JP2004177358A - 地質構造及び水理のモデリング装置 - Google Patents

地質構造及び水理のモデリング装置 Download PDF

Info

Publication number
JP2004177358A
JP2004177358A JP2002346636A JP2002346636A JP2004177358A JP 2004177358 A JP2004177358 A JP 2004177358A JP 2002346636 A JP2002346636 A JP 2002346636A JP 2002346636 A JP2002346636 A JP 2002346636A JP 2004177358 A JP2004177358 A JP 2004177358A
Authority
JP
Japan
Prior art keywords
plate
loading
rectangular
tank
earthen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002346636A
Other languages
English (en)
Other versions
JP3861149B2 (ja
Inventor
Mei Cho
銘 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002346636A priority Critical patent/JP3861149B2/ja
Publication of JP2004177358A publication Critical patent/JP2004177358A/ja
Application granted granted Critical
Publication of JP3861149B2 publication Critical patent/JP3861149B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

【課題】本発明は、地下水の存在を考慮した地層変形及び変形させた模型地層をその場で水平または垂直の何れの方向にも浸透流試験ができるモデリング試験装置を提供することを目的とする。
【解決手段】本発明による地質構造及び水理のモデリング装置は、底板、側板、正面透明板及び背面透明板で構成される矩形土槽と、矩形土槽内の模擬地層に水平の力を載荷するために矩形土槽内に設置する載荷板と、前記模擬地層の変形および変形された模擬地層における試験流体の流れを測定・観測する手段を具備することを特徴とする。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は地下地質の特性を考慮した地層変形と流体移動の相互作用のメカニズムを高精度に解明しうるモデリング試験技術に係り、詳しくは、地下水の存在が地下の亀裂や断層などの形成に及ぼす影響、地殻変動速度が断層の形成に及ぼす影響、並びに、亀裂や断層附近の地層における流体移動特性の相対的変化と空間分布をも評価することが可能となる地質構造及び水理のモデリング装置に関するものである。
この装置は、構造地質、石油地質、地質工学、水理および廃棄物地層処分等多分野において地下地質構造および地下流体の移動を適切に予測・評価するためのモデリング試験に有用である。
【0002】
【従来の技術】
地層の変形構造をモデリングするための従来技術として、図1に示すようなサンドボックス(砂箱)法と呼ばれるものがある(例えば非特許文献1参照。)。この方法は、側壁がコ型状をした2つの箱部材を向かい合わせて底板の上に載せ、これらの箱部材を相互に水平方向に入れ子式に移動可能に構成してサンドボックスを形成する。形成されたサンドボックスの中で層状の模型地層を作製する。模型地層を変形させるためには、一方のコ型状側壁を固定し、他方のコ型状側壁を底板にそって水平方向に移動させる。変形後の地層構造を観測するためには、コ型状側壁を透明な材料で形成しサンドボックスの横から直接観測するか、あるいは地層の試料を樹脂などの固化剤で固め、評価したい断面に沿って切断・研磨し、観察を行う。近年ではX線スキャナーを利用し、試料内部の観察も可能となっている。地層をモデリングするための試料として、乾燥した砂、粘土、ガラスビーズおよび剛球等が使用されている。
一方、地層における流体移動状態をモデリングするために、図2に示すような土槽若しくは水槽を用いた水理試験が実施されている(例えば特許文献1参照。)。この装置は、透明な正面および背面板から構成されるセルの両端に空気を流入および真空を引くための小孔を有するケーシング井戸をそれぞれ最低一本ずつ設置する。その後、セルにポーラス材料を充填し、少なくとも一種類の液体で飽和させる。セルの上部を閉鎖した後、片方のケーシング井戸から真空を引き、セルの正面と背面の間にγ線若しくはX線を透過して計測し、複数点の計測結果をマッピングすることによって含水比の空間分布を評価する。
【0003】
【非特許文献1】
Ph. Davy and P. R. Cobbold(1991): Experiments on Shortening of A 4− Layer Model of the Continental Lithosphere、 Tectonophysics、 Vol. 188、 pp. 1−25.
【特許文献1】
米国特許第5,789,662号明細書
【0004】
【発明が解決しようとする課題】
上記のようなサンドボックス法は地層のマクロ的な変形構造をモデリングするための唯一かつ有効な室内試験法として構造地質および石油地質などの分野で広く利用されてきている。しかし近年、環境保全や核廃棄物を含む各種廃棄物の地層処分施設の長期的安全性評価においては、地下地質の構造のみならず、それにおける流体移動特性も同時に測定・評価することが要求されるようになってきており、従来のモデリング試験装置では以下のような点で、このような新しいニーズに応えることができない。
(1) 流体の存在が地層の変形に及ぼす影響を評価することができない。実際に地下では地下水が存在し、地層の変形、特に流体移動を支配するマイクロ的構造の形成に強く影響を与える。
(2)変形を受けた地層は構造的に非均質および異方性をもっている。従来のモデリング試験技術ではこれらの特性が地層の浸透流特性に及ぼす影響を評価することができない。
(3) 土槽を用いた従来の水理モデリング試験では均質に充填した模型地層における流体の流れ試験しかできない。実際の地層は理想的でなく、長年の地殻変動を受けたものである。特に高レベル放射性廃棄物地層処分の場合では、施設建設後でも十万年に及ぶ超長期的安全性を評価しなければならないが、地殻変動の影響を考慮した地下水移動の予測が必要不可欠となっている。
【0005】
本発明は、上述した従来技術の問題点を解消し、地下水の存在を考慮した地層変形のモデリング試験装置を提供することを第1の目的とする。
また、本発明は変形させた模型地層をその場で水平または垂直の何れの方向にも浸透流試験ができる装置を提供することを第2の目的とする。
また、本発明は変形試験後の模型地層を崩さずにサンプリングし、その浸透率の空間分布をも測定できる装置を提供することを第3の目的とする。
【0006】
【課題を解決するための手段】
上記のような目的を達成するため本発明の地質構造及び水理のモデリング装置は、底板、側板、正面透明板及び背面透明板で構成される矩形土槽と、矩形土槽内の模擬地層に水平の力を載荷するために矩形土槽内に設置する載荷板と、前記模擬地層の変形および変形された模擬地層における試験流体の流れを測定・観測する手段を具備することを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽を固定底板、前方固定側板、後方固定側板、組立式の正面透明板及び背面透明板で構成し、前記固定底板及び前方固定側板の内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、組立式の正面透明板及び背面透明板の内側には透明なライナー板を設けることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、載荷板は矩形土槽内壁との間に止水構造を有し、その内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けるとともに偏荷重による傾斜を防止する傾斜防止機構を設けることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、載荷板に荷重を載荷または除荷する載荷・除荷装置を接続するとともに、載荷板を介して模擬地層の変形速度を制御する載荷・除荷制御装置を設けたことを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽内に作製された模擬地層の垂直方向の浸透流試験を行うため、矩形土槽の下部及び上部に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間及び多孔質フィルター板を介して模擬地層の下部あるいは上部から供給可能とすることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽内に作製された模擬地層の水平方向の浸透流試験を行うため、載荷板に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間、有孔性剛性板及び多孔質フィルター板の下部を介して供給可能とすることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、矩形土槽を組立式の正面透明板又は背面透明板の側に傾斜可能な傾斜機構を備え、矩形土槽を傾斜させた状態で正面透明板又は背面透明板を分解し模擬地層の任意の場所においてサンプリング可能とすることを特徴とする。
また、本発明の地質構造及び水理のモデリング装置は、サンプル容器の挿入可能な多数のガイド孔を穿設したサンプリング用透明ガイド板を備えることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明による実施の形態を図面に基づき説明する。
図3は、本発明の実施の形態に係る地質構造及び水理のモデリング装置の構成を示す正面図、図4は、同平面図、図5は、図4のA−A断面図、図6は、図3のB−B断面図である。
【0008】
矩形土槽T内に収容・作製される模型地層Gは測定評価の対象であり、目的に応じて矩形土槽T内で単層または多層に作製される。模型試験によく利用される試料としては、例えば、砂や粘土などがあげられるが、目的に応じてガラスビーズ及びシリコンパウダー等種々のものを利用できる。
【0009】
矩形土槽Tは底板1、前方固定側板2、後方固定側板3、目盛付き正面剛性透明板4および目盛付き背面剛性透明板5から構成される。正面および背面の剛性透明板4、5の劣化防止および透明度を保つためにはそれぞれの内側に簡易に取り替えられる透明なライナー板L1、L2を付設する。具体的に、本実施例では、正面および背面剛性透明板4、5に厚さ20mmのアクリル板を使用し、その中央および周辺をステンレス板で補強した。また、ライナー板L1、L2として厚さ5mmのアクリル板を採用した。
【0010】
載荷板8は模型地層Gに水平な力を加え、模型地層Gを変形させるためのものであり、図5及び図6に示すように矩形土槽Tのライナー板L1、L2及び底板1に密着して左右方向に摺動できるように設けられている。載荷板8には追随式二重止水パッキング6、偏荷重による傾斜を防止するための載荷板傾斜防止機構7、模型地層Gの水平方向における浸透流試験を行うためのスペーサーS3、有孔剛性板P3、多孔質フィルター板(または不透過性板)F3、浸透流試験用透過孔及び付随配管V3が備えられている。追随式二重止水パッキング6は載荷板8が移動しても常に止水できる構造となり、高弾性ゴムが使用されている。
【0011】
載荷板8に荷重を載荷又は除荷するための載荷・除荷装置9は、載荷・除荷制御装置10によって自動的に、または手動ハンドル11による手動で載荷又は除荷が任意に切り替えられる。載荷・除荷装置9で発生した荷重は荷重計12を介して載荷板8に伝えられる。載荷・除荷制御装置10は自動および手動で載荷/除荷の切換、載荷速度の制御が行える。例えば、本実施例では、長さ100cm模型地層を最大50cmまで圧縮される場合、載荷時間を1時間から10時間の間で任意に設定できる。また、載荷・除荷装置は最大50KN(5トン)の推力を発生することができる。普通模型地層の高さは土槽高さ60cmの半分程度であり、幅11.4cmの土槽に対して、模型地層に約1400kPaの圧力を加えることが可能である。載荷・除荷用手動ハンドル11は試験前若しくは試験後に載荷板の位置を調整する際に利用される。
荷重計12及び変位計13は試験時の荷重及び変位量を検出するものであり、これらの出力は監視計測装置14により表示、必要であれば、他の記録媒体に転送することも可能である。
【0012】
剛性ガイド板15は載荷板傾斜防止機構7を水平方向に沿ってガイドを行うものであり、ステンレス板が使用されている。
保持具16は正面および背面の目盛り付透明板4、5の補強枠に装着し、試験時矩形土槽の横変形を防げるとともに、剛性ガイド板15を抑える役割をも果たす。
蓋17は必要のある場合のみ使用し、スペーサーS4、有孔剛性板P4および浸透流試験用透過孔V4が備えられている。
二本のタイロット18は矩形土槽全体の剛性を高めるためのものである。
台座19は矩形土槽Tおよび載荷・除荷装置9などを設置するためのものであり、高さは試験作業の便利さを考慮して決められている。
【0013】
図7及び図8は、矩形土槽Tを傾斜させる機構を示す側面図である。
土槽傾斜用ハンドル20を回転させることによって、主動土槽傾斜機構21と受動土槽傾斜機構22が連動チェーン23によって連動され、矩形土槽T全体を最大45°まで傾斜させることができる。これによって、正面剛性透明板4および正面透明ライナー板L1を取り外し、土槽から任意の場所でサンプリングを行う際、自重による模型地層Gの崩れを防止することが可能である。
【0014】
複数の押さえネジ24は目盛り付剛性透明板4、5および透明ライナー板L1、L2を土槽として組み立て、または分解するときに使用するものであり、目盛り付剛性透明板4、5の周辺に取り付けた金属補強枠を介して剛性透明板4、5に均等に当てる。
複数の土槽底板固定ネジ25は矩形土槽Tを台座19の上にしっかりと固定するためのものである。
スペーサーS1〜S4はそれぞれの処で狭い槽状の空間を構築し、浸透流試験用の流体を迅速かつ抵抗なく全槽状空間に行き渡るための構造である。
有孔剛性板P1〜P4はそれぞれの処で構築した槽状空間から流入してきた流体を比較的均等に模型地層Gの透過性を調査しようとする断面に分散させ、また、それぞれの多孔質フィルター板もしくは不透過性板F1〜F3の支え構造にもなる。多孔質フィルター板との接触面を除いた不透過性板の周囲には止水のためのゴムシートを貼り付けられている。
【0015】
多孔質フィルター板F1〜F2は浸透流体をさらに均等に模型地層の透過性を調査しようとする断面に分散させ、また、模型地層G試料の流失を防げる役割を果たすものである。具体的にはパールコーンなどが利用される。
止水パッキングR1〜R4は矩形土槽T全体を止水構造としてく組み立てるためのものである。
浸透流試験用透過孔および付随配管V1〜V4はそれぞれの処で構築した槽状空間に浸透流体を流入又は流出させるためのものである。
透明なライナー板L1、L2は模型地層Gと矩形土槽Tの側面との間で発生する擦り合いが目盛り付けの正面および背面剛性透明板4、5に損傷を与えないようにし、土槽正面および背面の透明度を保つ役割をする。
【0016】
次に、試験の準備段階としての矩形土槽Tの組立手順について述べる。
先ず、矩形土槽Tの前方固定側板2の内側にスペーサーS2、有孔剛性板P2および多孔質フィルターF2を順番にセットする。模型地層Gの垂直方向の浸透流試験を行う場合には多孔質フィルターF2を使用せず、代わりに不透過性板を使用する。その後、土槽の底板1にスペーサーS1、有孔剛性板P1および多孔質フィルターF1を順番にセットする。多孔質フィルターF1の長さは模型地層Gが最終的に圧縮された長さに見合ったものを使用し、残りの部分は多孔質フィルターと同じ厚さの不透過性板を使用する。同様、模型地層Gの水平方向の浸透流を行う場合には、有孔剛性板P1の上を不透過性板のみ使用する。その後、目盛付き正面剛性透明板4および目盛付き背面剛性透明板5および正、背面透明ライナーL1、L2をそれぞれ所定の位置にはめ込む。その後、載荷板8を矩形土槽B内に装着し、載荷板8の位置を載荷・除荷用手動ハンドル11によって所定の位置まで調整する。その後、複数の押さえネジ24を均等に締め付けて矩形土槽Tの組立を完了する。その後、載荷・除荷制御装置10によって載荷・除荷装置を作動させ、載荷板8が負荷しない状態での摩擦力を測定しておく。この場合、摩擦力は荷重計12により検出し、監視計測装置14によって表示される。
【0017】
次に、組み立てられた矩形土槽T内で模型地層Gを作製する手順を述べる。
乾燥状態の模型地層を作製するためには、乾燥した試料を用い、矩形土槽T内で層毎に均等に入れ、タンパーで所定の密度と所定の高さまで締め固める。このとき、模型地層の密度は入れた試料の重量と土槽内での容積から計算される。湿潤状態の模型地層を作製するためには、事前に試料に所定の含水比で試料を用意し、同様な手順で所定の密度まで締め固める。完全飽和状態の模型地層を作製するためには、矩形土槽内に予め適当な深度の水を入れて、その中に試料を均等に充填し、同じく所定の密度と高さまで締め固めるか、乾燥または湿潤状態の模型地層を飽和させることによっても作製が可能である。模型地層の作製が完了した後、剛性ガイド板15を土槽Tの上部に載せ、保持具によって固定する。土槽Tの残りの開口部には蓋17をかける。その後、タイロット18をセットし、適度に締め付ける。
【0018】
次に、模型地層Gを変形させる過程について説明する。
上記の通り作製した模型地層Gに載荷板8を介して、水平方向に力を加えて圧縮させる。これは自然界における地殻変動の主な要因として、プレート間の相対的水平移動によるものと認識されているためである。この場合、載荷速度は載荷・除荷制御装置10によって所定のレベルに制御できる。また、載荷荷重と水平変形量はそれぞれ荷重計12と変位計13で検出され、監視計測装置14によって表示される。なお、実際に模型地層に加えられた荷重は変形試験時の測定値と準備段階で計測した載荷板8と土槽内部との摩擦力との差である。圧縮されている模型地層Gの変形様子、即ち、模型地層Gに発生する褶曲やクラック及び断層等の様子を観測し、記録を行う。具体的には、ビデオカメラを用い、連続的に撮影を行う。また、カメラやデジカメなどを用い、代表的な変形状態の様子をも撮影できる。模型地層Gが所定の長さまで圧縮された時点で圧縮変形試験が終了する。当然なことでありながら、圧縮変形試験の途中でも、必要に応じて変形試験を一旦停止させたりすることも可能である。
【0019】
次に、前述のように変形させた模型地層Gをその場で垂直方向の浸透流試験を行う際の手順について説明する。
垂直方向における浸透流試験を行い、模型地層Gにおける流体の流れ様子を観測、撮影するためには、矩形土槽T底部で構築した狭い槽状空間とつながっている透過孔V1から試験流体、例えば、着色流体を注入させ、流体がスペーサーS1により構築した槽状空間、有孔剛性板P1および多孔質フィルター板F1を介して模型地層Gの下部に均等に浸透させる。模型地層Gを透過し、地層の上部に達していたら浸透流試験を終了する。この場合、自然界おける地下深部からの上昇水の流れをシミュレートすることができる。高レベル放射性廃棄物地層処分の場合でも、基本的に地下深部で汚染された水がどのように地表の付近である生活圏まで到達することを評価しなければならない。逆に、蓋17にある浸透流試験用透過孔V4から着色流体を注入し、流体がスペーサーS4により構築した槽状空間および有孔剛性板P4を介して、模型地層Gの上部に均等に吹きかける。模型地層Gを透過し、地層の下部に到達した流体は土槽の下部に敷設した多孔質フィルター板F1、有孔剛性板P1、スペーサーS1により構築した槽状空間を通して、浸透流試験用透過孔V1によって排出される。この場合では、地表水が地下深部に浸透していく流れをシミュレートすることができる。その際、ビデオカメラ等の測定・観測手段を用いて地表水が地下深部に浸透していく流れを測定・観測し、記録する。なお、垂直方向における浸透流試験を行うためには、試験準備段階において事前に前方固定側板2の内側に設置する多孔質フィルター板F2および載荷板8の内側に設置する多孔質フィルター板F3を不透過性板に交換しておく必要がある。
【0020】
次に、模型地層Gにおける水平方向の浸透流試験について説明を行う。
この場合、事前に矩形土槽Tの底部に敷設する多孔質フィルター板F1を不透過性板に交換しておく必要があるが、蓋17は使用する必要がない。前述した垂直方向における浸透試験と同じ条件で模型地層Gを作製し、同じ載荷条件で変形をさせる。その後、模型地層Gの上部に露出した多孔質フィルター板F2およびF3の表面に止水ゲールシートを貼り付ける。また、模型地層Gの上部に止水シートをかけ、適度な重みを加える。例えば、薄い粘土ケーキで被覆を行う。水平方向の浸透流試験を行い、模型地層Gにおける流体移動様子を可視し、撮影するためには、載荷板8に付設した浸透流試験用透過孔V3から試験流体、例えば、着色流体を流入させる。この浸透流体はスペーサーS3で構築した槽状空間、有孔剛性板P3および多孔質フィルター板F3の下部を介して模型地層Gに均等に浸透させる。模型地層Gを透過した流体は前方側の多孔質フィルター板F2、有孔剛性板P2およびスペーサーS2で構築した槽状空間の下部を経由し、浸透流試験用透過孔V2によって流出する。その際、ビデオカメラ等の測定・観測手段を用いて浸透流体の浸透していく状態を測定・観測し、記録する。地層の水平方向における流体移動を正確に予測評価することは石油や地熱などに代表される地下流体資源開発分野において極めて重要である。
【0021】
最後に、目盛付き正面剛性透明板4および目盛付き背面剛性透明板5に直交した方向の浸透性を評価するために試験体をサンプリングする方法について述べる。
垂直または水平方向の浸透流試験を終了した後、14個の土槽底板固定ネジ25を外す。その後、順番にタイロット18、蓋17、保持具16、剛性ガイド板15を取り外す。その後、土槽傾斜用ハンドル20を回転させ、連動チェーン23によって主動傾斜機構21および受動傾斜機構22が同じように動作させ、矩形土槽T全体を最大45°まで傾斜させる(図7、図8)。その後、正面剛性透明板4の押さえネジ24をゆるめ、正面剛性透明板4およびライナーL1を順番に取り外す。このように傾斜させた土槽からは、自重による模型地層試料の崩れを防止した状態で、必要とする個数分を順次に採取することが可能である。
図9は、試験体をサンプリングする際に便利なサンプリング用透明ガイド板26の斜視図である。試料採取に当たっては、サンプリング用透明ガイド板26を模型地層試料の表面に沿わせて固定し、サンプリング用透明ガイド板26に穿設された多数のガイド孔27に図示しない円筒状をしたサンプル容器を挿入して試料をサンプル容器内に採取する。
採取された試験体は従来の室内透水または透気試験法を用い、浸透性を評価することができる。通常、地層の内部では変形を与える力に直交した方向に亀裂や断層を発生し、この亀裂や断層に沿った方向の流体の流れやすさが最も大きい。各種廃棄物地層処分施設の安全性評価では、この最大流れやすさを正確に予測評価することが肝要である。これは汚染物質の到達範囲を評価する際に必要とされるためである。
【0022】
前述したように同じ条件下で模型地層を2回作製し、同じ載荷条件で変形させ、変形されたそれぞれの模型地層に対して垂直方向、水平方向、さらに目盛付き正面剛性透明板4および目盛付き背面剛性透明板5に直交した方向の浸透性を三次元的に評価することが可能である。
【0023】
【発明の効果】
本発明によれば、従来の地層変形のモデリング試験技術で評価ができていなかった地下水の存在が地下の亀裂や断層などの形成に及ぼす影響を評価できるようになった。また、変形された模型地層における浸透流特性の三次元的空間分布も評価できるようになった。
本装置は地層における流体移動を予測評価するあらゆる分野において有用であり、特に天然バリアとして期待されている地層の隔離性や遮蔽性を正確に予測評価する必要のある廃棄物地層処分などに関連する環境制御技術分野において極めて重要なものとなる。
また、作製した模型地層に載荷板を介して水平方向に力を加えて圧縮させようにしたため、模擬地層を最大50パーセント以上水平に圧縮させることができ、しかも自由に移動することができる。
さらに、試験目的に応じて変形させた地層をその場で垂直または水平方向の浸透流試験ができる。
また、試験装置の矩形土槽全体を傾斜させて正面の板を分解し、模擬地層の崩れを防止した状態で、任意の場所おいてサンプリングホルダによるサンプリングができる。
【図面の簡単な説明】
【図1】地層の変形構造をモデリングするためのサンドボックス(砂箱)法と呼ばれる従来の技術を示す図である。
【図2】地層における流体移動状態をモデリングするため、土槽若しくは水槽を用いた従来の水理試験を示す図である。
【図3】本発明の実施の形態に係る地質構造及び水理のモデリング装置の構成を示す正面図である。
【図4】本発明の実施の形態に係る地質構造及び水理のモデリング装置の構成を示す平面図である。
【図5】図4のA−A断面図である。
【図6】図3のB−B断面図である。
【図7】矩形土槽を傾斜させる機構を示す側面図である。
【図8】傾斜させた矩形土槽の状態を示す側面図である。
【図9】サンプリング用透明ガイド板を示す図である。
【符号の説明】
1 底板
2 前方固定側板
3 後方固定側板
4 目盛り付正面剛性透明板
5 目盛り付背面剛性透明板
6 二重止水パッキング
7 載荷板傾斜防止機構
8 載荷板
9 載荷・除荷装置
10 載荷・除荷制御装置
11 載荷・除荷用手動ハンドル
12 荷重計
13 変位計
14 監視・計測装置
15 剛性ガイド板
16 保持具
17 蓋
18 タイロット
19 台座
20 矩形土槽傾斜用ハンドル
21 主動土槽傾斜機構
22 受動土槽傾斜機構
23 連動チェーン
24 押さえネジ
25 土槽底板固定ネジ
G 模型地層
T 矩形土槽
S1〜S4 スペーサー
P1〜P4 有孔剛性板
F1〜F3 多孔質フィルター板または不透過性板
R1〜R4 止水パッキング
V1〜V4 浸透流試験用透過孔及び付随配管
L1、L2正面および背面透明ライナー板

Claims (9)

  1. 底板、側板、正面透明板及び背面透明板で構成される矩形土槽と、矩形土槽内の模擬地層に水平の力を載荷するために矩形土槽内に設置する載荷板と、前記模擬地層の変形および変形された模擬地層における試験流体の流れを測定・観測する手段を具備することを特徴とする地質構造及び水理のモデリング装置。
  2. 矩形土槽を固定底板、前方固定側板、後方固定側板、組立式の正面透明板及び背面透明板で構成し、前記固定底板及び前方固定側板の内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けることを特徴とする請求項1記載の地質構造及び水理のモデリング装置。
  3. 組立式の正面透明板及び背面透明板の内側には透明なライナー板を設けることを特徴とする請求項1又は請求項2記載の地質構造及び水理のモデリング装置。
  4. 載荷板は矩形土槽内壁との間に止水構造を有し、その内側にはスペーサーを介して有孔剛性板及び多孔質フィルター板又は不透過性板を設けるとともに偏荷重による傾斜を防止する傾斜防止機構を設けることを特徴とする請求項1乃至請求項3のいずれか1項に記載の地質構造及び水理のモデリング装置。
  5. 載荷板に荷重を載荷または除荷する載荷・除荷装置を接続するとともに、載荷板を介して模擬地層の変形速度を制御する載荷・除荷制御装置を設けたことを特徴とする請求項1乃至請求項4のいずれか1項に記載の地質構造及び水理のモデリング装置。
  6. 矩形土槽内に作製された模擬地層の垂直方向の浸透流試験を行うため、矩形土槽の下部及び上部に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間、有孔剛性板又は多孔質フィルター板を介して模擬地層の下部あるいは上部から供給可能とすることを特徴とする請求項1乃至請求項5のいずれか1項に記載の地質構造及び水理のモデリング装置。
  7. 矩形土槽内に作製された模擬地層の水平方向の浸透流試験を行うため、載荷板に透過孔を設け、該透過孔から注入される試験流体をスペーサーにより形成される槽状空間、有孔性剛性板及び多孔質フィルター板の下部を介して供給可能とすることを特徴とする請求項1乃至請求項5のいずれか1項に記載の地質構造及び水理のモデリング装置。
  8. 矩形土槽を組立式の正面透明板又は背面透明板の側に傾斜可能な傾斜機構を備え、矩形土槽を傾斜させた状態で正面透明板又は背面透明板を分解し模擬地層の任意の場所においてサンプリング可能とすることを特徴とする請求項1乃至請求項7のいずれか1項に記載の地質構造及び水理のモデリング装置。
  9. サンプル容器の挿入可能な多数のガイド孔を穿設したサンプリング用透明ガイド板を備えることを特徴とする請求項1乃至請求項8のいずれか1項に記載の地質構造及び水理のモデリング装置。
JP2002346636A 2002-11-29 2002-11-29 地質構造及び水理のモデリング装置 Expired - Lifetime JP3861149B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346636A JP3861149B2 (ja) 2002-11-29 2002-11-29 地質構造及び水理のモデリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346636A JP3861149B2 (ja) 2002-11-29 2002-11-29 地質構造及び水理のモデリング装置

Publications (2)

Publication Number Publication Date
JP2004177358A true JP2004177358A (ja) 2004-06-24
JP3861149B2 JP3861149B2 (ja) 2006-12-20

Family

ID=32707451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346636A Expired - Lifetime JP3861149B2 (ja) 2002-11-29 2002-11-29 地質構造及び水理のモデリング装置

Country Status (1)

Country Link
JP (1) JP3861149B2 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432651C (zh) * 2005-11-30 2008-11-12 山东大学 三维地质力学模型试验***
CN102661910A (zh) * 2012-05-21 2012-09-12 中国石油大学(华东) 一种测量流体在压裂裂缝内摩阻的实验装置及其工作方法
CN102866241A (zh) * 2012-09-29 2013-01-09 重庆大学 三向加载大型三维相似模拟试验方法
CN103293172A (zh) * 2013-05-16 2013-09-11 中国石油天然气股份有限公司 基于顶部注气的ct扫描多角度可旋转岩心夹持器
CN104569322A (zh) * 2015-02-15 2015-04-29 中国地质科学院水文地质环境地质研究所 一种地下水动态模拟实验平台的构建方法
CN104569323A (zh) * 2015-02-15 2015-04-29 中国地质科学院水文地质环境地质研究所 一种基于地下水动态模拟实验平台的自然降雨模拟实验方法
CN104569321A (zh) * 2015-02-15 2015-04-29 中国地质科学院水文地质环境地质研究所 一种基于地下水动态模拟实验平台的地表及含水层污染源模拟实验方法
CN104596895A (zh) * 2015-02-26 2015-05-06 中国地质科学院水文地质环境地质研究所 地下水污染迁移转化与最终归宿一体化移动模拟平台及模拟实验方法
CN104614242A (zh) * 2015-02-01 2015-05-13 东华理工大学 复杂条件下岩土体硐室开挖与围岩应力、应变监测模型试验装置及其方法
CN104614151A (zh) * 2015-02-05 2015-05-13 中国地质大学(北京) 海岸带咸淡水突变界面的砂槽渗流模拟装置及方法
CN104655816A (zh) * 2015-02-15 2015-05-27 中国地质科学院水文地质环境地质研究所 一种基于地下水动态模拟实验平台的含水层氧化还原环境模拟实验的方法
CN104833537A (zh) * 2015-02-17 2015-08-12 北京交通大学 一种模拟隧道施工的相似模型试验装置
CN104833538A (zh) * 2015-02-17 2015-08-12 北京交通大学 一种模拟隧道施工的相似模型试验方法
CN105136507A (zh) * 2015-09-16 2015-12-09 长安大学 一种室内模拟隧道开挖的实验装置及方法
CN105862652A (zh) * 2016-04-06 2016-08-17 山东大学 一种研究管涌破坏过程的物理模型试验装置及试验方法
KR101658895B1 (ko) * 2016-03-28 2016-09-22 한국해양과학기술원 야지궤도차량의 구동성능 평가를 위한 궤도 그라우저 모형 시험장치 및 궤도 그라우저 모형 시험방법
CN107421874A (zh) * 2017-09-08 2017-12-01 湘潭大学 一种水平渗流试验装置及其使用方法
CN108414347A (zh) * 2018-04-28 2018-08-17 山东科技大学 可模拟深部断层形成及裂隙发育的多功能试验***
CN108982271A (zh) * 2018-07-20 2018-12-11 河海大学 一种模拟土体接触冲刷发展过程的试验装置和试验方法
CN109754697A (zh) * 2019-01-18 2019-05-14 安徽理工大学 一种模拟断层错动的三维相似物理试验装置
CN109859557A (zh) * 2018-12-27 2019-06-07 中国石油大学(北京) 用于模拟地壳受力变形的实验装置
CN110702878A (zh) * 2019-10-14 2020-01-17 中国地震局工程力学研究所 一种用于砂土土工模型的试验箱
CN110940792A (zh) * 2019-11-26 2020-03-31 中铁西北科学研究院有限公司 一种双向倒梯形路堑边坡滑坡模型试验方法
CN111024590A (zh) * 2020-01-13 2020-04-17 昆明理工大学 一种可固定土体的现场测量散体材料渗透试验装置
CN112255160A (zh) * 2020-10-23 2021-01-22 天津大学 一种考虑水土耦合流动的二维平面渗流试验装置及方法
CN112700704A (zh) * 2020-12-02 2021-04-23 中国石油天然气股份有限公司 膝折构造模拟方法及装置
CN113976820A (zh) * 2021-10-30 2022-01-28 中国地质科学院地质力学研究所 一种用于砂箱实验预设断层装置及断层形成方法
CN114965962A (zh) * 2022-06-01 2022-08-30 桂林理工大学 透明土技术应用于复合含水层结构及其演化的可视化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949790B (zh) * 2010-09-08 2012-07-04 中国科学院武汉岩土力学研究所 一种制备多互层岩土类模型材料的装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432651C (zh) * 2005-11-30 2008-11-12 山东大学 三维地质力学模型试验***
CN102661910A (zh) * 2012-05-21 2012-09-12 中国石油大学(华东) 一种测量流体在压裂裂缝内摩阻的实验装置及其工作方法
CN102866241A (zh) * 2012-09-29 2013-01-09 重庆大学 三向加载大型三维相似模拟试验方法
CN103293172A (zh) * 2013-05-16 2013-09-11 中国石油天然气股份有限公司 基于顶部注气的ct扫描多角度可旋转岩心夹持器
CN104614242A (zh) * 2015-02-01 2015-05-13 东华理工大学 复杂条件下岩土体硐室开挖与围岩应力、应变监测模型试验装置及其方法
CN104614151A (zh) * 2015-02-05 2015-05-13 中国地质大学(北京) 海岸带咸淡水突变界面的砂槽渗流模拟装置及方法
CN104569321A (zh) * 2015-02-15 2015-04-29 中国地质科学院水文地质环境地质研究所 一种基于地下水动态模拟实验平台的地表及含水层污染源模拟实验方法
CN104569323A (zh) * 2015-02-15 2015-04-29 中国地质科学院水文地质环境地质研究所 一种基于地下水动态模拟实验平台的自然降雨模拟实验方法
CN104569322A (zh) * 2015-02-15 2015-04-29 中国地质科学院水文地质环境地质研究所 一种地下水动态模拟实验平台的构建方法
CN104569323B (zh) * 2015-02-15 2016-02-03 中国地质科学院水文地质环境地质研究所 一种基于地下水动态模拟实验平台的自然降雨模拟实验方法
CN104655816A (zh) * 2015-02-15 2015-05-27 中国地质科学院水文地质环境地质研究所 一种基于地下水动态模拟实验平台的含水层氧化还原环境模拟实验的方法
CN104833537A (zh) * 2015-02-17 2015-08-12 北京交通大学 一种模拟隧道施工的相似模型试验装置
CN104833538A (zh) * 2015-02-17 2015-08-12 北京交通大学 一种模拟隧道施工的相似模型试验方法
CN104596895B (zh) * 2015-02-26 2016-10-12 中国地质科学院水文地质环境地质研究所 地下水污染迁移转化与最终归宿一体化移动模拟平台及模拟实验方法
CN104596895A (zh) * 2015-02-26 2015-05-06 中国地质科学院水文地质环境地质研究所 地下水污染迁移转化与最终归宿一体化移动模拟平台及模拟实验方法
CN105136507B (zh) * 2015-09-16 2016-08-24 长安大学 一种室内模拟隧道开挖的实验装置及方法
CN105136507A (zh) * 2015-09-16 2015-12-09 长安大学 一种室内模拟隧道开挖的实验装置及方法
KR101658895B1 (ko) * 2016-03-28 2016-09-22 한국해양과학기술원 야지궤도차량의 구동성능 평가를 위한 궤도 그라우저 모형 시험장치 및 궤도 그라우저 모형 시험방법
CN105862652A (zh) * 2016-04-06 2016-08-17 山东大学 一种研究管涌破坏过程的物理模型试验装置及试验方法
CN107421874B (zh) * 2017-09-08 2023-10-10 湘潭大学 一种水平渗流试验装置及其使用方法
CN107421874A (zh) * 2017-09-08 2017-12-01 湘潭大学 一种水平渗流试验装置及其使用方法
CN108414347A (zh) * 2018-04-28 2018-08-17 山东科技大学 可模拟深部断层形成及裂隙发育的多功能试验***
CN108414347B (zh) * 2018-04-28 2024-01-05 山东科技大学 可模拟深部断层形成及裂隙发育的多功能试验***
CN108982271A (zh) * 2018-07-20 2018-12-11 河海大学 一种模拟土体接触冲刷发展过程的试验装置和试验方法
CN109859557A (zh) * 2018-12-27 2019-06-07 中国石油大学(北京) 用于模拟地壳受力变形的实验装置
CN109859557B (zh) * 2018-12-27 2020-11-17 中国石油大学(北京) 用于模拟地壳受力变形的实验装置
CN109754697A (zh) * 2019-01-18 2019-05-14 安徽理工大学 一种模拟断层错动的三维相似物理试验装置
CN110702878A (zh) * 2019-10-14 2020-01-17 中国地震局工程力学研究所 一种用于砂土土工模型的试验箱
CN110940792B (zh) * 2019-11-26 2023-01-06 中铁西北科学研究院有限公司 一种双向倒梯形路堑边坡滑坡模型试验方法
CN110940792A (zh) * 2019-11-26 2020-03-31 中铁西北科学研究院有限公司 一种双向倒梯形路堑边坡滑坡模型试验方法
CN111024590A (zh) * 2020-01-13 2020-04-17 昆明理工大学 一种可固定土体的现场测量散体材料渗透试验装置
CN111024590B (zh) * 2020-01-13 2024-04-26 昆明理工大学 一种可固定土体的现场测量散体材料渗透试验装置
CN112255160A (zh) * 2020-10-23 2021-01-22 天津大学 一种考虑水土耦合流动的二维平面渗流试验装置及方法
CN112700704A (zh) * 2020-12-02 2021-04-23 中国石油天然气股份有限公司 膝折构造模拟方法及装置
CN112700704B (zh) * 2020-12-02 2023-10-31 中国石油天然气股份有限公司 膝折构造模拟方法及装置
CN113976820A (zh) * 2021-10-30 2022-01-28 中国地质科学院地质力学研究所 一种用于砂箱实验预设断层装置及断层形成方法
CN113976820B (zh) * 2021-10-30 2023-11-21 中国地质科学院地质力学研究所 一种用于砂箱实验预设断层装置及断层形成方法
CN114965962A (zh) * 2022-06-01 2022-08-30 桂林理工大学 透明土技术应用于复合含水层结构及其演化的可视化方法

Also Published As

Publication number Publication date
JP3861149B2 (ja) 2006-12-20

Similar Documents

Publication Publication Date Title
JP3861149B2 (ja) 地質構造及び水理のモデリング装置
Indiketiya et al. Evaluation of defective sewer pipe–induced internal erosion and associated ground deformation using laboratory model test
Ke et al. Triaxial erosion test for evaluation of mechanical consequences of internal erosion
Gens et al. Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling
Takai et al. Evaluating the hydraulic barrier performance of soil-bentonite cutoff walls using the piezocone penetration test
Han et al. Measuring fluid flow properties of waste and assessing alternative conceptual models of pore structure
Parsa-Pajouh et al. Experimental and numerical investigations to evaluate two-dimensional modeling of vertical drain–assisted preloading
Meguid et al. Investigation of tunnel-soil-pile interaction in cohesive soils
CN107290501B (zh) 裂隙断层型地质构造内部充填介质渗透失稳突水实验装置与方法
Rawat et al. Swelling behavior of compacted bentonite-sand mixture during water infiltration
Luo et al. Effect of open-framework gravel on suffusion in sandy gravel alluvium
Dai et al. Experimental and numerical investigation on the mechanism of ground collapse induced by underground drainage pipe leakage
Tang et al. Experimental simulation of boundary condition effects on bentonite swelling in HLW repositories
Musso et al. Hydro-mechanical behaviour of a cement–bentonite mixture along evaporation and water-uptake controlled paths
CN114279934B (zh) 岛礁富水钙质砂土地层注浆模拟及渗透性试验装置与方法
Ho Experimental and numerical investigation of infiltration ponding in one-dimensional sand-geotextile columns
Rajesh et al. An apparatus to measure gas diffusion and gas permeability of unsaturated cap barriers subjected to distortion
Daniel¹ et al. Measurement of hydraulic properties of geosynthetic clay liners using a flow box
Peñuela River dyke failure modeling under transient water conditions
Jeeravipoolvarn et al. Revisiting the large strain consolidation test for oil sands
Galli PERMEATION GROUTING-Development and innovation of 1D and 3D experimental tests for the analysis of the injection processes and the influence on the mechanical resistance of the grouted soil
Babcock Permeability and Porosity of Loose Granular Salt
Heyerdahl et al. Comparison of experimental and predictive approaches for determination of water retention curves of intact samples of quaternary soils
Kim Evaluation of coupled hydro-mechanical (hm) behaviour of in situ shaft sealing components for used nuclear fuel
TW200403381A (en) A simulation system and method of a grouting test body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3861149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term