JP2004173145A - Communication method - Google Patents

Communication method Download PDF

Info

Publication number
JP2004173145A
JP2004173145A JP2002339064A JP2002339064A JP2004173145A JP 2004173145 A JP2004173145 A JP 2004173145A JP 2002339064 A JP2002339064 A JP 2002339064A JP 2002339064 A JP2002339064 A JP 2002339064A JP 2004173145 A JP2004173145 A JP 2004173145A
Authority
JP
Japan
Prior art keywords
wireless
radio
station
channel
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339064A
Other languages
Japanese (ja)
Inventor
Apichaichalumwon Chalumpon
アピチャイチャルームウォン チャルームポン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002339064A priority Critical patent/JP2004173145A/en
Publication of JP2004173145A publication Critical patent/JP2004173145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a selection method of wireless circuit taking in account the traffic of the wireless circuit in a network communication using a plurality of wireless circuits, and to achieve a communication method that improves the reduction of transmission efficiency which occurs when there is a difference of traffic between the wireless circuits. <P>SOLUTION: Wireless stations 205, 206 located in places, where they can detect the electric waves of a plurality of wireless circuits, use the information of a predicted 'packet error rate' of each wireless circuit and 'band occupancy' informed from each control station, and calculate a transmission succeeding rate when using each wireless circuit. Then, the wireless stations select and use a wireless circuit having the highest transmission success rate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、無線のネットワークシステムにおいて、無線回線の動的選択によりパケット通信を効率的に行うための通信方法に関する。
【0002】
【従来の技術】
従来は主にパーソナルコンピュータ(以降、PCと略する)同士でのデータ交換、またはホストコンピュータとPC間でのデータ交換のために、ネットワークにより相互間を接続した。
【0003】
従来の技術の無線ネットワークでの無線回線の動的選択について図1をもとに説明する。図1は2つの制御局で構成される無線ネットワーク構成図である。図1により、制御局101は無線回線001を管理し、無線回線001を時分割的に共有している無線局201〜206間の通信を制御しているが、制御局102は無線回線002を管理し、無線回線202を時分割的に共有している無線局207、208間の通信を制御している。ここで、両制御局の電波が到達する範囲内に存在する無線局205と無線局206に注目する。無線局205や無線局206は両制御局からの電波を検知できるのでどちらの制御局に接続するかを選択することが出来る。すなわち、無線回線001か無線回線002かどちら使用するかを決めることが出来る。このとき、無線回線の選択基準として平均受信電力を用いる場合、無線局205や無線局206から制御局101までの距離が無線局205や無線局206から制御局102までの距離より短く、ほとんどの場合電波301の平均受信電力のほうが電波302より強いので、無線局205と無線局206は無線回線001を選択し、制御局101に接続している。無線回線の選択基準は平均受信電力以外にSNR (Signal to noise ratio)やCNR(Carrier to noise ratio)などもよく用いられる。
【0004】
【非特許文献1】
C.アピチャイチャルームウォン、他2名、「場所選択送信電力制御による適応ゾーン選択方式を用いた適応変調無線パケット通信システム」、社団法人電子情報通信学会、平成13年4月1日発行、電子情報通信学会論文誌B Vol.J84−B No.4 pp.697−706
【0005】
【発明が解決しようとする課題】
従来方法(例えば、非特許文献1参照。)では、複数の制御局からの電波が到達する場所に位置する無線局205、206のような無線局は検知できる複数の無線回線の電波の受信電力などのような受信特性のみを考慮して無線回線を選択するので、各無線回線のトラヒック状態を考慮できず、トラヒック量が多い無線回線001のような無線回線を選択してしまう。その結果、無線局205、206のような無線局は電波の受信特性が比較的良好な無線回線001を利用するにもかかわらず、無線回線001が占有されていない時間帯(帯域)が少ないので、帯域を確保できる確率が低いのである。そこで、もし無線局205、206はトラヒック量が少ない無線回線002を選択して制御局102にアクセスすれば電波の特性が比較的若干悪くても、無線回線002が占有されていない時間帯が多いので、帯域を確保できる確率が高いのである。総合的に考えると、無線局205、206のような無線局はトラヒック量の比較的少ない無線回線002を利用するほうが無線回線001を利用するよりシステム全体の伝送効率および無線回線利用効率が高くなる。従って、電波の特性のみを無線回線の選択基準とした従来方法は無線回線の「トラヒック量」を考慮しておらず、電波の特性のみ考慮するため、もっとも伝送品質が高い無線回線を選択できるが、無線局がトラヒック量が非常に高い無線回線を選択する場合、どれほど良い伝送品質を保証できても確保可能な帯域が足りなければその無線回線を利用する意味がなく、システム全体の伝送効率を低下させることも考えられる。すなわち、従来方法は各無線回線においてトラヒック量の格差がある時のために伝送効率および無線回線利用効率を高める十分な工夫がなされていなかった。
【0006】
それゆえに、本発明の目的は、電波の特性に加え、トラヒック量を考慮した無線回線の選択方式を提供し、それによって、無線ネットワークにおける伝送効率および無線回線利用率を改善することである。
【0007】
【課題を解決するための手段】
この課題を解決するために、発明は、以下に述べるような手段を有しており、それによって以下のような効果を奏する。
【0008】
第1の発明は、複数の無線局が1つ無線回線を時分割的に使用して通信を行うための方法であって、前記複数の無線局のいずれかが、前記複数の無線局間の通信を制御する制御局となる場合であって、異なる無線回線を制御している前記制御局が近隣して存在する場合、前記制御局は、自分自身が制御している無線回線のトラヒック量を監視し、「トラヒック情報」を各無線局に報知し、前記無線局は、自分自身が検知できるすべての無線回線の伝搬路特性を測定し、これらの「伝搬路特性」と、検知可能な各制御局から報知された前記トラヒック情報とを考慮して、無線回線を選択することを特徴とする。
【0009】
第2の発明は、第1の発明において、無線局は各無線回線の伝搬路特性の測定結果に基づいて各無線回線の「パケット誤り率」を算出することを特徴とする。
【0010】
第3の発明は、第1の発明において、制御局は自分自身が制御している無線回線のトラヒック量を観測し、「帯域占有率」を計算し、無線局らに報知することを特徴とする。
【0011】
第4の発明は、第1の発明において、無線局は送信時の最適な無線回線を判断する基準として「送信成功確率」を用い、「送信成功確率=(1−帯域占有率)*(1−パケット誤り率)」という式を利用し、各無線回線の送信成功確率を計算して、送信成功確率が一番高い無線回線を選択することを特徴とする。
【0012】
第5の発明は、第1の発明において、制御局は自分自身が制御している無線回線のトラヒック量を観測し、無線回線のトラヒック量の変動に応じて、トラヒック情報を更新し、更新されたトラヒック情報を無線局らに報知することを特徴とする。
【0013】
第6の発明は、第1の発明において、無線局は自分自身が検知できる各無線回線の伝搬路特性を周期的に測定し、各無線回線の伝搬路特性の変化に応じて、前記パケット誤り率の情報を更新することを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。説明の都合上、本発明を徹底的に理解いただくために特定の数、時間、構造およびその他のパラメータを提示する。以下の段階で本発明を実地する方法の例を挙げる。
【0015】
図2は、本発明の実施形態に係る無線ネットワークシステムの構成を示す図である。図2において、無線ネットワークシステムは、8つの無線局(201〜208)と2つの制御局(101、102)で構成される。制御局101、102はそれぞれ異なる無線回線を管理し、自分自身の電波が到達する範囲内に存在する無線局間の通信を制御する機能を持っている。
【0016】
次に動作を説明する。制御局101、102はそれぞれ自分の無線回線の使用状況を常に観測し、決まった一定時間内でどれくらいの割合で無線局が無線回線を利用しているかを計算し、計算した結果を周期的に無線局ら201〜208に報知する。以下では、この報知情報を「帯域占有率」と呼ぶことにする。
【0017】
図3に、基地局におけるこのような動作の手順を示す。
【0018】
1.調べの終了時点tzを更新する。tz=前回のtz+帯域占有率を更新する周期Tx(310)。
【0019】
2.無線回線の使用状況を調べる時間の幅Tsを決定する(311)。
【0020】
3.無線回線の合計使用時間Tallと無線局のカウンターiをゼロにする(312)。
【0021】
4.管理しているすべての無線局の無線回線の使用状況を調べ終わるまで、以下のステップを繰り返す(管理しているすべての無線局の数をNとする)。
【0022】
a.無線局のカウンターiが(N−1)より大きければステップ(317)に移行する(313)。
【0023】
b.過去に観測し記録しておいたデータに基づいて、(tz−Ts)時点からtzまで無線局iが無線回線を使用する時間Tiを計算する(314)。
【0024】
c.無線回線の合計使用時間TallにTiを加算する(315)。
【0025】
d.次の無線局の使用状況を調べるためiに1を加算し、続いてステップ(313)に戻る(316)。
【0026】
5.「帯域占有率」=Tall/Tsを計算する(317)。
【0027】
6.計算した「帯域占有率」を下り回線を用いて無線局らに報知する(318)。
【0028】
7.上記の動作を周期的に行うため、tzの時点から帯域占有率を更新する周期Txの時間が経過するとステップ(310)に戻る(319)。
【0029】
無線局201〜208はそれぞれ各無線回線の電波を周期的に検知し、電波の受信特性CNR(Carrier to Noise Ratio)を測定して、送信時の電波のCNRを予測する。次に、無線局は予測したCNRを用いて、パケット誤り率(PER:Packet Error Rate)対CNR特性を参照し、パケット誤り率を判定する。パケット誤り率(PER:PacketError Rate)対CNR特性は実験や計算機シミュレーションなどにより予め求められる必要があると思われるが、パケット誤り率とCNRの関係を表す近似式などを用いてパケット誤り率を算出してもよい。なお、電波の受信特性はCNRの代わりに受信電力やSNRなどを用いてもよい。無線局205、206以外の無線局は1つのみの制御局からの電波しか検知できないため、無線回線の選択を行わないとする。一方、無線局205、206は予測した各無線回線の「パケット誤り率」と、各制御局から報知された「帯域占有率」との情報を用いて、各無線回線を利用する時の送信成功確率を次式で求める。送信成功確率=(1−帯域占有率)*(1−パケット誤り率)。無線局205、206は各無線回線における送信成功率を上記の式で計算し、送信成功率が一番高い無線回線を選択し、その無線回線を制御している制御局にアクセスする。
【0030】
たとえば、図2では無線回線001、002の帯域占有率=0.5、0.3、無線局205から見た無線回線001、002におけるパケット誤り率=0.1、0.3である場合、無線回線001における送信成功確率=(1−0.5)*(1−0.1)=0.5*0.9=0.45 無線回線002における送信成功確率=(1−0.3)*(1−0.3)=0.7*0.7=0.49となり、無線局205から見て無線回線002における送信成功確率が無線回線001における送信成功確率より高いため、無線局205は無線回線002を利用してパケット通信を行う。無線回線無線局205、206は上記の「帯域占有率」および「パケット誤り率」が周期的に更新するため、各無線回線のトラヒック状態および電波の特性の変化に応じて周期的に「送信成功率」が一番高い無線回線を正確に選択できる。その結果、各無線回線にトラヒック量が均等に分布されてない時においてもシステム全体の伝送効率や無線回線の利用効率を高めることが出来る。
【0031】
図4に無線局における上記のような動作の手順を示す。
【0032】
1.無線回線の選択を開始する(401)。例、無線局の電源を入れた時や無線局の設置場所が変更された時など無線回線の選択が必要になる。また、周期的に無線回線の選択を行うことも考えられる。
【0033】
2.検知できる無線回線の電波の数Mを求める(402)。Mが2以上の場合のみステップ(403)に移行する。
【0034】
3.無線回線のカウンターjをゼロにする(403)。
【0035】
4.検知できるすべての無線回線におけるパケット誤り率を求め終わるまで、以下のステップを繰り返す。
【0036】
a.無線回線のカウンターjが(M−1)より大きければステップ(410)に移行する(404)。
【0037】
b.無線回線jの電波の受信特性を測定する(405)。例、CNRなど。
【0038】
c.ステップ(405)と同時に無線回線jで報知されている帯域占有率を読み取り、記憶しておく(406)。これによって、無線回線jの帯域占有率BWOjが求められる。
【0039】
d.測定されたCNRを用いて、予め用意されたパケット誤り率対平均CNRの特性からパケット誤り率を求める(407)。これによって、無線回線jのパケット誤り率PERjが求められる。
【0040】
e.ステップ(406)で記憶されておいた「帯域占有率」と、ステップ(407)で求められた「パケット誤り率」とを用いて、無線回線jの送信成功確率を求める(408)。無線回線jの送信成功確率PROBj=(1−BWOj)*(1−PERj)。
【0041】
f.次の無線回線の送信成功確率を求めるためjに1を加算し、続いてステップ(404)に戻る(409)。
【0042】
5.送信成功確率が一番低い無線回線kを求める(410)。ここで、j=0〜(M−1)とし、k=定数とするとPROBk≦PROBj。
【0043】
6.無線局は無線回線kを管理している制御局に接続する(411)。
【0044】
【発明の効果】
第1の発明では、複数の無線回線の電波を検知できる無線局は各無線回線の「伝搬路特性」だけではなく、各制御局から送られてくる「トラヒック情報」も考慮し無線回線を選択するため、各無線回線においてトラヒック量の格差がある時には、トラヒック量が比較的少なく帯域を確保できる確率が高い無線回線を選択する確率が高くなる。電波の特性のみを考慮した従来方法と比べて比較的伝送品質が悪い無線回線を利用する確率が高くなるが、選択する無線回線のトラヒック量が多く中々帯域を確保できないことを効率よく避けることが出来るため、総合的に考えるとシステム全体の伝送効率および無線回線利用効率を高めることが出来る。
【0045】
第2の発明では、伝搬路特性の測定結果に基づいて各無線回線の「パケット誤り率」を算出するため、無線局は各無線回線の伝搬路特性を簡易に把握することができ、各無線回線の伝搬路特性を反映させた無線回線の選択を行うことができる。
【0046】
第3の発明では、制御局は自分自身が制御している無線回線のトラヒック状態を定量的に表す「帯域占有率」を無線局らに報知するため、無線局は各無線回線のトラヒック量を簡易に把握することができ、各無線回線のトラヒック量を反映させた無線回線の選択を行うことができる。
【0047】
第4の発明では、無線局は「送信成功確率=(1−帯域占有率)*(1−パケット誤り率)」のような一次方程式を用いるため、送信成功確率が一番高い無線回線を判断するため計算量を必要最小限に抑えることができる。
【0048】
第5の発明では、無線局は無線回線のトラヒック量の変動に応じたトラヒック情報を常に把握できるので、最適な無線回線選択の精度を高めることができ、伝送効率および無線回線利用効率を常に高く保つことができる安定的な無線パケット通信システムを実現できる。
【0049】
第6の発明では、無線局は無線回線の伝搬路特性の変化に応じたパケット誤り率の情報を常に把握できるので、最適な無線回線選択の精度を高めることができ、伝送効率および無線回線利用効率を常に高く保つことができる安定的な無線パケット通信システムを実現できる。
【図面の簡単な説明】
【図1】従来の無線回線選択例を示す図
【図2】本発明の実施形態に係る無線ネットワークシステムのイメージを示す図
【図3】制御局における動作の手順を示すフローチャート
【図4】無線局における動作の手順を示すフローチャート
【符号の説明】
001 無線回線
002 無線回線
101 制御局
102 制御局
201 無線局
202 無線局
203 無線局
204 無線局
205 無線局
206 無線局
207 無線局
208 無線局
301 電波
302 電波
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a communication method for efficiently performing packet communication by dynamically selecting a wireless channel in a wireless network system.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a personal computer (hereinafter, abbreviated as a PC) has been connected to each other by a network mainly for data exchange between the computers or data exchange between a host computer and a PC.
[0003]
The dynamic selection of a wireless channel in a wireless network according to the related art will be described with reference to FIG. FIG. 1 is a configuration diagram of a wireless network composed of two control stations. According to FIG. 1, the control station 101 manages the wireless channel 001 and controls communication between the wireless stations 201 to 206 sharing the wireless channel 001 in a time-division manner. It manages and controls communication between the wireless stations 207 and 208 that share the wireless line 202 in a time-division manner. Here, attention is paid to the wireless station 205 and the wireless station 206 existing within the range where the radio waves of both control stations reach. Since the radio stations 205 and 206 can detect radio waves from both control stations, it is possible to select which control station to connect to. That is, it is possible to determine whether to use the wireless line 001 or the wireless line 002. At this time, when the average received power is used as the selection criterion of the wireless channel, the distance from the wireless station 205 or the wireless station 206 to the control station 101 is shorter than the distance from the wireless station 205 or the wireless station 206 to the control station 102, and almost all In this case, since the average received power of the radio wave 301 is stronger than the radio wave 302, the radio stations 205 and 206 select the radio line 001 and connect to the control station 101. As a criterion for selecting a wireless channel, SNR (Signal to noise ratio), CNR (Carrier to noise ratio), and the like are often used in addition to the average received power.
[0004]
[Non-patent document 1]
C. Apichai Chaloom Wong, and 2 others, "Adaptive Modulation Wireless Packet Communication System Using Adaptive Zone Selection Method by Location Selection Transmission Power Control", The Institute of Electronics, Information and Communication Engineers, issued April 1, 2001, Electronic Information and Communication Transactions of the Society B Vol. J84-B No. 4 pp. 697-706
[0005]
[Problems to be solved by the invention]
In the conventional method (for example, see Non-Patent Document 1), radio stations such as the radio stations 205 and 206 located at locations where radio waves from a plurality of control stations reach can detect the reception power of the radio waves of a plurality of radio lines. Since the radio channel is selected only by taking into account the reception characteristics as described above, the traffic state of each radio channel cannot be considered, and a radio channel such as the radio channel 001 having a large traffic volume is selected. As a result, the wireless stations such as the wireless stations 205 and 206 use the wireless line 001 having relatively good radio wave reception characteristics, but have a small time zone (band) in which the wireless line 001 is not occupied. Therefore, the probability that the band can be secured is low. Therefore, if the radio stations 205 and 206 select the radio channel 002 with a small traffic amount and access the control station 102, the radio channel 002 is often not occupied even if the radio wave characteristics are relatively poor. Therefore, there is a high probability that the band can be secured. Comprehensively, a wireless station such as the wireless stations 205 and 206 uses the wireless line 002 having a relatively small traffic amount to increase the transmission efficiency and the wireless line use efficiency of the entire system as compared with the wireless line 001. . Therefore, the conventional method using only the characteristics of the radio wave as a criterion for selecting the radio line does not consider the "traffic volume" of the radio line, but considers only the characteristics of the radio wave, so that the radio line with the highest transmission quality can be selected. However, if a wireless station selects a wireless line with a very high traffic volume, no matter how good the transmission quality can be guaranteed, there is no point in using the wireless line if there is not enough available bandwidth, and the transmission efficiency of the entire system will be reduced. It is conceivable to lower it. In other words, the conventional method has not been sufficiently devised to increase the transmission efficiency and the wireless line utilization efficiency when there is a difference in the amount of traffic in each wireless line.
[0006]
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method of selecting a radio channel in consideration of the amount of traffic in addition to the characteristics of radio waves, thereby improving transmission efficiency and radio channel utilization in a radio network.
[0007]
[Means for Solving the Problems]
In order to solve this problem, the present invention has the following means, and has the following effects.
[0008]
A first invention is a method in which a plurality of wireless stations perform communication using one wireless line in a time-division manner, wherein any one of the plurality of wireless stations performs communication between the plurality of wireless stations. In the case where the control station controls communication, and the control station controlling a different radio channel is present in the vicinity, the control station determines the traffic volume of the radio channel controlled by itself. Monitoring, and broadcasts "traffic information" to each wireless station.The wireless station measures the propagation path characteristics of all the radio lines that can be detected by itself, and these "propagation path characteristics" and each of the detectable A radio channel is selected in consideration of the traffic information notified from the control station.
[0009]
A second invention is characterized in that, in the first invention, the wireless station calculates a “packet error rate” of each wireless channel based on the measurement result of the propagation path characteristics of each wireless channel.
[0010]
The third invention is characterized in that, in the first invention, the control station observes a traffic volume of a radio line controlled by itself, calculates a “bandwidth occupancy”, and notifies the radio stations and the like. I do.
[0011]
In a fourth aspect based on the first aspect, the wireless station uses “transmission success probability” as a criterion for determining an optimal wireless channel at the time of transmission, and “transmission success probability = (1−band occupancy ratio) * (1 -Packet error rate), the transmission success probability of each wireless channel is calculated, and the wireless channel having the highest transmission success probability is selected.
[0012]
In a fifth aspect based on the first aspect, the control station observes the traffic volume of the radio channel controlled by itself, updates the traffic information in accordance with the fluctuation of the traffic volume of the radio channel, and updates the traffic information. The traffic information is reported to wireless stations and the like.
[0013]
In a sixth aspect based on the first aspect, the wireless station periodically measures channel characteristics of each wireless channel that can be detected by the wireless station, and determines the packet error according to a change in the channel characteristics of each wireless channel. It is characterized in that rate information is updated.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. For purposes of explanation, specific numbers, times, structures and other parameters are set forth in order to provide a thorough understanding of the present invention. The following steps provide examples of how to implement the invention.
[0015]
FIG. 2 is a diagram showing a configuration of the wireless network system according to the embodiment of the present invention. In FIG. 2, the wireless network system includes eight wireless stations (201 to 208) and two control stations (101, 102). Each of the control stations 101 and 102 has a function of managing a different wireless line and controlling communication between wireless stations existing within a range where radio waves of the control stations 101 and 102 can reach.
[0016]
Next, the operation will be described. Each of the control stations 101 and 102 always observes the usage status of its own wireless line, calculates how much the wireless station uses the wireless line within a fixed time, and periodically calculates the calculation result. The wireless stations 201 to 208 are notified. Hereinafter, this broadcast information is referred to as “bandwidth occupancy”.
[0017]
FIG. 3 shows a procedure of such an operation in the base station.
[0018]
1. Update the check end time tz. tz = previous tz + bandwidth occupancy update period Tx (310).
[0019]
2. The time width Ts for checking the usage status of the wireless line is determined (311).
[0020]
3. The total use time Tall of the radio line and the counter i of the radio station are set to zero (312).
[0021]
4. The following steps are repeated until the use status of the wireless lines of all the managed wireless stations is checked (N is the number of all managed wireless stations).
[0022]
a. If the counter i of the wireless station is larger than (N-1), the process proceeds to step (317) (313).
[0023]
b. Based on the data observed and recorded in the past, a time Ti during which the wireless station i uses the wireless line from the time (tz-Ts) to tz is calculated (314).
[0024]
c. Ti is added to the total use time Tall of the wireless line (315).
[0025]
d. In order to check the use status of the next wireless station, 1 is added to i, and then the process returns to step (313) (316).
[0026]
5. “Band occupancy” = Tall / Ts is calculated (317).
[0027]
6. The calculated "bandwidth occupancy" is reported to the wireless stations using the downlink (318).
[0028]
7. In order to perform the above operation periodically, the process returns to the step (310) when the time of the cycle Tx for updating the bandwidth occupancy has elapsed from the time tz (319).
[0029]
Each of the wireless stations 201 to 208 periodically detects a radio wave of each radio line, measures a radio reception characteristic CNR (Carrier to Noise Ratio), and predicts a CNR of the radio wave at the time of transmission. Next, using the predicted CNR, the radio station refers to a packet error rate (PER) versus CNR characteristic and determines the packet error rate. It is considered that the packet error rate (PER) versus CNR characteristic needs to be obtained in advance by experiments, computer simulations, and the like, but the packet error rate is calculated using an approximate expression that expresses the relationship between the packet error rate and the CNR. May be. Note that the reception characteristics of radio waves may use reception power, SNR, etc. instead of CNR. Since radio stations other than the radio stations 205 and 206 can detect only radio waves from only one control station, it is assumed that no radio line is selected. On the other hand, the wireless stations 205 and 206 use the predicted “packet error rate” of each wireless channel and the “bandwidth occupancy” notified from each control station to transmit successfully when using each wireless channel. The probability is calculated by the following equation. Transmission success probability = (1−band occupancy rate) * (1−packet error rate). The wireless stations 205 and 206 calculate the transmission success rate in each wireless line by the above formula, select the wireless line having the highest transmission success rate, and access the control station controlling the wireless line.
[0030]
For example, in FIG. 2, when the bandwidth occupancy of the wireless channels 001 and 002 is 0.5 and 0.3, and the packet error rate of the wireless channels 001 and 002 viewed from the wireless station 205 is 0.1 and 0.3, Transmission success probability in wireless line 001 = (1-0.5) * (1-0.1) = 0.5 * 0.9 = 0.45 Transmission success probability in wireless line 002 = (1-0.3) * (1-0.3) = 0.7 * 0.7 = 0.49, and the transmission success probability on the wireless link 002 is higher than the transmission success probability on the wireless link 001 as viewed from the wireless station 205. Performs packet communication using the wireless line 002. Since the above-mentioned “bandwidth occupancy rate” and “packet error rate” are periodically updated, the wireless line wireless stations 205 and 206 periodically transmit “successful transmission” according to changes in the traffic state of each wireless line and the characteristics of radio waves. You can accurately select the wireless line with the highest rate. As a result, the transmission efficiency of the entire system and the utilization efficiency of the wireless channel can be improved even when the traffic volume is not evenly distributed in each wireless channel.
[0031]
FIG. 4 shows a procedure of the above operation in the radio station.
[0032]
1. The selection of a wireless line is started (401). For example, when the power of the radio station is turned on or when the installation location of the radio station is changed, it is necessary to select a radio line. It is also conceivable to select a wireless line periodically.
[0033]
2. The number M of radio waves that can be detected is obtained (402). The process proceeds to step (403) only when M is 2 or more.
[0034]
3. The counter j of the wireless line is set to zero (403).
[0035]
4. The following steps are repeated until the packet error rates of all detectable wireless channels have been obtained.
[0036]
a. If the radio line counter j is larger than (M-1), the process proceeds to step (410) (404).
[0037]
b. The reception characteristic of the radio wave of the wireless line j is measured (405). For example, CNR.
[0038]
c. At the same time as the step (405), the bandwidth occupancy broadcast on the radio line j is read and stored (406). Thus, the bandwidth occupancy BWOj of the wireless line j is obtained.
[0039]
d. Using the measured CNR, the packet error rate is determined from the previously prepared characteristics of the packet error rate versus the average CNR (407). Thereby, the packet error rate PERj of the wireless channel j is obtained.
[0040]
e. Using the “bandwidth occupancy” stored in step (406) and the “packet error rate” obtained in step (407), the transmission success probability of the wireless channel j is obtained (408). The transmission success probability PROBj of the wireless channel j = (1-BWOj) * (1-PERj).
[0041]
f. In order to obtain the transmission success probability of the next wireless channel, 1 is added to j, and the process returns to step (404) (409).
[0042]
5. The wireless link k with the lowest transmission success probability is determined (410). Here, if j = 0 to (M−1) and k = constant, PROBk ≦ PROBj.
[0043]
6. The wireless station connects to the control station managing the wireless channel k (411).
[0044]
【The invention's effect】
In the first invention, a radio station capable of detecting radio waves of a plurality of radio lines is selected in consideration of not only "propagation path characteristics" of each radio line but also "traffic information" sent from each control station. Therefore, when there is a difference in the amount of traffic in each wireless line, the probability of selecting a wireless line having a relatively small amount of traffic and a high probability of securing a band increases. Compared to the conventional method that considers only the characteristics of radio waves, the probability of using a wireless line with relatively poor transmission quality increases, but it is possible to efficiently avoid the fact that the amount of traffic on the selected wireless line is too large to secure a medium bandwidth. Therefore, the transmission efficiency and the wireless channel utilization efficiency of the entire system can be improved when considered comprehensively.
[0045]
In the second invention, since the “packet error rate” of each wireless channel is calculated based on the measurement result of the channel characteristics, the wireless station can easily grasp the channel characteristics of each wireless channel, and It is possible to select a wireless channel reflecting the channel characteristics of the channel.
[0046]
In the third invention, since the control station notifies the wireless stations of the "bandwidth occupancy" that quantitatively indicates the traffic state of the wireless line controlled by itself, the wireless station determines the traffic volume of each wireless line. It is possible to easily grasp and select a wireless line reflecting the traffic volume of each wireless line.
[0047]
In the fourth invention, since the wireless station uses a linear equation such as “transmission success probability = (1−band occupancy ratio) × (1−packet error rate)”, the wireless station determines the wireless line with the highest transmission success probability. Therefore, the amount of calculation can be minimized.
[0048]
According to the fifth aspect, since the wireless station can always grasp the traffic information according to the fluctuation of the traffic amount of the wireless line, the accuracy of the optimal wireless line selection can be improved, and the transmission efficiency and the wireless line use efficiency can always be increased. A stable wireless packet communication system that can be maintained can be realized.
[0049]
According to the sixth aspect, the radio station can always grasp the information of the packet error rate according to the change of the propagation path characteristic of the radio channel, so that the accuracy of the optimal radio channel selection can be improved, and the transmission efficiency and the radio channel utilization can be improved. A stable wireless packet communication system that can always maintain high efficiency can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of conventional wireless channel selection. FIG. 2 is a diagram showing an image of a wireless network system according to an embodiment of the present invention. FIG. 3 is a flowchart showing an operation procedure in a control station. Flow chart showing the procedure of operation in the station [Explanation of reference numerals]
001 Radio line 002 Radio line 101 Control station 102 Control station 201 Radio station 202 Radio station 203 Radio station 204 Radio station 205 Radio station 206 Radio station 207 Radio station 208 Radio station 301 Radio 302 Radio

Claims (6)

複数の無線局が1つの無線回線を時分割的に使用して通信を行うための方法であって、前記複数の無線局のいずれかが、前記複数の無線局間の通信を制御する制御局となる場合であって
異なる無線回線を制御している前記制御局が近隣して存在する場合に、
前記制御局は、
自分自身が制御している無線回線のトラヒック量を観測して、「トラヒック情報」を各無線局に報知し、
前記各無線局は、
自分自身が検知できるすべての無線回線の伝搬路特性を測定しこれらの伝搬路特性と、検知可能な各制御局から報知された前記トラヒック情報とを考慮して、無線回線を選択することを特徴とする通信方法。
A method in which a plurality of wireless stations perform communication using one wireless line in a time-division manner, wherein one of the plurality of wireless stations controls a communication between the plurality of wireless stations. And when the control station controlling a different radio line is present in the vicinity,
The control station comprises:
Observes the traffic volume of the radio line controlled by itself, notifies "traffic information" to each radio station,
Each said radio station,
The wireless channel is selected by measuring the channel characteristics of all wireless lines that can be detected by itself and considering these channel characteristics and the traffic information notified from each detectable control station. Communication method.
前記無線局は各無線回線の伝搬路特性の測定結果に基づいて各無線回線の「パケット誤り率」を算出する請求項1に記載の通信方法。The communication method according to claim 1, wherein the wireless station calculates a "packet error rate" of each wireless channel based on a measurement result of a propagation path characteristic of each wireless channel. 前記制御局は自分自身が制御している無線回線の「帯域占有率」を計算し、無線局らに報知する請求項1に記載の通信方法。The communication method according to claim 1, wherein the control station calculates a "bandwidth occupancy rate" of a wireless channel controlled by the control station and notifies the wireless station of the calculated bandwidth occupancy rate. 前記無線局は送信時の無線回線を判断する基準として「送信成功確率」を用い、「送信成功確率=(1−帯域占有率)*(1−パケット誤り率)」という式を利用し、各無線回線の送信成功確率を計算して、送信成功確率が一番高い無線回線を選択する請求項1に記載の通信方法。The wireless station uses “transmission success probability” as a criterion for determining a wireless channel at the time of transmission, and uses the expression “transmission success probability = (1−bandwidth occupancy) × (1−packet error rate)”. The communication method according to claim 1, wherein the transmission success probability of the wireless line is calculated, and the wireless line having the highest transmission success probability is selected. 前記制御局は自分自身が制御している無線回線のトラヒック量を観測し、無線回線のトラヒック量の変動に応じて、前記トラヒック情報を更新し、更新されたトラヒック情報を前記無線局らに報知する請求項1に記載の通信方法。The control station observes the traffic volume of the radio channel controlled by itself, updates the traffic information according to the fluctuation of the traffic volume of the radio channel, and notifies the radio stations of the updated traffic information. The communication method according to claim 1, wherein 前記無線局は自分自身が検知できるすべての無線回線の伝搬路特性を周期的に測定し、各無線回線の伝搬路特性の変化に応じて、前記パケット誤り率の情報を更新する請求項1に記載の通信方法。2. The radio station according to claim 1, wherein the radio station periodically measures channel characteristics of all radio channels that can be detected by itself, and updates the information on the packet error rate in accordance with a change in channel characteristics of each radio channel. The communication method described.
JP2002339064A 2002-11-22 2002-11-22 Communication method Pending JP2004173145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339064A JP2004173145A (en) 2002-11-22 2002-11-22 Communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339064A JP2004173145A (en) 2002-11-22 2002-11-22 Communication method

Publications (1)

Publication Number Publication Date
JP2004173145A true JP2004173145A (en) 2004-06-17

Family

ID=32702103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339064A Pending JP2004173145A (en) 2002-11-22 2002-11-22 Communication method

Country Status (1)

Country Link
JP (1) JP2004173145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109445A (en) * 2004-09-30 2006-04-20 Lucent Technol Inc Packet error rate estimation in communication system
JP2008022218A (en) * 2006-07-12 2008-01-31 Kddi R & D Laboratories Inc Wireless link selection control apparatus, wireless apparatus, and wireless link selection method
JP2008258667A (en) * 2007-03-30 2008-10-23 Kddi R & D Laboratories Inc Radio link selection control device, radio device, and radio link selection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109445A (en) * 2004-09-30 2006-04-20 Lucent Technol Inc Packet error rate estimation in communication system
JP2008022218A (en) * 2006-07-12 2008-01-31 Kddi R & D Laboratories Inc Wireless link selection control apparatus, wireless apparatus, and wireless link selection method
JP2008258667A (en) * 2007-03-30 2008-10-23 Kddi R & D Laboratories Inc Radio link selection control device, radio device, and radio link selection method

Similar Documents

Publication Publication Date Title
JP5646558B2 (en) Power control and resource management in orthogonal wireless systems
US8699424B2 (en) Adapting channel width for improving the performance of wireless networks
EP2260670B1 (en) Method, apparatus and computer program for self-adjusting spectrum sensing for cognitive radio
JP4850244B2 (en) Method for controlling transmission rate in a wireless communication system
US7949357B2 (en) Method and apparatus to select collaborating users in spectrum sensing
JP5584181B2 (en) System and method for managing power control of wireless maintenance channel
US8355748B2 (en) Multi-mode control station, radio communication system, radio station, and radio communication control method
TWI462506B (en) Power control and handoff with power control commands and erasure indications
JP4885971B2 (en) Base station equipment
CN102783225B (en) Bit rate and the method launching power is selected for energy-conservation transmission
US20080112499A1 (en) Wireless network that utilizes concurrent interfering transmission and MIMO techniques
US20050182847A1 (en) System and method for dynamic switching between wireless network protocols
US20030161285A1 (en) Method and apparatus for channel quality feedback in a wireless communication
JP2007516662A (en) System and method for network channel characteristic value measurement and network management
CN101088235A (en) Method and device for controlling radio access
JP2008516492A (en) Power line communication method and power line communication apparatus
US20080146155A1 (en) Method and system for reliable detection and avoidance of periodic intermittent interference
US11445476B2 (en) Devices, systems, and methods for predicting communication channel conditions
KR20020010538A (en) Optimal load-based wireless session context transfer
KR100440700B1 (en) System, method and record medium for packet transmission capable of reducing delay due to resource assignment
US8358676B2 (en) Data transmitting/receiving method and apparatus in UWB communication system
US7787826B2 (en) Methods and apparatus for transitioning between states
JP2004173145A (en) Communication method
JP2007074159A (en) Communications apparatus, communication method, wireless communications system and method
KR102086452B1 (en) Wireless communication system with channel-quality indicator mechanism and method of operation thereof