JP2004176568A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2004176568A
JP2004176568A JP2002341077A JP2002341077A JP2004176568A JP 2004176568 A JP2004176568 A JP 2004176568A JP 2002341077 A JP2002341077 A JP 2002341077A JP 2002341077 A JP2002341077 A JP 2002341077A JP 2004176568 A JP2004176568 A JP 2004176568A
Authority
JP
Japan
Prior art keywords
exhaust
flow rate
overlap
overlap amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002341077A
Other languages
Japanese (ja)
Other versions
JP4267303B2 (en
Inventor
Fumiaki Hiraishi
文昭 平石
Yasuki Tamura
保樹 田村
Kojiro Okada
公二郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002341077A priority Critical patent/JP4267303B2/en
Publication of JP2004176568A publication Critical patent/JP2004176568A/en
Application granted granted Critical
Publication of JP4267303B2 publication Critical patent/JP4267303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of accurate cooperative control of a variable valve mechanism and an exhaust flow adjustment mechanism to prevent increase in internal EGR due to delay and fixation in the variable valve mechanism, thereby achieving good combustion state. <P>SOLUTION: Even when start conditions for exhaust restriction control is satisfied (YES in Step S12), if an actual overlap amount OL of an intake and exhaust valve is large (NO in Step S14), or the actual overlap amount OL delays with respect to a target overlap amount tgt OL which is on the decrease (NO in Step S16), the control device determines the overlap amount as excess state and restricts the exhaust restriction control (Step S20). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関(以下、エンジンという)の制御装置に係り、詳しくは吸排気弁のオーバラップ量を変更可能な可変動弁機構を備えるとともに、排気流量を制限する排気流量調整機構を備えた内燃機関の制御装置に関するものである。
【0002】
【関連する背景技術】
近年、エンジンのエミッション低減や燃費節減のために種々のアプローチがなされており、例えばエンジンの動弁機構に関しては、排気弁の閉弁タイミングや吸気弁の開弁タイミングを変更することで運転状態に応じた適切な吸排気弁のオーバラップ量を実現する可変動弁機構が実用化されており、或いはエンジンの排気系に関しては、排気流量を制限することで触媒を迅速に昇温させる排気流量調整機構が実用化されている。
【0003】
排気流量調整機構による排気流量の制限は冷態始動時等に実施されるが、排気流量を制限するとエンジンの内部EGRが増加して燃焼が不安定になるため、そのための対策として上記可変動弁機構が利用されることもある(例えば、特許文献1参照)。当該特許文献1に記載された技術は、排気流量調整機構により排気流量を制限したときに、同時に可変動弁機構により吸排気弁のオーバラップ量を縮小して燃焼の安定化を図っている。
【0004】
【特許文献1】
特開平3−271515号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載された技術では、可変動弁機構による制御で所期のオーバラップ量が達成されることを前提とするものであり、例えばオーバラップ量が大の状態で、排気流量調整機構によって排気流量を制限する場合、内部EGRを抑制すべく可変動弁機構を調整してオーバラップ量を減少させようとしても可変動弁機構の作動応答遅れ、即ち、例えば縮小方向に変化する目標オーバラップ量に対する実オーバラップ量の一時的な追従遅れ等に起因して、目標オーバラップ量に対する過剰なオーバラップ量により内部EGRが増加して該内部EGRを適切に制御することができずに、排気流量調整機構による排気流量の制限と相俟ってエンジンの燃焼状態を却って悪化させてしまう虞があった。この問題は、オーバラップ量が大きいほど顕著である。
【0006】
又、例えば、オーバラップ量が大の状態で可変動弁機構が固着したり、油圧不足で作動不能となったりした場合にも、オーバラップ量を適切に減少することができずに、同様に内部EGRの増加に伴いエンジンの燃焼状態を却って悪化させてしまう虞があった。
本発明の目的は、可変動弁機構と排気流量調整機構とを的確に協調制御し、もって、可変動弁機構の固着や追従遅れに起因する内部EGRの増加を未然に回避して、良好な燃焼状態を実現することができる内燃機関の制御装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、内燃機関の吸気弁の開弁タイミングと排気弁の開弁タイミングとの少なくとも一方を変更して吸排気弁のオーバラップ量を変更可能な可変動弁機構と、内燃機関の排気通路に設けられ、排気流量を制限可能な排気流量調整機構とを備えた内燃機関の制御装置において、吸排気弁のオーバラップ量を検出するオーバラップ量検出手段と、オーバラップ量検出手段によって検出されるオーバラップ量に基づき、排気流量調整機構による排気流量の制限を抑制する排気制限抑制手段とを備えたものである。
【0008】
従って、内燃機関の運転領域に応じて可変動弁機構により吸排気弁のオーバラップ量が変更される一方、所定の開始条件が成立したとき、例えば機関の冷態始動時のように迅速な触媒昇温が要求される場合、或いはリーン運転時や車両減速時のように機関の発熱量の減少に伴って触媒温度が低下する場合等には、排気流量調整機構により内燃機関の排気流量が制限されて、触媒の昇温や保温が図られる。
【0009】
そして、オーバラップ量検出手段に検出されたオーバラップ量に基づき、排気制限抑制手段によりオーバラップ量が大きい状態であると判定されると、排気流量調整機構による排気流量の制限が抑制される。よって、可変動弁機構によるオーバラップ量に応じて、排気流量調整機構による排気流量の制限が行われて、内燃機関の内部EGRが更に増加する事態が未然に回避される。
【0010】
請求項2の発明は、請求項1において、排気流量調整機構による排気流量の制限の開始条件が成立したときに、可変動弁機構により吸排気弁のオーバラップ量を縮小方向に制御するオーバラップ縮小制御手段と、オーバラップ縮小制御手段によるオーバラップ量の縮小制御時に、縮小したオーバラップ量に適合するように内燃機関の運転制御パラメータを切換える運転制御パラメータ切換手段とを更に備えたものである。
【0011】
従って、排気流量の制限の開始条件が成立したときには、オーバラップ縮小制御手段により可変動弁機構が吸排気弁のオーバラップ量を縮小方向に制御して、内燃機関の燃焼を安定化させるとともに、縮小したオーバラップ量に適合するように内燃機関の運転制御パラメータ、例えば燃料噴射量、燃料噴射時期、点火時期等が運転制御パラメータ切換手段により切換えられるため、オーバラップ縮小による内燃機関の運転への悪影響が抑制される。
【0012】
請求項3の発明は、請求項1又は2において、オーバラップ量が第1の設定値以上のときに、排気制限抑制手段が排気流量調整機構による排気流量の制限を抑制するものである。
例えば、オーバラップ量が第1の設定値以上であり、可変動弁機構の作動応答遅れが発生するような場合には、排気流量調整機構による排気流量の制限が抑制されるため、この作動応答遅れに起因する内部EGRの増加を回避可能となる。
【0013】
請求項4の発明は、請求項1乃至3において、オーバラップ量とオーバラップ量の目標値との差が第2の設定値以上のときに、排気制限抑制手段が排気流量調整機構による排気流量の制限を抑制するものである。
例えば、可変動弁機構の応答性に起因して、縮小方向に変化する目標値に対してオーバラップ量に追従遅れが生じると、オーバラップ量と目標値との差が過渡的に第2の設定値以上となるが、このときには排気流量調整機構による排気流量の制限が抑制されるため、この追従遅れに起因する内部EGRの増加を回避可能となる。
【0014】
【発明の実施の形態】
以下、本発明を具体化したエンジンの制御装置の一実施形態を説明する。
図1は本実施形態のエンジンの制御装置を示す全体構成図である。エンジン1は筒内に燃料を噴射する筒内噴射型エンジンとして構成され、その動弁機構としてはDOHC4弁式が採用されている。シリンダヘッド2上の吸気カム軸3a及び排気カム軸3bの前端にはそれぞれタイミングプーリ5a,5bが接続されている。各タイミングプーリ5a,5bはタイミングベルト6を介してクランク軸7に連結され、クランク軸7の回転に伴ってタイミングプーリ5a,5bが回転駆動されると、カム軸3a,3bが回転して吸気弁8a及び排気弁8bを開閉駆動する。
【0015】
排気カム軸3bとタイミングプーリ5bとの間には、可変動弁アクチュエータ4が設けられている。可変動弁アクチュエータ4の構成は、例えば特開2000−27609号公報等で公知のため詳細は説明しないが、タイミングプーリ5bに設けたハウジング内にベーンロータを回動可能に設け、そのベーンロータに排気カム軸3bを連結して構成されている。可変動弁アクチュエータ4にはオイルコントロールバルブ(以下、OCVという)4aを介してエンジン1の潤滑用オイルが作動油として供給され、OCV4aの切換に応じてベーンロータに油圧を作用させて、タイミングプーリ5bに対する排気カム軸3bの位相、即ち、排気弁8bの開弁タイミング及び閉弁タイミングを調整する。本実施形態では、これらの可変動弁アクチュエータ4、OCV4aにより可変動弁機構が構成されている。
【0016】
シリンダヘッド2には、各気筒毎に点火プラグ9と共に燃料噴射弁10が取り付けられており、図示しない燃料ポンプから供給された高圧燃料が燃料噴射弁10から燃焼室11内に直接噴射される。各気筒の燃焼室11は吸気ポート12を介して共通の吸気通路13に接続され、エアクリーナ14を介して吸気通路13内に導入された吸入空気は、スロットル弁15により流量調整された後、吸気ポート12から各気筒の燃焼室11内に導入される。又、各気筒の燃焼室11は排気ポート16を介して共通の排気通路17に接続され、燃焼室11内で燃焼後の排ガスは排気ポート16から排気通路17に排出されて、触媒18及び消音器19を経て外部に排出される。
【0017】
排気通路17に介装された触媒18と消音器19との間にはバタフライ式の排気絞り弁20が設けられ、排気絞り弁20は排気絞りアクチュエータ21により全閉位置と全開位置との2位置間で開閉駆動される。排気通路17には排気絞り弁20を迂回するようにバイパス通路22が接続され、バイパス通路22には圧力調整弁23が設けられている。圧力調整弁23は通常閉弁されており、排気絞り弁20の全閉等に伴って排気通路17の上流側の排圧が上昇したときに開弁して排ガスを流通させ、これにより排気通路17内の排圧を自己の設定圧に保持する。本実施形態では、これらの排気絞り弁20、排気絞りアクチュエータ21、バイパス通路22、圧力調整弁23により排気流量調整機構が構成されている。
【0018】
車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM,BURAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(エンジン制御ユニット)31が設置されており、エンジン1の総合的な制御を行う。ECU31の入力側には、エンジン回転速度Neを検出する回転速度センサ32、スロットル弁14の開度θthを検出するスロットルセンサ33、排気カム軸3bの位相を検出するカム角センサ34(オーバラップ量検出手段)等の各種センサが接続されている。又、ECU31の出力側には、上記OCV4a、点火プラグ9、燃料噴射弁10、排気絞りアクチュエータ21等が接続されている。
【0019】
ECU31は各センサからの検出情報に基づき、燃料噴射制御や点火時期制御等の各種制御を実行する。又、ECU31は、エンジン1の冷態始動時のように触媒18の迅速な昇温が要求される運転状態、或いはリーン運転時や車両減速時等のようにエンジン発熱量の減少に伴って触媒温度が低下する運転状態では、排気絞りアクチュエータ21により排気絞り弁20を全閉位置に切換えて排圧を上昇させる排気絞り制御を実行し、これにより排気流量を制限して触媒18の昇温や保温を図る。
【0020】
更に、ECU31は各センサからの検出情報に基づき、OCV4aを駆動して排気カム軸3bの位相を制御するとともに、このときの排気カム軸3bの位相がエンジン1の燃焼を不安定にする所定の状態にあるときには、上記排気絞り制御を禁止している。
そこで、当該排気絞り制御の禁止判定について説明するが、これに先立って排気カム軸3bの位相制御について述べる。ECU31は図2に示すカム位相制御ルーチンを所定の制御インターバルで実行し、まず、ステップS2で排気絞り制御の開始条件が成立したか否かを判定する。排気絞り制御の開始条件としては、上記したエンジン1の冷態始動、リーン運転、車両減速等が設定されており、何れかの条件が満たされたときに排気絞り制御の開始条件が成立したと見なされる。
【0021】
ステップS2の判定がNO(否定)のときにはステップS4に移行し、排気カム軸3bの位相、即ち、排気弁8bの開弁タイミング及び閉弁タイミングの目標値を算出する。例えば位相の目標値は、排気カム軸3bの最遅角位置からの目標進角量tgtθとして表され、エンジン1の目標平均有効圧Peや体積効率Ev(機関負荷と相関する)とエンジン回転速度Neとに基づき図示しないマップから算出される。ECU31は続くステップS6でカム角センサ34からの検出情報に基づいて排気カム軸3bの実進角量θを求め、実進角量θが目標進角量tgtθとなるようにOCV4aを駆動制御した後、ルーチンを終了する。
【0022】
又、排気絞り制御の開始条件が成立したとして上記ステップS2でYES(肯定)の判定を下したときには、ステップS8に移行する。ステップS8の処理内容は上記ステップS4と同様であるが、適用するマップ特性が異なり、同一運転領域においてステップS4の目標進角量tgtθに比較してより大きな目標進角量tgtθeが算出され、その目標進角量tgtθeに基づいて続くステップS6でOCV4aを駆動制御した後、ルーチンを終了する。
【0023】
以上の排気カム軸3bの位相制御により、排気弁8bの開弁タイミングがエンジン1の運転領域に応じて適切に制御されるとともに、排気流量の制限によりエンジン1の内部EGRが増加する排気絞り制御中には、より大きな目標進角量tgtθeに基づいて排気カム軸3bが進角側に制御され、吸排気弁8a,8bのオーバラップ量OLが縮小されて燃焼の安定化が図られる(オーバラップ量縮小制御手段)。
【0024】
特に、このように排気側を位相制御した場合には、排気カム軸3bの進角に伴って燃焼室11への排ガスの戻り量が減少して直接的な内部EGRの抑制作用を奏するため、吸気側を遅角させて同一オーバラップ量OLに制御した場合に比較して、燃焼の安定化はより確実なものとなる。
また、図2のステップS4,8で併記しているように、排気カム軸3bの目標進角量tgtθと同じく、燃料噴射制御で適用される空燃比A/Fや燃料噴射時期IT、点火時期制御で適用される点火時期SAの目標値も、排気絞り制御の開始条件に応じて切換えられる(運転制御パラメータ切換手段)。
【0025】
一方、上記排気絞り制御の禁止判定は、図3に示す排気絞り禁止判定ルーチンに基づいて行われる。ECU31は当該ルーチンを所定の制御インターバルで実行し、まず、ステップS12で上記ステップS2と同様に排気絞り制御の開始条件が成立したか否かを判定し、判定がNOのときにはそのままルーチンを終了する。
【0026】
一方、ステップS12の判定がYESのときにはステップS14に移行して、吸排気弁8a,8bの実オーバラップ量OLが第1の設定値OL0未満(OL<OL0)か否かを判定する。なお、吸気カム軸3aの位相は固定のため、カム角センサ34により検出された排気カム軸3bの位相に基づいて、実オーバラップ量OLは一義的に導き出される。
【0027】
第1の設定値OL0は、正常な排気カム軸3bの位相制御範囲において、オーバラップ量を減少すべく排気カム軸3bの位相を例えば最進角位置へ制御する際に、可変動弁機構の作動応答遅れが生じて目標オーバラップ量に対する過剰なオーバラップ量が発生するような排気カム軸3bの位相位置に対応して設定されている。そして、排気カム軸3bの位相が正常な制御範囲にあって、実オーバラップ量OLが第1の設定値OL0よりも小さい場合には、排気絞りに伴いオーバラップ量を減少するように可変動弁機構を調整しても、作動応答遅れが少なく過剰なオーバラップ量は発生しないと推測でき、ECU31はステップS14でYESの判定を下してステップS16に移行する。
【0028】
ステップS16では実オーバラップ量OLから目標オーバラップ量tgtOLを減算した差ΔOLが第2の設定値ΔOL0未満(OL−tgtOL=ΔOL<ΔOL0)か否かを判定する。なお、上記実オーバラップ量OLと同様に、目標オーバラップ量tgtOLは目標進角量tgtθから一義的に導き出される。
上記した排気カム軸3bの位相制御の結果、エンジン1の運転領域の変化や図2のステップS4,8間の切換に応じて目標オーバラップ量tgtOLは変化し、その目標オーバラップ量tgtOLに追従して実オーバラップ量OLが制御される。そして、目標オーバラップ量tgtOLが拡大方向に変化したときには、目標オーバラップ量tgtOLに比較して追従する実オーバラップ量OLの方が小さいため差ΔOLは負となり、一方、目標オーバラップ量tgtOLが縮小方向に変化したときでも、可変動弁アクチュエータ4による位相制御に大きな追従遅れがなければ、差ΔOLは正となるものの第2の設定値ΔOL0未満となる。つまり、これらの場合には位相制御が過渡的な意味で正常に行われていると推測でき、ECU31はステップS16にYESの判定を下してステップS18に移行する。
【0029】
ステップS18では、上記ステップS12での排気絞り制御の開始条件成立を受けて、排気絞り制御の実行を許可した後にルーチンを終了する。この許可指令に基づき、排気絞り制御では排気絞りアクチュエータ21により排気絞り弁20が全閉位置に切換えられ、これによる排圧上昇で排気流量が制限され、触媒18の昇温や保温が行われる。
【0030】
一方、上記ステップS14の判定がNOのとき(OL≧OL0)には、可変動弁機構の作動応答遅れによって過剰なオーバラップ量が生じて内部EGRを適正に抑制することができない場合や、OCV4aや可変動弁アクチュエータ4のベーンロータの固着、或いは油圧不足等により、実オーバラップ量OLが大の状態で可変動弁アクチュエータ4が作動不能になっていることが推測できる。この場合のECU31はステップS20に移行して、排気絞り制御の実行を禁止した後にルーチンを終了する。
【0031】
また、上記ステップS16の判定がNOのとき(ΔOL≧ΔOL0)には、実オーバラップ量OLが第1の設定値OL0より小さい状態であるが、目標オーバラップ量tgtOLが縮小側に変化しているときに、可変動弁アクチュエータ4の応答性に起因して実オーバラップ量OLが一時的に追従遅れを生じているため、内部EGRを適正に抑制できない虞があると推測できる。この場合にもECU31はステップS20に移行して、排気絞り制御の実行を禁止した後にルーチンを終了する。
【0032】
上記ステップS14が過剰なオーバラップ量の発生を推測しているのに対し、ステップS16は過剰なオーバラップ量の発生を実際に検出している点で異なるが、エンジン1の内部EGRが増加する点は共通する。この状態で排気絞り制御が開始されると、排気流量の制限により内部EGRが更に増加するが、上記ステップS20での禁止指令を受けて排気絞り制御側で排気絞り弁20が全開保持されることから、この内部EGRの増加が未然に回避される。
【0033】
よって、本実施形態のエンジン1の制御装置によれば、可変動弁アクチュエータ4による位相制御と排気絞り弁20による排気絞り制御とを的確に協調させて、位相制御側に作動応答遅れやトラブルが生じた場合であっても内部EGRの増加を回避し、良好なエンジン1の燃焼状態を実現することができる。
なお、ステップS14の判断がNOの場合には、排気絞り制御が禁止され続けるが、ステップS16の判断がNOの場合には、一時的なオーバラップ量OLの過剰が解消された時点(追従遅れが解消された時点)で排気絞り制御が許可されるため、その後は触媒18の昇温や保温等の排気絞り制御による利点が得られる。
【0034】
一方、排気絞り制御の開始条件が成立したときには、位相制御側のステップS8で事前に吸排気弁8a,8bのオーバラップ量OLを縮小して燃焼の安定化を図るばかりでなく、燃料噴射制御で適用される空燃比A/Fや燃料噴射時期IT、点火時期制御で適用される点火時期SAの目標値も同時に切換えている。よって、縮小後のオーバラップ量OLに対して最適な燃料噴射制御や点火時期制御を実現でき、オーバラップ縮小によるエンジン1の運転への悪影響を抑制できるという利点もある。
【0035】
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では筒内噴射型エンジン1の制御装置に具体化したが、吸排気弁8a,8bのオーバラップ量OLを変更する可変動弁機構及び排気流量を制限する排気流量調整機構を備えたエンジンであれば、その種別はこれに限ることはなく、例えば吸気管噴射型エンジンに適用したり、ディーゼルエンジンに適用したりしてもよい。
【0036】
また、上記実施形態では、可変動弁アクチュエータ4により排気カム軸3bの位相(排気弁8bの閉弁タイミング)を制御したが、これに代えて吸気カム軸3aの位相(吸気弁8aの開弁タイミング)を制御したり、吸排気のカム軸3a,3bの位相を共に制御したりしてもよい。
更に、上記実施形態では、排気絞り弁20を全閉してバイパス通路22に設けた圧力調整弁23により所定排圧に保ったが、バイパス通路22及び圧力調整弁23を設けることなく、排気絞り弁20を全閉付近の微小開度に制御することで、所定排圧を実現するようにしてもよい。
【0037】
一方、上記実施形態では、ステップS20の禁止処理により排気絞り弁20を全開保持したが、オーバラップ量OLがそれほど過剰でない場合には排気絞り制御を完全に禁止しなくてもよい。例えば上記のように圧力調整弁23を用いない場合には、排気絞り弁20の開度に応じて排圧を任意に調整可能なため、ステップS20の処理として、オーバラップ量OLが過剰なほど排気絞り弁20の開度を開側に調整して排気流量の制限を抑制するようにしてもよい。このように構成すれば、位相制御側のトラブルによりオーバラップ量OLが過剰になった場合でも、排気絞り制御による触媒18の昇温や保温作用を可能な限り得ることができる。
【0038】
【発明の効果】
以上説明したように請求項1の発明の内燃機関の制御装置によれば、可変動弁機構による吸排気弁のオーバラップ量に基づいて排気流量調整機構による排気流量の制限を抑制するため、可変動弁機構と排気流量調整機構とを的確に協調制御し、もって、内燃機関の内部EGRの増加を未然に回避して、良好な燃焼状態を実現することができる。
【0039】
請求項2の発明の内燃機関の制御装置によれば、請求項1に加えて、排気流量の制限時に吸排気弁のオーバラップ量を縮小するため、内燃機関の燃焼を安定化できるとともに、縮小したオーバラップ量に適合するように運転制御パラメータを切換えるため、オーバラップ縮小による悪影響を抑制して、内燃機関の運転を一層良好なものとすることができる。
【0040】
請求項3,4の発明の内燃機関の制御装置によれば、請求項1又は2に加えて、可変動弁機構の作動応答遅れ、固着や可変動弁機構の油圧不足等に起因する内部EGRの増加を回避して、良好な燃焼状態を実現することができる。
請求項4の発明の内燃機関の制御装置によれば、請求項1乃至3に加えて、可変動弁機構の作動応答遅れに起因する内部EGRの増加を確実に回避して、良好な燃焼状態を実現することができる。
【図面の簡単な説明】
【図1】実施形態のエンジンの制御装置を示す全体構成図である。
【図2】ECUが実行するカム位相制御ルーチンを示すフローチャートである。
【図3】ECUが実行する排気絞り禁止判定ルーチンを示すフローチャートである。
【符号の説明】
1 エンジン(内燃機関)
4 可変動弁アクチュエータ(可変動弁機構)
4a OCV(可変動弁機構)
8a 吸気弁
8b 排気弁
20 排気絞り弁(排気流量調整機構)
21 排気絞りアクチュエータ(排気流量調整機構)
22 バイパス通路(排気流量調整機構)
23 圧力調整弁(排気流量調整機構)
31 ECU(排気制限抑制手段、オーバラップ縮小制御手段、運転制御パラメータ切換手段)
34 カム角センサ(オーバラップ量検出手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an internal combustion engine (hereinafter referred to as an engine), and more particularly, to a variable valve mechanism capable of changing an amount of overlap between intake and exhaust valves, and an exhaust flow rate adjusting mechanism for limiting an exhaust flow rate. The present invention relates to a control device for an internal combustion engine.
[0002]
[Related background art]
In recent years, various approaches have been taken to reduce engine emissions and fuel consumption.For example, regarding the valve operating mechanism of an engine, the operating state is changed by changing the closing timing of the exhaust valve and the opening timing of the intake valve. A variable valve mechanism that realizes an appropriate amount of overlap between the intake and exhaust valves has been put to practical use, or for the exhaust system of an engine, the exhaust flow rate is controlled by restricting the exhaust flow rate to quickly raise the temperature of the catalyst. The mechanism has been put into practical use.
[0003]
Restriction of the exhaust flow rate by the exhaust flow rate adjustment mechanism is performed at the time of a cold start or the like. However, if the exhaust flow rate is restricted, the internal EGR of the engine increases and combustion becomes unstable. A mechanism may be used (for example, see Patent Document 1). In the technique described in Patent Literature 1, when the exhaust flow rate is limited by an exhaust flow rate adjusting mechanism, the overlap amount of the intake and exhaust valves is reduced by a variable valve operating mechanism at the same time to stabilize combustion.
[0004]
[Patent Document 1]
JP-A-3-271515
[Problems to be solved by the invention]
However, the technique described in Patent Document 1 is based on the premise that the desired amount of overlap is achieved by control using the variable valve mechanism. For example, when the amount of overlap is large, the exhaust gas is exhausted. When the exhaust gas flow rate is limited by the flow rate adjusting mechanism, even if the variable valve mechanism is adjusted to reduce the amount of overlap by suppressing the internal EGR, the operation response delay of the variable valve mechanism, that is, for example, changes in the contraction direction Due to the temporary delay of the actual overlap amount with respect to the target overlap amount, the internal EGR increases due to the excessive overlap amount with respect to the target overlap amount, and the internal EGR can be appropriately controlled. Instead, there is a possibility that the combustion state of the engine may be worsened in combination with the restriction of the exhaust flow rate by the exhaust flow rate adjusting mechanism. This problem becomes more pronounced as the amount of overlap increases.
[0006]
Also, for example, when the variable valve mechanism is fixed in a state where the amount of overlap is large, or when it becomes inoperable due to insufficient hydraulic pressure, the amount of overlap cannot be appropriately reduced. There is a possibility that the combustion state of the engine may be worsened with an increase in the internal EGR.
It is an object of the present invention to accurately and cooperatively control the variable valve mechanism and the exhaust flow rate adjusting mechanism, thereby avoiding an increase in the internal EGR caused by the sticking of the variable valve mechanism and a delay in following, thereby achieving a favorable An object of the present invention is to provide a control device for an internal combustion engine capable of realizing a combustion state.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the invention, it is possible to change at least one of the opening timing of the intake valve and the opening timing of the exhaust valve of the internal combustion engine to change the overlap amount of the intake and exhaust valves. In an internal combustion engine control device provided with a variable valve mechanism and an exhaust flow rate adjusting mechanism provided in an exhaust passage of the internal combustion engine and capable of restricting an exhaust flow rate, an overlap amount detecting means for detecting an overlap amount of the intake and exhaust valves. And an exhaust restriction suppressing means for suppressing the restriction of the exhaust flow rate by the exhaust flow rate adjusting mechanism based on the overlap amount detected by the overlap amount detecting means.
[0008]
Therefore, while the amount of overlap between the intake and exhaust valves is changed by the variable valve operating mechanism according to the operation range of the internal combustion engine, when a predetermined start condition is satisfied, for example, a rapid catalyst such as at the time of a cold start of the engine is used. When the temperature needs to be increased, or when the catalyst temperature decreases with a decrease in the calorific value of the engine such as during lean operation or vehicle deceleration, the exhaust flow rate adjustment mechanism limits the exhaust flow rate of the internal combustion engine. Then, the temperature of the catalyst is raised and the temperature is maintained.
[0009]
Then, when the exhaust restriction control unit determines that the overlap amount is large based on the overlap amount detected by the overlap amount detection unit, the restriction on the exhaust flow rate by the exhaust flow adjustment mechanism is suppressed. Therefore, the exhaust flow rate is limited by the exhaust flow rate adjusting mechanism in accordance with the amount of overlap by the variable valve operating mechanism, and a situation in which the internal EGR of the internal combustion engine further increases is avoided.
[0010]
According to a second aspect of the present invention, in the first aspect, when the start condition of the restriction of the exhaust flow rate by the exhaust flow rate adjustment mechanism is satisfied, the overlap amount of the intake and exhaust valves is controlled by the variable valve mechanism in the reduction direction. The apparatus further includes a reduction control means, and an operation control parameter switching means for switching operation control parameters of the internal combustion engine so as to be adapted to the reduced overlap amount when the overlap reduction control means controls the overlap amount to be reduced. .
[0011]
Therefore, when the start condition of the restriction of the exhaust flow rate is satisfied, the variable valve mechanism controls the amount of overlap of the intake and exhaust valves in the reduction direction by the overlap reduction control means, thereby stabilizing the combustion of the internal combustion engine. The operation control parameters of the internal combustion engine, such as the fuel injection amount, the fuel injection timing, and the ignition timing, are switched by the operation control parameter switching means so as to be adapted to the reduced overlap amount. The adverse effects are suppressed.
[0012]
According to a third aspect of the present invention, in the first or second aspect, when the amount of overlap is equal to or greater than the first set value, the exhaust restriction control unit suppresses the restriction of the exhaust flow by the exhaust flow adjustment mechanism.
For example, when the overlap amount is equal to or larger than the first set value and the operation response delay of the variable valve mechanism occurs, the restriction of the exhaust flow rate by the exhaust flow rate adjustment mechanism is suppressed. An increase in the internal EGR due to the delay can be avoided.
[0013]
According to a fourth aspect of the present invention, in the first to third aspects, when the difference between the overlap amount and the target value of the overlap amount is equal to or greater than a second set value, the exhaust restriction suppressing means causes the exhaust flow rate to be controlled by the exhaust flow rate adjusting mechanism. Are to be restricted.
For example, if a delay in following the overlap amount with respect to the target value that changes in the contraction direction occurs due to the responsiveness of the variable valve mechanism, the difference between the overlap amount and the target value transiently changes to the second value. However, at this time, the restriction of the exhaust flow rate by the exhaust flow rate adjusting mechanism is suppressed, so that an increase in the internal EGR due to the following delay can be avoided.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an engine control device embodying the present invention will be described.
FIG. 1 is an overall configuration diagram showing an engine control device of the present embodiment. The engine 1 is configured as an in-cylinder injection engine that injects fuel into a cylinder, and employs a DOHC four-valve valve operating mechanism. Timing pulleys 5a and 5b are connected to front ends of the intake camshaft 3a and the exhaust camshaft 3b on the cylinder head 2, respectively. The timing pulleys 5a, 5b are connected to a crankshaft 7 via a timing belt 6, and when the timing pulleys 5a, 5b are driven to rotate with the rotation of the crankshaft 7, the camshafts 3a, 3b rotate to take air. The valve 8a and the exhaust valve 8b are driven to open and close.
[0015]
A variable valve actuator 4 is provided between the exhaust cam shaft 3b and the timing pulley 5b. The configuration of the variable valve actuator 4 is publicly known, for example, in Japanese Patent Application Laid-Open No. 2000-27609, and will not be described in detail. However, a vane rotor is rotatably provided in a housing provided on the timing pulley 5b, and an exhaust cam is attached to the vane rotor. It is configured by connecting the shaft 3b. The variable valve actuator 4 is supplied with lubricating oil for the engine 1 as hydraulic oil via an oil control valve (hereinafter, referred to as OCV) 4a, and applies hydraulic pressure to the vane rotor in accordance with the switching of the OCV 4a, so that the timing pulley 5b , Ie, the valve opening timing and the valve closing timing of the exhaust valve 8b. In the present embodiment, a variable valve mechanism is configured by the variable valve actuator 4 and the OCV 4a.
[0016]
The cylinder head 2 is provided with a fuel injection valve 10 together with an ignition plug 9 for each cylinder, and high-pressure fuel supplied from a fuel pump (not shown) is directly injected into the combustion chamber 11 from the fuel injection valve 10. The combustion chamber 11 of each cylinder is connected to a common intake passage 13 via an intake port 12, and the intake air introduced into the intake passage 13 via an air cleaner 14 is adjusted in flow rate by a throttle valve 15, and then the intake air is The gas is introduced from the port 12 into the combustion chamber 11 of each cylinder. Further, the combustion chamber 11 of each cylinder is connected to a common exhaust passage 17 through an exhaust port 16, and the exhaust gas after combustion in the combustion chamber 11 is discharged from the exhaust port 16 to the exhaust passage 17, and the catalyst 18 and the noise reduction It is discharged to the outside via the vessel 19.
[0017]
A butterfly type exhaust throttle valve 20 is provided between a catalyst 18 and a muffler 19 interposed in the exhaust passage 17, and the exhaust throttle valve 20 is moved by an exhaust throttle actuator 21 into two positions of a fully closed position and a fully open position. It is driven to open and close. A bypass passage 22 is connected to the exhaust passage 17 so as to bypass the exhaust throttle valve 20, and a pressure regulating valve 23 is provided in the bypass passage 22. The pressure regulating valve 23 is normally closed, and is opened when the exhaust pressure on the upstream side of the exhaust passage 17 is increased due to the full closing of the exhaust throttle valve 20 and the like, and the exhaust gas is circulated. The exhaust pressure in 17 is maintained at its own set pressure. In the present embodiment, the exhaust throttle valve 20, the exhaust throttle actuator 21, the bypass passage 22, and the pressure adjusting valve 23 constitute an exhaust flow rate adjusting mechanism.
[0018]
An ECU (engine) including an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) for storing a control program, a control map, and the like, a central processing unit (CPU), a timer counter, etc. A control unit 31 is provided to perform overall control of the engine 1. On the input side of the ECU 31, a rotation speed sensor 32 for detecting the engine rotation speed Ne, a throttle sensor 33 for detecting the opening degree θth of the throttle valve 14, and a cam angle sensor 34 for detecting the phase of the exhaust camshaft 3b (overlap amount). Various sensors such as detection means) are connected. The output side of the ECU 31 is connected to the OCV 4a, the spark plug 9, the fuel injection valve 10, the exhaust throttle actuator 21, and the like.
[0019]
The ECU 31 executes various controls such as fuel injection control and ignition timing control based on the detection information from each sensor. In addition, the ECU 31 operates in such a manner that the catalyst 18 is required to rapidly rise in temperature, such as when the engine 1 is started in a cold state, or when the amount of heat generated by the engine 18 decreases, such as during lean operation or vehicle deceleration. In an operating state in which the temperature decreases, exhaust throttle control is performed by switching the exhaust throttle valve 20 to the fully closed position by the exhaust throttle actuator 21 to increase the exhaust pressure, thereby restricting the exhaust flow rate and increasing the temperature of the catalyst 18 or the like. Keep warm.
[0020]
Further, the ECU 31 controls the phase of the exhaust camshaft 3b by driving the OCV 4a based on the detection information from each sensor, and the phase of the exhaust camshaft 3b at this time makes the combustion of the engine 1 unstable. In this state, the exhaust throttle control is prohibited.
Therefore, the prohibition determination of the exhaust throttle control will be described. Prior to this, the phase control of the exhaust camshaft 3b will be described. The ECU 31 executes the cam phase control routine shown in FIG. 2 at a predetermined control interval, and first determines in step S2 whether a condition for starting the exhaust throttle control is satisfied. As the start condition of the exhaust throttle control, the above-described cold start, lean operation, vehicle deceleration, and the like of the engine 1 are set. When any of the conditions is satisfied, the start condition of the exhaust throttle control is satisfied. Be considered.
[0021]
When the determination in step S2 is NO (No), the process proceeds to step S4, and the phase of the exhaust camshaft 3b, that is, the target values of the valve opening timing and the valve closing timing of the exhaust valve 8b are calculated. For example, the target value of the phase is expressed as a target advance amount tgtθ from the most retarded position of the exhaust camshaft 3b, and the target average effective pressure Pe and the volumetric efficiency Ev (correlated with the engine load) of the engine 1 and the engine rotation speed It is calculated from a map (not shown) based on Ne. The ECU 31 calculates the actual advance angle θ of the exhaust camshaft 3b based on the detection information from the cam angle sensor 34 in the subsequent step S6, and controls the driving of the OCV 4a so that the actual advance angle θ becomes the target advance angle tgtθ. Thereafter, the routine ends.
[0022]
Further, if the determination of YES (Yes) is made in step S2 assuming that the start condition of the exhaust throttle control is satisfied, the process proceeds to step S8. The processing content of step S8 is the same as that of step S4, except that the map characteristics to be applied are different, and a larger target advance amount tgtθe is calculated in the same operation region as compared with the target advance amount tgtθ of step S4. After the drive of the OCV 4a is controlled in step S6 based on the target advance amount tgtθe, the routine ends.
[0023]
By the above-described phase control of the exhaust camshaft 3b, the valve opening timing of the exhaust valve 8b is appropriately controlled according to the operating range of the engine 1, and the exhaust throttle control in which the internal EGR of the engine 1 increases due to the restriction of the exhaust flow rate. In the meantime, the exhaust camshaft 3b is advanced to the advanced side based on the larger target advance angle tgtθe, and the overlap amount OL of the intake and exhaust valves 8a, 8b is reduced to stabilize combustion (over). Lap amount reduction control means).
[0024]
In particular, when the phase control is performed on the exhaust side in this way, the amount of exhaust gas returning to the combustion chamber 11 decreases with the advance of the exhaust camshaft 3b, and the internal EGR is directly suppressed. Combustion stabilization is more reliable than when the intake side is retarded and controlled to the same overlap amount OL.
Also, as described in steps S4 and S8 in FIG. 2, similarly to the target advance amount tgtθ of the exhaust camshaft 3b, the air-fuel ratio A / F, the fuel injection timing IT, and the ignition timing applied in the fuel injection control are controlled. The target value of the ignition timing SA applied in the control is also switched according to the start condition of the exhaust throttle control (operation control parameter switching means).
[0025]
On the other hand, the prohibition determination of the exhaust throttle control is performed based on an exhaust throttle prohibition determination routine shown in FIG. The ECU 31 executes the routine at a predetermined control interval. First, in step S12, it is determined whether the conditions for starting the exhaust throttle control are satisfied, as in step S2. If the determination is NO, the routine is immediately terminated. .
[0026]
On the other hand, if the determination in step S12 is YES, the process shifts to step S14 to determine whether or not the actual overlap amount OL of the intake and exhaust valves 8a, 8b is less than the first set value OL0 (OL <OL0). Since the phase of the intake camshaft 3a is fixed, the actual overlap amount OL is uniquely derived based on the phase of the exhaust camshaft 3b detected by the cam angle sensor 34.
[0027]
When the phase of the exhaust camshaft 3b is controlled to, for example, the most advanced position in order to reduce the amount of overlap in the normal phase control range of the exhaust camshaft 3b, the first set value OL0 is used for the variable valve mechanism. It is set corresponding to the phase position of the exhaust camshaft 3b such that an operation response delay occurs and an excessive amount of overlap with the target overlap amount occurs. If the phase of the exhaust camshaft 3b is within the normal control range and the actual overlap amount OL is smaller than the first set value OL0, the variable movement is performed so as to reduce the overlap amount with the exhaust throttle. Even if the valve mechanism is adjusted, it can be estimated that the operation response delay is small and an excessive amount of overlap does not occur, and the ECU 31 makes a determination of YES in step S14 and proceeds to step S16.
[0028]
In step S16, it is determined whether or not a difference ΔOL obtained by subtracting the target overlap amount tgtOL from the actual overlap amount OL is smaller than a second set value ΔOL0 (OL−tgtOL = ΔOL <ΔOL0). Note that, like the actual overlap amount OL, the target overlap amount tgtOL is uniquely derived from the target advance amount tgtθ.
As a result of the above-described phase control of the exhaust camshaft 3b, the target overlap amount tgtOL changes in accordance with a change in the operating region of the engine 1 or switching between steps S4 and S8 in FIG. 2, and follows the target overlap amount tgtOL. Thus, the actual overlap amount OL is controlled. When the target overlap amount tgtOL changes in the enlargement direction, the difference ΔOL becomes negative because the actual overlap amount OL that follows the target overlap amount tgtOL is smaller than the target overlap amount tgtOL, while the target overlap amount tgtOL becomes smaller. Even in the case of the change in the contraction direction, if there is no large follow-up delay in the phase control by the variable valve actuator 4, the difference ΔOL is positive but smaller than the second set value ΔOL0. That is, in these cases, it can be estimated that the phase control is normally performed in a transient sense, and the ECU 31 makes a determination of YES in step S16 and proceeds to step S18.
[0029]
In step S18, in response to establishment of the exhaust throttle control start condition in step S12, execution of the exhaust throttle control is permitted, and then the routine ends. Based on this permission command, in the exhaust throttle control, the exhaust throttle valve 20 is switched to the fully closed position by the exhaust throttle actuator 21, whereby the exhaust pressure is increased to restrict the exhaust flow rate, and the temperature of the catalyst 18 is increased or kept warm.
[0030]
On the other hand, when the determination in step S14 is NO (OL ≧ OL0), an excessive amount of overlap occurs due to an operation response delay of the variable valve mechanism, and the internal EGR cannot be appropriately suppressed, or the OCV 4a It can be inferred that the variable valve actuator 4 is inoperable in a state where the actual overlap amount OL is large due to the sticking of the vane rotor of the variable valve actuator 4 or insufficient hydraulic pressure. In this case, the ECU 31 proceeds to step S20, and after prohibiting the execution of the exhaust throttle control, ends the routine.
[0031]
When the determination in step S16 is NO (ΔOL ≧ ΔOL0), the actual overlap amount OL is smaller than the first set value OL0, but the target overlap amount tgtOL changes to the reduction side. In this case, it can be estimated that the internal EGR may not be able to be properly suppressed because the actual overlap amount OL temporarily follows the delay due to the responsiveness of the variable valve actuator 4. In this case as well, the ECU 31 shifts to step S20 and terminates the routine after prohibiting the execution of the exhaust throttle control.
[0032]
While step S14 estimates that an excessive amount of overlap has occurred, step S16 differs in that the occurrence of an excessive amount of overlap is actually detected, but the internal EGR of the engine 1 increases. The points are common. When the exhaust throttle control is started in this state, the internal EGR further increases due to the restriction of the exhaust flow rate. However, in response to the prohibition command in step S20, the exhaust throttle valve 20 is fully opened and held on the exhaust throttle control side. Therefore, the increase in the internal EGR is avoided beforehand.
[0033]
Therefore, according to the control device of the engine 1 of the present embodiment, the phase control by the variable valve actuator 4 and the exhaust throttle control by the exhaust throttle valve 20 are accurately coordinated, and an operation response delay or trouble is caused on the phase control side. Even if it occurs, it is possible to avoid an increase in the internal EGR and realize a good combustion state of the engine 1.
If the determination in step S14 is NO, the exhaust throttle control continues to be prohibited. However, if the determination in step S16 is NO, the point in time when the temporary excess of the overlap amount OL is resolved (follow-up delay). The exhaust throttle control is permitted at the time point when the condition is resolved), and thereafter, the advantages of the exhaust throttle control such as the temperature rise and the heat retention of the catalyst 18 are obtained.
[0034]
On the other hand, when the start condition of the exhaust throttle control is satisfied, in step S8 on the phase control side, not only is the overlap amount OL of the intake and exhaust valves 8a, 8b reduced in advance to stabilize combustion, but also the fuel injection control is performed. , The target value of the air-fuel ratio A / F, the fuel injection timing IT, and the target value of the ignition timing SA applied in the ignition timing control are simultaneously switched. Therefore, optimal fuel injection control and ignition timing control can be realized with respect to the overlap amount OL after the reduction, and there is an advantage that an adverse effect on the operation of the engine 1 due to the reduction of the overlap can be suppressed.
[0035]
The embodiment has been described above, but aspects of the present invention are not limited to this embodiment. For example, in the above embodiment, the control device of the in-cylinder injection type engine 1 is embodied. However, a variable valve mechanism for changing the overlap amount OL of the intake and exhaust valves 8a and 8b and an exhaust flow rate adjusting mechanism for limiting the exhaust flow rate are provided. The type of engine provided is not limited to this, and may be applied to, for example, an intake pipe injection type engine or a diesel engine.
[0036]
In the above embodiment, the phase of the exhaust camshaft 3b (the closing timing of the exhaust valve 8b) is controlled by the variable valve actuator 4, but instead of this, the phase of the intake camshaft 3a (the opening of the intake valve 8a). Timing) or the phases of the intake and exhaust camshafts 3a and 3b may be controlled together.
Further, in the above-described embodiment, the exhaust throttle valve 20 is fully closed and the predetermined exhaust pressure is maintained by the pressure adjusting valve 23 provided in the bypass passage 22. However, the exhaust throttle valve 20 is provided without providing the bypass passage 22 and the pressure adjusting valve 23. The predetermined exhaust pressure may be realized by controlling the valve 20 to a small opening degree near the fully closed state.
[0037]
On the other hand, in the above embodiment, the exhaust throttle valve 20 is fully opened and held by the prohibition process of step S20. However, when the overlap amount OL is not so excessive, the exhaust throttle control need not be completely prohibited. For example, when the pressure adjusting valve 23 is not used as described above, the exhaust pressure can be arbitrarily adjusted according to the opening degree of the exhaust throttle valve 20. The opening of the exhaust throttle valve 20 may be adjusted to the open side to suppress the restriction on the exhaust flow rate. With such a configuration, even when the overlap amount OL becomes excessive due to a trouble on the phase control side, it is possible to obtain as much as possible the effect of raising the temperature of the catalyst 18 and the effect of keeping the temperature of the catalyst 18 by the exhaust throttle control.
[0038]
【The invention's effect】
As described above, according to the control apparatus for an internal combustion engine of the first aspect of the present invention, the restriction on the exhaust flow rate by the exhaust flow rate adjusting mechanism is suppressed based on the overlap amount of the intake and exhaust valves by the variable valve operating mechanism. The variable valve mechanism and the exhaust flow rate adjusting mechanism can be accurately and cooperatively controlled, thereby avoiding an increase in the internal EGR of the internal combustion engine and realizing a favorable combustion state.
[0039]
According to the control device for an internal combustion engine of the second aspect of the present invention, in addition to the first aspect, the amount of overlap of the intake and exhaust valves is reduced when the exhaust flow rate is restricted, so that the combustion of the internal combustion engine can be stabilized and reduced. Since the operation control parameters are switched so as to conform to the overlap amount, the adverse effect of the overlap reduction can be suppressed, and the operation of the internal combustion engine can be further improved.
[0040]
According to the control apparatus for an internal combustion engine according to the third and fourth aspects of the present invention, in addition to the first or second aspect, the internal EGR caused by a delay in the operation response of the variable valve mechanism, sticking, insufficient hydraulic pressure of the variable valve mechanism, or the like. , And a good combustion state can be realized.
According to the control device for an internal combustion engine according to the fourth aspect of the present invention, in addition to the first to third aspects, it is possible to reliably avoid an increase in the internal EGR due to a delay in the operation response of the variable valve mechanism, thereby achieving a favorable combustion state. Can be realized.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an engine control device of an embodiment.
FIG. 2 is a flowchart illustrating a cam phase control routine executed by an ECU.
FIG. 3 is a flowchart illustrating an exhaust throttle prohibition determination routine executed by an ECU.
[Explanation of symbols]
1 engine (internal combustion engine)
4 Variable valve actuator (variable valve mechanism)
4a OCV (variable valve mechanism)
8a intake valve 8b exhaust valve 20 exhaust throttle valve (exhaust flow rate adjustment mechanism)
21 Exhaust throttle actuator (Exhaust flow rate adjustment mechanism)
22 Bypass passage (exhaust flow rate adjustment mechanism)
23 Pressure regulating valve (exhaust flow rate regulating mechanism)
31 ECU (exhaust gas limitation control means, overlap reduction control means, operation control parameter switching means)
34 Cam angle sensor (overlap amount detecting means)

Claims (4)

内燃機関の吸気弁の開弁タイミングと排気弁の開弁タイミングとの少なくとも一方を変更して吸排気弁のオーバラップ量を変更可能な可変動弁機構と、
上記内燃機関の排気通路に設けられ、排気流量を制限可能な排気流量調整機構と
を備えた内燃機関の制御装置において、
上記吸排気弁のオーバラップ量を検出するオーバラップ量検出手段と、
上記オーバラップ量検出手段によって検出されるオーバラップ量に基づき、上記排気流量調整機構による排気流量の制限を抑制する排気制限抑制手段と
を備えたことを特徴とする内燃機関の制御装置。
A variable valve mechanism that can change at least one of the intake valve opening timing and the exhaust valve opening timing of the internal combustion engine to change the overlap amount of the intake and exhaust valves,
In the control device for the internal combustion engine, which is provided in the exhaust passage of the internal combustion engine, and includes
Overlap amount detecting means for detecting the overlap amount of the intake and exhaust valves,
A control device for an internal combustion engine, comprising: exhaust restriction control means for restricting an exhaust flow rate by the exhaust flow rate adjusting mechanism based on the overlap amount detected by the overlap amount detection means.
上記排気流量調整機構による排気流量の制限の開始条件が成立したときに、上記可変動弁機構により吸排気弁のオーバラップ量を縮小方向に制御するオーバラップ縮小制御手段と、
上記オーバラップ縮小制御手段によるオーバラップ量の縮小制御時に、縮小したオーバラップ量に適合するように上記内燃機関の運転制御パラメータを切換える運転制御パラメータ切換手段とを更に備えたことを特徴とする請求項1記載の内燃機関の制御装置。
An overlap reduction control means for controlling the amount of overlap of the intake and exhaust valves in the reduction direction by the variable valve mechanism when a start condition for restricting the exhaust flow rate by the exhaust flow rate adjustment mechanism is satisfied;
An operation control parameter switching means for switching operation control parameters of the internal combustion engine so as to be adapted to the reduced overlap amount when the overlap reduction control means controls the overlap amount to be reduced. Item 2. The control device for an internal combustion engine according to Item 1.
上記排気制限抑制手段は、上記オーバラップ量が第1の設定値以上のときに、上記排気流量調整機構による排気流量の制限を抑制することを特徴とする請求項1又は2記載の内燃機関の制御装置。3. The internal combustion engine according to claim 1, wherein, when the amount of overlap is equal to or more than a first set value, the exhaust restriction suppressing unit suppresses restriction of an exhaust flow rate by the exhaust flow rate adjustment mechanism. 4. Control device. 上記排気制限抑制手段は、上記オーバラップ量と該オーバラップ量の目標値との差が第2の設定値以上のときに、上記排気流量調整機構による排気流量の制限を抑制することを特徴とする請求項1乃至3の何れかに記載の内燃機関の制御装置。When the difference between the overlap amount and a target value of the overlap amount is equal to or greater than a second set value, the exhaust limitation control unit suppresses the limitation of the exhaust flow rate by the exhaust flow rate adjustment mechanism. The control device for an internal combustion engine according to any one of claims 1 to 3.
JP2002341077A 2002-11-25 2002-11-25 Control device for internal combustion engine Expired - Fee Related JP4267303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341077A JP4267303B2 (en) 2002-11-25 2002-11-25 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341077A JP4267303B2 (en) 2002-11-25 2002-11-25 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004176568A true JP2004176568A (en) 2004-06-24
JP4267303B2 JP4267303B2 (en) 2009-05-27

Family

ID=32703547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341077A Expired - Fee Related JP4267303B2 (en) 2002-11-25 2002-11-25 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4267303B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002259A (en) * 2007-06-22 2009-01-08 Suzuki Motor Corp Variable valve timing control device for internal combustion engine
WO2012001888A1 (en) * 2010-06-30 2012-01-05 Mazda Motor Corporation Engine control device and control method
CN102695864A (en) * 2009-10-27 2012-09-26 丰田自动车株式会社 Control device for internal combustion engine having valve stopping mechanism
DE102018217117A1 (en) * 2018-10-08 2020-04-09 Volkswagen Aktiengesellschaft Method for regulating the boost pressure of an internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002259A (en) * 2007-06-22 2009-01-08 Suzuki Motor Corp Variable valve timing control device for internal combustion engine
CN102695864A (en) * 2009-10-27 2012-09-26 丰田自动车株式会社 Control device for internal combustion engine having valve stopping mechanism
WO2012001888A1 (en) * 2010-06-30 2012-01-05 Mazda Motor Corporation Engine control device and control method
CN102971512A (en) * 2010-06-30 2013-03-13 马自达汽车株式会社 Engine control device and control method
JP2013530329A (en) * 2010-06-30 2013-07-25 マツダ株式会社 Engine control device
US9080502B2 (en) 2010-06-30 2015-07-14 Mazda Motor Corporation Engine with variable valve mechanism
CN102971512B (en) * 2010-06-30 2015-09-02 马自达汽车株式会社 Engine controller
DE112011102184B4 (en) * 2010-06-30 2017-08-17 Mazda Motor Corporation Engine control unit and control method
DE102018217117A1 (en) * 2018-10-08 2020-04-09 Volkswagen Aktiengesellschaft Method for regulating the boost pressure of an internal combustion engine
US11111842B2 (en) 2018-10-08 2021-09-07 Volkswagen Aktiengesellschaft Method for charge pressure control of an internal combustion engine

Also Published As

Publication number Publication date
JP4267303B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4701871B2 (en) Engine control device
US8033098B2 (en) Control apparatus and control method for internal combustion engine
US20040055571A1 (en) Control system and method for internal combustion engine with variable valve mechanism
US7806105B2 (en) Idle speed control apparatus for internal combustion engine
JP3972720B2 (en) Valve characteristic control device for internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP2005201113A (en) Controlling device of internal combustion engine
JP4267303B2 (en) Control device for internal combustion engine
JP4293110B2 (en) Idle control device for internal combustion engine
JP3771101B2 (en) Control device for internal combustion engine
JP4849475B2 (en) Ignition timing control device for spark ignition internal combustion engine
JP4407505B2 (en) Valve characteristic control device for internal combustion engine
JP4591645B2 (en) Variable valve timing device
JP4577469B2 (en) Variable valve timing device
JP2009079517A (en) Control device for internal combustion engine
JP5556387B2 (en) Control device for variable valve system
JP3873809B2 (en) Variable valve timing control device for internal combustion engine
JP2003328791A (en) Variable valve system of internal combustion engine
JP3981799B2 (en) Variable valve timing control device
JP3622430B2 (en) Fuel injection timing control device for internal combustion engine
JP4386199B2 (en) Variable valve timing device
JP5041167B2 (en) Engine control device
JP4930396B2 (en) Control device for internal combustion engine
JP4075614B2 (en) In-cylinder injection internal combustion engine control device
JP4661792B2 (en) Exhaust noise suppression device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees