JP2004176969A - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP2004176969A
JP2004176969A JP2002342260A JP2002342260A JP2004176969A JP 2004176969 A JP2004176969 A JP 2004176969A JP 2002342260 A JP2002342260 A JP 2002342260A JP 2002342260 A JP2002342260 A JP 2002342260A JP 2004176969 A JP2004176969 A JP 2004176969A
Authority
JP
Japan
Prior art keywords
heat transfer
tube group
evaporator
absorber
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002342260A
Other languages
Japanese (ja)
Inventor
Sumio Yagyu
寿美夫 柳生
Yuji Fukuyama
雄二 福山
Norio Obata
法夫 尾畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002342260A priority Critical patent/JP2004176969A/en
Publication of JP2004176969A publication Critical patent/JP2004176969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To put cooling medium into the condition of uniformly wetting on heat transfer pipe groups 14a, 15a for improving the heat transfer efficiency of the heat transfer pipe groups 14a, 15a by making the cooling medium dropping down from above effectively contribute to the heat transfer of the heat transfer pipe groups 14a, 15a for an evaporator 14 and an absorber 15. <P>SOLUTION: In at least one of the evaporator 14 and the absorber 15 between an upper pipe group located on the upper side out of the heat transfer pipe groups 14a, 15a installed inside and a lower pipe group located on the lower side thereof, current rectifying plates 16, 17 on which meshes are formed are arranged in the state that the lower faces of the current rectifying plates have contact with the upper faces of the heat transfer pipes 14a, 15a of the lower pipe group or are slightly spaced therefrom. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は蒸発器、吸収器、再生器及び凝縮器を備えた吸収式ヒートポンプに関し、詳しくは、蒸発器及び吸収器の構造に関する。
【0002】
【従来の技術】
従来の吸収式ヒートポンプにおいては、例えば図6に示すように、冷媒蒸気が通過可能な仕切り部23を間にして蒸発器と吸収器が隣接配置され、蒸発器では凝縮器で凝縮された冷媒Rを、吸収器では再生器で濃縮再生された吸収液Lc(例えば、LiBr水溶液)を上方からスプレー噴射方式などにより夫々の伝熱管群14a,15aへ滴下している。そして、蒸発器では冷媒Rの蒸発熱により伝熱管14a内を流れる熱媒を冷却し、吸収器では蒸発器で蒸発した冷媒蒸気を吸収液に吸収させ、冷媒蒸気を吸収して濃度が低くなった吸収液Laを再生器に送出している(これを第1の従来技術とする)。 また、別の吸収式ヒートポンプの技術として、蒸発器及び吸収器内を上下2段に分割して、上段部の伝熱管群を流れてきた冷媒等を上下の境界箇所に設けた受け皿にいったん収容した後、その受け皿の底部に開けた滴下孔から下段部の伝熱管群に滴下させるようにした構造が開示されている(これを第2の従来技術とする)(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−179975号公報(第2−8頁、図1〜図7)
【0004】
【発明が解決しようとする課題】
しかし、上記第1の従来技術では、冷媒や吸収液が伝熱管群に滴下する際、伝熱管群と周囲の壁との間には少なからずデッドスペースが存在するため、滴下状況によってはそのデッドスペースへ冷媒等が流れ込み、伝熱管に当ることなく下部の液溜りまで落下して、伝熱に寄与しない場合があった。さらに、冷媒等が伝熱管をつたって流れていても、伝熱管の端部等においては濡れていない部分があり、濡れ方が不均一な場合もあった。その結果、蒸発器での蒸発効率及び吸収器での吸収効率が低下して、吸収式ヒートポンプの性能の低下を招くおそれがあった。
また、上記第2の従来技術では、上段部の伝熱管群と周囲の壁との間のデッドスペースに流れ込んだ冷媒等を受け皿に集めて、下段部の伝熱管群に滴下させているので、冷媒等が伝熱管に全く当らずに落下するということはないが、伝熱管に対する冷媒等の濡れ方で不均一が発生するおそれはあった。
【0005】
本発明は、上記実情に鑑みてなされたものであり、その目的は、蒸発器や吸収器の伝熱管群に対して上部から滴下された冷媒等を有効に伝熱に寄与させて、蒸発器での蒸発効率及び吸収器での吸収効率を向上させるために、冷媒等が伝熱管群の各管に対して均一に濡れる状態にすることにある。
さらには、伝熱管群と周囲の壁との間のデッドスペースに流れ込んだ冷媒等を伝熱管群の方に戻して、蒸発器での蒸発効率及び吸収器での吸収効率の一層の向上を実現させることにある。
【0006】
【課題を解決するための手段】
上記目的を実現するための吸収式ヒートポンプの請求項1に係る発明の特徴は、前記蒸発器と前記吸収器の少なくとも一方において、内部に設置された伝熱管群のうち上側に位置する上部管群と下側に位置する下部管群の間に、メッシュが形成された整流板をその整流板の下面が前記下部管群の伝熱管の上面と接触もしくは微小間隙を開ける状態で配置した点にある。
【0007】
すなわち、この構成によれば、蒸発器と吸収器の少なくとも一方の内部に設置された伝熱管群の上部管群を伝って落下してきた冷媒や吸収液が、上部管群と下部管群の間に配置した整流板に達すると、整流板に形成されたメッシュに触れた冷媒等がメッシュの隙間に浸透して、伝熱管群の端部等の流れの悪い箇所にも流れて広がるため、滴下範囲を横方向に均一に広げることができる。さらに、メッシュで広げられ保持された冷媒等が、整流板の下面に接触もしくは微小間隙を開ける状態で配置された下部管群の伝熱管の上面に伝って落下するため、孔等による場合の点による滴下から線あるいは面による滴下が可能となる。
【0008】
従って、例えば前記第2の従来技術のように滴下孔付きの板状の受け皿で冷媒等を受けるものでは、液量や板の傾斜等によって液が偏った状態で滴下されるおそれがあるのに対して、本発明のメッシュを備えた整流板では浸透作用によって液が迅速かつ均一に広がり、冷媒等が伝熱管群の各管に対して均一に濡れる状態で滴下することができる。これにより、蒸発器や吸収器の伝熱管群に対して上部から滴下された冷媒等を有効に伝熱に寄与させて、蒸発器での蒸発効率及び吸収器での吸収効率を向上させることが可能となる。
【0009】
請求項2に係る発明の特徴は、請求項1に係る発明に加えて、前記伝熱管群と周囲の壁との間に、壁側から内側に向かって高さが低くなり且つ内側端部が前記伝熱管群の端に位置する斜板を配置した点にある。
【0010】
すなわち、この構成によれば、上方から滴下された冷媒液等が伝熱管群と周囲の壁との間のデッドスペースに流れ込んだ場合に、そのデッドスペースに配置した斜板によって受止められるとともに、壁側から内側に向かって高さが低くなった斜板によって、壁側から内側端部の伝熱管群の端の位置まで戻される。これにより、デッドスペースに流れ込んだ冷媒等を内側に戻して伝熱管群に当てて伝熱に有効に寄与させ、蒸発器での蒸発効率及び吸収器での吸収効率の一層の向上を実現することができる。
【0011】
請求項3に係る発明の特徴は、請求項1又は2に係る発明に加えて、前記伝熱管群の上方から冷媒液又は溶液を落下供給する液供給部と周囲の壁との間に、壁側から内側に向かって高さが低くなり且つ内側端部が前記伝熱管群の端に位置する斜板を配置した点にある。
【0012】
すなわち、この構成によれば、伝熱管群の上方から冷媒液又は溶液を落下供給する液供給部の横側方に飛散した冷媒液等が液供給部と周囲の壁との間のデッドスペースに流れ込んだ場合に、そのデッドスペースに配置した斜板によって受止められるとともに、壁側から内側に向かって高さが低くなった斜板によって、壁側から内側端部の伝熱管群の端の位置まで戻される。これにより、上記液供給部から横側方に飛散した冷媒液等を伝熱管群に当てて伝熱に有効に寄与させ、蒸発器での蒸発効率及び吸収器での吸収効率の一層の向上を実現することができる。
【0013】
請求項4に係る発明は、請求項2又は3に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、前記斜板の内側端部を前記整流板の周縁部に連なるように接続した点にある。
【0014】
すなわち、この構成によれば、斜板によって受止められ斜板の内側端部に戻された冷媒液等が、斜板の内側端部に連なるように接続された整流板の周縁部にスムーズに移行して、整流板の全体に広がるので、上記斜板で戻された冷媒液等を伝熱管群の端部の伝熱管のみでなく、全体の管群に触れる状態にして、蒸発器での蒸発効率及び吸収器での吸収効率を一層向上させることができる。
【0015】
【発明の実施の形態】
図1は本発明を適用した吸収式冷温水機(吸収式ヒートポンプの一例)を備えたガスタービン・コージェネレーションシステムを示し、1はガスタービン、2はガスタービン1の出力軸1aに連結した圧縮機であり、この圧縮機2により吸気路3から燃焼用空気Aを吸入して、その吸入した燃焼用空気Aを送気路4を通じガスタービン1の燃焼器5に加圧供給し、この燃焼器5で燃料路6からの供給燃料Fを燃焼させることによりガスタービン1の運転を継続する。
【0016】
7は排ガス路8へ送出されたガスタービン1の排ガスEと送気路4の燃焼用空気Aとを熱交換させて燃焼用空気Aを予熱する再生熱交換器であり、この再生熱交換器7による空気予熱により、所要のタービン作動温度を得るのに要する燃料量を低減してガスタービン1の燃料消費量を節減する。
9は圧縮機2とともにガスタービン1の出力軸1aに連結した発電機であり、ガスタービン1の発生動力により発電機9を駆動することでコージェネレーションシステムとしての電力出力(タービン出力G)を得る。
【0017】
一方、10は二重効用型の吸収式冷温水機であり、この吸収式冷温水機10の高温再生器11において吸収液Laを加熱する加熱管11aを再生熱交換器7よりも下流側で排ガス路8に介装して、この加熱管11aに対し再生熱交換器7を通過した後のタービン排ガスEを熱源熱媒として供給する構成にし、これにより、再生熱交換器7を通過した後のタービン排ガスEの保有熱を駆動熱源として吸収式冷温水機10を運転することで、コージェネレーションシステムとしての熱出力を得る。
【0018】
12は高温再生器11において加熱管11aによる加熱で冷媒Rを蒸発分離させた後の中濃度吸収液Lbを導入する低温再生器、12aは高温再生器11で発生した冷媒蒸気Rを熱源熱媒とする低温再生器用の加熱管であり、この加熱管12aによる低温再生器12での吸収液加熱により低温再生器12において中濃度吸収液Lbから更に冷媒蒸気Rを発生させる。
【0019】
13は低温再生器12で発生した冷媒蒸気R及び低温再生器12の加熱管12aを通過した冷媒Rを冷却器13aの通過冷却水Cにより冷却して凝縮させる凝縮器であり、14は凝縮器13から送られる液冷媒Rを低圧雰囲気下で蒸発させて、出力熱交換器を構成する伝熱管14aにおける通過水Wをそれからの気化熱奪取により冷却する蒸発器であり、15は冷却用の伝熱管15aの通過冷却水Cによる冷却下において低温再生器12から送られる濃吸収液Lcに蒸発器14での蒸発冷媒Rを吸収させる吸収器である。そして、上記蒸発器14により通過水Wを冷却して冷熱出力Qを得る。
【0020】
また、16aは吸収器15から高温再生器11に戻す希吸収液Laを低温再生器12から吸収器15に送る濃吸収液Lcと熱交換させて予熱する低温熱交換器であり、16bは低温熱交換器16aで予熱した希吸収液Laを高温再生器11から低温再生器12に送る中濃度吸収液Lbによりさらに予熱する高温熱交換器であり、p1は冷媒循環ポンプ、p2は吸収液循環ポンプである。
【0021】
そして、この吸収式冷温水機10では、高温熱交換器16bで予熱した希吸収液Laを高温再生器11に戻す前段で、その希吸収液Laを加熱管11aから送出されるタービン排ガスEと熱交換させてさらに高温に予熱する最終予熱用の予熱熱交換器16cを設けてあり、これにより、加熱管11aの出口におけるタービン排ガスEの温度を高く設定して高温再生器11における冷媒Rの蒸発温度(蒸発圧力)を高く確保しながらも、予熱熱交換器16cでの希吸収液Laの予熱により冷凍機全体としてのタービン排ガスEからの取り入れ熱量を大きく確保して、未利用のままで機外へ排出するタービン排ガスEの残存熱量を効果的に低減するようにしている。
なお、吸収式冷温水機10の温水発生運転では、高温再生器11において加熱管11aにより加熱した冷媒Rを短絡的に蒸発器14に導いて、その加熱冷媒Rにより伝熱管14aにおける通過水Wを加熱する。これにより、蒸発器14により通過水Wを加熱する温熱出力Qが得られる。
【0022】
次に、前記蒸発器14と前記吸収器15の構造について説明すると、図2に示すように、蒸発器14と吸収器15において、内部に設置された伝熱管群14a,15aのうち上側に位置する上部管群と下側に位置する下部管群の間に、メッシュが形成された整流板16,17をその整流板16,17の下面が前記下部管群の伝熱管の上面と接触もしくは微少間隙を開ける状態で配置している。
具体的には、伝熱管群14a,15aを上下3群に分けて、一番上の管群14a1,15a1が上から2番目の管群14a2,15a2との関係では上部管群になるとともに、上から2番目の管群14a2,15a2が下部管群になり、また、上から2番目の管群14a2,15a2が上から3番目の管群14a3,15a3との関係では上部管群になるとともに、上から3番目の管群14a3,15a3が下部管群になる。ただし、伝熱管群14a,15aの上部管群及び下部管群への群分けは適宜変更することができ、例えば、上記3群の各群内で上下方向に並ぶ各管の間に、さらに整流板16,17を配置する構成も可能である。
【0023】
なお、上記蒸発器14と吸収器15は、蒸発器14で蒸発した冷媒蒸気を吸収器15に通過させる通過開口を備えた仕切り部23で仕切られている。また、図では、伝熱管群14a,15aを構成する各伝熱管が格子状に配列されたものを示すが、上下左右で隣接する各伝熱管同士の位置を半ピッチずらせた千鳥状に配列してもよい。
【0024】
また、前記伝熱管群14a,15aと周囲の壁22との間に、壁側から内側に向かって高さが低くなり且つ内側端部が前記伝熱管群14a,15aの端に位置する斜板18,19を配置している。そして、上記斜板18,19の内側端部を前記整流板16,17の周縁部に連なるように接続している。尚、図2には、斜板18,19の内側端部が上から2番目の管群14a2,15a2と上から3番目の管群14a3,15a3との間の整流板16,17に連なるものを示す。
さらに、蒸発器14において前記伝熱管群14aの上方から冷媒液を落下供給する液供給部としての冷媒スプレー噴射装置20及び吸収器15において前記伝熱管群15aの上方からLiBr溶液(吸収液)を落下供給する液供給部としてのLiBr溶液スプレー噴射装置21の夫々と周囲の壁22との間にも、壁側から内側に向かって高さが低くなり且つ内側端部が前記伝熱管群14a,15aの端に位置する斜板18,19を配置している。なお、上記液供給部は、スプレー噴射式の他に、底に滴下孔を開けたトレー(受け皿)式のものでもよい。
【0025】
本実施形態では、蒸発器14と吸収器15を1つの壁体内に仕切り部23で仕切って隣接設置しているため、斜板18,19のうち、仕切り部23側の斜板18,19は、仕切り部23との間のデッドスペースに流れ込んだ冷媒液等を伝熱管14a,15aの方に戻す。この結果、斜板18,19は、蒸発器14と吸収器15との間での液の混入(吸収器15の溶液が蒸発器14に混入する、あるいは、蒸発器14の冷媒が吸収器15に混入すること)を防止する働きもする。
【0026】
前記整流板16,17は、図3に示すように、中央のメッシュ部分16b,17bと、これを保持する周囲の枠部分16a,17aで構成される。なお、図3では、前記斜板18,19の内側端部が上記枠部分16a,17aの縁部に接続されたものを示している。
【0027】
図4に、上記整流板16,17と斜板18,19が一体に接続されたものを、上下3群の伝熱管群14a,15aの間に配置した例を示す。なお、上記整流板16,17と斜板18,19を接続せず、分離状態で端部同士を近接配置するようにしてもよい。また、図5には、上記整流板16,17単体を、上下3群の伝熱管群14a,15aの間に配置した例を示す。
【0028】
上記整流板16,17と斜板18,19の材質としては、鋼材が使用される。ただし、強度及び腐食に問題が無ければ、樹脂材等で構成してもよい。また、整流板16,17のメッシュサイズは、冷媒や吸収液が通過できる範囲で種々のサイズを選択することができる。
【0029】
〔別実施形態〕
次に別実施形態を列記する。
上記実施形態では、蒸発器14と吸収器15の両方において、メッシュが形成された整流板16,17、及び、斜板18,19を配置したが、蒸発器14と吸収器15の少なくとも一方において、整流板16,17、及び、斜板18,19を配置するようにしてもよい。
【0030】
上記実施形態では、蒸発器14と吸収器15を1つの壁体内に仕切り部23で仕切って隣接設置したが、蒸発器14と吸収器15を別々の壁体内に配置して、蒸発器14と吸収器15を配管で接続するようにしてもよい。
【図面の簡単な説明】
【図1】本発明を適用した吸収式冷温水機を備えたガスタービン・コージェネレーションシステムの全体構成図
【図2】本発明に係る蒸発器と吸収器の構造を示す側面図
【図3】本発明に係る整流板及び斜板の構造を示す斜視図
【図4】本発明に係る蒸発器と吸収器の構造の変形例を示す側面図
【図5】本発明に係る蒸発器と吸収器の構造の変形例を示す側面図
【図6】従来例の蒸発器と吸収器の構造を示す側面図
【符号の説明】
11,12 再生器
14 蒸発器
14a 伝熱管群
15 吸収器
15a 伝熱管群
16 整流板
17 整流板
18 斜板
19 斜板
20 液供給部
21 液供給部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorption heat pump having an evaporator, an absorber, a regenerator, and a condenser, and more particularly, to a structure of an evaporator and an absorber.
[0002]
[Prior art]
In a conventional absorption heat pump, for example, as shown in FIG. 6, an evaporator and an absorber are arranged adjacent to each other with a partition 23 through which refrigerant vapor can pass, and the refrigerant R condensed in a condenser in the evaporator. In the absorber, the absorption liquid Lc (for example, LiBr aqueous solution) concentrated and regenerated by the regenerator is dropped from above onto the respective heat transfer tube groups 14a and 15a by a spray injection method or the like. In the evaporator, the heat medium flowing in the heat transfer tube 14a is cooled by the heat of evaporation of the refrigerant R, and in the absorber, the refrigerant vapor evaporated by the evaporator is absorbed by the absorbing liquid, and the refrigerant vapor is absorbed to reduce the concentration. The absorbed liquid La is sent to a regenerator (this is referred to as a first conventional technique). Also, as another absorption heat pump technology, the inside of the evaporator and the absorber is divided into upper and lower stages, and the refrigerant and the like flowing through the heat transfer tube group in the upper stage are temporarily stored in a tray provided at the upper and lower boundary points. After that, there is disclosed a structure in which a drop hole formed in the bottom of the tray is dropped into a heat transfer tube group in a lower portion (this is referred to as a second related art) (for example, see Patent Document 1). .
[0003]
[Patent Document 1]
JP-A-2000-179975 (pages 2 to 8, FIGS. 1 to 7)
[0004]
[Problems to be solved by the invention]
However, in the first prior art, when the refrigerant or the absorbing liquid is dropped onto the heat transfer tube group, there is not a small dead space between the heat transfer tube group and the surrounding wall, so that depending on the dripping situation, the dead space may be reduced. In some cases, the refrigerant or the like flows into the space and falls into the lower liquid pool without hitting the heat transfer tube, and does not contribute to heat transfer. Further, even when the refrigerant or the like flows through the heat transfer tubes, there are portions that are not wet at the ends and the like of the heat transfer tubes, and the wet manner is sometimes uneven. As a result, the evaporation efficiency in the evaporator and the absorption efficiency in the absorber are reduced, and there is a possibility that the performance of the absorption heat pump is reduced.
Further, in the second prior art, the refrigerant and the like flowing into the dead space between the upper part of the heat transfer tube group and the surrounding wall are collected in a tray and dropped on the lower part of the heat transfer tube group. Although the refrigerant or the like does not fall without hitting the heat transfer tube at all, there is a possibility that unevenness may occur due to the way the refrigerant or the like wets the heat transfer tube.
[0005]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to make a refrigerant or the like dropped from the upper part of a heat transfer tube group of an evaporator or an absorber effectively contribute to heat transfer, thereby evaporating the evaporator. In order to improve the evaporation efficiency of the heat transfer tube and the absorption efficiency of the absorber, it is necessary to make the refrigerant or the like uniformly wet each tube of the heat transfer tube group.
In addition, the refrigerant, etc., flowing into the dead space between the heat transfer tube group and the surrounding wall is returned to the heat transfer tube group, further improving the evaporation efficiency in the evaporator and the absorption efficiency in the absorber. To make it happen.
[0006]
[Means for Solving the Problems]
The feature of the invention according to claim 1 of the absorption heat pump for achieving the above object is that at least one of the evaporator and the absorber has an upper tube group located above a heat transfer tube group installed therein. And the lower tube group located on the lower side, the point where the mesh-formed flow straightening plate is arranged such that the lower surface of the flow straightening plate is in contact with the upper surface of the heat transfer tube of the lower tube group or a small gap is opened. .
[0007]
In other words, according to this configuration, the refrigerant or the absorbing liquid that has fallen along the upper tube group of the heat transfer tube group installed inside at least one of the evaporator and the absorber is moved between the upper tube group and the lower tube group. When the flow reaches the flow straightening plate, the refrigerant, etc., that has touched the mesh formed on the current straightening plate penetrates into the gaps between the meshes and flows to the poorly flowing places such as the ends of the heat transfer tube group to spread. The range can be extended uniformly in the lateral direction. Furthermore, since the refrigerant or the like spread and held by the mesh falls down on the upper surface of the heat transfer tubes of the lower tube group arranged in a state of contacting or forming a small gap with the lower surface of the flow straightening plate, a point due to holes or the like is generated. Can be dropped by a line or a surface.
[0008]
Therefore, for example, in the case of receiving a refrigerant or the like in a plate-shaped receiving tray with a drip hole as in the second related art, there is a possibility that the liquid may be dripped in an uneven state due to the liquid amount or the inclination of the plate. On the other hand, in the current plate provided with the mesh of the present invention, the liquid spreads quickly and uniformly due to the permeation action, and the refrigerant and the like can be dripped in a state of being uniformly wetted on each tube of the heat transfer tube group. As a result, the refrigerant and the like dropped from the upper portion to the heat transfer tube group of the evaporator and the absorber can effectively contribute to the heat transfer, thereby improving the evaporation efficiency in the evaporator and the absorption efficiency in the absorber. It becomes possible.
[0009]
A feature of the invention according to claim 2 is that, in addition to the invention according to claim 1, between the heat transfer tube group and the surrounding wall, the height decreases inward from the wall side and the inner end is The swash plate located at the end of the heat transfer tube group is arranged.
[0010]
That is, according to this configuration, when the refrigerant liquid or the like dropped from above flows into the dead space between the heat transfer tube group and the surrounding wall, it is received by the swash plate arranged in the dead space, The swash plate whose height is reduced from the wall side toward the inner side returns the swash plate from the wall side to the position of the end of the heat transfer tube group at the inner end. As a result, the refrigerant and the like flowing into the dead space are returned to the inside and applied to the heat transfer tube group to effectively contribute to heat transfer, thereby further improving the evaporation efficiency in the evaporator and the absorption efficiency in the absorber. Can be.
[0011]
A feature of the invention according to claim 3 is that, in addition to the invention according to claim 1 or 2, a wall is provided between a liquid supply unit that supplies a coolant liquid or a solution from above the heat transfer tube group and a surrounding wall. The point is that the swash plate located at the end of the heat transfer tube group is disposed such that the height decreases from the side toward the inside and the inside end is located at the end of the heat transfer tube group.
[0012]
That is, according to this configuration, the refrigerant liquid or the like scattered to the side of the liquid supply unit that supplies and supplies the refrigerant liquid or the solution from above the heat transfer tube group falls into the dead space between the liquid supply unit and the surrounding wall. When the swash plate flows in, it is received by the swash plate arranged in the dead space, and the position of the end of the heat transfer tube group from the wall side to the inner end portion is reduced by the swash plate whose height decreases inward from the wall side. Returned to Thereby, the refrigerant liquid or the like scattered laterally from the liquid supply unit is applied to the heat transfer tube group to effectively contribute to the heat transfer, thereby further improving the evaporation efficiency in the evaporator and the absorption efficiency in the absorber. Can be realized.
[0013]
The invention according to claim 4 specifies an embodiment suitable for carrying out the invention according to claim 2 or 3, characterized in that the inner end of the swash plate is connected to the peripheral edge of the rectifying plate. At the point where they are connected.
[0014]
That is, according to this configuration, the refrigerant liquid or the like received by the swash plate and returned to the inner end of the swash plate smoothly flows to the peripheral edge of the rectifying plate connected to the inner end of the swash plate. Since it shifts and spreads over the entire current plate, the refrigerant liquid and the like returned by the swash plate are brought into contact not only with the heat transfer tubes at the end of the heat transfer tube group but also with the entire tube group, and the evaporator is used. Evaporation efficiency and absorption efficiency in the absorber can be further improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a gas turbine cogeneration system provided with an absorption chiller / heater (an example of an absorption heat pump) to which the present invention is applied, 1 is a gas turbine, and 2 is a compressor connected to an output shaft 1 a of a gas turbine 1. The compressor 2 sucks combustion air A from an intake passage 3 by the compressor 2 and pressurizes and supplies the sucked combustion air A to a combustor 5 of the gas turbine 1 through an air passage 4. The operation of the gas turbine 1 is continued by burning the supply fuel F from the fuel passage 6 in the heater 5.
[0016]
Reference numeral 7 denotes a regenerative heat exchanger for preheating the combustion air A by exchanging heat between the exhaust gas E of the gas turbine 1 sent to the exhaust gas passage 8 and the combustion air A in the air supply passage 4. The air preheating by 7 reduces the amount of fuel required to obtain the required turbine operating temperature, thereby saving fuel consumption of the gas turbine 1.
Reference numeral 9 denotes a generator connected to the output shaft 1a of the gas turbine 1 together with the compressor 2, and the generator 9 is driven by the generated power of the gas turbine 1 to obtain an electric power output (turbine output G) as a cogeneration system. .
[0017]
On the other hand, reference numeral 10 denotes a double-effect absorption chiller / heater, and a heating pipe 11a for heating the absorbent La in the high-temperature regenerator 11 of the absorption chiller / heater 10 is located downstream of the regenerative heat exchanger 7. The turbine exhaust gas E after passing through the regenerative heat exchanger 7 is supplied to the heating pipe 11 a as a heat source heat medium by being interposed in the exhaust gas path 8. By operating the absorption chiller / heater 10 using the retained heat of the turbine exhaust gas E as a driving heat source, a heat output as a cogeneration system is obtained.
[0018]
Reference numeral 12 denotes a low-temperature regenerator that introduces the medium-concentration absorption liquid Lb after the refrigerant R is evaporated and separated by heating by the heating pipe 11a in the high-temperature regenerator 11, and 12a transmits the refrigerant vapor R generated in the high-temperature regenerator 11 to a heat source heat medium. The low-temperature regenerator 12 further generates refrigerant vapor R from the medium-concentration absorbent Lb by heating the absorbent in the low-temperature regenerator 12 by the heating tube 12a.
[0019]
Reference numeral 13 denotes a condenser that cools and condenses the refrigerant vapor R generated in the low-temperature regenerator 12 and the refrigerant R that has passed through the heating pipe 12a of the low-temperature regenerator 12 with the cooling water C passing through the cooler 13a. 13 is an evaporator for evaporating the liquid refrigerant R sent from 13 under a low-pressure atmosphere and cooling the passing water W in the heat transfer tube 14a constituting the output heat exchanger by removing vaporized heat therefrom. This is an absorber for absorbing the evaporated refrigerant R in the evaporator 14 to the concentrated absorption liquid Lc sent from the low temperature regenerator 12 under cooling by the cooling water C passing through the heat pipe 15a. Then, the passing water W is cooled by the evaporator 14 to obtain the cooling power Q.
[0020]
Reference numeral 16a denotes a low-temperature heat exchanger that pre-heats the diluted absorbent La returned from the absorber 15 to the high-temperature regenerator 11 by exchanging heat with the concentrated absorbent Lc sent from the low-temperature regenerator 12 to the absorber 15, and 16b denotes a low-temperature heat exchanger. A high-temperature heat exchanger for preheating the diluted absorbent La preheated by the heat exchanger 16a with the medium-concentration absorbent Lb sent from the high-temperature regenerator 11 to the low-temperature regenerator 12, p1 is a refrigerant circulation pump, and p2 is an absorbent circulation. It is a pump.
[0021]
In the absorption chiller / heater 10, before the dilute absorbent La preheated by the high-temperature heat exchanger 16b is returned to the high-temperature regenerator 11, the dilute absorbent La and the turbine exhaust gas E sent out from the heating pipe 11a are combined. A preheating heat exchanger 16c for final preheating for preheating to a higher temperature by heat exchange is provided, whereby the temperature of the turbine exhaust gas E at the outlet of the heating pipe 11a is set to be high, and the temperature of the refrigerant R in the high temperature regenerator 11 is increased. While the evaporation temperature (evaporation pressure) is kept high, the amount of heat taken in from the exhaust gas E of the turbine as the entire refrigerator is largely secured by preheating the diluted absorption liquid La in the preheating heat exchanger 16c. The amount of residual heat of the turbine exhaust gas E discharged outside the machine is effectively reduced.
In the hot water generation operation of the absorption chiller / heater 10, the refrigerant R heated by the heating pipe 11a in the high-temperature regenerator 11 is short-circuited to the evaporator 14, and the passing water W in the heat transfer pipe 14a is heated by the heated refrigerant R. Heat. Thereby, a thermal output Q for heating the passing water W by the evaporator 14 is obtained.
[0022]
Next, the structure of the evaporator 14 and the absorber 15 will be described. As shown in FIG. 2, the evaporator 14 and the absorber 15 are located on the upper side of the heat transfer tube groups 14a and 15a installed inside. Between the upper tube group to be formed and the lower tube group located on the lower side, mesh-formed rectifying plates 16 and 17 are arranged such that the lower surfaces of the rectifying plates 16 and 17 are in contact with the upper surfaces of the heat transfer tubes of the lower tube group or are slightly smaller. They are arranged with a gap.
Specifically, the heat transfer tube groups 14a, 15a are divided into three groups, upper and lower, and the top tube group 14a1, 15a1 becomes the upper tube group in relation to the second top tube group 14a2, 15a2, The second tube group 14a2, 15a2 from the top becomes the lower tube group, and the second tube group 14a2, 15a2 from the top becomes the upper tube group in relation to the third tube group 14a3, 15a3 from the top. The third tube group 14a3, 15a3 from the top becomes the lower tube group. However, the grouping of the heat transfer tube groups 14a and 15a into the upper tube group and the lower tube group can be changed as appropriate. For example, rectification is further performed between the tubes vertically arranged in each of the three groups. A configuration in which the plates 16 and 17 are arranged is also possible.
[0023]
The evaporator 14 and the absorber 15 are partitioned by a partition 23 having a passage opening through which the refrigerant vapor evaporated by the evaporator 14 passes through the absorber 15. Also, in the figure, the heat transfer tubes constituting the heat transfer tube groups 14a and 15a are shown arranged in a lattice shape. However, the positions of the adjacent heat transfer tubes at the top, bottom, left, and right are arranged in a zigzag pattern shifted by half a pitch. You may.
[0024]
A swash plate between the heat transfer tube groups 14a, 15a and the surrounding wall 22 has a height decreasing from the wall side toward the inside and an inner end located at an end of the heat transfer tube groups 14a, 15a. 18 and 19 are arranged. The inner ends of the swash plates 18 and 19 are connected so as to be continuous with the peripheral edges of the rectifying plates 16 and 17. In FIG. 2, the inner ends of the swash plates 18 and 19 are connected to straightening plates 16 and 17 between the second tube group 14a2 and 15a2 from the top and the third tube group 14a3 and 15a3 from the top. Is shown.
Further, the LiBr solution (absorbing liquid) is supplied from above the heat transfer tube group 15a in the absorber 15 and the refrigerant spray injection device 20 as a liquid supply unit that supplies the coolant liquid from above the heat transfer tube group 14a in the evaporator 14. Also between each of the LiBr solution spray injection devices 21 as the liquid supply units to be dropped and the surrounding wall 22, the height decreases inward from the wall side and the inner ends are the heat transfer tube groups 14 a, Swash plates 18, 19 located at the end of 15a are arranged. The liquid supply unit may be a tray (dish) having a drip hole at the bottom, instead of the spray injection type.
[0025]
In the present embodiment, since the evaporator 14 and the absorber 15 are installed adjacent to each other by partitioning the partition wall 23 in the single wall, the swash plates 18 and 19 on the partition 23 side of the swash plates 18 and 19 are arranged. The refrigerant liquid and the like that have flowed into the dead space between the partition 23 are returned to the heat transfer tubes 14a and 15a. As a result, the swash plates 18 and 19 cause the mixture of the liquid between the evaporator 14 and the absorber 15 (the solution of the absorber 15 is mixed with the evaporator 14 or the refrigerant of the evaporator 14 is mixed with the absorber 15). Also mixes).
[0026]
As shown in FIG. 3, the rectifying plates 16 and 17 are composed of central mesh portions 16b and 17b and surrounding frame portions 16a and 17a that hold the mesh portions. In FIG. 3, the inner ends of the swash plates 18, 19 are connected to the edges of the frame portions 16a, 17a.
[0027]
FIG. 4 shows an example in which the rectifying plates 16, 17 and the swash plates 18, 19 are integrally connected and arranged between three upper and lower heat transfer tube groups 14a, 15a. The end portions may be arranged close to each other in a separated state without connecting the rectifying plates 16 and 17 and the swash plates 18 and 19. FIG. 5 shows an example in which the straightening plates 16 and 17 alone are arranged between three upper and lower heat transfer tube groups 14a and 15a.
[0028]
A steel material is used as a material for the rectifying plates 16 and 17 and the swash plates 18 and 19. However, if there is no problem in strength and corrosion, it may be made of a resin material or the like. Further, the mesh size of the flow regulating plates 16 and 17 can be selected from various sizes as long as the refrigerant and the absorbing liquid can pass through.
[0029]
[Another embodiment]
Next, another embodiment will be described.
In the above embodiment, the rectifying plates 16 and 17 and the swash plates 18 and 19 on which meshes are formed are arranged in both the evaporator 14 and the absorber 15, but in at least one of the evaporator 14 and the absorber 15. , The rectifying plates 16 and 17 and the swash plates 18 and 19 may be arranged.
[0030]
In the above-described embodiment, the evaporator 14 and the absorber 15 are separated from each other by the partitioning part 23 in one wall, and are installed adjacent to each other. However, the evaporator 14 and the absorber 15 are arranged in separate walls, and the evaporator 14 and the absorber 15 are separated. The absorber 15 may be connected by piping.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a gas turbine cogeneration system provided with an absorption type water heater / heater to which the present invention is applied. FIG. 2 is a side view showing a structure of an evaporator and an absorber according to the present invention. FIG. 4 is a perspective view showing a structure of a current plate and a swash plate according to the present invention. FIG. 4 is a side view showing a modification of a structure of an evaporator and an absorber according to the present invention. FIG. 5 is an evaporator and an absorber according to the present invention. FIG. 6 is a side view showing a modification of the structure of FIG. 6. FIG. 6 is a side view showing the structure of a conventional evaporator and absorber.
11, 12 Regenerator 14 Evaporator 14a Heat transfer tube group 15 Absorber 15a Heat transfer tube group 16 Rectifying plate 17 Rectifying plate 18 Swash plate 19 Swash plate 20 Liquid supply unit 21 Liquid supply unit

Claims (4)

蒸発器、吸収器、再生器及び凝縮器を備えた吸収式ヒートポンプであって、
前記蒸発器と前記吸収器の少なくとも一方において、内部に設置された伝熱管群のうち上側に位置する上部管群と下側に位置する下部管群の間に、メッシュが形成された整流板をその整流板の下面が前記下部管群の伝熱管の上面と接触もしくは微小間隙を開ける状態で配置した吸収式ヒートポンプ。
An absorption heat pump having an evaporator, an absorber, a regenerator and a condenser,
In at least one of the evaporator and the absorber, between the upper tube group located on the upper side and the lower tube group located on the lower side of the heat transfer tube group installed therein, a rectifying plate having a mesh formed therein. An absorption heat pump in which the lower surface of the current plate is placed in contact with the upper surface of the heat transfer tubes of the lower tube group or with a small gap therebetween.
前記伝熱管群と周囲の壁との間に、壁側から内側に向かって高さが低くなり且つ内側端部が前記伝熱管群の端に位置する斜板を配置した請求項1記載の吸収式ヒートポンプ。The absorption according to claim 1, wherein a swash plate whose height is reduced inward from the wall side and whose inner end is located at an end of the heat transfer tube group is disposed between the heat transfer tube group and a surrounding wall. Type heat pump. 前記伝熱管群の上方から冷媒液又は溶液を落下供給する液供給部と周囲の壁との間に、壁側から内側に向かって高さが低くなり且つ内側端部が前記伝熱管群の端に位置する斜板を配置した請求項1又は2記載の吸収式ヒートポンプ。Between the liquid supply unit that supplies the coolant liquid or the solution from above the heat transfer tube group and the surrounding wall, the height is reduced inward from the wall side and the inner end is the end of the heat transfer tube group. The absorption heat pump according to claim 1, wherein a swash plate is disposed at the position. 前記斜板の内側端部を前記整流板の周縁部に連なるように接続した請求項2又は3記載の吸収式ヒートポンプ。The absorption heat pump according to claim 2, wherein an inner end of the swash plate is connected so as to be continuous with a peripheral edge of the current plate.
JP2002342260A 2002-11-26 2002-11-26 Absorption heat pump Pending JP2004176969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342260A JP2004176969A (en) 2002-11-26 2002-11-26 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342260A JP2004176969A (en) 2002-11-26 2002-11-26 Absorption heat pump

Publications (1)

Publication Number Publication Date
JP2004176969A true JP2004176969A (en) 2004-06-24

Family

ID=32704370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342260A Pending JP2004176969A (en) 2002-11-26 2002-11-26 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP2004176969A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198700A (en) * 2006-01-30 2007-08-09 Hitachi Zosen Corp Evaporator for multiple effect-type fresh water generator
WO2007125221A1 (en) * 2006-05-02 2007-11-08 Peugeot Citroen Automobiles Sa Evaporator/absorbers combination, absorption cooling device and associated motor vehicle
JP2011007360A (en) * 2009-06-23 2011-01-13 Kurita Engineering Co Ltd Method of cleaning group of heat transfer tubes
JP2013002790A (en) * 2011-06-21 2013-01-07 Daikin Industries Ltd Refrigerating device
WO2013134553A1 (en) * 2012-03-09 2013-09-12 Bluelagoon Technologies Ltd Apparatus and method for vapor driven absorption heat pumps and absorption heat transformer with applications
JP2016525206A (en) * 2013-07-11 2016-08-22 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger
KR101871729B1 (en) * 2017-02-08 2018-06-27 엘지전자 주식회사 Absorption Chiller
WO2019105607A1 (en) * 2017-11-28 2019-06-06 Onda S.P.A. Evaporator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198700A (en) * 2006-01-30 2007-08-09 Hitachi Zosen Corp Evaporator for multiple effect-type fresh water generator
US8640490B2 (en) 2006-05-02 2014-02-04 Ecoclim S.A. Evaporator/absorbers combination, absorption cooling device and associated motor vehicle
WO2007125221A1 (en) * 2006-05-02 2007-11-08 Peugeot Citroen Automobiles Sa Evaporator/absorbers combination, absorption cooling device and associated motor vehicle
FR2900723A1 (en) * 2006-05-02 2007-11-09 Peugeot Citroen Automobiles Sa EVAPORATOR / ABSORBER ASSEMBLY, ABSORPTION COOLING DEVICE AND MOTOR VEHICLE THEREFOR.
JP2009535602A (en) * 2006-05-02 2009-10-01 エコクリム・ソシエテ・アノニム Evaporator / adsorber assembly, related adsorptive cooling device and motor vehicle
CN101479538B (en) * 2006-05-02 2012-08-08 埃科利姆股份有限公司 Evaporator/absorbers combination, absorption cooling device and associated motor vehicle
JP2011007360A (en) * 2009-06-23 2011-01-13 Kurita Engineering Co Ltd Method of cleaning group of heat transfer tubes
JP2013002790A (en) * 2011-06-21 2013-01-07 Daikin Industries Ltd Refrigerating device
WO2013134553A1 (en) * 2012-03-09 2013-09-12 Bluelagoon Technologies Ltd Apparatus and method for vapor driven absorption heat pumps and absorption heat transformer with applications
CN104769371A (en) * 2012-03-09 2015-07-08 太浩科技有限公司 Apparatus and method for vapor driven absorption heat pumps and absorption heat transformer with applications
US9091469B2 (en) 2012-03-09 2015-07-28 Tahoe Technologies, Ltd. Apparatus and method for vapor driven absorption heat pumps and absorption heat transformer with applications
AU2013203429B2 (en) * 2012-03-09 2016-10-27 BlueLagoon Energy Technologies Ltd Apparatus and method for vapour driven absorption heat pumps and absorption heat transformer with applications
CN104769371B (en) * 2012-03-09 2016-11-23 太浩科技有限公司 For steam-powered absorption heat pump and the apparatus and method of absorption heat transformer and application thereof
JP2016525206A (en) * 2013-07-11 2016-08-22 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger
KR101871729B1 (en) * 2017-02-08 2018-06-27 엘지전자 주식회사 Absorption Chiller
WO2019105607A1 (en) * 2017-11-28 2019-06-06 Onda S.P.A. Evaporator

Similar Documents

Publication Publication Date Title
JPH08151933A (en) Gas turbine intake air cooling device
JP2007271197A (en) Absorption type refrigerating device
JP2004176969A (en) Absorption heat pump
US6314752B1 (en) Mass and heat transfer devices and methods of use
JP2004176968A (en) Vapor-liquid separator
JP2004077039A (en) Evaporation type condenser
JP2627381B2 (en) Absorption refrigerator
JP2016023925A (en) Evaporation air conditioning system
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JPH11351697A (en) Heat exchanger and absorption refrigerating machine
JP3935611B2 (en) Evaporator and absorber and absorption refrigerator
US6651457B2 (en) Absorption refrigerator
JP2006242394A (en) Heat source unit of air conditioner and air conditioner having this unit
KR100213780B1 (en) Water supply system of absortion type cooler
JP2945972B1 (en) Absorption chiller / heater
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP2007271165A (en) Absorption-type refrigerating device
JP3027646B2 (en) Absorption chiller / heater
JP2002081783A (en) Absorption refrigerating machine and method for controlling the same
KR100314471B1 (en) Generator of absorption heat pump using ammonia
JP2875614B2 (en) Air cooling absorption air conditioner
JP2007120811A (en) Absorption heat pump
JP2009103437A (en) High temperature regenerator for absorption chiller and heater