JP2004170617A - Radiation image reading device - Google Patents

Radiation image reading device Download PDF

Info

Publication number
JP2004170617A
JP2004170617A JP2002335203A JP2002335203A JP2004170617A JP 2004170617 A JP2004170617 A JP 2004170617A JP 2002335203 A JP2002335203 A JP 2002335203A JP 2002335203 A JP2002335203 A JP 2002335203A JP 2004170617 A JP2004170617 A JP 2004170617A
Authority
JP
Japan
Prior art keywords
excitation light
radiation image
light
optical system
cut filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002335203A
Other languages
Japanese (ja)
Inventor
Hiroaki Yasuda
裕昭 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002335203A priority Critical patent/JP2004170617A/en
Publication of JP2004170617A publication Critical patent/JP2004170617A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To read with high resolution a radiation image recorded in a radiation image converter panel by a radiation image reading device without increasing a size of the device. <P>SOLUTION: Stimulated luminous light generated from a linear area S of the radiation image converter panel 10 irradiated with linear exciting light Le radiated from an exciting light radiating part 20 is made to form an image on a line sensor 32 through a 1st exciting light cut-off filter 33A placed between the radiation image converter panel 10 and an image-forming optical system 31, the image-forming optical system 31, and a 2nd exciting light cut-off filter 33B placed between the image-forming optical system 31 and the line sensor 32, and this stimulated luminous light is received by the line sensor 32, and is then converted photo-electrically, to read the radiation image recorded in the radiation image converter panel 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、放射線像読取装置に関し、詳しくは、励起光の照射により放射線像変換パネルから発生した輝尽発光光を結像させる結像光学系を備えた放射線像読取装置に関するものである。
【0002】
【従来の技術】
従来より、X線等の放射線を照射するとこの放射線エネルギの一部を蓄積し、その後、可視光等の励起光を照射するとこの蓄積された放射線エネルギに応じて輝尽発光を示す蓄積性蛍光体(輝尽性蛍光体)を利用して、人体等の被写体の放射線像を蓄積性蛍光体層に一旦潜像として記録し、この蓄積性蛍光体層にレーザ光等の励起光を照射して輝尽発光光を生じせしめ、この輝尽発光光を光電的に検出して被写体の放射線像を表す画像信号を取得する放射線像記録装置および放射線像読取装置等からなる放射線像記録再生システムがCR(Computed Radiography)としてが知られている。また、この放射線像記録再生システムに使用される記録媒体としては、基板上に蓄積性蛍光体層を積層して作成した放射線像変換パネルが知られている。
【0003】
上記放射線像読取装置としては、励起光が照射される放射線像変換パネル上の主走査方向に延びる線状領域の正立等倍像を結像する結像光学系と、この結像光学系を通して結像された、励起光の照射により上記線状領域から発せられた輝尽発光光を受光し光電変換する受光素子であるラインセンサとを備え、上記結像光学系とラインセンサとの間に、輝尽発光光を透過させ励起光を遮断する励起光カットフィルタ(例えば、特許文献1参照)を配置した装置が知られている。
【0004】
【特許文献1】
特開2001−074899号公報
【0005】
【発明が解決しようとする課題】
ところで、装置サイズを大きくすることなく放射線像変換パネルに記録された放射線像をより高い解像力で読み取りたいという要請があり、そのようにするには、結像光学系を放射線像変換パネルに接近させ、この結像光学系の開口数(NA)を大きくして解像力を高めることが考えられる。放射線像変換パネル上の線状領域の正立等倍像をラインセンサ上に結像させるには、上記線状領域と結像光学系の間隔と、結像光学系とラインセンサの間隔とを等しくする条件を満たす必要があるため、結像光学系を放射線像変換パネルに接近させるには、上記励起光カットフィルタの厚さを薄くして結像光学系と受光素子との間隔をも接近させる必要がある。
【0006】
しかしながら、励起光カットフィルタとして要求される、励起光の光強度を10桁から12桁減衰させ輝尽発光光の光強度の減衰を20%程度に留める性能を得るには、励起光カットフィルタを構成する光学部材である色ガラス板の厚さを10mm以上にする必要があり、一方、色ガラス板の材質を改良して上記性能を維持したままこの色ガラス板の厚さを薄くすることが難しいという問題がある。
【0007】
本発明は、上記事情に鑑みてなされたものであり、装置サイズを大きくすることなく、放射線像変換パネルに記録された放射線像をより高い解像力で読み取ることができる放射線像読取装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明の放射線像読取装置は、励起光を照射する励起光照射手段と、この励起光の照射を受けて放射線像変換パネルから発生した輝尽発光光を結像させる結像光学系と、この結像光学系によって結像された輝尽発光光を受光する受光素子と、放射線像変換パネルと結像光学系との間の輝尽発光光の光路中に配置された輝尽発光光を透過させ励起光を遮断する第1の励起光カットフィルタと、結像光学系と受光素子との間の輝尽発光光の光路中に配置された輝尽発光光を透過させ励起光を遮断する第2の励起光カットフィルタとを備えたことを特徴とするものである。
【0009】
【発明の効果】
本発明の放射線像読取装置は、放射線像変換パネルと結像光学系との間の輝尽発光光の光路中に配置された輝尽発光光を透過させ励起光を遮断する第1の励起光カットフィルタと、結像光学系と受光素子との間の輝尽発光光の光路中に配置された輝尽発光光を透過させ励起光を遮断する第2の励起光カットフィルタとを備えるようにしたので、輝尽発光光を透過させ励起光を遮断する励起光カットフィルタとしての性能を確保するための所定の厚さを、光路中の互いに異なる位置に配置した上記所定の厚さより薄い第1の励起光カットフィルタと上記所定の厚さより薄い第2の励起光カットフィルタとを合わせた厚さとすることができ、放射線像変換パネルと結像光学系の間隔と、結像光学系と受光素子の間隔とを等しくしたまま、これらの間隔を共に短くすることができるので、開口数のより大きな結像光学系を用いて放射線像変換パネル上の線状領域の正立等倍像を受光素子上に結像させることができる。これにより、装置サイズを大きくすることなく、放射線像変換パネルに記録された放射線像をより高い解像力で読み取ることができる。
【0010】
【発明の実施の形態】
以下、本発明の具体的な実施の形態について、図面を用いて説明する。図1は本発明の実施の形態による放射線像読取装置の概略構成を示す斜視図、図2は検出部の概略構成を示す拡大側面図である。
【0011】
図1および図2に示すように、本発明の実施の形態による放射線像読取装置100は、放射線像変換パネル10に対して主走査X方向(図中矢印X方向)に延びる線状の励起光Leを照射する励起光照射部20と、この線状の励起光Leの照射を受けて放射線像変換パネル10から発生した輝尽発光光を結像させる結像光学系31と、結像光学系31によって結像された輝尽発光光を受光する受光素子であるラインセンサ32と、放射線像変換パネル10と結像光学系31との間の輝尽発光光の光路中に配置された輝尽発光光を透過させ励起光Leを遮断する第1の励起光カットフィルタ33Aと、結像光学系31とラインセンサ32との間の輝尽発光光の光路中に配置された輝尽発光光を透過させ励起光Leを遮断する第2の励起光カットフィルタ33Bとを備えている。ここで、結像光学系31、ラインセンサ32、第1の励起光カットフィルタ33A、および第2の励起光カットフィルタ33Bが検出部30を構成している。
【0012】
ここで、第1の励起光カットフィルタ33Aと第2の励起光カットフィルタ33Bとを組み合せた励起光カットフィルタとしての性能は、励起光の光強度を10桁から12桁減衰させ輝尽発光光の光強度の減衰を20%程度とするものにな。
【0013】
励起光照射部20は、励起光Leを射出するブロードエリアレーザ21、ブロードエリアレーザ21から射出された励起光Leを後述する反射ミラーを介して放射線像変換パネル10上の主走査X方向に線状に集光させるトーリックレンズ等からなる集光光学系22、および上記励起光Leを光路の途中で反射させて、その光路を放射線像変換パネル10に向かう方向に変更させる反射ミラー23等によって構成されており、線状の励起光Leを放射線像変換パネル10上に照射する。
【0014】
ラインセンサ32は、主走査X方向に並べられた多数のCCD素子を有している。
【0015】
結像レンズ31は、例えば、主走査X方向に並べられた多数の屈折率分布型レンズからなり、励起光Leが照射された放射線像変換パネル10上の線状の領域Sの正立等倍像をラインセンサ32上に結像させる。
【0016】
また、検出部30および励起光照射部20は一体化されており、この一体化された検出部30および励起光照射部20は、搬送手段(図示は省略)によって上記主走査X方向と交わる副走査方向(図中矢印Y方向、以後、副走査Y方向という)に搬送される。
【0017】
次に、上記実施の形態における作用について説明する。
【0018】
励起光照射部20から射出された励起光Leは放射線像変換パネル10上の主走査方向に延びる線状領域Sに集光される。この線状の励起光Leの照射によって線状領域Sから発生した輝尽発光光は、第1の励起光カットフィルタ33A、結像レンズ31、および第2の励起光カットフィルタ33Bを通してラインセンサ32上に結像され光電変換された後、電気的な画像信号として出力される。上記励起光Leの照射と輝尽発光光の検出を実行しながら、一体化された励起光照射部20と検出部30とが搬送手段によって副走査Y方向へ搬送され、放射線像変換パネル10に記録された放射線像が読み取られる。
【0019】
ここで、第1の励起光カットフィルタ33A,および第2の励起光カットフィルタ33Bの材料として、青色フィルターB410(HOYA株式会社製)を使用した場合には、第1の励起光カットフィルタ33Aと第2の励起光カットフィルタ33Bとを合わせた厚さは10mmとなる。例えば、それぞれの厚さを等しくして5mmとすれば、放射線像変換パネル10上の主走査方向に延びる線状領域Sと結像レンズ31との距離を約5mmまで接近させること可能となる。
【0020】
放射線像変換パネル10と結像レンズ31を接近させると、励起光Leの放射線像変換パネル10への入射光路が第1の励起光カットフィルタ33Aと干渉してしまうので、第1の励起光カットフィルタ33Aは上記励起光Leの入射を妨げない形状とする必要がある。図3(a)から(c)に第1の励起光カットフィルタ33Aとして採用可能な様々な形状を表す側面図を示す。
【0021】
図3(a)に示すように、放射線像変換パネル10と結像光学系31との間に配置された励起光カットフィルタ33A−1を、結像光学系31とラインセンサ32との間に配置された励起光カットフィルタ33B−1より薄くするようにしてもよい。
【0022】
また、図3(b)に示すように、第1の励起光カットフィルタ33A−2と第2の励起光カットフィルタ33B−2の厚さを等しくし、第1の励起光カットフィルタ33A−2の側面の形状を、励起光Leの光路を妨げないように、この励起光Leの入射光路に沿って一方の側面が除去された台形形状となるようにしてもよい。
【0023】
あるいは、図3(c)に示すように、第1の励起光カットフィルタ33A−3と第2の励起光カットフィルタ33B−3の厚さを等しくし、第1の励起光カットフィルタ33A−3の側面の形状を、励起光Leの光路を妨げないように、この励起光Leの入射光路に沿って側面が除去された台形形状となるように、その側面の両側を除去し、側面の中心線Cに対して対称な台形形状となるようにしてもよい。
【0024】
なお、第1の励起光カットフィルタと第2の励起光カットフィルタとは必ずしも同じ材質で形成する場合に限らない。
【0025】
なお、上記第1の励起光カットフィルタと第2の励起光カットフィルタとからなる励起光カットフィルタは、線状の励起光の照射により放射線像変換パネルから発生した輝尽発光光をラインセンサで読み取るいわゆるラインビーム方式を採用した装置に適用することもできるし、ポリゴンスキャナにより主走査方向へ点状の励起光を走査し、この励起光の走査により放射線像変換パネルから発生した輝尽発光光を集光ガイドを通してフォトマルチプライヤで検出するいわゆるポイントスキャン方式を採用した装置等にも適用することもできる。
【図面の簡単な説明】
【図1】本発明の実施の形態による放射線像読取装置の概略構成を示す斜視図
【図2】照射部およびラインセンサの概略構成を示す各台側面図
【図3】励起光カットフィルタの様々な形状を示す側面図
【符号の説明】
10 放射線像変換パネル
20 励起光照射部
30 検出部
31 結像光学系
32 ラインセンサ
33 励起光カットフィルタ
100 放射線像読取装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation image reading apparatus, and more particularly to a radiation image reading apparatus including an imaging optical system that forms an image of stimulated emission light generated from a radiation image conversion panel by irradiation of excitation light.
[0002]
[Prior art]
Conventionally, when a radiation such as X-rays is irradiated, a part of the radiation energy is accumulated, and after that, when a stimulating light such as visible light is irradiated, a stimulable phosphor that exhibits stimulated luminescence according to the accumulated radiation energy. Using (stimulable phosphor), a radiation image of a subject such as a human body is temporarily recorded as a latent image on the stimulable phosphor layer, and this stimulable phosphor layer is irradiated with excitation light such as laser light. A radiation image recording / reproducing system including a radiation image recording device and a radiation image reading device that generates a photostimulated luminescence light and photoelectrically detects the photostimulated luminescence light to acquire an image signal representing a radiation image of a subject is a CR. (Computed Radiography) is known. As a recording medium used in this radiation image recording / reproducing system, a radiation image conversion panel prepared by laminating a stimulable phosphor layer on a substrate is known.
[0003]
The radiation image reading apparatus includes an imaging optical system that forms an erecting equal-magnification image of a linear region extending in the main scanning direction on the radiation image conversion panel irradiated with excitation light, and through this imaging optical system. And a line sensor that is a light receiving element that receives and photoelectrically converts the stimulated emission light emitted from the linear region by irradiation of excitation light, and is formed between the imaging optical system and the line sensor. An apparatus is known in which an excitation light cut filter (see, for example, Patent Document 1) that transmits stimulated emission light and blocks excitation light is disposed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-074899
[Problems to be solved by the invention]
By the way, there is a request to read a radiographic image recorded on the radiographic image conversion panel with a higher resolution without increasing the size of the apparatus. To do so, the imaging optical system is brought closer to the radiographic image conversion panel. It is conceivable to increase the numerical aperture (NA) of this imaging optical system to increase the resolving power. In order to form an erecting equal-magnification image of the linear region on the radiation image conversion panel on the line sensor, the interval between the linear region and the imaging optical system, and the interval between the imaging optical system and the line sensor are set. Since the equalization conditions must be met, in order to bring the imaging optical system closer to the radiation image conversion panel, the excitation light cut filter is made thinner and the distance between the imaging optical system and the light receiving element is also closer. It is necessary to let
[0006]
However, in order to obtain the performance required for the excitation light cut filter to attenuate the light intensity of the excitation light by 10 to 12 digits and keep the attenuation of the light intensity of the stimulated emission light at about 20%, the excitation light cut filter is It is necessary to make the thickness of the colored glass plate as an optical member to be 10 mm or more, while reducing the thickness of the colored glass plate while improving the material of the colored glass plate and maintaining the above performance. There is a problem that it is difficult.
[0007]
The present invention has been made in view of the above circumstances, and provides a radiation image reading apparatus capable of reading a radiation image recorded on a radiation image conversion panel with higher resolution without increasing the apparatus size. It is intended.
[0008]
[Means for Solving the Problems]
The radiation image reading apparatus of the present invention includes excitation light irradiation means for irradiating excitation light, an imaging optical system that forms an image of stimulated emission light generated from the radiation image conversion panel upon irradiation of the excitation light, A light receiving element that receives the stimulated emission light imaged by the imaging optical system, and transmits the stimulated emission light disposed in the optical path of the stimulated emission light between the radiation image conversion panel and the imaging optical system. A first excitation light cut filter that blocks the excitation light, and a first excitation light cut filter that transmits the stimulated emission light disposed in the optical path of the stimulated emission light between the imaging optical system and the light receiving element and blocks the excitation light. And 2 excitation light cut filters.
[0009]
【The invention's effect】
The radiation image reading device of the present invention transmits first stimulated emission light arranged in the optical path of the stimulated emission light between the radiation image conversion panel and the imaging optical system, and blocks the excitation light. A cut filter, and a second excitation light cut filter that transmits the stimulated emission light disposed in the optical path of the stimulated emission light between the imaging optical system and the light receiving element and blocks the excitation light. Therefore, the predetermined thickness for securing the performance as an excitation light cut filter that transmits the stimulated emission light and blocks the excitation light is thinner than the predetermined thickness arranged at different positions in the optical path. The excitation light cut filter and the second excitation light cut filter thinner than the predetermined thickness can be combined, the distance between the radiation image conversion panel and the imaging optical system, the imaging optical system, and the light receiving element These intervals remain the same Since interval can a together short, it can be focused on the light receiving element erect image of the linear area on the radiation image storage panel using a larger imaging optical system of the numerical aperture. Thereby, the radiation image recorded on the radiation image conversion panel can be read with higher resolution without increasing the apparatus size.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of a radiation image reading apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged side view showing a schematic configuration of a detection unit.
[0011]
As shown in FIGS. 1 and 2, the radiation image reading apparatus 100 according to the embodiment of the present invention is linear excitation light extending in the main scanning X direction (arrow X direction in the figure) with respect to the radiation image conversion panel 10. An excitation light irradiation unit 20 that irradiates Le, an imaging optical system 31 that forms an image of the stimulated emission light generated from the radiation image conversion panel 10 upon irradiation of the linear excitation light Le, and an imaging optical system The line sensor 32 that is a light receiving element that receives the stimulated emission light imaged by the image 31 and the excitation light disposed in the optical path of the stimulated emission light between the radiation image conversion panel 10 and the imaging optical system 31. The first excitation light cut filter 33A that transmits the emitted light and blocks the excitation light Le, and the stimulated emission light disposed in the optical path of the stimulated emission light between the imaging optical system 31 and the line sensor 32. Second excitation light cut that transmits and blocks excitation light Le And a filter 33B. Here, the imaging optical system 31, the line sensor 32, the first excitation light cut filter 33A, and the second excitation light cut filter 33B constitute the detection unit 30.
[0012]
Here, the performance as a pumping light cut filter in which the first pumping light cut filter 33A and the second pumping light cut filter 33B are combined is that the light intensity of the pumping light is attenuated by 10 to 12 digits and the stimulated emission light is emitted. The attenuation of light intensity is about 20%.
[0013]
The excitation light irradiation unit 20 emits the excitation light Le in the main scanning X direction on the radiation image conversion panel 10 via a reflection mirror described later through the excitation light Le emitted from the broad area laser 21. A condensing optical system 22 composed of a toric lens or the like for condensing the light into a shape, and a reflection mirror 23 for reflecting the excitation light Le in the middle of the optical path and changing the optical path toward the radiation image conversion panel 10. The radiation image conversion panel 10 is irradiated with linear excitation light Le.
[0014]
The line sensor 32 has a number of CCD elements arranged in the main scanning X direction.
[0015]
The imaging lens 31 is composed of, for example, a large number of gradient index lenses arranged in the main scanning X direction, and is an erecting equal magnification of the linear region S on the radiation image conversion panel 10 irradiated with the excitation light Le. An image is formed on the line sensor 32.
[0016]
Further, the detection unit 30 and the excitation light irradiation unit 20 are integrated, and the integrated detection unit 30 and the excitation light irradiation unit 20 are crossed in the main scanning X direction by a transport unit (not shown). It is conveyed in the scanning direction (arrow Y direction in the figure, hereinafter referred to as sub-scanning Y direction).
[0017]
Next, the effect | action in the said embodiment is demonstrated.
[0018]
The excitation light Le emitted from the excitation light irradiation unit 20 is condensed on the linear region S extending in the main scanning direction on the radiation image conversion panel 10. The stimulated emission light generated from the linear region S by the irradiation of the linear excitation light Le passes through the first excitation light cut filter 33A, the imaging lens 31, and the second excitation light cut filter 33B to the line sensor 32. After being imaged and photoelectrically converted, it is output as an electrical image signal. While performing the irradiation of the excitation light Le and the detection of the stimulated emission light, the integrated excitation light irradiation unit 20 and the detection unit 30 are transported in the sub-scanning Y direction by the transport unit, and are applied to the radiation image conversion panel 10. The recorded radiation image is read.
[0019]
Here, when the blue filter B410 (manufactured by HOYA Corporation) is used as the material of the first excitation light cut filter 33A and the second excitation light cut filter 33B, the first excitation light cut filter 33A and The total thickness of the second excitation light cut filter 33B is 10 mm. For example, if each thickness is made equal to 5 mm, the distance between the linear region S extending in the main scanning direction on the radiation image conversion panel 10 and the imaging lens 31 can be made closer to about 5 mm.
[0020]
When the radiation image conversion panel 10 and the imaging lens 31 are brought close to each other, the incident light path of the excitation light Le to the radiation image conversion panel 10 interferes with the first excitation light cut filter 33A. The filter 33A needs to have a shape that does not hinder the incidence of the excitation light Le. 3A to 3C are side views showing various shapes that can be employed as the first excitation light cut filter 33A.
[0021]
As shown in FIG. 3A, an excitation light cut filter 33 </ b> A- 1 disposed between the radiation image conversion panel 10 and the imaging optical system 31 is interposed between the imaging optical system 31 and the line sensor 32. It may be made thinner than the arranged excitation light cut filter 33B-1.
[0022]
Further, as shown in FIG. 3B, the thicknesses of the first excitation light cut filter 33A-2 and the second excitation light cut filter 33B-2 are made equal, and the first excitation light cut filter 33A-2. The shape of the side surface may be a trapezoidal shape with one side surface removed along the incident optical path of the excitation light Le so as not to disturb the optical path of the excitation light Le.
[0023]
Alternatively, as shown in FIG. 3C, the thicknesses of the first excitation light cut filter 33A-3 and the second excitation light cut filter 33B-3 are made equal, and the first excitation light cut filter 33A-3. The side surface of the side surface is removed so that the side surface is removed along the incident optical path of the excitation light Le so as not to obstruct the optical path of the excitation light Le. You may make it become a trapezoid shape symmetrical with respect to the line C.
[0024]
Note that the first excitation light cut filter and the second excitation light cut filter are not necessarily formed of the same material.
[0025]
The excitation light cut filter comprising the first excitation light cut filter and the second excitation light cut filter is a line sensor that emits the stimulated emission light generated from the radiation image conversion panel by the irradiation of the linear excitation light. It can be applied to an apparatus that employs a so-called line beam method for reading, or a pointed excitation light is scanned in the main scanning direction by a polygon scanner, and the stimulated emission light generated from the radiation image conversion panel by the excitation light scanning. The present invention can also be applied to an apparatus that employs a so-called point scan method in which a photomultiplier is detected through a light collecting guide.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a radiation image reading apparatus according to an embodiment of the present invention. FIG. 2 is a side view of each stand showing a schematic configuration of an irradiation unit and a line sensor. Side view showing various shapes 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 10 Radiation image conversion panel 20 Excitation light irradiation part 30 Detection part 31 Imaging optical system 32 Line sensor 33 Excitation light cut filter 100 Radiation image reader

Claims (1)

励起光を照射する励起光照射手段と、該励起光の照射を受けて放射線像変換パネルから発生した輝尽発光光を結像させる結像光学系と、該結像光学系によって結像された輝尽発光光を受光する受光素子と、前記放射線像変換パネルと前記結像光学系との間の前記輝尽発光光の光路中に配置された前記輝尽発光光を透過させ前記励起光を遮断する第1の励起光カットフィルタと、前記結像光学系と前記受光素子との間の前記輝尽発光光の光路中に配置された前記輝尽発光光を透過させ前記励起光を遮断する第2の励起光カットフィルタとを備えたことを特徴とする放射線像読取装置。An excitation light irradiating means for irradiating the excitation light, an imaging optical system that forms an image of the stimulated emission light generated from the radiation image conversion panel upon receiving the excitation light, and an image formed by the imaging optical system A light receiving element that receives the stimulated emission light, and transmits the stimulated emission light disposed in the optical path of the stimulated emission light between the radiation image conversion panel and the imaging optical system, and transmits the excitation light. A first excitation light cut filter for blocking, and transmitting the stimulated emission light disposed in an optical path of the stimulated emission light between the imaging optical system and the light receiving element, and blocking the excitation light. A radiation image reading apparatus comprising: a second excitation light cut filter.
JP2002335203A 2002-11-19 2002-11-19 Radiation image reading device Withdrawn JP2004170617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335203A JP2004170617A (en) 2002-11-19 2002-11-19 Radiation image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335203A JP2004170617A (en) 2002-11-19 2002-11-19 Radiation image reading device

Publications (1)

Publication Number Publication Date
JP2004170617A true JP2004170617A (en) 2004-06-17

Family

ID=32699399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335203A Withdrawn JP2004170617A (en) 2002-11-19 2002-11-19 Radiation image reading device

Country Status (1)

Country Link
JP (1) JP2004170617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083477A (en) * 2006-09-28 2008-04-10 Konica Minolta Medical & Graphic Inc Radiographic image reading apparatus
CN103631081A (en) * 2013-12-11 2014-03-12 中国工程物理研究院激光聚变研究中心 Projection-type soft-X-ray band pass imaging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083477A (en) * 2006-09-28 2008-04-10 Konica Minolta Medical & Graphic Inc Radiographic image reading apparatus
CN103631081A (en) * 2013-12-11 2014-03-12 中国工程物理研究院激光聚变研究中心 Projection-type soft-X-ray band pass imaging system

Similar Documents

Publication Publication Date Title
JP2004528587A (en) Photoexcitation and integration method and apparatus for storage phosphor image plate
JPH07120557A (en) Radiation detector
JP4223197B2 (en) Radiation image recording / reading method and apparatus, and stimulable phosphor sheet
JP2004170617A (en) Radiation image reading device
JP2002107848A (en) Radiographic image information reader
EP1168000B1 (en) Radiation image read-out apparatus
EP1205770A2 (en) Radiation image information read-out apparatus
JP2003029360A (en) Radiation image information reader
JP2003255224A (en) Image-formation optical system
JP2004177490A (en) Radiation image readout apparatus and radiation image conversion panel
JPH0395543A (en) Radiograph information reader
JP4108915B2 (en) Radiation image reader
JP2002090922A (en) Radiation image reader
JP2002072387A (en) Radiation image information reader
JPH11341221A (en) Method and device for image reading
JP2004163895A (en) Radiological image reader and excitation light cut filter
JP2003248170A (en) Optical image forming system
JP4219691B2 (en) Radiation image information reading device
JPH05313263A (en) Radiation image reader
JP2003228021A (en) Image formation optical system
JP2003270531A (en) Imaging optical system and image reader
JP2004109467A (en) Radiation image reader and radiation image conversion panel
JP2000039682A (en) Radiograph information reader
JPH0310283B2 (en)
JP2000338617A (en) Radiograph information reader

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207