade name: Nafion solution) was concentrated to a concentration of 20% by weight to prepare a cation exchange resin solution. Was cast on a substrate made of a polypropylene film, dried, the solvent was removed, the cation exchange resin membrane was peeled off from the substrate, and then vacuum pressed to obtain a 50 μm-thick comparative electrolyte membrane.
[0038]
Comparative Example 2
A 5% by weight solution of a perfluorocarbon ion exchange resin having a sulfonic acid group (manufactured by DuPont, trade name: Nafion solution) was concentrated to a concentration of 10% by weight to prepare a cation exchange resin solution. Was cast on a substrate made of a polypropylene film, dried, the solvent was removed, the cation exchange resin membrane was peeled off from the substrate, and then vacuum pressed to obtain a 30 μm-thick comparative electrolyte membrane.
[0039]
Comparative Example 3
A commercially available electrolyte membrane (manufactured by DuPont, trade name: Nafion 112 membrane, thickness: 50 μm) was prepared as an electrolyte membrane for comparison.
[0040]
Comparative Example 4
A commercially available electrolyte membrane (trade name: Flemion, manufactured by Asahi Glass Co., Ltd., sulfonic acid type perfluorocarbon polymer reinforced with PTFE fibrils, thickness: 50 μm) was prepared as an electrolyte membrane for comparison.
[0041]
The electrolyte membranes obtained in the above Examples and Comparative Examples were evaluated as shown below.
(1) Tensile modulus and ratio of tensile yield stress between MD and TD
The tensile elastic modulus and tensile yield stress of each of the MD and TD of the electrolyte membranes of the examples and the comparative examples were measured in accordance with JIS K7161. From the obtained tensile yield stress, the ratio of the MD and TD tensile yield stress (MD tensile yield stress / TD tensile yield stress) was calculated, and the results are shown in Table 1. The measurement environment, measurement device, and measurement conditions are as follows.
Environment: 25 ° C, 65% RH
Measuring machine: UCT-500 manufactured by ORIENTEC
Initial sample length: 10 mm
Tensile speed: 50mm / min
(2) Ion exchange capacity
The electrolyte membranes of the above Examples and Comparative Examples were immersed in a 1N aqueous solution of sodium hydroxide for 12 hours, and then immersed in a 1N aqueous solution of hydrochloric acid for 24 hours. Next, after washing with distilled water, the substrate was immersed in a 1N aqueous solution of sodium hydroxide for 12 hours to allow hydrogen ions to leach into the solution. This solution was subjected to neutralization titration with an aqueous sodium hydroxide solution to calculate the ion exchange capacity. The results are shown in Table 1.
[0042]
[Table 1]
Figure 2004178995
[0043]
As shown in Table 1, the electrolyte membranes of the present invention according to Examples 1 to 5 were reinforced using a porous membrane made of a vinylidene fluoride resin compound having low anisotropy in mechanical strength. And TD have a high tensile modulus of 150 MPa or more in any direction, and the ratio of tensile yield stress is in the range of 1.05 to 1.19, so that the mechanical strength is anisotropic. It was confirmed that there was almost no. On the other hand, in the electrolyte membranes of Comparative Examples 1 and 2, although no anisotropy of mechanical strength was observed, none of the electrolyte membranes had a low tensile modulus because they were not reinforced by a reinforcing material. Further, in the electrolyte membrane of Comparative Example 3 or 4, not only the tensile modulus was not sufficient, but also the tensile yield stress ratio was not in the range of 1.05 to 1.19, and the mechanical strength was anisotropic. Was confirmed. Further, although the electrolyte membrane of Comparative Example 4 was reinforced with fibrils, there was no bonding between fibrils, and thus a sufficient reinforcing effect was not obtained. The electrolyte membranes of Examples 1 to 5 of the present invention had an ion exchange capacity of 0.7 mol / kg dry weight or more, which was practically sufficient.
[0044]
【The invention's effect】
In the electrolyte membrane for a polymer electrolyte fuel cell of the present invention, the cation exchange resin serving as the proton conductive electrolyte is reinforced by a porous membrane containing a vinylidene fluoride resin compound as a main component, so that a difference in mechanical strength is caused. It has no anisotropy and has high strength uniformly in any direction of the area direction, so it can maintain excellent mechanical strength even when the film thickness is reduced, and suppresses deformation and breakage due to external force be able to. This makes it possible to obtain a fuel cell that can be thinned, has an excellent effect of reducing the electric resistance inside the fuel cell, and has high power generation efficiency.

Claims (12)

フッ化ビニリデン樹脂化合物を主成分とする多孔質膜と、陽イオン交換樹脂とから構成されることを特徴とする固体高分子型燃料電池用電解質膜。An electrolyte membrane for a polymer electrolyte fuel cell, comprising: a porous membrane containing a vinylidene fluoride resin compound as a main component; and a cation exchange resin. フッ化ビニリデン樹脂化合物を主成分とする多孔質膜の空隙内および/またはその表面に、陽イオン交換樹脂を含有および/または積層したことを特徴とする請求項1に記載の固体高分子型燃料電池用電解質膜。The solid polymer fuel according to claim 1, wherein a cation exchange resin is contained and / or laminated in the voids and / or on the surface of the porous membrane mainly composed of a vinylidene fluoride resin compound. Electrolyte membrane for batteries. 前記フッ化ビニリデン樹脂化合物が、フッ化ビニリデンのホモポリマー、または四フッ化エチレン、六フッ化プロピレン、エチレンのいずれか1種類以上とフッ化ビニリデンとからなるコポリマーを含むことを特徴とする請求項1または請求項2に記載の固体高分子型燃料電池用電解質膜。The vinylidene fluoride resin compound comprises a homopolymer of vinylidene fluoride, or a copolymer of ethylene tetrafluoride, propylene hexafluoride, and at least one of ethylene and vinylidene fluoride. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1 or 2. 前記多孔質膜の空隙率が30〜90%であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の固体高分子型燃料電池用電解質膜。The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the porosity of the porous membrane is 30 to 90%. イオン交換容量が、0.5〜1.3モル/Kg乾燥重量であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の固体高分子型燃料電池用電解質膜。The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the ion exchange capacity is 0.5 to 1.3 mol / Kg dry weight. 前記陽イオン交換樹脂が、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の固体高分子型燃料電池用電解質膜。The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein the cation exchange resin is a perfluorocarbon ion exchange resin having a sulfonic acid group. 膜厚が5〜95μmであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の固体高分子型燃料電池用電解質膜。The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 6, wherein the thickness of the electrolyte membrane is from 5 to 95 µm. シート状に加工する際の流れ方向(MD)及びMDに垂直にクロスする方向(TD)の引張弾性率が共に150MPa以上であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の固体高分子型燃料電池用電解質膜。8. The sheet according to claim 1, wherein a tensile elastic modulus in a machine direction (MD) and a tensile elasticity in a direction crossing perpendicular to the MD (TD) are both 150 MPa or more. 8. The electrolyte membrane for a polymer electrolyte fuel cell according to item 1. シート状に加工する際の流れ方向(MD)及びMDに垂直にクロスする方向(TD)の引張降伏応力の比(MDの引張降伏応力/TDの引張降伏応力)が、0.80〜1.25であることを特徴とする請求項1乃至請求項8のいずれか1項に記載の固体高分子型燃料電池用電解質膜。The ratio of the tensile yield stress (MD tensile yield stress / TD tensile yield stress) in the flow direction (MD) and the direction crossing perpendicular to the MD (TD) when processing into a sheet is 0.80 to 1. The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 8, wherein the electrolyte membrane is 25. フッ化ビニリデン樹脂化合物を主成分とする多孔質膜に陽イオン交換樹脂の溶液を含浸した後、乾燥することを特徴とする固体高分子型燃料電池用電解質膜の製造方法。A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising impregnating a solution of a cation exchange resin into a porous membrane containing a vinylidene fluoride resin compound as a main component and drying the solution. フッ化ビニリデン樹脂化合物を主成分とする多孔質膜の少なくとも一面に対して、陽イオン交換樹脂からなる膜を、加熱加圧ラミネート法によって積層することを特徴とする固体高分子型燃料電池用電解質膜の製造方法。An electrolyte for a polymer electrolyte fuel cell, wherein a membrane made of a cation exchange resin is laminated on at least one surface of a porous membrane containing a vinylidene fluoride resin compound as a main component by a heat and pressure lamination method. Manufacturing method of membrane. フッ化ビニリデン樹脂化合物を主成分とする多孔質膜に陽イオン交換樹脂の溶液を含浸した後乾燥し、含浸多孔質膜を形成する工程と、該含浸多孔質膜の少なくとも一面に対して、陽イオン交換樹脂からなる膜を、加熱加圧ラミネート法によって積層する工程を有することを特徴とする固体高分子型燃料電池用電解質膜の製造方法。A step of impregnating a porous membrane mainly composed of a vinylidene fluoride resin compound with a solution of a cation exchange resin, followed by drying to form an impregnated porous membrane; and at least one surface of the impregnated porous membrane, A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising a step of laminating a membrane made of an ion exchange resin by a heat and pressure laminating method.
JP2002344233A 2002-11-27 2002-11-27 Electrolyte film for solid polymer fuel cell and its manufacturing method Pending JP2004178995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344233A JP2004178995A (en) 2002-11-27 2002-11-27 Electrolyte film for solid polymer fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344233A JP2004178995A (en) 2002-11-27 2002-11-27 Electrolyte film for solid polymer fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004178995A true JP2004178995A (en) 2004-06-24

Family

ID=32705784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344233A Pending JP2004178995A (en) 2002-11-27 2002-11-27 Electrolyte film for solid polymer fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004178995A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell
WO2007007824A1 (en) * 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
WO2007007773A1 (en) * 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte multilayer membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
WO2007011054A1 (en) * 2005-07-19 2007-01-25 Toyota Jidosha Kabushiki Kaisha Composite porous membrane, method for production thereof, solid polymer electrolyte membrane, and fuel cell
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
WO2008001923A1 (en) * 2006-06-26 2008-01-03 Toyota Jidosha Kabushiki Kaisha Porous film for electrolyte film in fuel cell and process for producing the same
JP2010165625A (en) * 2009-01-19 2010-07-29 Toyota Motor Corp Membrane-electrode assembly for fuel cell
WO2011125735A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Solid polymer electrolyte composite membrane and method for producing the same
US8114550B2 (en) 2006-08-09 2012-02-14 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, production method thereof, membrane electrode assembly for fuel cell, and solid polymer fuel cell comprising the same
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
JP2017010785A (en) * 2015-06-22 2017-01-12 旭化成株式会社 Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JPWO2016056430A1 (en) * 2014-10-10 2017-05-18 日本ゴア株式会社 Electrolyte membrane for fuel cell
JP2017114122A (en) * 2015-12-21 2017-06-29 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Reinforced composite membrane and method for producing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell
WO2007007824A1 (en) * 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
WO2007007773A1 (en) * 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte multilayer membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
JP2007042588A (en) * 2005-07-07 2007-02-15 Fujifilm Holdings Corp Solid electrolyte film and its manufacturing method and manufacturing facility, as well as electrode membrane assembly, and fuel cell
JP2007042587A (en) * 2005-07-07 2007-02-15 Fujifilm Holdings Corp Solid electrolyte double layer film and its manufacturing method, its facility, electrode membrane assembly, and fuel cell
US8586266B2 (en) 2005-07-07 2013-11-19 Fujifilm Corporation Solid electrolyte multilayer membrane, method and apparatus for producing the same, membrane electrode assembly, and fuel cell
WO2007011054A1 (en) * 2005-07-19 2007-01-25 Toyota Jidosha Kabushiki Kaisha Composite porous membrane, method for production thereof, solid polymer electrolyte membrane, and fuel cell
JP2007026917A (en) * 2005-07-19 2007-02-01 Toyota Motor Corp Compound porous membrane, manufacturing method of compound porous membrane, solid polyelectrolyte membrane, and fuel cell
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
WO2008001923A1 (en) * 2006-06-26 2008-01-03 Toyota Jidosha Kabushiki Kaisha Porous film for electrolyte film in fuel cell and process for producing the same
JP2008004500A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Porous membrane for fuel cell electrolyte membrane and its manufacturing method
US8114550B2 (en) 2006-08-09 2012-02-14 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, production method thereof, membrane electrode assembly for fuel cell, and solid polymer fuel cell comprising the same
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
JP2010165625A (en) * 2009-01-19 2010-07-29 Toyota Motor Corp Membrane-electrode assembly for fuel cell
WO2011125735A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Solid polymer electrolyte composite membrane and method for producing the same
JPWO2011125735A1 (en) * 2010-03-31 2013-07-08 Jsr株式会社 Solid polymer electrolyte composite membrane and method for producing the same
JPWO2016056430A1 (en) * 2014-10-10 2017-05-18 日本ゴア株式会社 Electrolyte membrane for fuel cell
CN107004883A (en) * 2014-10-10 2017-08-01 日本戈尔有限公司 Electrolyte membrane for fuel cell
US20170294670A1 (en) * 2014-10-10 2017-10-12 W. L. Gore & Associates, Co., Ltd. Electrolyte film for fuel cell
US10109878B2 (en) * 2014-10-10 2018-10-23 W.L. Gore & Associates, Co., Ltd. Electrolyte film for fuel cell
JP2017010785A (en) * 2015-06-22 2017-01-12 旭化成株式会社 Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP2017114122A (en) * 2015-12-21 2017-06-29 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Reinforced composite membrane and method for producing the same
CN107009706A (en) * 2015-12-21 2017-08-04 韩国能量技术研究院 Strengthen composite membrane and preparation method thereof
CN107009706B (en) * 2015-12-21 2019-01-22 韩国能量技术研究院 Enhance composite membrane and preparation method thereof
US10355299B2 (en) 2015-12-21 2019-07-16 Korea Institute Of Energy Research Reinforced composite membranes and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR102112648B1 (en) Polymer electrolyte membrane
US6692858B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
EP1806371B1 (en) Electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
KR100833056B1 (en) Reinforced composite electrolyte membrane for fuel cell
KR20020091823A (en) Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
JP2009193825A (en) Composite electrolyte membrane and its manufacturing method
JP2004178995A (en) Electrolyte film for solid polymer fuel cell and its manufacturing method
US20230420718A1 (en) Integral composite membrane with a continuous ionomer phase
JP5189394B2 (en) Polymer electrolyte membrane
AU2021328758A1 (en) Composite electrolyte membrane
WO1998051733A1 (en) Process for making composite ion exchange membranes
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP2002343380A (en) Electrolyte film for solid polymer fuel cell, and manufacturing method of the same
JP4188789B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2009104810A (en) Electrolyte membrane, membrane electrode assembly, fuel cell, and method of manufacturing electrolyte membrane
JP2004131569A (en) Ion-exchange composite membrane and method for producing the same
WO2017203256A1 (en) Membrane and process
JP2010140653A (en) Method of manufacturing reinforced electrolyte membrane for fuel cell
JP2009104811A (en) Electrolyte membrane and membrane electrode assembly
JP2009104809A (en) Electrolyte membrane, membrane electrode assembly, fuel cell, and method of manufacturing electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710