JP2004176175A - Steel superior in machinability and manufacturing method therefor - Google Patents

Steel superior in machinability and manufacturing method therefor Download PDF

Info

Publication number
JP2004176175A
JP2004176175A JP2003374489A JP2003374489A JP2004176175A JP 2004176175 A JP2004176175 A JP 2004176175A JP 2003374489 A JP2003374489 A JP 2003374489A JP 2003374489 A JP2003374489 A JP 2003374489A JP 2004176175 A JP2004176175 A JP 2004176175A
Authority
JP
Japan
Prior art keywords
mns
machinability
steel
cutting
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003374489A
Other languages
Japanese (ja)
Other versions
JP4348163B2 (en
Inventor
Masayuki Hashimura
雅之 橋村
Atsushi Mizuno
水野  淳
Kenichiro Naito
賢一郎 内藤
Hiroshi Hagiwara
博 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003374489A priority Critical patent/JP4348163B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to KR1020057008721A priority patent/KR100708430B1/en
Priority to CN2007101960130A priority patent/CN101215665B/en
Priority to PCT/JP2003/014547 priority patent/WO2004050932A1/en
Priority to US10/534,858 priority patent/US7488396B2/en
Priority to EP03772791A priority patent/EP1580287B1/en
Priority to DE60318745T priority patent/DE60318745T2/en
Priority to TW092132048A priority patent/TWI249579B/en
Publication of JP2004176175A publication Critical patent/JP2004176175A/en
Priority to US12/288,542 priority patent/US8137484B2/en
Application granted granted Critical
Publication of JP4348163B2 publication Critical patent/JP4348163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel superior in machinability which gives a tool a long cutting life, shows an excellent roughness of a cut surface, causes excellent chip treatability, and is used for automobiles and general machines, and to provide a manufacturing method therefor. <P>SOLUTION: The steel superior in machinability includes, by mass%, 0.005-0.2% C, 0.3-3.0% Mn, 0.25-0.75% S and 0.002-0.014% B; and is characterized in that, with regard to MnS collected by the extraction replica method for observation through a transmission electron microscope, an existence density of the MnS having equivalent circle diameters of 0.1 to 0.5 μm is 10,000 pieces/mm<SP>2</SP>or more in a cross section parallel to a rolling direction of the steel, and sulfides of 10% or more by number out of the MnS compositely precipitate with boron nitride (BN). The manufacturing method therefor is also disclosed. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、自動車や一般機械などに用いられる鋼に関するもので、特に切削時の工具寿命と切削表面粗さおよび切り屑処理性に優れた被削性に優れた鋼に関する。   The present invention relates to steel used for automobiles, general machines, and the like, and more particularly to steel excellent in machinability, which is excellent in tool life, cutting surface roughness, and chip disposal during cutting.

一般機械や自動車は多種の部品を組み合わせて製造されているが、その部品は要求精度と製造効率の観点から、多くの場合、切削工程を経て製造されている。その際、コスト低減と生産能率の向上が求められ、鋼にも被削性の向上が求められている。特に従来SUM23やSUM24Lは被削性を重要視して開発されてきた。これまで被削性を向上させるためにS,Pbなどの被削性向上元素を添加するのが有効であることが知られている。しかし、需要家によってはPbは環境負荷として使用を避ける場合も有り、その使用量を低減する方向にある。   General machines and automobiles are manufactured by combining various types of parts, and the parts are often manufactured through a cutting process from the viewpoint of required accuracy and manufacturing efficiency. At that time, cost reduction and improvement in production efficiency are required, and steel is also required to have improved machinability. In particular, conventionally, SUM23 and SUM24L have been developed with emphasis on machinability. It has been known that it is effective to add a machinability improving element such as S or Pb in order to improve machinability. However, some customers avoid using Pb as an environmental load, and the amount of Pb used is being reduced.

これまでもPbを添加しない鋼の場合には、SのようにMnSのような切削環境下で軟質となる介在物を形成して被削性を向上させる手法が使われている。しかしいわゆる低炭鉛快削鋼SUM24Lには低炭硫黄快削鋼SUM23と同量のSが添加されている。したがって従来以上のS量を添加する必要がある。しかし、多量S添加ではMnSを単に粗大にするだけで、被削性向上に有効なMnSにならないだけでなく、圧延、鍛造等において破壊起点になって圧延疵等の製造上の問題を多く引き起こす。さらにSUM23をベースとする硫黄快削鋼では構成刃先が付着しやすく、構成刃先の脱落および切り屑分離現象に伴う、切削表面に凹凸が生じ、表面粗さが劣化する。従って、被削性の観点からも表面粗さが劣化による精度低下が問題である。切り屑処理性においても、切り屑が短く分断しやすい方が良好とされているが、単なるS添加だけではマトリックスの延性が大きいため、十分に分断されず、大きく改善できなかった。   Until now, in the case of steel to which Pb is not added, a method of improving the machinability by forming soft inclusions such as MnS under a cutting environment such as S has been used. However, so-called low-carbon lead free-cutting steel SUM24L contains the same amount of S as low-carbon sulfur free-cutting steel SUM23. Therefore, it is necessary to add more S than before. However, the addition of a large amount of S merely increases the size of MnS, and does not not only result in MnS effective for improving machinability, but also causes a problem in rolling, forging, etc., which is a starting point of fracture and causes many manufacturing problems such as rolling flaws. . Further, in the case of the SUM23-based sulfur free-cutting steel, the constituent cutting edge easily adheres, and the cut surface becomes uneven due to the falling of the constituent cutting edge and the chip separation phenomenon, thereby deteriorating the surface roughness. Therefore, from the viewpoint of machinability, there is a problem that accuracy is reduced due to deterioration of surface roughness. In terms of chip controllability as well, it is considered better if the chips are short and easy to separate, but the simple addition of S has a large ductility of the matrix, so that the matrix is not sufficiently separated and cannot be significantly improved.

さらに、S以外の元素、Te,Bi,P等も被削性向上元素として知られているが、ある程度の被削性を向上させることができても、圧延や熱間鍛造時に割れを生じ易くなるため、極力少ない方が望ましいとされている。   Further, elements other than S, such as Te, Bi, and P, are also known as machinability improving elements. However, even if machinability can be improved to some extent, cracks are likely to occur during rolling or hot forging. Therefore, it is considered that it is desirable to minimize the amount.

例えば、特許文献1には単独で20μm以上の硫化物、あるいは複数の硫化物が略直列状に連なった長さ20μm以上の硫化物郡が圧延方向断面1mm2 の視野内に30個以上存在することによって切屑処理性を高める方法が提案されている。しかし、事実上被削性に最も有効であるサブμmレベルの硫化物の分散については製造方法を含めて言及されておらず、またその成分系からも期待できない。 For example, in Patent Document 1, there are 30 or more sulfides having a length of 20 μm or more alone or a sulfide group having a length of 20 μm or more in which a plurality of sulfides are connected in series in a rolling direction cross section of 1 mm 2. Thus, there has been proposed a method for improving the chip disposability. However, the dispersion of sulfide at the sub-μm level, which is practically most effective for machinability, is not mentioned including the production method, and cannot be expected from the component system.

また、特許文献2には、硫化物系介在物の平均サイズが50μm2 以下であり、かつ該硫化物系介在物が1mm2 当たり750個以上存在することによって切屑処理性を高める方法が提案されている。しかし、事実上被削性に最も有効であるサブμmレベルの硫化物の分散については特許文献1同様何ら言及されておらず、またそれを意識して作りこむ技術や調査する方法についても記述されていない。 Further, Patent Document 2 proposes a method for improving the chip disposability by having an average size of sulfide-based inclusions of 50 μm 2 or less and having 750 or more sulfide-based inclusions per 1 mm 2. ing. However, as in Patent Document 1, there is no mention of the dispersion of sulfide at the sub-μm level which is practically most effective for machinability, and a technique for consciously making it and a method of investigating it are also described. Not.

特開平11−222646号公報JP-A-11-222646 特開平11−293391号公報JP-A-11-293391

本発明は、圧延や熱間鍛造における不具合を避けつつ、工具寿命と表面粗さの両者を改善し、従来の低炭鉛快削鋼と同等以上の被削性を有する鋼及びその製造方法を提供する。   The present invention improves both tool life and surface roughness while avoiding defects in rolling and hot forging, and provides a steel having a machinability equal to or higher than that of a conventional low-carbon lead free-cutting steel and a method for producing the same. provide.

切削は切り屑を分離する破壊現象であり、それを促進させることが一つのポイントとなる。この効果はSを単純に増量するだけでは限界がある。本発明者らは、Sを増量するだけでなく、マトリックスを均一に脆化させることで破壊を容易にして工具寿命を延長するとともに切削表面の凹凸を抑制することで被削性が向上することを知見した。   Cutting is a breaking phenomenon that separates chips, and promoting it is one point. This effect is limited by simply increasing S. The present inventors not only increase the amount of S, but also enhance the machinability by suppressing the unevenness of the cutting surface by extending the tool life by facilitating the destruction by uniformly embrittlement of the matrix. Was found.

本発明は以上の知見に基づいてなされたもので、その要旨は次のとおりである。   The present invention has been made based on the above findings, and the gist is as follows.

(1)質量%で、C:0.005〜0.2%、Mn:0.3〜3.0%、S:0.25〜0.75%、B:0.002〜0.014%を含み、鋼材の圧延方向と平行な断面において抽出レプリカ法にて採取して透過電子顕微鏡で観察する円相当径で0.1〜0.5μmのMnSの存在密度が10,000個/mm2 以上であり、かつ該MnSのうち、窒化ホウ素(BN)が複合析出しているMnSの個数割合が10%以上であることを特徴とする被削性に優れる鋼。 (1) In mass%, C: 0.005 to 0.2%, Mn: 0.3 to 3.0%, S: 0.25 to 0.75%, B: 0.002 to 0.014% And the existence density of MnS having a circle equivalent diameter of 0.1 to 0.5 μm in a cross section parallel to the rolling direction of the steel material extracted by the extraction replica method and observed with a transmission electron microscope is 10,000 / mm 2. A steel excellent in machinability, characterized in that, among the MnS, the number ratio of MnS in which boron nitride (BN) is compositely precipitated is 10% or more.

(2)前記SおよびB含有量の範囲において、下記(1)式を満足する図1に示すA,B,C,Dで囲まれる領域内にあるSおよびB量を含有することを特徴とする請求項1記載の被削性に優れる鋼。   (2) Within the range of the S and B contents, the S and B contents in the region surrounded by A, B, C, and D shown in FIG. 1 satisfying the following expression (1) are contained. The steel excellent in machinability according to claim 1.

(B−0.008)2/0.0062+(S−0.5)2/0.252≦1
…(1)式
(3)請求項1または2記載の鋼を、鋳造に際し、10〜100℃/min の冷却速度で冷却し、更に熱間圧延に際し、仕上がり温度を1000℃以上とする圧延を実施することにより、抽出レプリカ法にて採取して透過電子顕微鏡で観察するMnSに関し、鋼材の圧延方向と平行な断面において円相当径で0.1〜0.5μmのMnSの存在密度が10,000個/mm2 以上であり、かつ該MnSのうち、数において10%以上の硫化物に窒化ホウ素(BN)が複合析出するようにすることを特徴とする切削性に優れる鋼の製造方法。
(B-0.008) 2 /0.006 2 + (S-0.5) 2 /0.25 2 ≦ 1
(1) Formula (3) The steel according to claim 1 or 2 is cooled at a cooling rate of 10 to 100 ° C./min during casting, and further subjected to hot rolling at a finishing temperature of 1000 ° C. or higher. By carrying out, regarding MnS collected by the extraction replica method and observed with a transmission electron microscope, the existence density of MnS having an equivalent circle diameter of 0.1 to 0.5 μm in a cross section parallel to the rolling direction of the steel material is 10, A method for producing steel having excellent machinability, wherein boron nitride (BN) is precipitated in a number of sulfides of not less than 000 / mm 2 and 10% or more of the MnS in number.

以上説明したように、鋼中SおよびB量と、MnSを主成分としBNが複合析出した硫化物のサイズと分布を厳密に判別することにより、特に切削時の工具寿命と切削表面粗さ、および切り屑処理性の良好な被削性に優れる鋼を提供することが可能となる。   As described above, the S and B contents in steel, and the size and distribution of sulfide in which MnS is a main component and BN is compositely precipitated are strictly determined, so that tool life and cutting surface roughness, particularly during cutting, In addition, it is possible to provide steel excellent in chippability and excellent machinability.

本発明は、鉛を添加することなく十分な被削性、特に良好な表面粗さを有する鋼を得るものであり、そのために鋼に含有されるS量とB量を極力狭い領域に限定し、かつMnSを光学顕微鏡では確認し得ない寸法に制御し、その微細分散の程度を従来より大幅に向上させることで良好な表面粗さと工具寿命特性を得ることを見出したものである。   The present invention is intended to obtain a steel having sufficient machinability, particularly good surface roughness, without adding lead, and therefore, it is necessary to limit the amounts of S and B contained in the steel to a narrow region as much as possible. In addition, it has been found that by controlling MnS to a size that cannot be confirmed with an optical microscope, and by improving the degree of fine dispersion significantly, a good surface roughness and tool life characteristics can be obtained.

先ず、本発明で規定する鋼の成分組成の限定理由について説明する。なお、鋼の成分組成はいずれも質量%である。   First, the reasons for limiting the composition of the steel specified in the present invention will be described. In addition, all the component compositions of steel are mass%.

Cは、鋼材の基本強度と鋼中の酸素量に関係するので被削性に大きな影響を及ぼす。Cを多量に添加して強度を高めると被削性を低下させるのでその上限を0.2%とした。一方、被削性を低下させる硬質酸化物生成を防止しつつ、凝固過程でのピンホール等の高温での固溶酸素の弊害を抑制するため、酸素量を適量に制御する必要がある。単純に吹錬によってC量を低減させるぎるとコストが嵩むだけでなく、鋼中酸素量が多量に残留してピンホール等の不具合の原因となる。従って、ピンホール等の不具合を容易に防止できるC量0.005%を下限とした。C量の好ましい下限は0.05%である。   C has a significant effect on machinability because it relates to the basic strength of the steel material and the amount of oxygen in the steel. If the strength is increased by adding a large amount of C, the machinability decreases, so the upper limit was made 0.2%. On the other hand, it is necessary to control the amount of oxygen to an appropriate amount in order to prevent the formation of hard oxides that reduce machinability and to suppress the adverse effects of dissolved oxygen at high temperatures such as pinholes during the solidification process. If the amount of C is simply reduced by blowing, not only the cost is increased, but also a large amount of oxygen in the steel remains and causes problems such as pinholes. Therefore, the lower limit of the C content of 0.005% at which inconveniences such as pinholes can be easily prevented is set. A preferred lower limit of the amount of C is 0.05%.

Mnは、鋼中硫黄をMnSとして固定・分散させるために必要である。また鋼中酸化物を軟質化させ、酸化物を無害化させるために必要である。その効果は添加するS量にも依存するが、0.3%以下では添加SをMnSとして十分に固定できず、SがFeSとなり脆くなる。Mn量が大きくなると素地の硬さが大きくなり被削性や冷間加工性が低下するので、3.0%を上限とした。   Mn is necessary for fixing and dispersing sulfur in steel as MnS. In addition, it is necessary to soften oxides in steel and make the oxides harmless. Although the effect also depends on the amount of S added, if it is 0.3% or less, the added S cannot be sufficiently fixed as MnS, and S becomes FeS and becomes brittle. When the amount of Mn increases, the hardness of the substrate increases, and machinability and cold workability decrease. Therefore, the upper limit is set to 3.0%.

Sは、Mnと結合してMnS介在物として存在する。MnSは被削性を向上させるが、伸延したMnSは鍛造時の異方性を生じる原因の一つである。大きなMnS硫化物は避けるべきであるが、被削性向上の観点からは多量の添加が好ましい。従って、MnSを微細分散させることが好ましい。Pbを添加しない場合の被削性向上には0.25%以上の添加が必要である。一方、0.75%を越えると粗大MnSを主成分とする硫化物の生成の確率が高くなり、熱間変形特性の劣化の恐れがあるので、0.75%を上限とした。   S bonds with Mn and exists as MnS inclusions. MnS improves machinability, but elongated MnS is one of the causes of anisotropy during forging. Large MnS sulfides should be avoided, but from the viewpoint of improving machinability, a large amount is preferable. Therefore, it is preferable to finely disperse MnS. To improve machinability when Pb is not added, it is necessary to add 0.25% or more. On the other hand, if it exceeds 0.75%, the probability of formation of sulfides containing coarse MnS as a main component increases, and there is a possibility that the hot deformation characteristics may deteriorate. Therefore, the upper limit is set to 0.75%.

Bは、BNとして析出すると被削性向上に効果がある。特にMnSと複合析出することにより研著となる。この効果は0.002%未満では顕著でなく、0.014%を超えて添加すると飽和する。そこで0.002〜0.014%を範囲とした。   B is effective in improving machinability when precipitated as BN. In particular, the composite precipitation with MnS results in sharpening. This effect is not remarkable at less than 0.002%, and saturates when added over 0.014%. Therefore, the range is 0.002 to 0.014%.

本発明においては、特に上述したS量とB量を極く限られた図1に示す楕円内の領域、すなわち、次の(1)式
(B−0.008)2/0.0062+(S−0.5)2/0.252≦1
…(1)式
の領域に限定することにより最良の特性を得られる。
In the present invention, in particular, the above-described region within the ellipse shown in FIG. 1 where the S amount and the B amount are extremely limited, that is, the following equation (1) (B−0.008) 2 /0.006 2 + (S−0.5) 2 /0.25 2 ≦ 1
... The best characteristics can be obtained by limiting to the region of the expression (1).

次に、MnSの形態とそのサイズおよび分布において、円相当径にて0.1〜0.5μmの存在密度が10,000個/mm2 以上と規定する理由について説明する。 Next, in the form of MnS, its size and distribution, the reason why the existence density of 0.1 to 0.5 μm in circle equivalent diameter is defined as 10,000 or more per mm 2 will be described.

MnSは被削性を向上させる介在物であり、微細に高密度で分散させることで著しく向上する。その効果を発揮するには、円相当径で0.1〜0.5μmのMnSの存在密度が10,000個/mm2 以上とする必要がある。通常MnS硫化物分布は光学顕微鏡にて観察し、その寸法、密度を測定する。当該寸法のMnS硫化物は光学顕微鏡での観察では確認することが不可能なものであり、透過型電子顕微鏡(TEM)によりはじめて観察できる。光学顕微鏡観察での寸法、密度に差は無くてもTEM観察では明確な差が認められる寸法のMnSを主成分とする硫化物であり、本発明ではこれを制御し、存在形態を数値化することにより従来技術との差別化を図るものである。 MnS is an inclusion that improves machinability, and is significantly improved by finely dispersing it at high density. In order to exhibit the effect, the existence density of MnS having a circle equivalent diameter of 0.1 to 0.5 μm needs to be 10,000 / mm 2 or more. Usually, the distribution of MnS sulfide is observed with an optical microscope, and its size and density are measured. The MnS sulfide of this size cannot be confirmed by observation with an optical microscope, and can be observed only with a transmission electron microscope (TEM). It is a sulfide containing MnS as the main component and having a size that can be clearly observed in TEM observation even though there is no difference in size and density in optical microscope observation. In the present invention, this is controlled and the existence form is quantified. In this way, a differentiation from the conventional technology is achieved.

上述した寸法を超えたMnSを10,000個/mm2 以上の密度で存在させるには本発明の範囲を超えた多量のSの添加を必要とするが、多量添加すると粗大MnSも多数存在する確率が高くなり、鍛造時の異方性の原因となる。本発明に規定する範囲のS添加量でMnSがこの寸法を超えると、MnSの量が不足し被削性向上に必要な密度を維持できなくなる。また、最小径0.1μm以下のものは実質上被削性には影響を及ぼさない。従って、円相当径にて0.1〜0.5μmのMnSの存在密度が10,000個/mm2 以上存在することが必要である。このMnSの寸法、密度を得るためには、冷却速度の制御の他、含有するMnとSの比を1.5〜2.5にするとより効果的である。 The presence of MnS exceeding the above-mentioned size at a density of 10,000 / mm 2 or more requires the addition of a large amount of S exceeding the scope of the present invention. The probability increases, which causes anisotropy during forging. If MnS exceeds this size with the amount of S added in the range specified in the present invention, the amount of MnS is insufficient, and the density required for improving machinability cannot be maintained. Further, those having a minimum diameter of 0.1 μm or less do not substantially affect the machinability. Therefore, it is necessary that the density of MnS having a circle equivalent diameter of 0.1 to 0.5 μm be present at 10,000 or more / mm 2 . In order to obtain the size and density of MnS, it is more effective to control the cooling rate and to set the ratio of Mn to S to 1.5 to 2.5.

更に、本発明においては、上述したMnSにおいてその内の10質量%以上の窒化ホウ素(BN)が複合析出した硫化物の形態を有することが重要である。   Further, in the present invention, it is important that the above-mentioned MnS has a form of sulfide in which 10% by mass or more of boron nitride (BN) is compositely precipitated.

BNは通常結晶粒界に析出しやすく、マトリックスに均一に分散させることが難しい。そのため被削性向上に必要なマトリックスの均一脆化をさせることができず、BNの効果を十分に発揮できない。マトリックスに均一分散させるには、BNの析出サイトとなり、かつ被削性向上にも有効であるMnSをマトリックスに均一に分散させることが必要である。BNとMnSを複合析出させることで、BNの均一分散が図られ被削性は大幅に向上する。そのためには少なくとも10%以上のBNがMnSと複合析出している必要がある。   BN usually precipitates easily at crystal grain boundaries, and it is difficult to uniformly disperse it in a matrix. Therefore, the matrix required for improving machinability cannot be uniformly embrittled, and the effect of BN cannot be sufficiently exhibited. In order to uniformly disperse MnS in the matrix, it is necessary to uniformly disperse MnS, which serves as a BN precipitation site and is also effective in improving machinability, in the matrix. By depositing BN and MnS in combination, uniform dispersion of BN is achieved and machinability is greatly improved. For that purpose, at least 10% or more of BN needs to be compositely precipitated with MnS.

ここでいうBNとは、図4にTEMレプリカ写真で示し、図5のEDX分析でBとNのピークが明瞭に認められるBとNの化合物を指す。   Here, BN refers to a compound of B and N which is shown in a TEM replica photograph in FIG. 4 and in which the peaks of B and N are clearly observed in the EDX analysis of FIG.

なお、MnSとは、純粋なMnSのみならず、MnSを主体に含み、Fe、Ca、Ti、Zr、Mg、REM等の硫化物がMnSと固溶したり結合して共存している介在物や、MnTeのようにS以外の元素がMnと化合物を形成してMnSと固溶・結合して共存している介在物や、酸化物を核として析出した上記介在物が含まれるものであり、化学式では、(Mn,X)(S,Y)(ここで、X:Mn以外の硫化物形成元素、Y:S以外でMnと結合する元素)として表記できるMn硫化物系介在物を総称して言うものである。   In addition, MnS means not only pure MnS but also intervening substances mainly containing MnS, and sulfides such as Fe, Ca, Ti, Zr, Mg, and REM coexist with MnS by solid solution or bonding. And inclusions such as MnTe in which an element other than S forms a compound with Mn to form a compound with MnS to form a solid solution / bond and coexist with the MnS, or includes the above-mentioned inclusions precipitated with an oxide as a nucleus. In the chemical formula, Mn sulfide-based inclusions that can be expressed as (Mn, X) (S, Y) (here, X: an element other than Mn and a sulfide-forming element other than Y: S that binds to Mn) are collectively referred to. That's what they say.

本発明の切削性に優れる鋼は低炭快削鋼を想定したものであるが、この鋼材には必要に応じてC、Mn、S、B以外の添加元素が含まれてもよい。この場合、例えば、Cr:0.01〜2.0%、V:0.01〜1.0%、Nb:0.005〜0.2%、Mo:0.01〜1.0%、W:0.05〜1.0%、Ni:0.05〜2.0%、Ti:0.0005〜0.2%、Ca:0.0002〜0.01%、Zr:0.0005〜0.1%、Mg:0.0003〜0.01%、Al:0.001〜0.1%、Si:0.01〜0.5%、Te:0.0003〜0.2%、total-N:0.001〜0.02%、total-O:0.0005〜0.035%、P:0.001〜0.2%、Zn:0.0005〜0.5%、Sn:0.005〜2.0%、Cu:0.01〜2.0%、Bi0.005〜0.5%、Pb:0.01〜0.5%を1種または2種以上含有することが好ましい。尚、TiはNと化合してTiNを形成するが、TiNは硬質物質で被削性を低下させる。また被削性向上に有効なBNを造るのに必要なN量を低減させる。そのためTi量は0.010%以下が望ましい。   The steel having excellent machinability according to the present invention is assumed to be a low-carbon free-cutting steel. However, this steel material may contain additional elements other than C, Mn, S, and B as necessary. In this case, for example, Cr: 0.01 to 2.0%, V: 0.01 to 1.0%, Nb: 0.005 to 0.2%, Mo: 0.01 to 1.0%, W : 0.05-1.0%, Ni: 0.05-2.0%, Ti: 0.0005-0.2%, Ca: 0.0002-0.01%, Zr: 0.0005-0 0.1%, Mg: 0.0003-0.01%, Al: 0.001-0.1%, Si: 0.01-0.5%, Te: 0.0003-0.2%, total- N: 0.001 to 0.02%, total-O: 0.0005 to 0.035%, P: 0.001 to 0.2%, Zn: 0.0005 to 0.5%, Sn: 0. It is preferable to contain one or more of 005 to 2.0%, Cu: 0.01 to 2.0%, Bi 0.005 to 0.5%, and Pb: 0.01 to 0.5%. Note that Ti combines with N to form TiN, but TiN is a hard substance and reduces machinability. Further, the amount of N required to produce BN effective for improving machinability is reduced. Therefore, the Ti content is desirably 0.010% or less.

次に、上述したようなMnS,BNを微細分散させるための鋼の製造方法について説明する。   Next, a method for producing steel for finely dispersing MnS and BN as described above will be described.

MnSを主成分としBNを複合析出した硫化物の微細分散は被削性向上に有効である。この硫化物を微細に分散させるにはMnSを主成分としBNを複合析出した硫化物の晶析出を制御する必要があり、その制御には鋳造時の冷却速度範囲を規定する必要がある。冷却速度が10℃/min 以下では凝固が遅すぎて晶出したMnSを主成分としBNを複合析出した硫化物が粗大化してしまい、微細分散できなくなる。冷却速度が100℃/min 以上では生成する微細硫化物の密度は飽和し、鋼片の硬度が上昇し割れの発生する危険が増す。この冷却速度を得るには鋳型断面の大きさ、鋳込み速度、鋳込み速度等を適正な値に制御することで容易に得られる。これは連続鋳造法、造塊法共に適用可能である。   Fine dispersion of a sulfide in which MnS is a main component and BN is compositely precipitated is effective for improving machinability. In order to finely disperse the sulfide, it is necessary to control the crystallization of the sulfide in which MnS is the main component and BN is compositely precipitated, and it is necessary to regulate the cooling rate range during casting for the control. If the cooling rate is 10 ° C./min or less, the solidification is too slow, and the sulfide, which is mainly composed of crystallized MnS and has BN complex precipitated, becomes coarse and cannot be finely dispersed. When the cooling rate is 100 ° C./min or more, the density of the generated fine sulfide is saturated, the hardness of the billet increases, and the risk of cracking increases. This cooling rate can be easily obtained by controlling the size of the mold section, the casting speed, the casting speed, and the like to appropriate values. This is applicable to both the continuous casting method and the ingot making method.

ここでいう冷却速度とは、鋳片厚み方向Q部における液相線温度から固相線温度までの冷却時の速度のことをいう。冷却速度は凝固後の鋳片厚み方向凝固組織の2次デンドライトアームの間隔から下記式により計算で求める。   Here, the cooling rate refers to a rate at the time of cooling from the liquidus temperature to the solidus temperature in the portion Q in the slab thickness direction. The cooling rate is calculated by the following formula from the interval between the secondary dendrite arms of the solidified structure in the thickness direction of the slab after solidification.

Figure 2004176175
Figure 2004176175

つまり冷却条件により2次デンドライトアーム間隔が変化するので、これを測定することにより制御した冷却速度を確認できる。   That is, since the interval between the secondary dendrite arms changes depending on the cooling condition, the controlled cooling rate can be confirmed by measuring this.

BNは1000℃以上でオーステナイト中に固溶する。1000℃以下の温度では鋳造から粗圧延過程で析出したBNが粒界に残留しており、MnSを主成分としBNを複合析出した硫化物として複合析出できない。熱間圧延時の仕上げ(最終)圧延工程で1000℃以上の温度で圧延することで一度固溶したBNがMnS硫化物を析出核として複合析出しやすくなる。1000℃以下で最終圧延を行うと、BNとMnSを主成分とする硫化物の複合析出は起こりにくくなる。   BN forms a solid solution in austenite at 1000 ° C. or higher. At a temperature of 1000 ° C. or lower, BN precipitated in the course of rough rolling from casting remains at the grain boundary, and cannot be precipitated as sulfide, which is mainly composed of MnS and BN is precipitated. By performing rolling at a temperature of 1000 ° C. or more in the finishing (final) rolling step in hot rolling, BN once solid-dissolved is liable to form a composite precipitate using MnS sulfide as a precipitate nucleus. When the final rolling is performed at a temperature of 1000 ° C. or lower, the composite precipitation of sulfide mainly composed of BN and MnS is less likely to occur.

本発明の効果を実施例によって説明する。   The effects of the present invention will be described with reference to examples.

表1、表2(表1のつづき1)、表3(表1のつづき2)、表4(表1のつづき3)、表5(表1のつづき4)、表6(表1のつづき5)に示す供試材は一部は270t転炉で溶製後、冷却速度が10〜100℃/min になるように鋳造した。ビレットに分解圧延、さらにφ50mmに圧延した。他は2t真空溶解炉にて溶製し、φ50mmに圧延した。このとき、鋳型断面寸法を変えることにより鋳片の冷却速度を調整した。材料の被削性は表7に条件を示すドリル穿孔試験と表8に条件を示すプランジ切削によって評価した。ドリル穿孔試験は累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000、単位:m/min )で被削性を評価する方法である。プランジ切削は突切工具によって工具形状を転写して表面粗さを評価する方法である。その実験方法の概要を図6に示す。実験では200溝加工した場合の表面粗さを表面粗さ計で測定した。10点表面粗さRz(単位:μm)を表面粗さを示す指標とした。   Table 1, Table 2 (continuation 1 of Table 1), Table 3 (continuation 2 of Table 1), Table 4 (continuation 3 of Table 1), Table 5 (continuation 4 of Table 1), Table 6 (continuation of Table 1) A part of the test material shown in 5) was melted in a 270 t converter and then cast so that the cooling rate was 10 to 100 ° C / min. It was disassembled and rolled into billets and further rolled to φ50 mm. The others were melted in a 2t vacuum melting furnace and rolled to φ50 mm. At this time, the cooling rate of the slab was adjusted by changing the cross-sectional dimension of the mold. The machinability of the material was evaluated by a drilling test shown in Table 7 and plunge cutting shown in Table 8. The drilling test is a method for evaluating machinability at the highest cutting speed (so-called VL1000, unit: m / min) capable of cutting to a cumulative hole depth of 1000 mm. Plunge cutting is a method for evaluating the surface roughness by transferring the tool shape with a parting-off tool. FIG. 6 shows the outline of the experimental method. In the experiment, the surface roughness when 200 grooves were processed was measured with a surface roughness meter. Ten-point surface roughness Rz (unit: μm) was used as an index indicating the surface roughness.

円相当径にて0.1〜0.5μmの寸法のMnSを主成分とする硫化物密度の測定は、φ50mm圧延後の圧延方向と平行な断面のQ部より抽出レプリカ法にて採取して過型電子顕微鏡にて行った。測定は10000倍で1視野80μm2 を40視野以上行い、それを1平方ミリメートル当たりのMnSを主成分とする硫化物数に換算して算出した。表2、表4および表6の(1)式計算値で1以下のものは本発明の請求項1〜3を満たしている開発鋼である。 The measurement of the sulfide density mainly composed of MnS having a size of 0.1 to 0.5 μm in a circle equivalent diameter is carried out by extracting from the Q portion of the cross section parallel to the rolling direction after φ50 mm rolling by the extraction replica method. This was performed using a scanning electron microscope. The measurement was carried out at a magnification of 10,000 times in a visual field of 80 μm 2 for 40 visual fields or more, which was converted into the number of sulfides containing MnS as a main component per 1 mm 2 . The steels having a calculated value of 1 or less in the formula (1) in Tables 2, 4 and 6 are developed steels satisfying claims 1 to 3 of the present invention.

図2に本発明例のMnSのTEMレプリカ写真を示すとともに、図3に比較例のMnSのTEMレプリカ写真を示す。   FIG. 2 shows a TEM replica photograph of MnS of the present invention, and FIG. 3 shows a TEM replica photograph of MnS of the comparative example.

このように、光学顕微鏡レベルでは確認できないサイズのMnSが、TEMレプリカの観察により発明例と比較例では寸法、密度に明確な差が見られる。   As described above, MnS of a size that cannot be confirmed at the optical microscope level shows a clear difference in size and density between the invention example and the comparative example by observation of the TEM replica.

なお、表2、表4、表6の切削抵抗および切り層処理性とは次のとおりである。切削抵抗は旋盤のターレットに圧電素子型工具動力計(キスラー社製)を装着、その上に工具を通常の切削と同様の位置になるようにセットして、プランジ切削して測定した。これにより工具に負荷される主分力と背分力をそれぞれ電圧信号として測定することができる。切削速度、送り速度等の切削条件は切削表面粗さを評価したものと同様である。   In addition, the cutting resistance and cut layer processing property of Table 2, Table 4, and Table 6 are as follows. The cutting resistance was measured by attaching a piezoelectric element type tool dynamometer (manufactured by Kistler) to a turret of a lathe, setting a tool on the turret at the same position as in ordinary cutting, and performing plunge cutting. As a result, the main component force and the back component force applied to the tool can be measured as voltage signals. The cutting conditions such as the cutting speed and the feed speed are the same as those for evaluating the cutting surface roughness.

切り屑処理性に関しては切り屑のカール時の曲率が小さいもの、あるいは分断されているものが好ましい。そこで切り屑が20mmを超えた曲率半径で3巻き以上連続してカールして長く延びた切り屑を不良とした。巻数が多くとも曲率半径が小さいもの、あるいは曲率半径が大きくとも切り屑長さが100mmに達しなかったものは良好とした。   With respect to the chip handling property, it is preferable that the chip has a small curvature at the time of curling or that the chip is divided. Accordingly, chips that were continuously curled and extended longer than three turns with a radius of curvature exceeding 20 mm were regarded as defective. If the number of windings was large and the radius of curvature was small, or if the chip length did not reach 100 mm even if the radius of curvature was large, it was regarded as good.

被削性では、発明例はいずれも比較例に対してドリル工具寿命に優れるとともに、プランジ切削における表面粗さが良好であった。特に表面粗さについては微細MnSとBNの複合析出の効果により非常に優れた値を得ることができた。   With respect to machinability, all of the inventive examples were superior to the comparative example in terms of the drill tool life, and the surface roughness in plunge cutting was favorable. In particular, a very excellent value of the surface roughness could be obtained due to the effect of the composite precipitation of fine MnS and BN.

Figure 2004176175
Figure 2004176175

Figure 2004176175
Figure 2004176175

Figure 2004176175
Figure 2004176175

Figure 2004176175
Figure 2004176175

Figure 2004176175
Figure 2004176175

Figure 2004176175
Figure 2004176175

Figure 2004176175
Figure 2004176175

Figure 2004176175
Figure 2004176175

本発明による鋼のS量とB量との最適範囲を示す図である。It is a figure showing the optimal range of the amount of S and the amount of B of steel by the present invention. 本発明によるMnSのTEMレプリカ写真である。4 is a TEM replica photograph of MnS according to the present invention. 比較鋼のMnSのTEMレプリカ写真である。It is a TEM replica photograph of MnS of a comparative steel. 本発明によるMnSを主成分としBNを複合析出した硫化物の形態を示すTEMレプリカ写真である。5 is a TEM replica photograph showing the form of a sulfide in which MnS is a main component and BN is compositely precipitated according to the present invention. BNのEDX分析結果を示す図である。It is a figure which shows the EDX analysis result of BN. プランジ切削方法を示す図である。It is a figure showing a plunge cutting method.

Claims (3)

質量%で、C:0.005〜0.2%、Mn:0.3〜3.0%、S:0.25〜0.75%、B:0.002〜0.014%を含み、鋼材の圧延方向と平行な断面において抽出レプリカ法にて採取して透過電子顕微鏡で観察する円相当径で0.1〜0.5μmのMnSの存在密度が10,000個/mm2 以上であり、かつ該MnSのうち、窒化ホウ素(BN)が複合析出しているMnSの個数割合が10%以上であることを特徴とする被削性に優れる鋼。 In mass%, C: 0.005 to 0.2%, Mn: 0.3 to 3.0%, S: 0.25 to 0.75%, B: 0.002 to 0.014%, The density of MnS having a circle equivalent diameter of 0.1 to 0.5 μm, which is sampled by the extraction replica method in a cross section parallel to the rolling direction of the steel material and observed with a transmission electron microscope, is 10,000 / mm 2 or more. A steel excellent in machinability, characterized in that, among the MnS, the number ratio of MnS in which boron nitride (BN) is compositely precipitated is 10% or more. 前記SおよびB含有量の範囲において、下記(1)式を満足する図1に示すA,B,C,Dで囲まれる領域内にあるSおよびB量を含有することを特徴とする請求項1記載の被削性に優れる鋼。
(B−0.008)2/0.0062+(S−0.5)2/0.252≦1
…(1)式
The S and B contents in the range of the S and B contents, which satisfy the following expression (1), are contained in the region surrounded by A, B, C, and D shown in FIG. 1. A steel excellent in machinability according to 1.
(B-0.008) 2 /0.006 2 + (S-0.5) 2 /0.25 2 ≦ 1
... Equation (1)
請求項1または2記載の鋼を、鋳造に際し、10〜100℃/min の冷却速度で冷却し、更に熱間圧延に際し、仕上がり温度を1000℃以上とする圧延することにより、抽出レプリカ法にて採取して透過電子顕微鏡で観察するMnSに関し、鋼材の圧延方向と平行な断面において円相当径で0.1〜0.5μmのMnSの存在密度が10,000個/mm2 以上であり、かつ該MnSのうち、数において10%以上の硫化物に窒化ホウ素(BN)が複合析出するようにすることを特徴とする被削性に優れる鋼の製造方法。 The steel according to claim 1 or 2 is cooled at a cooling rate of 10 to 100 ° C./min during casting, and further subjected to rolling at a finishing temperature of 1000 ° C. or higher during hot rolling, by an extraction replica method. With respect to MnS sampled and observed with a transmission electron microscope, the density of MnS having a circle equivalent diameter of 0.1 to 0.5 μm in a cross section parallel to the rolling direction of the steel material is 10,000 / mm 2 or more, and A method for producing steel having excellent machinability, characterized in that boron nitride (BN) is compound-precipitated on 10% or more of sulfides in number of the MnS.
JP2003374489A 2002-11-15 2003-11-04 Steel excellent in machinability and manufacturing method thereof Expired - Fee Related JP4348163B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003374489A JP4348163B2 (en) 2002-11-15 2003-11-04 Steel excellent in machinability and manufacturing method thereof
CN2007101960130A CN101215665B (en) 2002-11-15 2003-11-14 Steel having excellent machinability and production method therefor
PCT/JP2003/014547 WO2004050932A1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
US10/534,858 US7488396B2 (en) 2002-11-15 2003-11-14 Superior in machinability and method of production of same
KR1020057008721A KR100708430B1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
EP03772791A EP1580287B1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
DE60318745T DE60318745T2 (en) 2002-11-15 2003-11-14 STEEL WITH EXCELLENT CUT-OUTPUT AND MANUFACTURING METHOD THEREFOR
TW092132048A TWI249579B (en) 2002-11-15 2003-11-14 A steel having an excellent cuttability and a method for producing the same
US12/288,542 US8137484B2 (en) 2002-11-15 2008-10-20 Method of production of steel superior in machinability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002332695 2002-11-15
JP2003374489A JP4348163B2 (en) 2002-11-15 2003-11-04 Steel excellent in machinability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004176175A true JP2004176175A (en) 2004-06-24
JP4348163B2 JP4348163B2 (en) 2009-10-21

Family

ID=32716259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374489A Expired - Fee Related JP4348163B2 (en) 2002-11-15 2003-11-04 Steel excellent in machinability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4348163B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255848A (en) * 2005-03-18 2006-09-28 Nippon Steel Corp Cutting tool and cutting method for low carbon free-cutting steel
JP2007146228A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Free cutting steel having excellent high temperature ductility
WO2008066194A1 (en) * 2006-11-28 2008-06-05 Nippon Steel Corporation Free-cutting steel excellent in manufacturability
JP2008133503A (en) * 2006-11-28 2008-06-12 Nippon Steel Corp Method for producing low carbon free-cutting steel with b (boron) added thereto
JP2014040645A (en) * 2012-08-23 2014-03-06 National Institute For Materials Science Free-cutting iron based shape memory alloy
KR20150092321A (en) 2013-02-18 2015-08-12 신닛테츠스미킨 카부시키카이샤 Lead-containing free-machining steel
KR20150093816A (en) 2013-02-18 2015-08-18 신닛테츠스미킨 카부시키카이샤 Free machining steel with lead
KR101676187B1 (en) * 2015-09-04 2016-11-15 주식회사 포스코 Wire-shaped or rod-shaped steel having excellent cold workability and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293391A (en) * 1998-04-13 1999-10-26 Kobe Steel Ltd Low carbon free cutting steel excellent in chip treatability, and its production
JP2002249823A (en) * 2001-02-22 2002-09-06 Kawasaki Steel Corp Method for producing free cutting steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293391A (en) * 1998-04-13 1999-10-26 Kobe Steel Ltd Low carbon free cutting steel excellent in chip treatability, and its production
JP2002249823A (en) * 2001-02-22 2002-09-06 Kawasaki Steel Corp Method for producing free cutting steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255848A (en) * 2005-03-18 2006-09-28 Nippon Steel Corp Cutting tool and cutting method for low carbon free-cutting steel
JP2007146228A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Free cutting steel having excellent high temperature ductility
JP4546917B2 (en) * 2005-11-28 2010-09-22 新日本製鐵株式会社 Free-cutting steel with excellent hot ductility
WO2008066194A1 (en) * 2006-11-28 2008-06-05 Nippon Steel Corporation Free-cutting steel excellent in manufacturability
JP2008133503A (en) * 2006-11-28 2008-06-12 Nippon Steel Corp Method for producing low carbon free-cutting steel with b (boron) added thereto
AU2007326255B2 (en) * 2006-11-28 2010-06-24 Nippon Steel Corporation Free-cutting steel excellent in manufacturability
JP5212111B2 (en) * 2006-11-28 2013-06-19 新日鐵住金株式会社 Free-cutting steel with excellent manufacturability
JP2014040645A (en) * 2012-08-23 2014-03-06 National Institute For Materials Science Free-cutting iron based shape memory alloy
KR20150092321A (en) 2013-02-18 2015-08-12 신닛테츠스미킨 카부시키카이샤 Lead-containing free-machining steel
KR20150093816A (en) 2013-02-18 2015-08-18 신닛테츠스미킨 카부시키카이샤 Free machining steel with lead
KR101676187B1 (en) * 2015-09-04 2016-11-15 주식회사 포스코 Wire-shaped or rod-shaped steel having excellent cold workability and method for manufacturing same

Also Published As

Publication number Publication date
JP4348163B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4264247B2 (en) Steel with excellent machinability and method for producing the same
JP3468239B2 (en) Steel for machine structural use and its manufacturing method
WO2004050932A1 (en) Steel excellent in machinability and method for production thereof
JP4924422B2 (en) Low carbon sulfur free cutting steel
WO2008066194A1 (en) Free-cutting steel excellent in manufacturability
JP4424503B2 (en) Steel bar and wire rod
CN102884212A (en) Case hardened steel and method for producing the same
JP2005054227A (en) Low carbon free cutting steel
JP6642237B2 (en) Cold forging steel and method for producing the same
TWI221857B (en) Sulfur-containing free-cutting steel
JP5092578B2 (en) Low carbon sulfur free cutting steel
WO2014125770A1 (en) Lead-containing free-machining steel
JP2007239015A (en) Low carbon sulfur free-cutting steel product
JP2004176175A (en) Steel superior in machinability and manufacturing method therefor
JP2004176176A (en) Steel superior in machinability
AU2006241390B2 (en) Free-cutting steel having excellent high temperature ductility
JP5114753B2 (en) Steel with excellent machinability and method for producing the same
JP3901582B2 (en) Free cutting steel for mold
JP2005307241A (en) High-sulfur free-cutting steel
JP2017115190A (en) Hot rolled bar wire rod
TWI747777B (en) Free-cutting steel and its manufacturing method
TWI779544B (en) Free-cutting steel and method of making the same
TWI717990B (en) Free-cutting steel and its manufacturing method
JP4222112B2 (en) High sulfur free cutting steel
JP2004169054A (en) Steel having excellent machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090717

R151 Written notification of patent or utility model registration

Ref document number: 4348163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees