JP2004175093A - Method for fabricating three-dimensional shape article - Google Patents

Method for fabricating three-dimensional shape article Download PDF

Info

Publication number
JP2004175093A
JP2004175093A JP2003048261A JP2003048261A JP2004175093A JP 2004175093 A JP2004175093 A JP 2004175093A JP 2003048261 A JP2003048261 A JP 2003048261A JP 2003048261 A JP2003048261 A JP 2003048261A JP 2004175093 A JP2004175093 A JP 2004175093A
Authority
JP
Japan
Prior art keywords
powder
cutting
layer
supply tank
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003048261A
Other languages
Japanese (ja)
Other versions
JP3599054B2 (en
Inventor
Yoshikazu Azuma
喜万 東
Satoshi Abe
諭 阿部
Takashi Matsuo
隆史 松尾
Uzo Ota
卯三 太田
Mitsuhiro Shingo
光弘 新郷
Hiroshi Yoshihara
広 吉原
Isao Fuwa
勲 不破
Tokuo Yoshida
徳雄 吉田
Masataka Takenami
正孝 武南
Shuji Kaminaga
修士 上永
Hirohiko Tougeyama
裕彦 峠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003048261A priority Critical patent/JP3599054B2/en
Publication of JP2004175093A publication Critical patent/JP2004175093A/en
Application granted granted Critical
Publication of JP3599054B2 publication Critical patent/JP3599054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To securely obtain a required three-dimensional shape article without being affected by a scrap generated at an incorporated removal process. <P>SOLUTION: A light beam is irradiated to the designated place of a powder material layer 10 and powder at the applicable place is sintered to form a sintered layer 11. A new powder material layer 10 is covered on the sintered layer 11, the light beam is irradiated to the designated place, and the powder at the applicable place is sintered, so that a new sintered layer integrated with the sintered layer which forms the lower layer thereof is formed repeatedly. After the sintered layer 11 is formed, a process for cutting and removing the surface portion and/or the unnecessary portion of the shape article which is fabricated untill then is incorporated into a process for fabricating a plurality of sintered layers, so that the required three-dimensional shape article is shaped. At this time, a process for removing a cut scrap 9 generated in the cut and removal process is incorporated, followed by the cut and removal process. After removing the cut scrap 9 generated in the cut and removal process, the following powder layer 10 is formed and sintered. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は粉末材料を光ビームで焼結硬化させることで三次元形状造形物を製造する三次元形状造形物の製造方法に関するものである。
【0002】
【従来の技術】
光造形法として知られている三次元形状造形物の製造方法がある。特許第2620353号(特許文献1)などに示された該製造方法は、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成するということを繰り返すことで、複数の焼結層が積層一体化された粉末焼結部品(三次元形状造形物)を作製するものであり、三次元形状造形物の設計データ(CADデータ)であるモデルを所望の層厚みにスライスして生成する各層の断面形状データをもとに光ビームを照射することから、マシニングセンターのような装置が無くとも任意形状の三次元形状造形物を製造することができるほか、切削加工などによる製造方法に比して、迅速に所望の形状の造形物を得ることができる。
【0003】
ところで、光ビームを照射して焼結硬化させた部分の周囲には伝達された熱が原因となって不要な粉末が付着するものであり、該付着粉末は密度の低い表面層を造形物に形成してしまう。この密度の低い表面層を除去して滑らかな表面の三次元形状造形物を得るために、本出願人は特願2000−306546において、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の除去を行う工程を複数回の焼結層の作製工程中に挿入することを提案した。この場合、焼結層の作製と造形物の表面部及びまたは不要部分の除去を繰り返し行うことで、ドリル長などの制約を受けることなく表面を仕上げることができる。
【0004】
【特許文献1】
特許第2620353号公報
【0005】
【発明が解決しようとする課題】
しかし、上記除去工程を挿入した場合、次の新たな問題が生じる。すなわち、除去に際して生じた屑(切削屑)が焼結層や粉末層の最上層の表面上に飛散してしまうために、無機質または有機質の粉末材料を供給してブレードでならすことで次の粉末層を形成する時、屑がブレードに引っかかり、ブレードをスムーズに動かせないことが生じるだけでなく、次の粉末層の中に粉末層の厚みよりも大きな屑が残ってしまって、次の焼結層が望んでいるものと異なったものとなってしまうことがある。
【0006】
また、焼結及び切削除去を行うためのステージへの粉末材料の供給は、ステージ近傍に配された粉末供給タンクの上面開口部から溢れさせた粉末材料を上記ブレードでステージ側に送り込むことでなされている場合、飛散した屑が粉末供給タンク側に入って、次にステージ側へ供給する粉末材料が屑入りのものとなってしまうことがある。
【0007】
本発明はこのような点に鑑みなされたものであって、その目的とするところは挿入した除去工程で生じた屑の影響を受けることなく求める三次元形状造形物を確実に得ることができる三次元形状造形物の製造方法を提供するにある。
【0008】
【課題を解決するための手段】
しかして本発明は、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作製工程中に挿入して所要の三次元形状造形物の造形を行うにあたり、上記切削除去工程に次いで切削除去工程で生じた切削屑を除去する工程を挿入することに特徴を有している。
【0009】
切削除去工程で生じた切削屑を除去してから次の粉末層の形成及びその焼結を行うようにしたものである。
【0010】
ここにおける切削屑の除去は、切削除去工程直前に切削屑除去のための粉末層を一層形成し、切削除去工程直後に粉末層最上部を所要の厚みで除去することで行うことが好ましい。切削除去工程に際して生じた切削屑は、この切削屑除去のために直前に設けた粉末層の上に切削屑が載り、この粉末層ごと切削屑を除去することから、切削屑が粉末層内に一部が入り込んでいる場合も確実に切削屑の除去を行うことができる。
【0011】
また、上記の切削除去工程直後の粉末層最上部を所要の厚みで除去するにあたっては、粉末材料の供給のための粉末供給タンクの最上部の粉末を同時に除去するようにしてもよい。粉末供給タンクまで切削屑が飛散していても、これを同時に除去することができる。
【0012】
粉末材料の供給のための粉末供給タンクと、焼結及び切削除去を行うためのステージとの間にエアカーテンを配置したり、粉末材料の供給のための粉末供給タンクと、焼結及び切削除去を行うためのステージとの間に開閉自在な遮蔽板を配置したりすることも好ましい。粉末供給タンク側に切削屑が飛散することを防ぐことができる。この遮蔽板としては、アコーデオンカーテンやロールカーテンを好適に用いることができるが、粉末供給タンクの開口部を開閉する蓋を設けて、この蓋を遮蔽板としてもよい。また、粉末供給タンクから焼結及び切削除去を行うためのステージに粉末材料を移行させるブレードを遮蔽板として用いると、別途遮蔽板を用意しなくても済むものとなる。
【0013】
切削除去工程の間、粉末材料の供給のための粉末供給タンクを、焼結及び切削除去を行うためのステージから遠ざける駆動機構を備えたものとして、屑が飛散しても粉末供給タンクにまで届くことがないようにしたり、切削除去工程の間、粉末供給タンクをその上面開口部が焼結及び切削除去を行うためのステージより上方に位置するところまで移動させる駆動機構を備えたものとして、飛散した屑が粉末供給タンクの開口内に入ることがないようにしてもよい。
【0014】
そして、切削屑を含んだ粉末材料と、切削屑を含んでいない過剰粉末材料とを別個の容器に保管することで、粉末材料の再利用にあたって切削屑を取り除く手間が不要となる。
【0015】
【発明の実施の形態】
以下本発明を実施の形態の一例に基づいて詳述すると、図17は光造形による三次元形状造形物の製造装置を示しており、造形用のステージ上、つまり造形タンク25で外周が囲まれた空間内を上下に昇降する昇降テーブル20上に供給した無機質あるいは有機質の粉末材料をスキージング用ブレード21でならすことで所定厚みΔt1の粉末層10を形成する粉末層形成手段2と、レーザー発振器30から出力されたレーザーをガルバノミラー31等のスキャン光学系を介して上記粉末層10に照射することで粉末を焼結して焼結層11を形成する焼結層形成手段3とを備えるとともに、上記粉末層形成手段2のベース部にXY駆動機構(高速化の点で直動リニアモータ駆動のものが好ましい)40を介してミーリングヘッド41を設けた切削除去手段4を備えている。
【0016】
このものにおける三次元形状造形物の製造は、図18を参照して説明すると、昇降テーブル20上面の造形用ベース22表面に粉末材料を供給してブレード21でならすことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させてベース22と一体化した焼結層11を形成する。
【0017】
この後、昇降テーブル20を少し下げて再度粉末材料を供給してブレード21でならすことで第2層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成するものであり、昇降テーブル20を下降させて新たな粉末層10を形成し、光ビームを照射して所要箇所を焼結層11とする工程を繰り返すことで、目的とする三次元形状造形物を製造する。
【0018】
光ビームの照射経路は、予め三次元CADデータから作成しておく。すなわち、従来のものと同様に、三次元CADモデルから生成したSTLデータを等ピッチ(たとえば0.05mm)でスライスした各断面の輪郭形状データを用いる。この時、三次元形状造形物の少なくとも最表面が高密度(気孔率5%以下)となるように焼結させることができるように光ビームの照射を行うのが好ましい。
【0019】
そして、上記粉末層10を形成しては光ビームを照射して焼結層11を形成するということを繰り返していくのであるが、焼結層11の全厚みがたとえば切削除去手段4におけるミーリングヘッド41の工具長さなどから求めた所要の値になれば、いったん切削除去手段4を作動させてそれまでに造形した造形物の表面部を切削する。たとえば、ミーリングヘッド41(ボールエンドミル)が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層10の厚みΔt1が0.05mmであるならば、60層の焼結層11を形成した時点で、切削除去手段4を作動させる。
【0020】
切削除去手段4による切削加工により、造形物の表面に付着した粉末による低密度表面層を除去するものであり、この時、高密度部まで削り込むことによって造形物表面に高密度部を全面的に露出させるようにしてもよく、この場合は所望の形状よりも焼結層11が少し大きくなるようにしておく。切削除去手段4による切削加工経路は、光ビームの照射経路と同様に予め三次元CADデータから作成する。
【0021】
そして上記切削除去手段4による切削除去を行った後は、再度粉末層10の形成並びに焼結層11の形成を繰り返すのであるが、ここでは切削除去工程の直後に切削屑除去手段による切削屑除去工程を挿入している。図1は切削屑除去手段の一例を示すもので、ブレード21と同様に粉末材料を収めた粉末供給タンク23の直上から造形タンク25の上方を経て粉末回収部7に至る経路を往復動自在とした吸引装置75を設けている。
【0022】
また、ここでは粉末回収部7に過剰供給された粉末材料の回収用の回収部71と切削屑を含む粉末材料の回収用の回収部72とを設けており、両回収部71,72の回収口はスライド駆動される蓋73で選択的に開閉自在とされている。尚、両回収部71,72の位置は逆でも良い。
【0023】
そして、切削除去手段4による切削加工で切削除去がなされたならば、次の粉末層10の形成の前に上記吸引装置75が吸引動作を行いながら粉末供給タンク23の直上から造形タンク25の上方を経て粉末回収部7まで移動することで、切削除去に際して生じるとともに造形タンク25の表面に飛散している切削屑9の吸引除去を行うものであり、そして粉末回収部7における回収部72の直上で吸引した切削屑9(と粉末)を回収部72に送る。この時、蓋73は回収部71を閉じている。
【0024】
このようにして切削屑の除去がなされたならば、粉末供給タンク23の底部が一段上昇し、ブレード21が粉末供給タンク23内の粉末材料の最上層部を造形タンク25側に送り込むとともにならすことで、造形タンク25上に新たな粉末層10を形成し、更には余剰の粉末材料を回収部71に送る。この時、回収部72の回収口が蓋73で閉じられている。
【0025】
造形タンク25の粉末層10及び焼結層11の最上層にある切削屑の除去は、図2に示すように、柔らかい刷毛76による掃き掃除で行ってもよく、また切削屑が磁性を持つものである場合、図3に示すように、マグネットローラ77で行ってもよい。図3中の78はマグネットローラ77の表面に付着した切削屑や粉末を掻き落とすためのスクレーパで、常時はマグネットローラ77から離れているが、回収部72にマグネットローラ77が至った時、マグネットローラ77表面に接触してマグネットローラ77の表面に付着している屑や粉末を掻き落とす。なお、マグネットローラ77は必要な時だけ磁力を発揮させることができる電磁石で構成されたものが好適である。
【0026】
ところで、切削除去手段4による切削加工で生じた切削屑が粉末供給タンク23にまで飛散すると、粉末層10の形成のために造形タンク25上にブレード21によって送り込まれる粉末の中に切削屑が混入することになる虞があり、これを防ぐために上記の各例では粉末供給タンク23上に飛散した切削屑も除去できるように、切削屑除去手段の可動範囲を設定しているのであるが、図4に示すように、粉末供給タンク23と造形タンク25との間にエアーカーテン80を設けたり、図5に示すように、粉末供給タンク23と造形タンク25との間を仕切る遮蔽板81を設けている場合は、切削屑が粉末供給タンク23側にまで飛散することがないために、切削屑除去手段の可動範囲を小さくすることができる。尚、エアーカーテン80は切削除去工程の間だけ作動し、遮蔽板81も切削除去工程の間だけ上記の場所に位置するものとしておく。
【0027】
この遮蔽板81として、図6に示すように上下もしくは左右に屈曲伸展する電動型のアコーデオンカーテンや、図7に示すように、上下もしくは左右に開閉される電動型のロールスクリーンを用いた場合、ブレード21を通過させるために開いた時の遮蔽板81の退去スペースをさほど必要とせず、装置全体が大型化してしまうことを防ぐことができる。なお、図中のCは屑の飛散範囲、Dは遮蔽板81で飛散が防止されているエリアを示している。
【0028】
また、図8に示すように、粉末供給タンク2の上面開口をスライド開閉する蓋で遮蔽板81を構成するようにしてもよい。
【0029】
ところで、ブレード21は通常時、粉末供給タンク23における造形タンク25と反対側のところに位置しているが、切削除去工程の間だけ、図9に示すように、粉末供給タンク23と造形タンク25との間のところに位置するようにしてもよい。この場合、ブレード21を上記の遮蔽板81として用いることになるものであり、別途遮蔽板81を用意しなくても済むことになる。
【0030】
図10に示すように、粉末供給工程の間は粉末供給タンク23を造形タンク25の近傍に配置してブレード21による粉末供給を容易に行うことができるようにしておき、切削除去工程の際には粉末供給タンク23を切削屑9の飛散範囲よりも遠くに移動させておくようにしたり、図11に示すように、粉末供給タンク23全体を上下動させる駆動機構を用意し、粉末供給工程の間は粉末供給タンク23上面を造形タンク25上面と同じ高さに配置してブレード21による粉末供給を容易に行うことができるようにしておき、切削除去工程の際には粉末供給タンク23を切削屑9の飛散高さHaよりも高い高さH2まで粉末供給タンク23全体を上方へ移動させるようにしてもよい。
【0031】
図12に別の例を示す。これは粉末層10の形成のためのブレード21を切削屑の除去にも用いることで、別途除去手段を設けなくても切削屑の除去を行うことができるようにしたものであり、この場合、切削除去手段4による切削除去工程の直前に、図12(a)に示すように、切削屑除去のための粉末層10’を一層形成する。この粉末層10’の厚みは通常の粉末層10の厚みよりも厚いことが好ましいが、粉末層10の厚みと同じであっても、薄くなっていてもよい。
【0032】
このように粉末層10’で既に形成した造形物を被覆した状態で切削除去手段4による切削除去を行った場合、図12(b)に示すように、切削屑9は粉末層10’上に飛散することになる。
【0033】
そして切削除去が終了すれば、昇降テーブル20を少し上昇させた状態でブレード21を動かすことで、造形タンク25における粉末層10’(と粉末層10)の最上層を所定の厚みで掻き取って切削屑9を回収部72に回収するのである。この時、図12(c)に粉末供給タンク23における粉末材料も一段上昇させておけば、切削屑9が粉末供給タンク23側まで飛散していても、この切削屑9を同時に除去することができる。
【0034】
なお、切削屑9が粉末供給タンク23側にまで飛散してしまうことを防ぐ前記エアーカーテン80や遮蔽板81を設けることは本実施形態においても有効である。
【0035】
ところで、上記の各例では、切削屑9が含まれない粉末の回収用である回収部71と、切削屑9を含んだ粉末の回収用である回収部72とで粉末回収部7を構成し、回収部71に回収された粉末はただちに再利用ができるようにしたものを示したが、粉末回収部7は図13に示すように一つの回収部70を備えただけのものとしてもよい。ただし、その回収口には粉末材料と切削屑9との分離用のメッシュ状フィルター74を配しておくことが好ましく、特に図14に示すようにメッシュ状フィルター74に微小振動を与えることができるようにしておくと、上記分離を高速に行うことができる。
【0036】
また上記フィルター74は、図15に示すように、その両端を回転ローラ85に巻き付けておくとともに、複数のガイドローラ86で回収部70と切削屑専用の回収部79の両者に跨るように配置しておき、回転ローラ85の回転によるフィルター74の移動でフィルター74上に溜まった切削屑9を切削屑専用の回収部79に送り込むとともにフィルター74の自動クリーニングを行うことができるようにしておくのも好ましい。この時、上記ガイドローラ86を振動させるようにしておくと、粉末と切削屑9との分離を高速に行うことができる。
【0037】
図16に他例を示す。これは粉末供給タンク23と造形タンク25との間に回収部74を設けたもので、該回収部74はその粉末供給タンク23側に傾斜面87を備えるとともに、傾斜面87との間にフィルター74が配設されている。
【0038】
粉末供給タンク23の粉末上に切削屑9が飛散しても、切削除去工程の直後に行われる切削屑除去工程において、ブレード21が粉末供給タンク23の粉末上の切削屑9を粉末とともに傾斜面87に送り込むものであり、そしてフィルター74を通って回収部73に入った粉末は、回収部74の底部に配した昇降テーブルの上昇とブレード21の駆動で造形ステージに粉末層10を形成するのに、あるいは粉末層10’を形成するのに利用される。図中89は切削除去工程の際に回収部74の上面開口を閉じている蓋である。
【0039】
【発明の効果】
以上のように本発明においては、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作製工程中に挿入して所要の三次元形状造形物の造形を行うにあたり、上記切削除去工程に次いで切削除去工程で生じた切削屑を除去する工程を挿入しているために、切削除去工程の次の粉末層の形成時には、切削屑が除去されているものであり、従って切削屑が造形に影響を及ぼすことがないものである。
【0040】
そして切削除去工程直前に切削屑除去のための粉末層を一層形成し、切削除去工程直後に粉末層最上部を所要の厚みで除去することで上記切削屑の除去を行った場合、切削除去工程に際して生じた切削屑は、この切削屑除去のために直前に設けた粉末層の上に切削屑が載り、この粉末層ごと切削屑を除去されるものであり、従って切削屑の一部が粉末層内に入り込んでいる場合も確実に切削屑の除去を行うことができる。
【0041】
また、上記の切削除去工程直後の粉末層最上部を所要の厚みで除去するにあたり、粉末材料の供給のための粉末供給タンクの最上部の粉末を同時に除去すると、粉末供給タンクまで切削屑が飛散していても、これを同時に除去することができる。
【0042】
粉末材料の供給のための粉末供給タンクと、焼結及び切削除去を行うためのステージとの間にエアカーテンを配置したり、粉末材料の供給のための粉末供給タンクと、焼結及び切削除去を行うためのステージとの間に開閉自在な遮蔽板を配置したりした場合には、粉末供給タンク側に切削屑が飛散することを防ぐことができるために、切削屑の除去を粉末供給タンクに対しても行う必要がなくなる。
【0043】
上記遮蔽板としては、アコーデオンカーテンやロールカーテンを用いと、遮蔽板の退去スペースが不要となるために装置全体の大型化を招くことなく遮蔽板の設置を行うことができる。
【0044】
また、粉末供給タンクの開口部を開閉する蓋を設けて、この蓋を遮蔽板としてもよく、この時には粉末供給タンクへの切削屑の混入を確実に防ぐことができる。
【0045】
また、上記遮蔽板として、粉末材料の供給のための粉末供給タンクから焼結及び切削除去を行うためのステージに粉末材料を移行させるブレードを用いると、別途遮蔽板を用意しなくても切削屑が粉末供給タンク側に飛散することを防ぐことができる。
【0046】
切削除去工程の間、粉末材料の供給のための粉末供給タンクを、焼結及び切削除去を行うためのステージから遠ざける駆動機構を設けたり、切削除去工程の間、粉末供給タンクをその上面開口部が焼結及び切削除去を行うためのステージより上方に位置するところまで移動させる駆動機構を設けたりすることで、飛散した屑が粉末供給タンクにまで届くことがないようにしても、飛散した屑が粉末供給タンクに入ってしまうことを確実に防ぐことができる。
【0047】
そして、切削屑を含んだ粉末材料と、切削屑を含んでいない過剰粉末材料とを別個の容器に保管することで、粉末材料の再利用にあたって切削屑を取り除く手間が不要となる。
【図面の簡単な説明】
【図1】(a)(b)は本発明の実施の形態の一例の概略断面図である。
【図2】(a)(b)は同上の他例の概略断面図である。
【図3】(a)(b)は同上の更に他例の概略断面図である。
【図4】(a)(b)は別の例の概略断面図と概略平面図である。
【図5】更に別の例の概略断面図である。
【図6】(a)は他の例の概略断面図、(b)は更に他例の概略平面図である。
【図7】(a)は別の例の概略断面図、(b)は更に別の例の概略平面図である。
【図8】(a)は他の例の概略断面図、(b)は更に他例の概略平面図である。
【図9】同上の他例の概略断面図である。
【図10】(a)(b)は別の例の概略断面図と概略平面図である。
【図11】(a)(b)は他の例の概略断面図と概略平面図である。
【図12】(a)(b)(c)は本発明の別の実施の形態の一例を示す概略断面図である。
【図13】(a)は他の例の概略断面図、(b)は一部を示す斜視図である。
【図14】更に他の例の概略断面図である。
【図15】別の例の概略断面図である。
【図16】(a)(b)は更に別の例の概略断面図である。
【図17】全体構成を示す分解斜視図である。
【図18】同上の動作を示す概略説明図である。
【符号の説明】
9 切削屑
10 粉末層
11 焼結層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a three-dimensionally shaped object by manufacturing a three-dimensionally shaped object by sintering and hardening a powder material with a light beam.
[0002]
[Prior art]
There is a method of manufacturing a three-dimensionally shaped object known as an optical molding method. The manufacturing method disclosed in Japanese Patent No. 2620353 (Patent Document 1) irradiates a predetermined portion of an inorganic or organic powder material layer with a light beam and sinters the powder at the corresponding portion to form a sintered layer. Is formed, a new layer of a powder material is coated on the sintered layer, and a predetermined portion of the powder layer is irradiated with a light beam to sinter the powder at the corresponding portion to form a lower sintered layer. By repeatedly forming a new integrated sintered layer, a powder sintered component (three-dimensional shaped object) in which a plurality of sintered layers are laminated and integrated is manufactured. Since a light beam is emitted based on the cross-sectional shape data of each layer generated by slicing a model, which is design data (CAD data) of a shaped object, to a desired layer thickness, any model can be used without a device such as a machining center. Manufacture of three-dimensional shaped objects Besides it is Rukoto, compared to the manufacturing method such as by cutting, it is possible to obtain a molded article rapidly desired shape.
[0003]
By the way, unnecessary powder adheres to the periphery of the portion which is sintered and hardened by irradiating the light beam, and the adhered powder forms a low-density surface layer on a molded article due to the transmitted heat. Will form. In order to remove the low-density surface layer and obtain a three-dimensionally shaped object having a smooth surface, the present applicant disclosed in Japanese Patent Application No. 2000-306546 the surface of the shaped object which had been manufactured after the formation of the sintered layer. It has been proposed to insert a step of removing a part and / or an unnecessary part into a plurality of steps of manufacturing a sintered layer. In this case, by repeatedly performing the production of the sintered layer and the removal of the surface portion and / or the unnecessary portion of the molded article, the surface can be finished without being restricted by a drill length or the like.
[0004]
[Patent Document 1]
Japanese Patent No. 2620353
[Problems to be solved by the invention]
However, when the above-described removal step is inserted, the following new problem occurs. That is, since the chips generated during the removal (cutting chips) are scattered on the surface of the uppermost layer of the sintered layer or the powder layer, the next powder is supplied by supplying an inorganic or organic powder material and leveling with a blade. When forming a layer, not only does the debris get caught on the blade and the blade cannot be moved smoothly, but also debris larger than the thickness of the powder layer remains in the next powder layer and the next sintering The layers can be different from what you want.
[0006]
The supply of the powder material to the stage for performing sintering and cutting removal is performed by feeding the powder material overflowing from the upper opening of the powder supply tank arranged near the stage to the stage side with the blade. In such a case, the scattered debris may enter the powder supply tank side, and the powder material to be subsequently supplied to the stage side may contain debris.
[0007]
The present invention has been made in view of such a point, and an object of the present invention is to provide a three-dimensional shaped object that can reliably obtain a desired three-dimensionally shaped object without being affected by debris generated in an inserted removing process. An object of the present invention is to provide a method of manufacturing an original shaped object.
[0008]
[Means for Solving the Problems]
Thus, the present invention provides a sintered layer by irradiating a light beam to a predetermined portion of a layer of an inorganic or organic powder material to sinter the powder at the corresponding portion, and forming a sintered layer on the sintered layer. A new layer is coated and irradiated with a light beam at a predetermined location to sinter the powder at the location to form a new sintered layer integrated with the lower sintered layer. After the formation of the tie layer, the process of cutting and removing the surface part and / or unnecessary part of the shaped object manufactured up to that time is inserted into the manufacturing process of the sintered layer a plurality of times to form the required three-dimensional shaped object. In performing the method, the method is characterized in that a step of removing cutting chips generated in the cutting and removing step is inserted after the above-described cutting and removing step.
[0009]
After the cutting chips generated in the cutting and removing step are removed, the next powder layer is formed and sintered.
[0010]
Here, it is preferable to remove the cuttings by forming a single powder layer for removing the cuttings immediately before the cutting and removing step, and removing the uppermost portion of the powder layer with a required thickness immediately after the cutting and removing step. The cutting chips generated during the cutting removal process are placed on the powder layer provided immediately before to remove the cutting chips, and the cutting chips are removed together with the powder layer. Even in the case where a part has entered, it is possible to surely remove the cutting waste.
[0011]
In removing the uppermost portion of the powder layer immediately after the above-described cutting and removing step to a required thickness, the powder at the uppermost portion of the powder supply tank for supplying the powder material may be removed at the same time. Even if chips are scattered to the powder supply tank, they can be removed at the same time.
[0012]
Placing an air curtain between the powder supply tank for supplying the powder material and the stage for performing sintering and cutting, or the powder supply tank for supplying the powder material, and sintering and cutting It is also preferable to arrange an openable / closable shielding plate between the stage and the stage for performing the above. It is possible to prevent the cutting chips from scattering on the powder supply tank side. As the shielding plate, an accordion curtain or a roll curtain can be suitably used, but a lid for opening and closing the opening of the powder supply tank may be provided, and this lid may be used as the shielding plate. Further, if a blade for transferring the powder material from the powder supply tank to a stage for sintering and cutting and removing is used as a shielding plate, it is not necessary to separately prepare a shielding plate.
[0013]
During the cutting removal process, the powder supply tank for supplying the powder material is provided with a drive mechanism that keeps the powder supply tank away from the stage for performing sintering and cutting removal. To prevent the powder supply tank from moving during the cutting removal process, or to have a drive mechanism to move the upper surface opening of the powder supply tank to a position above the stage for sintering and cutting removal. It is also possible to prevent the debris from entering the opening of the powder supply tank.
[0014]
Then, by storing the powder material containing the cutting waste and the excess powder material not containing the cutting waste in separate containers, it is not necessary to remove the cutting waste when reusing the powder material.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on an example of an embodiment. FIG. 17 shows an apparatus for manufacturing a three-dimensionally shaped object by stereolithography, in which an outer periphery is surrounded by a modeling tank, that is, a modeling tank 25. Layer forming means 2 for forming a powder layer 10 having a predetermined thickness Δt1 by flattening an inorganic or organic powder material supplied on a lifting table 20 which rises and lowers in a space formed by a squeezing blade 21; And a sintering layer forming means 3 for sintering the powder by irradiating the laser beam output from 30 to the powder layer 10 via a scanning optical system such as a galvanometer mirror 31 to form a sintered layer 11. A milling head 41 is provided on the base of the powder layer forming means 2 via an XY drive mechanism (preferably a linear drive motor driven from the viewpoint of speeding up). It has a deleted means 4.
[0016]
The production of the three-dimensionally shaped object in this case will be described with reference to FIG. 18. Referring to FIG. The layer 10 is formed, and a portion of the powder layer 10 to be cured is irradiated with a light beam (laser) L to sinter the powder to form a sintered layer 11 integrated with the base 22.
[0017]
Thereafter, the lifting table 20 is slightly lowered, and the powder material is supplied again and leveled by the blade 21 to form the second powder layer 10, and a light beam (laser) is applied to a portion of the powder layer 10 where the powder layer is to be cured. L is irradiated to sinter the powder to form a sintered layer 11 integrated with the lower sintered layer 11. The elevating table 20 is lowered to form a new powder layer 10, and the light beam Is applied to repeat the process of turning the required portion into the sintered layer 11, thereby producing a target three-dimensionally shaped object.
[0018]
The irradiation path of the light beam is created in advance from the three-dimensional CAD data. That is, similarly to the conventional one, the contour shape data of each section obtained by slicing the STL data generated from the three-dimensional CAD model at an equal pitch (for example, 0.05 mm) is used. At this time, it is preferable to irradiate the light beam so that at least the outermost surface of the three-dimensionally shaped object can be sintered so as to have a high density (a porosity of 5% or less).
[0019]
Then, the process of forming the powder layer 10 and irradiating a light beam to form the sintered layer 11 is repeated, but the total thickness of the sintered layer 11 is, for example, the milling head in the cutting and removing means 4. When the required value obtained from the tool length 41 or the like is reached, the cutting and removing means 4 is once operated to cut the surface of the modeled object. For example, if the milling head 41 (ball end mill) can perform cutting with a diameter of 1 mm, an effective blade length of 3 mm, and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, 60 sintered layers When 11 is formed, the cutting and removing means 4 is operated.
[0020]
The low-density surface layer of the powder adhering to the surface of the modeled object is removed by cutting by the cutting and removing means 4. In this case, the sintered layer 11 is slightly larger than a desired shape. The cutting path by the cutting and removing unit 4 is created in advance from the three-dimensional CAD data, similarly to the irradiation path of the light beam.
[0021]
After the cutting and removal by the cutting and removing means 4 is performed, the formation of the powder layer 10 and the formation of the sintered layer 11 are repeated again. The process has been inserted. FIG. 1 shows an example of the cutting waste removing means. Like the blade 21, the path from just above the powder supply tank 23 containing the powder material to above the modeling tank 25 to the powder collecting section 7 is reciprocally movable. Suction device 75 is provided.
[0022]
Further, here, a collection unit 71 for collecting the powder material excessively supplied to the powder collection unit 7 and a collection unit 72 for collecting the powder material containing the cutting chips are provided, and the collection units 71 and 72 are collected. The mouth can be selectively opened and closed by a lid 73 that is slidably driven. Note that the positions of the two collecting units 71 and 72 may be reversed.
[0023]
Then, if the cutting and removing is performed by the cutting process by the cutting and removing means 4, the suction device 75 performs the suction operation before the formation of the next powder layer 10 from directly above the powder supply tank 23 to above the modeling tank 25. Is moved to the powder collecting section 7 through the cutting section, thereby sucking and removing the cutting chips 9 generated at the time of cutting and scattered on the surface of the modeling tank 25, and directly above the collecting section 72 in the powder collecting section 7. The cutting chips 9 (and the powder) sucked in the step are sent to the collecting section 72. At this time, the lid 73 closes the collection unit 71.
[0024]
When the cutting chips are removed in this manner, the bottom of the powder supply tank 23 rises by one step, and the blade 21 sends the top layer of the powder material in the powder supply tank 23 to the modeling tank 25 and smoothes it. Then, a new powder layer 10 is formed on the modeling tank 25, and the surplus powder material is sent to the collection unit 71. At this time, the collection port of the collection unit 72 is closed by the lid 73.
[0025]
As shown in FIG. 2, the removal of the cutting debris on the uppermost layer of the powder layer 10 and the sintered layer 11 of the modeling tank 25 may be performed by sweeping with a soft brush 76, and the debris is magnetic. In some cases, as shown in FIG. Reference numeral 78 in FIG. 3 denotes a scraper for scraping off cutting chips and powder adhering to the surface of the magnet roller 77. The scraper is always separated from the magnet roller 77, but when the magnet roller 77 reaches the collecting section 72, the magnet is removed. The dust and powder adhering to the surface of the magnet roller 77 in contact with the surface of the roller 77 are scraped off. The magnet roller 77 is preferably formed of an electromagnet capable of exerting a magnetic force only when necessary.
[0026]
By the way, when the cutting chips generated by the cutting process by the cutting and removing means 4 scatter to the powder supply tank 23, the cutting chips are mixed in the powder fed by the blade 21 onto the modeling tank 25 for forming the powder layer 10. In order to prevent this, in each of the above examples, the movable range of the cutting chip removing means is set so that the cutting chips scattered on the powder supply tank 23 can also be removed. As shown in FIG. 4, an air curtain 80 is provided between the powder supply tank 23 and the molding tank 25, and a shielding plate 81 for separating the powder supply tank 23 and the molding tank 25 is provided as shown in FIG. In this case, since the chips are not scattered to the powder supply tank 23 side, the movable range of the chip removing means can be reduced. The air curtain 80 is operated only during the cutting and removing step, and the shielding plate 81 is located at the above-described position only during the cutting and removing step.
[0027]
When using an electric accordion curtain that bends and extends vertically or horizontally as shown in FIG. 6 or an electric roll screen that is opened and closed vertically or horizontally as shown in FIG. It does not require much space for the shield plate 81 to retreat when it is opened to allow the blade 21 to pass through, and it is possible to prevent the entire apparatus from being enlarged. In the drawing, C indicates a scattering range of the debris, and D indicates an area where the shielding plate 81 prevents scattering.
[0028]
Further, as shown in FIG. 8, the shielding plate 81 may be configured with a lid that slides open and close the upper surface opening of the powder supply tank 2.
[0029]
Incidentally, the blade 21 is normally located on the opposite side of the powder supply tank 23 from the molding tank 25, but only during the cutting and removing step, as shown in FIG. May be located in between. In this case, the blade 21 is used as the above-mentioned shielding plate 81, and it is not necessary to separately prepare the shielding plate 81.
[0030]
As shown in FIG. 10, during the powder supply step, the powder supply tank 23 is disposed near the modeling tank 25 so that powder supply by the blade 21 can be easily performed, and during the cutting removal step, Is to move the powder supply tank 23 farther than the scattering range of the cutting waste 9 or, as shown in FIG. 11, prepare a drive mechanism for moving the entire powder supply tank 23 up and down. In the meantime, the upper surface of the powder supply tank 23 is arranged at the same height as the upper surface of the modeling tank 25 so that powder supply by the blade 21 can be easily performed. The entire powder supply tank 23 may be moved upward to a height H2 higher than the scattering height Ha of the debris 9.
[0031]
FIG. 12 shows another example. This is because the blade 21 for forming the powder layer 10 is also used for removing the cutting chips, so that the cutting chips can be removed without providing a separate removing means. In this case, Immediately before the cutting and removing step by the cutting and removing means 4, as shown in FIG. 12A, a single powder layer 10 'for removing cutting chips is formed. The thickness of the powder layer 10 ′ is preferably larger than the thickness of the normal powder layer 10, but may be equal to or smaller than the thickness of the powder layer 10.
[0032]
When the cutting removal by the cutting and removing means 4 is performed in a state where the formed object already covered with the powder layer 10 'is covered in this way, as shown in FIG. 12B, the cutting chips 9 are placed on the powder layer 10'. Will be scattered.
[0033]
When the cutting removal is completed, the uppermost layer of the powder layer 10 ′ (and the powder layer 10) in the modeling tank 25 is scraped to a predetermined thickness by moving the blade 21 with the lifting table 20 slightly raised. The cutting chips 9 are collected by the collecting unit 72. At this time, if the powder material in the powder supply tank 23 is also raised one step in FIG. 12C, even if the cutting chips 9 are scattered to the powder supply tank 23 side, the cutting chips 9 can be removed at the same time. it can.
[0034]
The provision of the air curtain 80 and the shielding plate 81 for preventing the cutting chips 9 from scattering toward the powder supply tank 23 is also effective in the present embodiment.
[0035]
By the way, in each of the above examples, the collection unit 71 for collecting powder not containing the cuttings 9 and the collection unit 72 for collecting powder containing the cuttings 9 constitute the powder collection unit 7. Although the powder recovered in the recovery section 71 is shown to be reusable immediately, the powder recovery section 7 may be provided with only one recovery section 70 as shown in FIG. However, it is preferable that a mesh filter 74 for separating the powder material and the cuttings 9 is disposed in the collection port, and in particular, a minute vibration can be given to the mesh filter 74 as shown in FIG. By doing so, the separation can be performed at high speed.
[0036]
As shown in FIG. 15, both ends of the filter 74 are wound around a rotating roller 85, and the filter 74 is disposed so as to straddle both the collecting unit 70 and a collecting unit 79 dedicated to cutting chips by a plurality of guide rollers 86. In addition, the cutting chips 9 accumulated on the filter 74 due to the movement of the filter 74 due to the rotation of the rotating roller 85 can be sent to the collection unit 79 dedicated to the cutting chips, and the filter 74 can be automatically cleaned. preferable. At this time, if the guide roller 86 is vibrated, the powder and the cutting chips 9 can be separated at a high speed.
[0037]
FIG. 16 shows another example. This is provided with a collecting section 74 between the powder supply tank 23 and the modeling tank 25. The collecting section 74 has an inclined surface 87 on the powder supply tank 23 side and a filter between the inclined surface 87 and the collecting surface. 74 are provided.
[0038]
Even if the cuttings 9 are scattered on the powder in the powder supply tank 23, in the cutting removal step performed immediately after the cutting and removing step, the blade 21 causes the cutting chips 9 on the powder in the powder supply tank 23 to be inclined together with the powder. The powder fed into the collecting unit 73 through the filter 74 forms the powder layer 10 on the molding stage by raising the elevating table arranged at the bottom of the collecting unit 74 and driving the blade 21. Or to form a powder layer 10 '. In the drawing, reference numeral 89 denotes a lid that closes an upper surface opening of the recovery unit 74 in the cutting and removing step.
[0039]
【The invention's effect】
As described above, in the present invention, a predetermined portion of the inorganic or organic powder material layer is irradiated with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and a sintered layer is formed on the sintered layer. It repeats forming a new sintered layer that is integrated with the lower sintered layer by sintering the powder at the corresponding location by irradiating a light beam to a predetermined location with coating a new layer of powder material In addition, after the formation of the sintered layer, the step of cutting and removing the surface portion and / or unnecessary portion of the shaped object manufactured up to that time is inserted into the manufacturing process of the sintered layer a plurality of times to obtain a required three-dimensional shaped object. In performing the shaping, since a step of removing the cutting chips generated in the cutting and removing step is inserted next to the cutting and removing step, the cutting chips are removed at the time of forming the powder layer next to the cutting and removing step. And therefore, cutting debris can affect Succoth is that there is no.
[0040]
In the case where the above-mentioned chips are removed by forming a single layer of powder for removing chips immediately before the step of cutting and removing the uppermost portion of the powder layer with a required thickness immediately after the step of cutting, The cutting chips generated at this time are chips on the powder layer provided immediately before the removal of the cutting chips, and the cutting chips are removed together with the powder layer. Even in the case of entering the layer, it is possible to reliably remove cutting chips.
[0041]
In addition, in removing the uppermost portion of the powder layer immediately after the above-mentioned cutting and removing step to a required thickness, if the powder at the uppermost portion of the powder supply tank for supplying the powder material is removed at the same time, the cutting chips scatter to the powder supply tank. This can be removed at the same time.
[0042]
Placing an air curtain between the powder supply tank for supplying the powder material and the stage for performing sintering and cutting, or the powder supply tank for supplying the powder material, and sintering and cutting If a shielding plate that can be opened and closed is placed between the stage and the stage to perform cutting, the cutting chips can be removed from the powder supply tank to prevent the chips from scattering on the powder supply tank side. It is no longer necessary to do this.
[0043]
When an accordion curtain or a roll curtain is used as the shielding plate, a space for retreating the shielding plate is not required, so that the shielding plate can be installed without increasing the size of the entire apparatus.
[0044]
In addition, a lid for opening and closing the opening of the powder supply tank may be provided, and this lid may be used as a shielding plate. In this case, it is possible to reliably prevent cutting chips from entering the powder supply tank.
[0045]
Further, when a blade for transferring the powder material to a stage for performing sintering and cutting removal from a powder supply tank for supplying the powder material is used as the shielding plate, the cutting waste can be prepared without a separate shielding plate. Can be prevented from scattering to the powder supply tank side.
[0046]
During the cutting and removing step, a drive mechanism is provided to keep the powder supply tank for supplying the powder material away from the stage for performing sintering and cutting and removing, and during the cutting and removing step, the powder supply tank is opened at its upper opening. By providing a drive mechanism to move the powder to a position above the stage for sintering and cutting removal, even if the scattered dust does not reach the powder supply tank, Can be reliably prevented from entering the powder supply tank.
[0047]
Then, by storing the powder material containing the cutting waste and the excess powder material not containing the cutting waste in separate containers, it is not necessary to remove the cutting waste when reusing the powder material.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic cross-sectional views of an example of an embodiment of the present invention.
FIGS. 2A and 2B are schematic cross-sectional views of another example of the above.
FIGS. 3A and 3B are schematic sectional views of still another example of the above.
4A and 4B are a schematic sectional view and a schematic plan view of another example.
FIG. 5 is a schematic sectional view of still another example.
FIG. 6A is a schematic sectional view of another example, and FIG. 6B is a schematic plan view of still another example.
7A is a schematic sectional view of another example, and FIG. 7B is a schematic plan view of still another example.
8A is a schematic sectional view of another example, and FIG. 8B is a schematic plan view of still another example.
FIG. 9 is a schematic sectional view of another example of the above.
10A and 10B are a schematic cross-sectional view and a schematic plan view of another example.
11A and 11B are a schematic sectional view and a schematic plan view of another example.
FIGS. 12 (a), (b) and (c) are schematic sectional views showing an example of another embodiment of the present invention.
13A is a schematic sectional view of another example, and FIG. 13B is a perspective view showing a part thereof.
FIG. 14 is a schematic sectional view of still another example.
FIG. 15 is a schematic sectional view of another example.
FIGS. 16A and 16B are schematic cross-sectional views of still another example.
FIG. 17 is an exploded perspective view showing the entire configuration.
FIG. 18 is a schematic explanatory view showing the operation of the above.
[Explanation of symbols]
9 Cutting chips 10 Powder layer 11 Sintered layer

Claims (12)

無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結させることで下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作製工程中に挿入して所要の三次元形状造形物の造形を行うにあたり、上記切削除去工程に次いで切削除去工程で生じた切削屑を除去する工程を挿入することを特徴とする三次元形状造形物の製造方法。A predetermined portion of the layer of the inorganic or organic powder material is irradiated with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and a new layer of the powder material is coated on the sintered layer. Irradiating a light beam at a predetermined location to sinter the powder at the corresponding location to form a new sintered layer integrated with the lower sintered layer, and after forming the sintered layer, Inserting the step of cutting and removing the surface part and / or unnecessary part of the formed object up to the time of forming the required three-dimensionally shaped object by inserting it into the plurality of processes of forming the sintered layer, A method for producing a three-dimensionally shaped object, comprising a step of removing cutting chips generated in a cutting removal step after the step. 切削除去工程直前に切削屑除去のための粉末層を一層形成し、切削除去工程直後に粉末層最上部を所要の厚みで除去することで切削屑の除去を行うことを特徴とする請求項1記載の三次元形状造形物の製造方法。2. A method according to claim 1, wherein a single powder layer is formed immediately before the cutting and removing step to remove cutting chips, and the uppermost portion of the powder layer is removed with a required thickness immediately after the cutting and removing step to remove the cutting chips. The method for producing a three-dimensionally shaped object according to the above. 切削除去工程直後の粉末層最上部を所要の厚みで除去するにあたり、粉末材料の供給のための粉末供給タンクの最上部の粉末を同時に除去することを特徴とする請求項2記載の三次元形状造形物の製造方法。3. The three-dimensional shape according to claim 2, wherein, when removing the uppermost portion of the powder layer immediately after the cutting and removing step to a required thickness, the powder at the uppermost portion of the powder supply tank for supplying the powder material is removed at the same time. A method for manufacturing a molded article. 粉末材料の供給のための粉末供給タンクと、焼結及び切削除去を行うためのステージとの間にエアカーテンを配置しておくことを特徴とする請求項1〜3のいずれかの項に記載の三次元形状造形物の製造方法。An air curtain is arranged between a powder supply tank for supplying a powder material and a stage for sintering and cutting and removing, according to any one of claims 1 to 3, wherein Of manufacturing a three-dimensionally shaped object. 粉末材料の供給のための粉末供給タンクと、焼結及び切削除去を行うためのステージとの間に開閉自在な遮蔽板を配置しておくことを特徴とする請求項1〜3のいずれかの項に記載の三次元形状造形物の製造方法。4. A powder supply tank for supplying a powder material, and a shield plate that can be opened and closed is arranged between a stage for performing sintering and cutting removal. Item 3. The method for producing a three-dimensionally shaped object according to item [1]. 遮蔽板としてアコーデオンカーテンを用いていることを特徴とする請求項5記載の三次元形状造形物の製造方法。The method according to claim 5, wherein an accordion curtain is used as the shielding plate. 遮蔽板としてロールスクリーンを用いていることを特徴とする請求項5記載の三次元形状造形物の製造方法。The method according to claim 5, wherein a roll screen is used as the shielding plate. 遮蔽板として粉末供給タンクの開口部を開閉する蓋を用いていることをことを特徴とする請求項5記載の三次元形状造形物の製造方法。6. The method for producing a three-dimensionally shaped object according to claim 5, wherein a lid for opening and closing the opening of the powder supply tank is used as the shielding plate. 粉末材料の供給のための粉末供給タンクから焼結及び切削除去を行うためのステージに粉末材料を移行させるブレードを遮蔽板として用いることを特徴とする請求項5記載の三次元形状造形物の製造方法。6. A three-dimensional shaped product according to claim 5, wherein a blade for transferring the powder material from a powder supply tank for supplying the powder material to a stage for performing sintering and cutting removal is used as a shielding plate. Method. 切削除去工程の間、粉末材料の供給のための粉末供給タンクを、焼結及び切削除去を行うためのステージから遠ざける駆動機構を備えていることを特徴とする請求項1〜3のいずれかの項に記載の三次元形状造形物の製造方法。4. A drive mechanism for keeping a powder supply tank for supplying a powder material away from a stage for performing sintering and cutting removal during the cutting removal step. Item 3. The method for producing a three-dimensionally shaped object according to item [1]. 切削除去工程の間、粉末材料の供給のための粉末供給タンクをその上面開口部が焼結及び切削除去を行うためのステージより上方に位置するところまで移動させる駆動機構を備えていることを特徴とする請求項1〜3のいずれかの項に記載の三次元形状造形物の製造方法。A drive mechanism is provided for moving the powder supply tank for supplying the powder material to a position whose upper surface opening is located above the stage for performing sintering and cutting and removing during the cutting and removing step. The method for manufacturing a three-dimensionally shaped object according to any one of claims 1 to 3. 切削屑を含んだ粉末材料と、切削屑を含んでいない過剰粉末材料とを別個の容器に保管することを特徴とする請求項1〜11のいずれかの項に記載の三次元形状造形物の製造方法。The three-dimensionally shaped object according to any one of claims 1 to 11, wherein the powder material containing cutting chips and the excess powder material not containing cutting chips are stored in separate containers. Production method.
JP2003048261A 2002-09-30 2003-02-25 Manufacturing method of three-dimensional shaped object Expired - Lifetime JP3599054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048261A JP3599054B2 (en) 2002-09-30 2003-02-25 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002287767 2002-09-30
JP2003048261A JP3599054B2 (en) 2002-09-30 2003-02-25 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2004175093A true JP2004175093A (en) 2004-06-24
JP3599054B2 JP3599054B2 (en) 2004-12-08

Family

ID=32715593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048261A Expired - Lifetime JP3599054B2 (en) 2002-09-30 2003-02-25 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP3599054B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335199A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Method for recycling powder material in the manufacture of three-dimensional shape and powder material recycling device
JP2010280173A (en) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd Method for manufacturing three-dimensionally shaped article
CN102458722A (en) * 2009-06-23 2012-05-16 松下电器产业株式会社 Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
CN104325140A (en) * 2014-11-18 2015-02-04 韶关学院 Method and device for flexibly spreading metal powder for selective laser melting additive manufacturing
JP5841649B1 (en) * 2014-10-08 2016-01-13 株式会社ソディック Additive manufacturing equipment
WO2016106607A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Laser melting and laser milling composite 3d printing apparatus
WO2016106603A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Electron beam melting and laser milling composite 3d printing apparatus
WO2016106610A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-axis milling and laser melting composite 3d printing apparatus
WO2016106615A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-electron-beam melting and milling composite 3d printing apparatus
US9533452B2 (en) 2012-09-28 2017-01-03 Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Fuer Wirtschaft Und Technologie, Dieses Vertreten Durch Den Praesidenten Der Bam, Bundesanstalt Fuer Materialforschung Und-Pruefung Method for stabilizing a powder bed by means of vacuum for additive manufacturing
WO2017208504A1 (en) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 Method for producing three-dimensional shaped article
JP2018080382A (en) * 2016-11-14 2018-05-24 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for additionally producing three-dimentional object
CN110548874A (en) * 2019-10-14 2019-12-10 中国工程物理研究院机械制造工艺研究所 multi-material component integrated forming additive manufacturing device and method
EP3584063A1 (en) * 2018-06-13 2019-12-25 Rolls-Royce plc A powder deposition apparatus and a method of using the same
JPWO2019065843A1 (en) * 2017-09-28 2020-04-23 大陽日酸株式会社 Powder recycling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part
JP2001315213A (en) * 2000-05-12 2001-11-13 Teijin Seiki Co Ltd Method and apparatus for optical solid molding
JP2001315215A (en) * 2000-05-12 2001-11-13 Teijin Seiki Co Ltd Method and apparatus for optical solid molding
JP2002115004A (en) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd Method and equipment for manufacturing article with three-dimensional shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part
JP2001315213A (en) * 2000-05-12 2001-11-13 Teijin Seiki Co Ltd Method and apparatus for optical solid molding
JP2001315215A (en) * 2000-05-12 2001-11-13 Teijin Seiki Co Ltd Method and apparatus for optical solid molding
JP2002115004A (en) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd Method and equipment for manufacturing article with three-dimensional shape

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561187B2 (en) * 2004-05-26 2010-10-13 パナソニック電工株式会社 Method for producing three-dimensional shaped object and powder material recycling apparatus for producing three-dimensional shaped object
JP2005335199A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Method for recycling powder material in the manufacture of three-dimensional shape and powder material recycling device
JP2010280173A (en) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd Method for manufacturing three-dimensionally shaped article
CN102458722A (en) * 2009-06-23 2012-05-16 松下电器产业株式会社 Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
US10000021B2 (en) 2009-06-23 2018-06-19 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object obtained by the same
US9533452B2 (en) 2012-09-28 2017-01-03 Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Fuer Wirtschaft Und Technologie, Dieses Vertreten Durch Den Praesidenten Der Bam, Bundesanstalt Fuer Materialforschung Und-Pruefung Method for stabilizing a powder bed by means of vacuum for additive manufacturing
KR101731778B1 (en) * 2012-09-28 2017-05-02 분데스레푸블릭 도이치란트, 페어트레텐 두르히 다스 분데스미니스테리움 퓌르 비르트샤프트 운트 테크놀로기, 디제스 페어트레텐 두르히 덴 프래지덴텐 데르 베아엠, 분데스안슈탈트 퓌르 마테리알포르슝 운트-프뤼풍 Method for stabilizing a powder bed by means of vacuum for additive manufacturing
JP5841649B1 (en) * 2014-10-08 2016-01-13 株式会社ソディック Additive manufacturing equipment
US9808864B2 (en) 2014-10-08 2017-11-07 Sodick Co., Ltd. Three dimensional printer
CN104325140B (en) * 2014-11-18 2015-08-19 韶关学院 Precinct laser fusion increases the flexible spreading methods of material manufacture metal dust and device
CN104325140A (en) * 2014-11-18 2015-02-04 韶关学院 Method and device for flexibly spreading metal powder for selective laser melting additive manufacturing
WO2016106610A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-axis milling and laser melting composite 3d printing apparatus
WO2016106615A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-electron-beam melting and milling composite 3d printing apparatus
WO2016106607A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Laser melting and laser milling composite 3d printing apparatus
WO2016106603A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Electron beam melting and laser milling composite 3d printing apparatus
CN109195732A (en) * 2016-05-30 2019-01-11 松下知识产权经营株式会社 The manufacturing method of three dimensional structure
WO2017208504A1 (en) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 Method for producing three-dimensional shaped article
JP2017214611A (en) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 Production method of three-dimensionally shaped object
JP2018080382A (en) * 2016-11-14 2018-05-24 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for additionally producing three-dimentional object
US11633791B2 (en) 2016-11-14 2023-04-25 Concept Laser Gmbh Apparatus for additive manufacturing of three-dimensional objects
JPWO2019065843A1 (en) * 2017-09-28 2020-04-23 大陽日酸株式会社 Powder recycling method
EP3584063A1 (en) * 2018-06-13 2019-12-25 Rolls-Royce plc A powder deposition apparatus and a method of using the same
US11065690B2 (en) 2018-06-13 2021-07-20 Rolls-Royce Plc Powder deposition apparatus and a method of using the same
CN110548874A (en) * 2019-10-14 2019-12-10 中国工程物理研究院机械制造工艺研究所 multi-material component integrated forming additive manufacturing device and method

Also Published As

Publication number Publication date
JP3599054B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3599054B2 (en) Manufacturing method of three-dimensional shaped object
JP5456379B2 (en) Manufacturing method of three-dimensional shaped object
JP5861117B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
US9073264B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
JP5272871B2 (en) Additive manufacturing equipment
JP5250338B2 (en) Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP2010037599A (en) Apparatus for producing laminated object
JP4487636B2 (en) Manufacturing method of three-dimensional shaped object
JP2009007669A (en) Laminating shaping apparatus
EP2522446A1 (en) Device for subsequent manufacturing of moulded bodies by layered construction using a material powder
CN107848212B (en) Method for manufacturing three-dimensional shaped object
JP2004277881A (en) Method for manufacturing three dimensionally shaped article and apparatus therefor
JP6854465B2 (en) Manufacturing method of three-dimensional shaped object
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
JP2010132961A (en) Lamination forming device and lamination forming method
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
CN1497480A (en) Manufacturing method of three-D moulding object
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP2004122490A (en) Method for manufacturing three-dimensionally shaped article
JP3433745B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP2005097692A (en) Method for manufacturing three-dimensionally shaped article and apparatus for the same
JPH09168840A (en) Molding method of sand mold by stacking method
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object
TWI239888B (en) Method of making three-dimensional object
WO2017130834A1 (en) Method for manufacturing three-dimensionally shaped object

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R151 Written notification of patent or utility model registration

Ref document number: 3599054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term