JP2004170231A - Battery equipment system indicating degradation of battery - Google Patents

Battery equipment system indicating degradation of battery Download PDF

Info

Publication number
JP2004170231A
JP2004170231A JP2002336212A JP2002336212A JP2004170231A JP 2004170231 A JP2004170231 A JP 2004170231A JP 2002336212 A JP2002336212 A JP 2002336212A JP 2002336212 A JP2002336212 A JP 2002336212A JP 2004170231 A JP2004170231 A JP 2004170231A
Authority
JP
Japan
Prior art keywords
battery
deterioration
deterioration degree
current
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002336212A
Other languages
Japanese (ja)
Inventor
Toshitaka Takei
敏孝 丈井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002336212A priority Critical patent/JP2004170231A/en
Publication of JP2004170231A publication Critical patent/JP2004170231A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To speedily confirm a battery degradation, which is a cause of increase in the repair cost, because a long-time operation confirmation using a battery measurement system is necessary for deciding whether a degraded battery is malfunctioning or in normal region, whereas a battery equipment indicating the degradation state of a battery is not yet proposed though knowing the degradation state of the battery or battery life as a terminal point of degradation is important for using the battery equipment. <P>SOLUTION: A degradation state acquiring means is installed in a battery equipment, the acquired degradation state is stored in a degradation state storing means, the stored degradation is output in the form of battery life prediction and indicated on a display means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】電池で駆動する電池機器に於いて、残容量等の電池の状態を液晶等に表示する電池機器システムに関する。
【0002】
【従来の技術】従来電池の状態を取得する手段として、電圧取得手段、電流取得手段、流れた電流の総和を求める電流積算手段、および前記手段で得たデータを使用して算出する残容量取得手段が実用化されている。そして取得した結果を液晶などのディスプレーに表示している。その中でも残容量を表示するのが一般的で、携帯電話においては3本のバーで表示し、ノートパソコンでは残り何%の表示であり、車においては、電池不足時にバッテリーマークが点灯する等の表示がなされている。
【0003】
【発明が解決しようとする課題】ところが、電池の劣化状態や、劣化の最終時点である電池寿命を知る事は、電池機器を使用する上で重要であるにもかかわらず、従来電池の劣化状態を表示する電池機器は提案されていない。電池の劣化は、通常新品の時の電池容量と劣化後の容量を、0.2Cすなわち5時間率放電での放電時間を電池測定器を使って計測し、別途計算機などを使用して新品と劣化後の比率を算出して求めている。ところが電池機器は、測定器のような定常放電にならないので、電池機器を通常使用する使用モードと環境の中で、劣化度を取得する手段を構築する事が課題になっている。また従来電池機器が故障して、修理する場合、先ず電源関係の故障をチェックしている。電源では充電器や電池がチェックの対象になる。電池の故障は、短絡などであればすぐに判別できるが、劣化した電池では故障なのか正常領域なのかを判断するには、電池測定器を使って長時間の動作確認が必要であり、コストアップの要因になっている。従って電池故障を即座に判断できる事が課題である。
【0004】
【課題を解決するための手段】電池で駆動する電池機器に於いて、本発明は該電池機器に劣化度取得手段を内蔵し、しかも取得した劣化度を劣化度保存手段で保存し、さらに保存した劣化度は劣化度出力手段で出力し、表示手段で表示する特徴がある。
【0005】また本発明は、本発明者が、特願2001−173443にて特許出願した電池の残容量変換方法とシステムの中で説明した劣化度取得手段を使用する特徴がある。すなわち該電流最小値特定手段が電流最小値以下であると特定する二つの電流最小値区間の間に、電流最小値を越える電流が流れる電流積算区間が存在した時、該電流積算区間の電流積算量である電気量Qと、二つの該電流最小値区間の電圧を該開放電圧対残容量変換手段で変換した二つの残容量の差ΔCを比較して劣化度αcを算出する劣化度取得手段を使用する。
【0006】また本発明は、劣化度取得手段が、劣化度を測定するための充電モードあるいは放電モードを発生する特徴がある。
【0007】また本発明は、複数期間の複数の劣化度を取得して、期間を変数とした劣化度の関数を求め、電池寿命を予測する劣化度取得手段である特徴がある。
【0008】
【発明の実施の形態】本発明の実施の形態1を、図1のブロック図を用いて詳細に説明する。電池1で駆動する電池機器2は、劣化度取得手段3と劣化度保存手段4と劣化度出力手段5を内蔵する構成である。次に表示手段6を劣化度出力手段5に接続する。図1では表示手段6を電池機器2の外部に分離して電池機器システムとして示しているが、電池機器2に内蔵しても趣旨は同じである。尚、劣化度取得手段3は、電池の使用回数から推測したりする、従来から提案されている劣化度算出方法を利用しても良い。あるいはより正確な劣化度を取得するためには、本発明者が特願2001−173443にて特許出願した、電池の残容量変換方法の中で提示した劣化度の算出方法を使用する。劣化度保存手段4は半導体などの記録媒体である。また劣化度出力手段5は、一度劣化度保存手段4に保存した劣化度を呼び出し出力する。外部の表示手段6に出力する場合は出力端子7にケーブル8で接続する。あるいは図面には示さないが、無線や光などの通信手段を利用しても良い。表示手段6はパソコンを介してモニターに表示する手段や、機器内蔵の液晶モニターに表示する等、従来から利用されている方法を用いる事が可能である。
【0009】ここで本発明の特徴として、電池機器2に劣化度取得手段3を内蔵する事であり、より特徴的なのは、取得した劣化度を一度劣化度保存手段4に保存し、出力手段5で出力する事にある。すなわち、電池機器2が故障して修理に回ってきた時、劣化度が保存されていると、劣化度出力手段5で出力して、表示手段6に表示すると、いち早く電池の故障を判別できる。もちろん機器内蔵の液晶モニター等の表示手段6に表示する事もできる。すると、電池機器2のユーザーは電池1の劣化度を確認して、交換時期を判断する事ができる。
【0010】次に、実施の形態2を図2で説明する。実施の形態2では、電池パック9に直列接続した電池10が入っている。また電池電圧取得手段11と電流取得手段12と電流積算手段13を内蔵したIC14が入っている。またセット15は電流最小値特定手段16と劣化度取得手段3と劣化度出力手段5が入っているCPU17を内蔵する。また開放電圧対残容量変換手段18を保存したROM19と劣化度保存手段4であるEEPROM20を内蔵する。またRAM21や液晶ディスプレー22や充電IC23や充電スイッチ24や放電スイッチ25やリアルタイムクロック26が接続して本発明の劣化度取得手段3を支援する。すなわち電池パック9とセット15が電池機器2を構成し、表示手段である外部モニター4と充電器27等が接続して電池機器システムを構成する。
【0011】その動作フローを図3に示す。先ず充電スイッチ24あるいは放電スイッチ25を入れて電源オンする(S1)。するとCPU17がオンする(S2)。次に電流最小値特定手段16が電流最小値以下を検出する(S3)。具体的には、セット15が携帯電話であれば待受け区間、ノートパソコンであればスタンバイ区間、車のバッテリーであればキーをオフした区間などに電流最小値以下の状態になる。すると電池10に出入りする電流が極めて小さいので、電池電圧取得手段11が取得する電池電圧Vnは、ほぼ開放電圧と見なせる(S4)。次に開放電圧対残容量変換手段18を使ってVnを残容量Cn0に変換する(S5)。開放電圧対残容量変換手段18は、あらかじめ電池10の開放電圧に対する残容量を測定してテーブルや、近似曲線の形でROM19に保存する。開放電圧対残容量変換手段18は温度と負荷の影響をほぼ排除できるので、残容量の誤差を極小にできる特徴がある。次にセット15が動作を始めて電流最小値を超えると(S6)、電流積算手段13で電池に流れる電流をカウントして、再び電流最小値特定手段16が電流最小値以下を検出する(S3)までの、電気量Qnを積算して取得する(S7)。QnとC(n+1)0が取得できると、劣化度取得手段3の(1)式から劣化度αcを算出する(S8)。
【0012】
【数1】

Figure 2004170231
【0013】そしてαcを不揮発性メモリーであるEEPROM20に保存する(S9)。この操作が劣化度保存手段4である。不揮発性メモリーに保存する事で、電池機器2が故障して修理に回ってきた時、電池が切れていても、劣化度αcの記録は保存されているので電池の良否をすばやく判断する事ができる。一方C(n+1)0とQnは、別途残容量の算出に使用されるパラメーターであるが、揮発性メモリーであるRAM21に保存しても良いし、EEPROM20に保存しても良い。
【0014】ところで図2ではセット15と電池パック9を分けて描いたが、区別する必要はない。例えばCPU17を電池パック9に内蔵しても良いし、電池10が裸のままで、電池パック9の形態になっていなくても本発明の趣旨は変わらない。
【0015】次に実施の形態3を、充電時における劣化度取得手段3の構成と動作フローで説明する。そのハード構成は図2の構成を使用し、劣化度を取得するための動作設定をソフトで行う。その動作フローを図4に示す。先ずCPU17を立ち上げるための電源をオンする(S11)と、CPU17がオンする(S12)。この場合、セット15が動作しない場合でも、CPU17は定期的に立ち上がるようにしている。例えばリアルタイムクロック26で1時間経過するタイミングでCPU17を起動する。すると電流最小値特定手段16が電流最小値以下を検出する(S13)ので、電池電圧取得手段11で開放電圧Vnを取得する(S14)。そして開放電圧対残容量変換手段18で残容量Cn0に変換する(S15)。次に充電スイッチ24をオンして充電を開始する(S16)。充電電流は電流最小値を超えるので、電流積算手段13で充電電流をカウントして電流積算量Qnを計測する(S17)。次に充電スイッチ24を無理やりオフして(S18)、流れる電流を最小値以下にする。
【0016】充電スイッチ24をオフするタイミングは、リチウムイオン電池や鉛電池では、定電流充電から定電圧充電に移り、電流測定限界まで充電電流が絞られた時が望ましい。電流が小さい時点では充電スイッチ24をオフした後、電池電圧が短時間に安定するので、開放電圧の取得が容易になる効果がある。またニッカド電池やニッケル水素電池では、−ΔV等で満充電検出して後、微少電流で30分程度トリクル充電を実施してから充電スイッチ24をオフするのが望ましい。リチウムイオン電池の充電と同様に、電流が小さい時点で充電スイッチ24をオフすると電池電圧が短時間に安定する効果がある。但し、トリクル充電が長くなると、電池容量には加算されない充電電流が流れるので、劣化度算出の誤差になってしまう恐れがあるので注意を要する。
【0017】こうして電池電圧取得手段11で、安定した開放電圧V(n+1)を取得する。そして開放電圧対残容量変換手段18を使って残容量C(n+1)0に変換する(S20)。すると(1)式から劣化度αcを算出する事ができる(S21)。求めた劣化度αcは実施の形態2と同様に不揮発性メモリーEEPROM20に保存する(S22)。ここで、充電時に流れる電流はマイナスで表すので、Qnもマイナスになり、αcはプラスになる。
【0018】次に充電スイッチ24をオンして元の充電に復帰させる(S23)。元の充電に復帰すると、リチウムイオン電池や鉛電池では定電圧充電が継続して、一定時間が経過した後充電スイッチ24がオフして(S24)、充電が終了する(S25)。またニッカド電池やニッケル水素電池ではそのまま充電が終了(S25)しても良いし、トリクル充電が継続しても良い(S23)。従来の充電方法は、安全性を考慮して、一定時間経過すると充電を終了する(S25)のが一般的である。
【0019】次に実施の形態4の動作フローを、図5を用いて説明する。先ずこれまでの実施の形態で説明してきた方法で、劣化度取得手段3を使って複数期間Tnの劣化度αcnを算出する(S31)。次に劣化度保存手段4でαcnをEEPROM20等の不揮発性メモリーに保存する(S32)。但し全てのαcnを保存する必要はなく、複数個保存すれば良い。図5のフローでは、一定期間をおいて(S33)から(S31)に戻って繰り返しαcnを取得する様子を示している。
【0020】一方複数個のαcnが保存されると、劣化度取得手段3を使って保存されているαcnの内、複数個のαcmを呼び出して(S34)、αcmの時間関数を算出する事ができる。例えばαcmが2個であれば、期間経過と共に直線的に劣化する関数が得られる。すると一般的に電池寿命時点を指す半分容量までの期間Teは、αcmに2を代入して求める事ができる。もちろんαcmが3個以上あれば、αcmの期間関数はさらに精度の良い近似曲線として取得できる。
【0021】なお、これまで説明してきた実施の形態において、劣化度保存手段4で保存した劣化度αcは、劣化度出力手段5を通して、表示手段6である外部モニターや電池機器2に内蔵した液晶ディスプレー22等に出力する。実施の形態4では、表示手段22である液晶ディスプレー等にαcmの時間関数をグラフの形で表示して、劣化の期間経過をユーザーに知らせる事も可能になる。
【0022】
【発明の効果】
本発明では、電池機器2に劣化度取得手段3と劣化度保存手段4と劣化度出力手段を備える事で、故障などで修理に戻ってきた電池機器2から外部モニターなどの表示手段6を接続して電池機器システムにして、劣化度を表示する事ができる。一般的に電池の不良を見つけ出すには長時間を要するが、本発明によっていち早く電池の不良かどうかを判断できるために、電池機器2の整備コストを大幅に削減できる効果は大きい。
【0023】また図2に示すように表示手段6を液晶ディスプレー22にして電池機器2に内蔵すれば、従来実現しなかったユーザーに対する劣化度の通知ができる。この事は、ユーザーが電池に抱く、この電池は正常なのだろうかと言う漠然とした不安を解消できる効果がある。
【0024】また実施の形態2で示した劣化度取得手段3を使用すると、劣化度の算出精度が上がる効果がある。
【0025】また実施の形態3で示したように、劣化度を算出するための充電あるいは放電モードを設定すると、さらに精度の良い劣化度を安定して取得できる効果がある。
【0026】さらに複数の劣化度を劣化度保存手段4で保存する事で、劣化度の期間経過を期間関数で取得できて、電池1の寿命を予測できる。この事はユーザーが、あらかじめ電池の取替え時期を知る事ができるので、従来にはない安心感が得られる効果は極めて大きい。
【図面の簡単な説明】
【図1】実施の形態1のブロック図である。
【図2】実施の形態2のブロック図である。
【図3】実施の形態2のフローチャートである。
【図4】実施の形態3のフローチャートである。
【図5】実施の形態4のフローチャートである。
【符号の説明】
1は電池
2は電池機器
3は劣化度取得手段
4は劣化度保存手段
5は劣化度出力手段
6は表示手段
8は制御手段
9は電池パック
14はIC
15はセット
17はCPU
19はROM
20はEEPROM
21はRAM
27は充電器[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery device system for displaying the state of a battery such as a remaining capacity on a liquid crystal or the like in a battery device driven by a battery.
[0002]
2. Description of the Related Art Conventionally, as means for acquiring the state of a battery, a voltage acquiring means, a current acquiring means, a current integrating means for calculating the sum of the flowing currents, and a remaining capacity acquiring using the data obtained by said means. Means are in practical use. The obtained result is displayed on a display such as a liquid crystal display. Among them, it is common to display the remaining capacity. On a mobile phone, it is indicated by three bars, on a laptop computer, the remaining percentage is displayed, and in a car, the battery mark is lit when the battery is insufficient. The display has been made.
[0003]
However, it is important to know the state of deterioration of the battery and the life of the battery at the end of the deterioration. Is not proposed. Deterioration of a battery is usually measured by measuring the battery capacity of a new battery and the capacity of the battery after degradation using a battery measuring instrument at 0.2 C, that is, the discharge time at a 5-hour rate discharge, and using a separate computer or the like to determine the new battery. The ratio after deterioration is calculated and obtained. However, since a battery device does not generate a steady discharge like a measuring device, it has been an issue to construct a means for acquiring a degree of deterioration in a use mode and environment where the battery device is normally used. Further, when a conventional battery device breaks down and is repaired, a failure related to the power supply is first checked. For power supplies, chargers and batteries are subject to checks. A battery failure can be identified immediately if it is short-circuited, but a deteriorated battery requires a long-term operation check using a battery measuring instrument to determine whether it is a failure or a normal region. It is a factor of up. Therefore, it is a problem that a battery failure can be immediately judged.
[0004]
SUMMARY OF THE INVENTION In a battery device driven by a battery, the present invention has a built-in deterioration degree acquiring means in the battery equipment, and further stores the acquired deterioration degree in a deterioration degree storing means. The deterioration degree is output by the deterioration degree output means and displayed on the display means.
Further, the present invention is characterized in that the inventor uses the deterioration degree acquiring means described in the method and system for converting the remaining capacity of a battery filed in Japanese Patent Application No. 2001-173443. That is, when there is a current integration section in which a current exceeding the current minimum value flows between the two current minimum value sections specifying that the current minimum value identification means is equal to or less than the current minimum value, the current integration of the current integration section is performed. Means for calculating the degree of deterioration αc by comparing the quantity of electricity Q, which is the amount, and the difference ΔC between the two remaining capacities obtained by converting the voltages of the two current minimum value sections by the open-circuit voltage to remaining capacity conversion means. Use
Further, the present invention is characterized in that the deterioration degree acquiring means generates a charge mode or a discharge mode for measuring the deterioration degree.
Further, the present invention is characterized in that it is a deterioration degree obtaining means for obtaining a plurality of deterioration degrees in a plurality of periods, obtaining a function of the deterioration degree using the periods as variables, and estimating a battery life.
[0008]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 of the present invention will be described in detail with reference to the block diagram of FIG. The battery device 2 driven by the battery 1 has a configuration in which a deterioration degree acquisition unit 3, a deterioration degree storage unit 4, and a deterioration degree output unit 5 are incorporated. Next, the display means 6 is connected to the deterioration degree output means 5. In FIG. 1, the display unit 6 is shown as a battery device system separately from the outside of the battery device 2. Incidentally, the deterioration degree acquiring means 3 may use a conventionally proposed deterioration degree calculation method of estimating from the number of times of use of the battery. Alternatively, in order to obtain a more accurate degree of deterioration, a method of calculating the degree of deterioration presented in the method for converting the remaining capacity of a battery, which was filed by the present inventor in Japanese Patent Application No. 2001-173443, is used. The deterioration degree storage means 4 is a recording medium such as a semiconductor. The deterioration degree output means 5 calls and outputs the deterioration degree once stored in the deterioration degree storage means 4. When outputting to the external display means 6, it is connected to the output terminal 7 by the cable 8. Alternatively, although not shown in the drawings, communication means such as wireless or optical communication may be used. The display means 6 can use a conventionally used method such as a means for displaying on a monitor via a personal computer or a display on a built-in liquid crystal monitor.
Here, as a feature of the present invention, the deterioration degree acquiring means 3 is built in the battery device 2, and more characteristic is that the acquired deterioration degree is once stored in the deterioration degree storing means 4, and the output means 5 is stored. In the output. That is, when the battery device 2 breaks down and is repaired, if the deterioration degree is stored and output by the deterioration degree output means 5 and displayed on the display means 6, the failure of the battery can be determined quickly. Of course, it can also be displayed on the display means 6 such as a liquid crystal monitor built in the device. Then, the user of the battery device 2 can check the deterioration degree of the battery 1 and determine the replacement time.
Next, a second embodiment will be described with reference to FIG. In the second embodiment, a battery 10 connected in series to a battery pack 9 is contained. Further, an IC 14 containing a battery voltage acquiring means 11, a current acquiring means 12, and a current integrating means 13 is provided. The set 15 has a built-in CPU 17 including a current minimum value specifying means 16, a deterioration degree obtaining means 3, and a deterioration degree output means 5. Also, a ROM 19 storing the open-circuit voltage-to-remaining capacity conversion means 18 and an EEPROM 20 as the deterioration degree storage means 4 are built in. The RAM 21, the liquid crystal display 22, the charging IC 23, the charging switch 24, the discharging switch 25, and the real-time clock 26 are connected to support the deterioration degree acquiring means 3 of the present invention. That is, the battery pack 9 and the set 15 constitute the battery device 2, and the external monitor 4 as a display means and the charger 27 are connected to constitute a battery device system.
FIG. 3 shows the operation flow. First, the charge switch 24 or the discharge switch 25 is turned on to turn on the power (S1). Then, the CPU 17 is turned on (S2). Next, the current minimum value specifying means 16 detects a value equal to or smaller than the current minimum value (S3). Specifically, when the set 15 is a mobile phone, the current is lower than the minimum value in a standby section, in a notebook computer, in a standby section, and in a car battery in a section in which a key is turned off. Then, since the current flowing into and out of the battery 10 is extremely small, the battery voltage Vn acquired by the battery voltage acquiring means 11 can be regarded as substantially an open circuit voltage (S4). Next, Vn is converted to the remaining capacity Cn0 using the open-circuit voltage to remaining capacity conversion means 18 (S5). The open-circuit voltage-to-remaining-capacity conversion means 18 measures the remaining capacity of the battery 10 with respect to the open-circuit voltage in advance, and stores it in the ROM 19 in the form of a table or an approximate curve. The open-circuit voltage-to-remaining-capacity conversion means 18 can substantially eliminate the influence of temperature and load, and thus has a feature that the error in remaining capacity can be minimized. Next, when the set 15 starts to operate and exceeds the current minimum value (S6), the current flowing through the battery is counted by the current integrating means 13, and the current minimum value specifying means 16 detects again the current minimum value or less (S3). The electric quantity Qn up to and is acquired by integration (S7). If Qn and C (n + 1) 0 can be obtained, the deterioration degree αc is calculated from the deterioration degree obtaining means 3 using equation (1) (S8).
[0012]
(Equation 1)
Figure 2004170231
Then, αc is stored in the EEPROM 20, which is a nonvolatile memory (S9). This operation is the deterioration degree storage unit 4. By storing the data in the non-volatile memory, when the battery device 2 breaks down and is returned for repair, even if the battery is dead, the record of the deterioration degree αc is stored, so that the quality of the battery can be quickly determined. it can. On the other hand, C (n + 1) 0 and Qn are parameters separately used for calculating the remaining capacity, but may be stored in the RAM 21 which is a volatile memory, or may be stored in the EEPROM 20.
Although FIG. 2 shows the set 15 and the battery pack 9 separately, it is not necessary to distinguish them. For example, the CPU 17 may be built in the battery pack 9, or the gist of the present invention does not change even if the battery 10 is left naked and is not in the form of the battery pack 9.
Next, the third embodiment will be described with reference to the configuration and operation flow of the deterioration degree acquiring means 3 during charging. The hardware configuration uses the configuration of FIG. 2, and the operation setting for acquiring the degree of deterioration is performed by software. The operation flow is shown in FIG. First, when a power supply for starting the CPU 17 is turned on (S11), the CPU 17 is turned on (S12). In this case, even when the set 15 does not operate, the CPU 17 starts up periodically. For example, the CPU 17 is activated at the timing when one hour elapses with the real-time clock 26. Then, the minimum current value specifying unit 16 detects the current value equal to or smaller than the minimum current value (S13), so that the open-circuit voltage Vn is obtained by the battery voltage obtaining unit 11 (S14). Then, it is converted to the remaining capacity Cn0 by the open-circuit voltage / remaining capacity conversion means 18 (S15). Next, the charging switch 24 is turned on to start charging (S16). Since the charging current exceeds the minimum current value, the charging current is counted by the current integrating means 13 to measure the current integrated amount Qn (S17). Next, the charge switch 24 is forcibly turned off (S18), and the flowing current is reduced to a minimum value or less.
In the case of a lithium ion battery or a lead battery, the timing at which the charge switch 24 is turned off is desirably when the charge current is shifted from constant current charge to constant voltage charge and the charge current is reduced to the current measurement limit. At the time when the current is small, the battery voltage is stabilized in a short time after the charging switch 24 is turned off, so that there is an effect that it is easy to obtain the open-circuit voltage. In the case of a nickel-cadmium battery or a nickel-metal hydride battery, it is desirable that the charge switch 24 be turned off after performing a trickle charge with a minute current for about 30 minutes after detecting a full charge at -ΔV or the like. As in the case of charging a lithium ion battery, turning off the charge switch 24 at a time when the current is small has the effect of stabilizing the battery voltage in a short time. However, if the trickle charge is long, a charging current that is not added to the battery capacity flows, and thus care must be taken because an error may occur in the calculation of the degree of deterioration.
Thus, the stable open-circuit voltage V (n + 1) is obtained by the battery voltage obtaining means 11. Then, it is converted to the remaining capacity C (n + 1) 0 using the open-circuit voltage-to-remaining capacity conversion means 18 (S20). Then, the degree of deterioration αc can be calculated from equation (1) (S21). The obtained degree of deterioration αc is stored in the non-volatile memory EEPROM 20 as in the second embodiment (S22). Here, since the current flowing at the time of charging is represented by minus, Qn also becomes minus and αc becomes plus.
Next, the charge switch 24 is turned on to return to the original charge (S23). Upon returning to the original charge, the lithium ion battery or the lead battery continues to be charged at a constant voltage, and after a certain period of time, the charge switch 24 is turned off (S24), and the charge ends (S25). In the case of a nickel-cadmium battery or a nickel-metal hydride battery, charging may be terminated as it is (S25), or trickle charging may be continued (S23). In the conventional charging method, charging is generally terminated after a predetermined time has elapsed in consideration of safety (S25).
Next, the operation flow of the fourth embodiment will be described with reference to FIG. First, the degree of deterioration αcn for a plurality of periods Tn is calculated by using the degree of deterioration acquiring means 3 by the method described in the above embodiments (S31). Next, the deterioration degree storage means 4 stores αcn in a nonvolatile memory such as the EEPROM 20 (S32). However, it is not necessary to save all αcn, and it is sufficient to save a plurality of αcn. The flow of FIG. 5 shows a state in which the process returns from (S33) to (S31) after a certain period of time and repeatedly acquires αcn.
On the other hand, when a plurality of αcns are stored, a plurality of αcms among the stored αcns are called using the deterioration degree acquiring means 3 (S34) to calculate a time function of αcm. it can. For example, if αcm is two, a function that linearly deteriorates with the passage of time is obtained. Then, in general, the period Te up to half the capacity indicating the battery life point can be obtained by substituting 2 for αcm. Of course, if there are three or more αcms, the period function of αcm can be obtained as a more accurate approximate curve.
In the above-described embodiment, the deterioration degree αc stored by the deterioration degree storage means 4 is transmitted through the deterioration degree output means 5 to a display means 6 such as an external monitor or a liquid crystal built in the battery device 2. Output to the display 22 and the like. In the fourth embodiment, it is possible to display the time function of αcm in the form of a graph on the liquid crystal display or the like as the display means 22 to notify the user of the lapse of the period of deterioration.
[0022]
【The invention's effect】
In the present invention, by providing the battery device 2 with the deterioration degree acquisition means 3, the deterioration degree storage means 4, and the deterioration degree output means, the display means 6 such as an external monitor is connected from the battery device 2 which has returned to repair due to a failure or the like. Then, the degree of deterioration can be displayed as a battery device system. Generally, it takes a long time to find a battery failure. However, since the present invention can quickly determine whether the battery is defective, the effect of greatly reducing the maintenance cost of the battery device 2 is great.
As shown in FIG. 2, if the display means 6 is formed as a liquid crystal display 22 and incorporated in the battery device 2, it is possible to notify the user of the deterioration degree which has not been realized conventionally. This has the effect of relieving the user of the battery and vague anxiety about whether the battery is normal.
The use of the deterioration degree acquiring means 3 described in the second embodiment has the effect of increasing the accuracy of calculating the degree of deterioration.
As described in the third embodiment, setting the charge or discharge mode for calculating the degree of deterioration has the effect of obtaining a more accurate degree of deterioration stably.
Further, by storing a plurality of degrees of deterioration in the degree of deterioration storage means 4, the elapsed time of the degree of deterioration can be obtained as a period function, and the life of the battery 1 can be predicted. In this case, since the user can know the timing of replacing the battery in advance, the effect of obtaining unprecedented security is extremely large.
[Brief description of the drawings]
FIG. 1 is a block diagram of a first embodiment.
FIG. 2 is a block diagram of a second embodiment.
FIG. 3 is a flowchart according to the second embodiment.
FIG. 4 is a flowchart of a third embodiment.
FIG. 5 is a flowchart according to the fourth embodiment.
[Explanation of symbols]
1 is a battery 2 is a battery device 3 is a deterioration degree acquisition means 4 is a deterioration degree storage means 5 is a deterioration degree output means 6 is a display means 8 is a control means 9 is a battery pack 14 is an IC
15 is set 17 is CPU
19 is ROM
20 is an EEPROM
21 is RAM
27 is a charger

Claims (4)

電池の劣化度を取得する劣化度取得手段と、劣化度保存手段と、劣化度出力手段と表示手段を有し、該劣化度取得手段で取得した該電池劣化度を、一度該劣化度保存手段に保存し、保存した該劣化度を該劣化度出力手段で出力して、該表示手段で表示する電池機器システム。A deterioration degree acquisition unit for acquiring the degree of deterioration of the battery, a deterioration degree storage unit, a deterioration degree output unit, and a display unit, and the battery deterioration degree acquired by the deterioration degree acquisition unit is once stored in the deterioration degree storage unit. And a battery device system which outputs the stored deterioration degree by the deterioration degree output means and displays it on the display means. 該電池に出入りする電流をカウントして電気量を求める電流積算手段と、電流最小値特定手段と、電池電圧を取得する電池電圧取得手段と、該電池の開放電圧を該電池の残容量に変換する開放電圧対残容量変換手段を有し、該電流最小値特定手段が電流最小値以下であると特定する二つの電流最小値区間に挟まれて、該電流最小値を越える電流が流れる電流積算区間が存在した時、該電流積算区間の電流積算量である電気量Qと、二つの該電流最小値区間の電圧を該開放電圧対残容量変換手段で変換した二つの残容量の差ΔCを比較して、該劣化度αcを算出する該劣化度取得手段である請求項1の電池機器システム。Current integrating means for counting the current flowing into and out of the battery to obtain the amount of electricity, current minimum value specifying means, battery voltage obtaining means for obtaining the battery voltage, and converting the open voltage of the battery to the remaining capacity of the battery Current integration between two current minimum value sections in which the current minimum value specifying means specifies that the current value is equal to or smaller than the current minimum value. When a section exists, an electric quantity Q, which is a current integration amount of the current integration section, and a difference ΔC between two remaining capacities obtained by converting the voltages of the two current minimum value sections by the open-circuit voltage to remaining capacity conversion means. 2. The battery device system according to claim 1, wherein the battery device system is a deterioration degree acquisition unit that calculates the deterioration degree αc. 該電池劣化度が取得できる充電、あるいは放電モードを発生する設定を組み込んだ該劣化度取得手段である請求項1の電池機器システム。The battery device system according to claim 1, wherein the battery device system is a deterioration degree acquisition unit that incorporates a setting for generating a charge or discharge mode in which the battery deterioration degree can be acquired. 複数の期間の複数の該劣化度を取得して該劣化度保存手段に保存し、期間を変数とする該劣化度の関数を求め、さらに該関数から該電池の寿命を予測する該劣化度取得手段である請求項1の電池機器システム。Obtaining a plurality of the degrees of deterioration for a plurality of periods, storing the obtained degrees of deterioration in the degree of deterioration storage means, obtaining a function of the degree of deterioration using the period as a variable, and further predicting the life of the battery from the function. 2. The battery device system according to claim 1, which is means.
JP2002336212A 2002-11-20 2002-11-20 Battery equipment system indicating degradation of battery Pending JP2004170231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336212A JP2004170231A (en) 2002-11-20 2002-11-20 Battery equipment system indicating degradation of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336212A JP2004170231A (en) 2002-11-20 2002-11-20 Battery equipment system indicating degradation of battery

Publications (1)

Publication Number Publication Date
JP2004170231A true JP2004170231A (en) 2004-06-17

Family

ID=32700116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336212A Pending JP2004170231A (en) 2002-11-20 2002-11-20 Battery equipment system indicating degradation of battery

Country Status (1)

Country Link
JP (1) JP2004170231A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215125A (en) * 2010-03-15 2011-10-27 Calsonic Kansei Corp Device and method of battery capacity calculation
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method
CN103492893A (en) * 2011-04-25 2014-01-01 株式会社Lg化学 Device and method for estimating the degradation of battery capacity
EP2713433A1 (en) 2012-09-28 2014-04-02 Fujitsu Limited State evaluation apparatus of secondary battery, state evaluation method of secondary battery, and computer-readable medium storing state evaluation program of secondary battery
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
CN111071097A (en) * 2018-10-19 2020-04-28 丰田自动车株式会社 Display device and vehicle including the same
CN112406551A (en) * 2019-08-20 2021-02-26 本田技研工业株式会社 Display control device, display control method, and storage medium
US11511645B2 (en) 2019-05-21 2022-11-29 Honda Motor Co., Ltd. Display device, display method, and program for controlling a character based on battery state

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215125A (en) * 2010-03-15 2011-10-27 Calsonic Kansei Corp Device and method of battery capacity calculation
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method
CN103492893A (en) * 2011-04-25 2014-01-01 株式会社Lg化学 Device and method for estimating the degradation of battery capacity
JP2014519016A (en) * 2011-04-25 2014-08-07 エルジー・ケム・リミテッド Battery capacity deterioration estimation apparatus and method
US8937459B2 (en) 2011-04-25 2015-01-20 Lg Chem, Ltd. Apparatus and method for estimating state of health of battery
EP2713433A1 (en) 2012-09-28 2014-04-02 Fujitsu Limited State evaluation apparatus of secondary battery, state evaluation method of secondary battery, and computer-readable medium storing state evaluation program of secondary battery
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
CN111071097A (en) * 2018-10-19 2020-04-28 丰田自动车株式会社 Display device and vehicle including the same
US11511645B2 (en) 2019-05-21 2022-11-29 Honda Motor Co., Ltd. Display device, display method, and program for controlling a character based on battery state
CN112406551A (en) * 2019-08-20 2021-02-26 本田技研工业株式会社 Display control device, display control method, and storage medium
US11584229B2 (en) 2019-08-20 2023-02-21 Honda Motor Co., Ltd. Display control apparatus, display control method, and program
CN112406551B (en) * 2019-08-20 2024-03-19 本田技研工业株式会社 Display control device, display control method, and storage medium

Similar Documents

Publication Publication Date Title
JP5368038B2 (en) Battery state detection device and battery pack incorporating the same
JP4123184B2 (en) Secondary battery remaining capacity calculation method and battery pack
EP1167988B1 (en) Rechargeable battery pack
JP4783700B2 (en) Mobile device
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
CN100382408C (en) Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
US6433513B1 (en) Method, apparatus and computer readable recorded medium for secondary battery life evaluation
JP2010166812A (en) Power supply control method
WO2011048471A1 (en) Power supply apparatus
JP2012115004A (en) Battery monitoring device and battery monitoring method
JP2010019757A (en) Battery state monitoring device
JP2010019758A (en) Battery state detection device
JP2010190903A (en) Nickel-hydride battery life determining method and life determining apparatus
JP2014025738A (en) Residual capacity estimation device
KR20070107971A (en) Method and apparatus of controlling battery
JP2009199774A (en) Charging/discharging method for secondary battery
JP4086008B2 (en) Secondary battery remaining capacity ratio calculation method and battery pack
JP2004170231A (en) Battery equipment system indicating degradation of battery
JP2010019653A (en) Battery residual capacity calculating system
JP4846755B2 (en) Portable electronic devices
JP2007322398A (en) Battery pack and method for detecting fully-charge capacity
JPH09181804A (en) Portable radio equipment with battery residual capacity display device
EP4083641A1 (en) Semiconductor device and method of monitoring battery remaining capacity
JP2014119394A (en) Battery deterioration method
JP2001095159A (en) Secondary battery unit, and method of measuring electric capacity thereof