JP2004170147A - Carbon monoxide gas sensor element and carbon monoxide gas detector - Google Patents

Carbon monoxide gas sensor element and carbon monoxide gas detector Download PDF

Info

Publication number
JP2004170147A
JP2004170147A JP2002334117A JP2002334117A JP2004170147A JP 2004170147 A JP2004170147 A JP 2004170147A JP 2002334117 A JP2002334117 A JP 2002334117A JP 2002334117 A JP2002334117 A JP 2002334117A JP 2004170147 A JP2004170147 A JP 2004170147A
Authority
JP
Japan
Prior art keywords
electrode
carbon monoxide
counter electrode
monoxide gas
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002334117A
Other languages
Japanese (ja)
Inventor
Koretomo Ko
云智 高
Akira Kunimoto
晃 国元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2002334117A priority Critical patent/JP2004170147A/en
Publication of JP2004170147A publication Critical patent/JP2004170147A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon monoxide gas detector for highly accurately detecting carbon monoxide gas included in a reformed gas, etc. <P>SOLUTION: This carbon monoxide gas sensor element has a proton-conductive solid electrolyte, and first and second electrode pairs provided on both surfaces of the solid electrolyte. The first electrode pair comprises a detection electrode and a first counter electrode while the second electrode pair comprises a second counter electrode and a reference electrode coated to a porous body. This carbon monoxide gas detector comprises the sensor element, a means for impressing a voltage across the detection electrode and first counter electrode, a means for passing a bias current through, or impressing a bias voltage across, the reference electrode and second counter electrode, and a means for measuring a potential difference between the detection electrode and reference electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、気相中の一酸化炭素ガスを検知するセンサ素子及び検知装置に関し、特に固体高分子型又はリン酸型の燃料電池の燃料供給システムにおいて、メタノール、都市ガス、メタン、ガソリン等を改質して得られる燃料ガス中に含まれる一酸化炭素ガスを極めて高精度に検知できる小型の一酸化炭素ガスセンサ素子及び検知装置に関する。
【0002】
【従来の技術】
燃料電池は、エネルギー資源の有効利用や地球環境保全の観点から、極めて有望な発電手段の一つであると考えられ、多くの開発が行われている。特に固体高分子型燃料電池は自動車に搭載する試みがなされるまで発展しており、固体高分子型燃料電池の性能は既に実用化レベルにまで達している。しかしながら、燃料電池の燃料となる純水素は保存、供給及び車両への搭載が不便であるため、他の燃料からの生成が検討されている。例えば家庭用等の定置型燃料電池の燃料には都市ガス又は液体有機燃料を使用し、自動車用の移動型燃料電池の燃料には液体有機燃料を使用することが試みられている。これらの燃料から水素を取り出すために、改質器を用いて触媒反応により水素を生成する。
【0003】
改質器から生成した燃料ガス中には、通常約1%以上の一酸化炭素が存在する。この一酸化炭素が燃料電池へ送られると、燃料電池の電極が一酸化炭素により被毒し、燃料電池の発電能が大幅に低下してしまう。このため定置型燃料電池の場合、燃料ガス中の一酸化炭素濃度を常時測定し、一酸化炭素濃度の信号を改質器にフィードバックすることにより改質器を最適条件で作動させることが必要となる。また移動型燃料電池の場合、改質器の始動から自動車を運転するまでの時間をできるだけ短くする必要があるため、生成した改質ガス中に含まれる一酸化炭素濃度を改質器始動時から監視し、一酸化炭素濃度が所定のレベル以下であれば、生成した燃料ガスを燃料電池に送る。
【0004】
現在、一酸化炭素濃度を測定する方法として赤外分光法が最も広く用いられているが、赤外分光法ではコストが高くなるばかりでなく、水による影響を大きく受けるため、改質ガス中に含まれる一酸化炭素濃度の測定には適さない。一方小型のガス検知装置として半導体式のガス検知装置が多いが、半導体式ガス検知装置は燃焼による温度の変化に伴う電気抵抗の変化により一酸化炭素を検知するため、改質ガスに含まれる他の可燃性ガスによる影響を受けやすい。従って半導体式ガス検知装置では、改質ガス中で多量の水素ガスと共存する極く低濃度(数ppm〜数百ppm)の一酸化炭素を測定することは困難である。
【0005】
改質ガス中に含まれる一酸化炭素の濃度を検知するために電気化学的な原理を利用した一酸化炭素ガス検知装置も報告されている(例えば特開平08−327590号及び特開平11−304752号等)。特開平08−327590号に記載されているように、プロトン伝導性固体電解質の両側に設けられた電極間に電圧をかけると、被検ガス中の一酸化炭素の濃度に応じて電極間の電位差は低下する傾向があるので、電位差から一酸化炭素濃度を検知することができる。しかしながら、電極が一酸化炭素により被毒すると測定精度が低下するという問題がある。そこで検知装置にヒータを設け、それに通電して検知電極を高温にすることにより一酸化炭素を電極から脱離させている。しかしながら、この方法では検知装置の応答性が悪いのみならず、加熱により検知装置が劣化して寿命が短くなってしまうという問題がある。
【0006】
また電位掃引法又はパルス法を用いて改質ガスの一酸化炭素濃度を測定する一酸化炭素ガス検知装置も提案されている(例えば、特許文献1参照)。例えば図9の概略断面図に示すように、この一酸化炭素ガス検知装置100は、固体電解質101と、固体電解質101の両面に設けられた検知電極102及び対極103からなる検出部と、検出部に電圧を印加する電圧印加装置(図示せず)とから構成されている。この検知装置100による測定法では、検出部に低電位から高電位方向へ電圧を掃引すると、被検ガス中の水素及び一酸化炭素が検知電極に吸着・酸化され、応答電流が流れる。応答電流は被検ガス中に含まれる一酸化炭素の濃度に依存するため、応答電流の変化から被検ガス中の一酸化炭素濃度を測定することができる。この検知装置100は被検ガス中に多量の水素が共存した場合でも、精度よく一酸化炭素濃度を測定することができる。
【0007】
この検知装置100には湿式と乾式があるが、湿式は一般に応答が悪い。一方乾式検知装置100は、応答は良いが、一酸化炭素の測定誤差が大きいという欠点を有する。というのは、一酸化炭素の濃度を正確に測定するためには安定した基準電位が必要であるが、特許文献1に開示の構成では、対極103は参照電極も兼ねているために、被検ガス中に含まれる二酸化炭素等の他のガスの影響を受け、安定した基準電位を得ることができないからである。
【0008】
【特許文献1】
国際公開WO 97/40371号パンフレット(図1〜4)
【0009】
【発明が解決しようとする課題】
従って本発明の目的は、改質ガス等に含まれる一酸化炭素ガスを高精度に検知できる一酸化炭素ガスセンサ素子及びそれを用いた一酸化炭素ガス検知装置を提供することである。
【0010】
【課題を解決する手段】
上記目的に鑑み鋭意研究の結果、本発明者らは、基準電極として多孔体で被覆した参照電極を用いると、参照電極がプロトン伝導性固体電解質中を移動してきた水素イオンから生成した純粋な水素ガスに常に覆われることになるので、基準電位が安定し、燃料ガス中の一酸化炭素ガスを精度良く検知できることを発見し、本発明に想到した。
【0011】
すなわち、本発明の第一の一酸化炭素ガスセンサ素子は、プロトン伝導性固体電解質と、前記プロトン伝導性固体電解質の両面に設けられた第一及び第二の電極対とを有し、前記第一の電極対は検知電極及び第一の対極からなり、前記第二の電極対は第二の対極及び多孔体に被覆された参照電極からなることを特徴とする。
【0012】
一例では、前記検知電極及び前記第二の対極は前記プロトン伝導性固体電解質の同じ面に設けられている。また別の例では、前記検知電極及び前記第二の対極は前記プロトン伝導性固体電解質の異なる面に設けられている。
【0013】
本発明の第二の一酸化炭素ガスセンサ素子は、プロトン伝導性固体電解質と、前記プロトン伝導性固体電解質の一面に形成された検知電極及び多孔体に被覆された参照電極と、前記プロトン伝導性固体電解質の他面に形成された対極とからなることを特徴とする。
【0014】
本発明の第一の一酸化炭素ガス検知装置は、プロトン伝導性固体電解質と、前記プロトン伝導性固体電解質の両面に設けられた第一及び第二の電極対とを有し、第一の電極対は検知電極及び第一の対極からなり、第二の電極対は第二の対極及び多孔体に被覆された参照電極からなる一酸化炭素ガスセンサ素子を有し、さらに前記検知電極と前記第一の対極との間に電圧を印加する手段と、前記参照電極と前記第二の対極との間にバイアス電流を流すかバイアス電圧を印加する手段と、前記検知電極と前記参照電極との間の電位差を測定する手段とを有することを特徴とする。
【0015】
本発明の第二の一酸化炭素ガス検知装置は、プロトン伝導性固体電解質と、前記プロトン伝導性固体電解質の一面に形成された検知電極及び多孔体に被覆された参照電極と、前記プロトン伝導性固体電解質の他面に形成された対極からなる一酸化炭素ガスセンサ素子を有し、前記検知電極と前記対極との間に電圧を印加する手段と、前記参照電極と前記対極との間にバイアス電流を流すかバイアス電圧を印加する手段と、前記検知電極と前記参照電極との間の電位差を測定する手段とを有することを特徴とする。
【0016】
水素を含むガスにより前記第二の対極を曝した状態で、前記参照電極と第二の電極との間にバイアス電流を流すかバイアス電圧を印加すると、第二の対極表面で水素が酸化されて水素イオンが生成し、当該水素イオンはプロトン電解質中を移動して参照電極で還元され、水素が生成する。参照電極を多孔体で被覆することにより、参照電極は常に純粋な水素で覆われて安定な基準電位が得られるため、一酸化炭素濃度を高精度で測定することが可能となる。
【0017】
上記いずれの一酸化炭素ガス検知装置においても、さらに検知電極と参照電極との間の電位差に基づいて、検知電極と第一の対極との間に印加する電圧値を設定する手段を有するのが好ましい。また参照電極と第二の対極(対極)との間に印加するバイアス電圧は20〜300 mVの定電圧であるのが好ましい。
【0018】
【発明の実施の形態】
以下、添付図面を参照して本発明の一酸化炭素ガスセンサ素子及び検知装置を詳細に説明するが、本発明はこれらに限定されるものではない。
【0019】
[1] 一酸化炭素ガスセンサ素子及び検知装置
(1) 第一の態様
図1は本発明の第一の一酸化炭素ガスセンサ素子及びそれを含む検知装置を示す概略断面図である。一酸化炭素ガスセンサ素子1は、プロトン伝導性固体電解質11と、プロトン伝導性固体電解質11の一面に形成された検知電極12及び第二の対極13と、検知電極12と対向して固体電解質11の他面に形成された第一の対極14と、第二の対極13と対向して固体電解質11の他面に形成された参照電極15とからなる。参照電極15は多孔体16により被覆されている。また一酸化炭素ガス検知装置は、上記一酸化炭素ガスセンサ素子1と、検知電極12と第一の対極14との間に電圧を印加する手段と、参照電極15と第二の対極13との間にバイアス電流を流すかバイアス電圧を印加する手段と、検知電極12と参照電極15との間の電位差を測定する手段とを有する。検知電極12と第一の対極14との間に電圧を印加する手段、及び検知電極12と参照電極15との間の電位差を測定する手段として、ポテシオスタット2が設けられ、検知電極12と第一の対極14との間に印加する電圧の波形を設定する手段として、波形設定器3が設けられている。また参照電極15と第二の対極13との間にバイアス電圧を印加する手段として外部電源4が設けられている。
【0020】
一酸化炭素ガスセンサ素子1には、センサ素子1の作動温度を制御するため、温度調節用ヒータ(図示せず)が設けられているのが好ましい。この温度調節用ヒータは、温度計測手段により得られた信号をフィードバック制御することにより、一酸化炭素ガスセンサ素子1の作動温度を一定に保持するのが好ましい。一酸化炭素ガスセンサ素子1の作動温度は50〜130℃であるのが好ましく、70〜120℃であるのがより好ましい。
【0021】
プロトン伝導性固体電解質11は、プロトン伝導性であればよく、通常固体高分子型燃料電池に用いられるものを使用することができる。このようなプロトン伝導性固体電解質11の例としては、ナフィオン膜等が挙げられる。プロトン伝導性固体電解質11はプロトン伝導性を維持するために加湿される。
【0022】
一酸化炭素ガスセンサ素子1において、プロトン伝導性固体電解質11に各電極12〜15を形成する方法は特に制限なく、例えばメッキ等で形成してもよい。各電極12〜15の厚さは20μm以下であるのが好ましく1〜5μmであるのが好ましい。各電極12〜15の厚さが20μm超となると、反応ガスの透過・拡散が抑制されるので好ましくない。また検知電極12は被検ガスに曝される必要があり、第二の対極13は少なくとも水素を含有するガスに曝される必要がある。水素を含有するガスとして、純粋な水素ガスの他、水蒸気(HO)等を用いても良い。また被検ガスが改質ガスである場合、被検ガスは多量の水素を含むので、第二の対極13を被検ガスに曝すこともできる。第一の対極14は被検ガスに曝されても良いし、大気に曝されていても良い。
【0023】
検知電極12は水素の酸化反応による測定誤差を抑えるため水素に対する活性の低いものが好ましい。具体的には、Au、Cu、Ag及びInからなる群から選ばれた一種以上の金属又は合金電極、或いはAu、Pt、Rh、Cu、Ni、Ag及びInからなる群から選ばれた一種以上の金属又は合金からなる電極を用いるのが好ましく、特にPt−Au合金電極が好ましい。
【0024】
また参照電極15は水素に対する活性の高いものが好ましく、具体的にはPt、Pt−Ru合金、Pt−Ir合金又はPt−Pd合金からなる電極が好ましい。第一の対極14及び第二の対極13は特に限定されず、一般の電極材料を用いることができる。参照電極15と同じ電極材料を用いてもよい。
【0025】
参照電極15は多孔体16に被覆される。この時、参照電極15と多孔体16との間に僅かな隙間があってもよいが、固体電解質11と多孔体16との間には隙間がないように多孔体16を固体電解質11に密着させる。多孔体16は耐酸性及び耐熱性を有するものが好ましく、高分子材料、セラミックス等からなるのが好ましい。ここで、耐熱性とは50〜150℃、特に70〜130℃の温度条件で特性が変化しないことを意味する。プロトン伝導性固体電解質11が高分子材料からなる場合、剥離等の問題を考慮すると多孔体16も高分子材料からなるのが好ましく、具体的にはテフロン(登録商標)等のフッ素樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリエーテルイミド、ポリプロピレン又はポリエステル等からなるのが好ましい。
【0026】
参照電極15を被覆する多孔体16はプロトン伝導性固体電解質11中を移動してきた水素イオンから生成した水素ガスの急激な拡散を抑制する。このため参照電極15は常に純粋な水素ガスで覆われるので、安定した基準電位が得られる。多孔体16の細孔の平均孔径は0.01〜0.1μmであるのが好ましく、またその孔径分布は0.005〜0.5μmであるのが好ましい。また多孔体16の多孔度は10%以下であればよく、2〜5%であるのが好ましい。上記範囲内の細孔を有すると、参照電極15の周りを効率よく純粋な水素ガスで満たすことができる。
【0027】
検知電極12、第一の対極14及び参照電極15はそれぞれポテンシオスタット2に接続されている。ポテンシオスタット2は、検知電極12と参照電極15との間の電位差を測定し、その電位差に基づいて波形設定器3で設定された電圧を検知電極12及び第一の対極14へ印加する。
【0028】
被検ガスの組成が大きく変動する場合、所定のバイアス電流を流すのが好ましいが、被検ガスの組成がほとんど変動せず、かつ電極の劣化を考慮する必要のない場合には、バイアス電流を流しても良いし、バイアス電圧を印加してもよい。後に詳細に説明するが、第二の対極13と参照電極15との間に所定の電圧を印加する(又は所定の電流を流す)と、参照電極15でプロトン伝導性固体電解質11中を移動してきた水素イオンから水素が生成する。
【0029】
図2は本発明の第一の態様における別の一酸化炭素ガスセンサ素子及びそれを含む検知装置の概略断面図である。この一酸化炭素ガス検知装置は、一酸化炭素ガスセンサ素子5の検知電極12及び第一の対極14がプロトン伝導性固体電解質11に対して逆に設置され、第一の対極14及び第二の対極13とが同一面に設定されている以外、図1に示す一酸化炭素ガス検知装置と同じである。
【0030】
(2) 第二の態様
図3は本発明の第二の一酸化炭素ガスセンサ素子及びそれを含む検知装置を示す概略断面図である。この一酸化炭素ガス検知装置は、一酸化炭素ガスセンサ素子6のプロトン伝導性固体電解質11の一面に検知電極12及び参照電極15を、他面に対極14を有する以外、図1に示す一酸化炭素ガス検知装置と同じである。この検知装置では対極14は少なくとも水素を含有するガスに曝される。
【0031】
(3) ハードウェア部
図4は本発明の一酸化炭素ガス検知装置におけるハードウェア部7の一例を示す概略図である。このハードウェア部7は、一酸化炭素ガスセンサ素子1から流れてくる電流を検出するための電流−電圧変換器71を中心とした電流検出回路と、電流−電圧変換器71から発生するアナログ信号をデジタル信号へ変換するA/D変換器72と、マイクロコンピュータ73を中心とした演算部及び信号発生部と、得られた結果を出力する表示部74と、マイクロコンピュータ73から発生するデジタル信号をアナログ信号へ変換するD/A変換器75と、D/A変換器75から出力された信号を増幅するパワー増幅器76を含む電圧印加回路とを有する。本発明の各実施例による一酸化炭素濃度の測定方法はいずれもマイクロコンピュータ73のプログラムを設定することにより実施できる。
【0032】
[2] 一酸化炭素濃度の測定方法
本発明の一酸化炭素ガス検知装置による好ましい一酸化炭素濃度の測定方法について以下詳細に記載するが、本発明はこれらに限定されるものではない。
【0033】
(1) 第一の方法
参照電極と第二の対極との間にバイアス電圧を印加すると、第二の対極では式(1)の反応により水素が酸化されてプロトンが生成する。生成したプロトンはプロトン伝導性固体電解質中を移動し、参照電極で式(2)の反応により水素が生成する。
→2H+2e ・・・(1)
2H+2e→H ・・・(2)
【0034】
生成した水素は拡散して参照電極を通過するが、参照電極は多孔体により被覆されているため、水素ガスの急激な拡散は抑制されて参照電極の周りは純粋な水素ガスに満たされる。
【0035】
バイアス電圧は20〜300 mVであるのが好ましく、50〜100 mVであるのがより好ましい。印加する電圧を上記範囲に設定することにより、第二の対極で被検ガス中の水素ガスのみを選択的にイオン化できるため、参照電極では(2)の反応のみが起こることとなる。本発明では第二の対極と参照電極との間に印加する電圧を低下させて発生する水素量を減少させることにより、多孔体の圧力負荷による破損等を防ぐことができる。またバイアス電圧を印加する時間は、10秒以上であれば、多孔体と参照電極との間に僅かな隙間があっても、参照電極の周りは純粋な水素ガスによって十分に置換される。
【0036】
例えば図5の(a) に示すように三角波掃引電圧を検知電極及び第一の対極へ印加すると、検知電極に流れる電流のパターンは例えば図5の(b) に示すようになる。すなわち、低電位のときは被検ガス中の一酸化炭素により検知電極が吸着するため電流は流れないが、より高電位側へ掃引すると、検知電極に吸着した一酸化炭素が式(3)の反応により酸化・脱離するため電流が流れ始める。露出した検知電極にさらに水素が吸着し、式(1)の反応により酸化して電流が流れる。
CO+HO→CO+2H+2e ・・・(3)
【0037】
所定の掃引範囲の上限に達したところで掃引方向を逆転させると、一酸化炭素による検知電極の吸着は起こらず、式(1)に示す水素の酸化反応のみが起こる。このため流れる電流は図5の(b) に示すようなパターンとなる。なお被検ガス中に一酸化炭素がない場合、検知電極が吸着することはないので、電圧の上昇過程で実線のような電流値の低下はなく、電流変化は点線で示すようになる。
【0038】
検知電極への一酸化炭素の吸着は一定の電位領域内で起こる化学的な挙動であり、電極材料の種類又は設定温度に依存する。従って掃引する電圧は、一酸化炭素が検知電極に吸着する範囲に定めなければならない。例えば検知電極がPt電極又はPt−Au電極の場合、印加する電圧は0〜約600 mV(vs. 標準水素電極)であるのが好ましい。
【0039】
掃引速度は20〜500 mV/secとするのが好ましく、50〜300 mV/secとするのがより好ましい。掃引速度が500 mV/sec超となると、測定時間は短くなるが測定誤差が大きくなりすぎ、掃引速度が20 mV/sec未満となると、測定時間が長くなり、応答性が低くなり過ぎるので好ましくない。
【0040】
電圧の正方向の掃引時に生じる電流曲線の凹みの程度は被検ガス中の一酸化炭素濃度に依存する。従って、図5の(b) に示す電流曲線を掃引時間に対して積分して、正及び負方向の掃引時に発生した電気量A及びBをそれぞれ求め、負方向の掃引時に発生した電気量Bから正方向の掃引時に発生した電気量Aを減算して得られる差は一酸化炭素濃度に依存することがわかる。そのため、この差(B−A)から一酸化炭素濃度を求めることができる。
【0041】
一酸化炭素濃度を測定後、500〜1100 mVのパルス電圧を0.5〜5秒間検知電極と第一の対極へ印加するエージングを行うことにより、検知電極に吸着している一酸化炭素を酸化する。酸化した一酸化炭素は二酸化炭素として検知電極から脱離する。パルス電圧を用いたエージングは時間の制御が容易であり、電解質などに及ぼす影響も少ないので好ましい。
【0042】
(2) 第二の方法
第一の方法と同様に第二の対極と参照電極との間にバイアス電圧を印加すると、参照電極の周りは十分な水素ガスで満たされる。この状態で、図6の(a) に示すように、パルス電圧を検知電極と第一の対極との間に二回印加する。一回目に印加する電圧は検知電極に一酸化炭素が吸着する電位に設定し、二回目に印加する電圧は検知電極に吸着した一酸化炭素が酸化・脱離する電位に設定する。上記以外の測定条件は第一の方法と同じである。パルス電圧の印加により、図6の(b) に示すように検知電極に電流が流れる。
【0043】
一回目の設定電位のパルス電圧を検知電極と第一の対極との間に印加すると、検知電極に水素及び一酸化炭素が吸着するが、一酸化炭素は酸化されないため、式(1)の反応のみが起こる。これに対して、二回目の設定電位のパルス電圧を印加すると、水素及び一酸化炭素が検知電極に吸着し、式(1)及び式(3)の反応が起こる。従って、二回目の印加時の方が、一回目の印加時よりも大きな電流が流れる。二回目の印加時に流れる電流値Dから一回目の印加時に流れる電流値Cを減算して得られる電流値の差は一酸化炭素濃度に依存するため、この差から一酸化炭素濃度を求めることができる。
【0044】
検知電極と第一の対極との間に印加する電圧は、一酸化炭素が吸着又は脱離する領域に設定しなければならず、電極材料の種類及び設定温度等によって、設定電位を調整する必要がある。例えば検知電極としてPt電極を用いた場合、吸着電位は0〜約600 mV(vs. 標準水素電極)の間に、脱離電位は800〜±300 mV(vs.
標準水素電極)に設定するのが好ましい。
【0045】
【実施例】
本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
【0046】
実施例1
図1に示すように、直径15 mmのプロトン交換型ポリマー電解質11(NAFION 117)の一面に検知電極12としてPt−Au合金電極と、第二の対極13としてPt電極とをそれぞれ無電解メッキ法により形成し、また他面に第一の対極14としてPt電極と、参照電極15としてPt−Au合金電極とをそれぞれ無電解メッキ法により形成した。参照電極15はテフロン(登録商標/厚さ20μm、多孔度3%)で被覆した。得られた一酸化炭素ガスセンサ素子1をセンサ素子ホルダ(図示せず)に固定し、図4に示す16
Bitのワンボートマイクロコンピュータ73(日立製作所(株)製、H8/3048Fチップ搭載)を有する制御部7に接続した。
【0047】
温度調節用ヒータ(図示せず)を用いて一酸化炭素ガスセンサ素子1の温度を90℃とした後、模擬ガス混合装置を用いて60%の水素ガス、15%の二酸化炭素ガス、25%の窒素ガス、及び0〜100 ppmの一酸化炭素ガスを含有する被検ガスを作製し、上記4つの電極12〜14を得られた被検ガスに曝した。参照電極15と第二の対極13との間に80 mVのバイアス電圧を印加した状態で、検知電極12と対極14との間に図5の(a) に示す三角波掃引電圧を印加し、検知電極12に流れた電流を測定した。なお掃引電圧は、参照電極15の電位を基準として30〜800 mV(vs. 標準水素電極)の範囲内にあり、掃引速度は200 mV/secとした。
【0048】
実施例2
実施例1と同じ方法で作製した一酸化炭素ガスセンサ素子1を制御部に接続し、参照電極15と第二の対極13との間に80 mVと一定のバイアス電圧を印加した。この状態で、図6に示すように10秒後及び11秒後にそれぞれ0.5秒間のパルス電圧を検知電極12及び第一の対極14に印加し、流れた電流を測定した。一回目のパルス電位は60 mV(vs.標準水素電極)で、2回目のパルス電位は600 mV(vs.標準水素電極)であった。上記以外の測定条件は実施例1と同様とした。
【0049】
比較例1
図9に示すように、参照電極及び第二の対極を設置せず、かつ参照電極及び第二の対極との間にバイアス電圧を印加しない以外は実施例1と同じ方法で作製した一酸化炭素ガスセンサ素子Aをセルホルダ(図示せず)に固定し、図4の制御部7に接続した。被検ガスに曝されている対極の電位を基準として、実施例1の掃引範囲に対応する30〜800 mV(vs.被検ガス電極)の電圧を検知電極A及び対極Aに掃引し、流れた電流を測定した。上記以外の測定条件は実施例1と同様とした。
【0050】
比較例2
比較例1と同じ一酸化炭素ガスセンサ素子Aを図4の制御部7に接続し、実施例2と同様にパルス電圧を2回検知電極及び対極に印加して、流れた電流を測定した。被検ガスに曝されている対極の電位を基準として、一回目のパルス電圧は60 mV(vs.被検ガス電極)で、二回目パルス電圧は600 mV(vs.被検ガス電極)であった。上記以外の測定条件は実施例1と同様とした。
【0051】
実施例1及び比較例1における電流を図5の(b) 及び(c) にそれぞれ示す。2電極型の比較例1では、基準となる対極が被検ガスに曝されるため、基準電位は不安定であることがわかった。これに対して、4電極型の実施例1では基準となる参照電極が常に純粋な水素ガスに曝されるため、安定した基準電位が得られることがわかった。
【0052】
実施例2及び比較例2における電流を図6の(b) 及び(c) にそれぞれ示す。図6の(b) 及び(c)を比較すると、4電極型の実施例2と2電極型の比較例2との結果に差異が生じるのがわかった。上述した図5の結果より、4電極型の方が安定した基準電位が得られることを考慮すると、この差異は2電極型の比較例2における基準電位のズレにより生じることがわかった。
【0053】
次に図5の(b) 及び(c) にそれぞれ示すように実施例1及び比較例1の電流値を時間に対して積分して、正及び負方向の掃引時に発生した電気量A,B及びA,Bをそれぞれ求め、電気量の差(B−A)及び(B−A)を演算により求めた。これらの電気量の差を0〜100 ppmの範囲内の種々の一酸化炭素ガス濃度において求め、一酸化炭素濃度と電気量の差との関係を求めた。結果を図7に示す。図7から明らかなように、実施例1の方が比較例1より電気量の差が大きく、また電気量の差の傾きも全体的に実施例1の方が比較例1より大きい。従って、実施例1の方が比較例1より一酸化炭素濃度の検知精度が高いことがわかる。
【0054】
また図6の(b) 及び(c) にそれぞれ示すように、正及び負方向の掃引時に発生した実施例2及び比較例2の電流値の差(D−C)及び(D−C)を演算により求めた。これらの電流値の差を0〜100 ppmの範囲内の種々の一酸化炭素ガス濃度において求め、一酸化炭素濃度と電流値の差との関係を求めた。結果を図8に示す。図8から明らかなように、実施例2の方が比較例2より電流値の差が大きく、また一酸化炭素濃度に対する電流値の差を示す曲線の傾きも実施例2の方が比較例2より大きい。従って、実施例2の方が比較例2より一酸化炭素濃度の検知精度が高いことがわかる。
【0055】
【発明の効果】
上記の通り、本発明の一酸化炭素ガス検知装置では、基準電位を得るための参照電極が多孔体に被覆されているので、プロトン伝導性固体電解質中を移動してきた水素イオンから生成した純粋な水素ガスに常に覆われることになる。そのため基準電位が安定し、燃料ガス中の一酸化炭素の濃度を精度良く測定することができる。また全ての電極を同一の固体電解質に形成するため、センサ素子全体を小型軽量化することができる。かかる一酸化炭素ガス検知装置は、燃料電池用の改質ガスの監視や、燃料電池システムの制御等に有効である。
【図面の簡単な説明】
【図1】本発明の一実施例による一酸化炭素ガス検知装置を示す概略断面図である。
【図2】本発明の別の実施例による一酸化炭素ガス検知装置を示す概略断面図である。
【図3】本発明のさらに別の実施例による一酸化炭素ガス検知装置を示す概略断面図である。
【図4】本発明の一酸化炭素ガスセンサ素子を接続する制御装置を示す概略図である。
【図5】実施例1及び比較例1における掃引電圧と応答電流との関係を示すグラフであり、(a) は印加した三角波掃引電圧を示し、(b) は実施例1(4電極型)における電流を示し、(c) は比較例1(2電極型)における電流を示す。
【図6】実施例2及び比較例2における印加電圧と応答電流との関係を示すグラフであり、(a) は印加したパルス電圧を示し、(b) は実施例2(4電極型)における電流を示し、(c) は比較例2(2電極型)における電流を示す。
【図7】実施例1及び比較例1における被検ガス中の一酸化炭素濃度に対する電気量の差の関係を示すグラフである。
【図8】実施例2及び比較例2における被検ガス中の一酸化炭素濃度に対する電流値の差の関係を示すグラフである。
【図9】従来技術の例及び比較例における一酸化炭素ガス検知装置を示す概略断面図である。
【符号の説明】
100・・・従来技術の例及び比較例における一酸化炭素ガス検知装置
101・・・固体電解質
102・・・検知電極
103・・・対極
1・・・本発明の実施例による一酸化炭素ガスセンサ素子
11・・・プロトン伝導性固体電解質
12・・・検知電極
13・・・第二の対極
14・・・第一の対極
15・・・参照電極
16・・・多孔体
2・・・ポテンシオスタット
3・・・波形設定器
4・・・外部電源
5・・・本発明の別の実施例による一酸化炭素ガスセンサ素子
6・・・本発明のさらに別の実施例による一酸化炭素ガスセンサ素子
7・・・ハードウェア部
71・・・電流−電圧変換器
72・・・A/D変換器
73・・・マイクロコンピュータ
74・・・表示部
75・・・D/A変換器
76・・・パワー増幅器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sensor element and a detection device for detecting carbon monoxide gas in a gas phase, and particularly, in a fuel supply system of a polymer electrolyte fuel cell or a phosphoric acid fuel cell, methanol, city gas, methane, gasoline, and the like. The present invention relates to a small-sized carbon monoxide gas sensor element and a detection device capable of detecting carbon monoxide gas contained in fuel gas obtained by reforming with extremely high accuracy.
[0002]
[Prior art]
Fuel cells are considered to be one of the most promising power generation means from the viewpoint of effective use of energy resources and conservation of the global environment, and many developments have been made. Particularly, polymer electrolyte fuel cells have been developed until they are mounted on automobiles, and the performance of polymer electrolyte fuel cells has already reached the level of practical use. However, since it is inconvenient to store, supply, and mount pure hydrogen as a fuel for a fuel cell on a vehicle, generation from other fuels is being studied. For example, it has been attempted to use city gas or liquid organic fuel as fuel for stationary fuel cells for home use, and to use liquid organic fuel as fuel for mobile fuel cells for automobiles. In order to extract hydrogen from these fuels, hydrogen is generated by a catalytic reaction using a reformer.
[0003]
Usually, about 1% or more of carbon monoxide is present in the fuel gas generated from the reformer. When this carbon monoxide is sent to the fuel cell, the electrodes of the fuel cell are poisoned by the carbon monoxide, and the power generation capability of the fuel cell is greatly reduced. Therefore, in the case of a stationary fuel cell, it is necessary to operate the reformer under optimum conditions by constantly measuring the concentration of carbon monoxide in the fuel gas and feeding back a signal of the carbon monoxide concentration to the reformer. Become. In the case of a mobile fuel cell, the time from starting the reformer to driving the automobile must be as short as possible, so the concentration of carbon monoxide contained in the generated reformed gas must be Monitoring is performed, and if the carbon monoxide concentration is equal to or lower than a predetermined level, the generated fuel gas is sent to the fuel cell.
[0004]
At present, infrared spectroscopy is most widely used as a method for measuring the concentration of carbon monoxide.However, infrared spectroscopy not only increases the cost but also is greatly affected by water. It is not suitable for measuring the concentration of carbon monoxide contained. On the other hand, there are many semiconductor gas detectors as small gas detectors, but semiconductor gas detectors detect carbon monoxide by a change in electrical resistance accompanying a change in temperature due to combustion. Susceptible to flammable gases. Therefore, it is difficult for the semiconductor gas detector to measure extremely low concentration (several ppm to several hundred ppm) of carbon monoxide which coexists with a large amount of hydrogen gas in the reformed gas.
[0005]
A carbon monoxide gas detecting device utilizing the electrochemical principle to detect the concentration of carbon monoxide contained in the reformed gas has also been reported (for example, JP-A-08-327590 and JP-A-11-304752). No. etc.). As described in JP-A-08-327590, when a voltage is applied between the electrodes provided on both sides of the proton-conductive solid electrolyte, the potential difference between the electrodes depends on the concentration of carbon monoxide in the test gas. Is liable to decrease, so that the carbon monoxide concentration can be detected from the potential difference. However, when the electrode is poisoned by carbon monoxide, there is a problem that the measurement accuracy is reduced. Therefore, a heater is provided in the detection device, and electricity is supplied to the heater to raise the temperature of the detection electrode, thereby desorbing carbon monoxide from the electrode. However, in this method, not only the response of the detection device is poor, but also the detection device deteriorates due to heating and the life is shortened.
[0006]
Further, a carbon monoxide gas detection device for measuring the carbon monoxide concentration of the reformed gas by using a potential sweep method or a pulse method has been proposed (for example, see Patent Document 1). For example, as shown in a schematic cross-sectional view of FIG. 9, the carbon monoxide gas detecting device 100 includes a solid electrolyte 101, a detecting unit including a detecting electrode 102 and a counter electrode 103 provided on both surfaces of the solid electrolyte 101, and a detecting unit. And a voltage application device (not shown) for applying a voltage to the power supply. In the measurement method using the detection device 100, when a voltage is swept from a low potential to a high potential in the detection unit, hydrogen and carbon monoxide in the test gas are adsorbed and oxidized on the detection electrode, and a response current flows. Since the response current depends on the concentration of carbon monoxide contained in the test gas, the concentration of carbon monoxide in the test gas can be measured from a change in the response current. The detection device 100 can accurately measure the concentration of carbon monoxide even when a large amount of hydrogen coexists in the test gas.
[0007]
The detection apparatus 100 includes a wet type and a dry type, but the wet type generally has poor response. On the other hand, the dry-type detection device 100 has a defect that the response is good but the measurement error of carbon monoxide is large. This is because a stable reference potential is required to accurately measure the concentration of carbon monoxide. However, in the configuration disclosed in Patent Document 1, since the counter electrode 103 also serves as a reference electrode, This is because a stable reference potential cannot be obtained due to the influence of another gas such as carbon dioxide contained in the gas.
[0008]
[Patent Document 1]
International Publication WO 97/40371 pamphlet (Figs. 1-4)
[0009]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a carbon monoxide gas sensor element capable of detecting carbon monoxide gas contained in a reformed gas or the like with high accuracy, and a carbon monoxide gas detection device using the same.
[0010]
[Means to solve the problem]
In light of the above object, as a result of intensive studies, the present inventors have found that when a reference electrode covered with a porous material is used as the reference electrode, pure hydrogen generated from hydrogen ions that have migrated through the proton conductive solid electrolyte is used as the reference electrode. Since the gas is always covered with the gas, it has been found that the reference potential is stable and the carbon monoxide gas in the fuel gas can be accurately detected, and the present invention has been reached.
[0011]
That is, the first carbon monoxide gas sensor element of the present invention has a proton conductive solid electrolyte and first and second electrode pairs provided on both surfaces of the proton conductive solid electrolyte, Is characterized by comprising a detection electrode and a first counter electrode, and the second electrode pair comprises a second counter electrode and a reference electrode covered with a porous body.
[0012]
In one example, the sensing electrode and the second counter electrode are provided on the same surface of the proton conductive solid electrolyte. In another example, the sensing electrode and the second counter electrode are provided on different surfaces of the proton conductive solid electrolyte.
[0013]
The second carbon monoxide gas sensor element of the present invention comprises a proton conductive solid electrolyte, a detection electrode formed on one surface of the proton conductive solid electrolyte, a reference electrode coated on a porous body, and the proton conductive solid. And a counter electrode formed on the other surface of the electrolyte.
[0014]
The first carbon monoxide gas detection device of the present invention has a proton conductive solid electrolyte, and first and second electrode pairs provided on both surfaces of the proton conductive solid electrolyte, the first electrode The pair includes a detection electrode and a first counter electrode, the second electrode pair includes a second counter electrode and a carbon monoxide gas sensor element including a reference electrode coated on a porous body, and further includes the detection electrode and the first electrode. Means for applying a voltage between the counter electrode, means for flowing a bias current or applying a bias voltage between the reference electrode and the second counter electrode, and means for applying a bias voltage between the detection electrode and the reference electrode. Means for measuring a potential difference.
[0015]
The second carbon monoxide gas detection device of the present invention includes a proton conductive solid electrolyte, a detection electrode formed on one surface of the proton conductive solid electrolyte, a reference electrode coated on a porous body, and the proton conductive solid electrolyte. A carbon monoxide gas sensor element comprising a counter electrode formed on the other surface of the solid electrolyte; a means for applying a voltage between the detection electrode and the counter electrode; and a bias current between the reference electrode and the counter electrode. And a means for measuring a potential difference between the detection electrode and the reference electrode.
[0016]
When a bias current is applied or a bias voltage is applied between the reference electrode and the second electrode while the second counter electrode is exposed to the gas containing hydrogen, hydrogen is oxidized on the surface of the second counter electrode. Hydrogen ions are generated, and the hydrogen ions move through the proton electrolyte and are reduced at the reference electrode to generate hydrogen. By coating the reference electrode with a porous material, the reference electrode is always covered with pure hydrogen and a stable reference potential is obtained, so that the concentration of carbon monoxide can be measured with high accuracy.
[0017]
In any of the above carbon monoxide gas detection devices, it further comprises means for setting a voltage value to be applied between the detection electrode and the first counter electrode based on a potential difference between the detection electrode and the reference electrode. preferable. The bias voltage applied between the reference electrode and the second counter electrode (counter electrode) is preferably a constant voltage of 20 to 300 mV.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the carbon monoxide gas sensor element and the detection device of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
[0019]
[1] Carbon monoxide gas sensor element and detection device
(1) First aspect
FIG. 1 is a schematic sectional view showing a first carbon monoxide gas sensor element of the present invention and a detecting device including the same. The carbon monoxide gas sensor element 1 includes a proton conductive solid electrolyte 11, a detection electrode 12 and a second counter electrode 13 formed on one surface of the proton conductive solid electrolyte 11, and a solid electrolyte 11 opposed to the detection electrode 12. It comprises a first counter electrode 14 formed on the other surface, and a reference electrode 15 formed on the other surface of the solid electrolyte 11 so as to face the second counter electrode 13. The reference electrode 15 is covered with a porous body 16. Further, the carbon monoxide gas detecting device includes a means for applying a voltage between the carbon monoxide gas sensor element 1, the detection electrode 12 and the first counter electrode 14, and a means for applying a voltage between the reference electrode 15 and the second counter electrode 13. And means for measuring a potential difference between the detection electrode 12 and the reference electrode 15. As a means for applying a voltage between the detection electrode 12 and the first counter electrode 14 and a means for measuring a potential difference between the detection electrode 12 and the reference electrode 15, the potentiostat 2 is provided. As means for setting the waveform of the voltage applied between the first counter electrode 14 and the first counter electrode 14, a waveform setting unit 3 is provided. An external power supply 4 is provided as means for applying a bias voltage between the reference electrode 15 and the second counter electrode 13.
[0020]
Preferably, the carbon monoxide gas sensor element 1 is provided with a temperature control heater (not shown) for controlling the operating temperature of the sensor element 1. It is preferable that the temperature adjusting heater keeps the operating temperature of the carbon monoxide gas sensor element 1 constant by feedback-controlling the signal obtained by the temperature measuring means. The operating temperature of the carbon monoxide gas sensor element 1 is preferably 50 to 130 ° C, more preferably 70 to 120 ° C.
[0021]
The proton-conducting solid electrolyte 11 may be any proton-conducting material, and may be any of those commonly used in polymer electrolyte fuel cells. Examples of such a proton conductive solid electrolyte 11 include a Nafion membrane. The proton conductive solid electrolyte 11 is humidified to maintain proton conductivity.
[0022]
In the carbon monoxide gas sensor element 1, the method for forming the electrodes 12 to 15 on the proton-conductive solid electrolyte 11 is not particularly limited, and may be formed by plating, for example. The thickness of each of the electrodes 12 to 15 is preferably 20 μm or less, and more preferably 1 to 5 μm. When the thickness of each of the electrodes 12 to 15 exceeds 20 μm, the permeation and diffusion of the reaction gas are suppressed, which is not preferable. Further, the detection electrode 12 needs to be exposed to the test gas, and the second counter electrode 13 needs to be exposed to a gas containing at least hydrogen. Examples of the hydrogen-containing gas include pure hydrogen gas and water vapor (H2O) or the like may be used. When the test gas is a reformed gas, the test gas contains a large amount of hydrogen, so that the second counter electrode 13 can be exposed to the test gas. The first counter electrode 14 may be exposed to the test gas or may be exposed to the atmosphere.
[0023]
The detection electrode 12 preferably has a low activity for hydrogen in order to suppress a measurement error due to the oxidation reaction of hydrogen. Specifically, one or more metal or alloy electrodes selected from the group consisting of Au, Cu, Ag and In, or one or more metals or alloy electrodes selected from the group consisting of Au, Pt, Rh, Cu, Ni, Ag and In It is preferable to use an electrode made of the metal or alloy described above, and particularly preferable is a Pt-Au alloy electrode.
[0024]
The reference electrode 15 preferably has a high activity with respect to hydrogen, and specifically, an electrode made of Pt, a Pt-Ru alloy, a Pt-Ir alloy, or a Pt-Pd alloy. The first counter electrode 14 and the second counter electrode 13 are not particularly limited, and general electrode materials can be used. The same electrode material as the reference electrode 15 may be used.
[0025]
The reference electrode 15 is covered with the porous body 16. At this time, there may be a slight gap between the reference electrode 15 and the porous body 16, but the porous body 16 is adhered to the solid electrolyte 11 so that there is no gap between the solid electrolyte 11 and the porous body 16. Let it. The porous body 16 preferably has acid resistance and heat resistance, and is preferably made of a polymer material, ceramics, or the like. Here, the heat resistance means that the characteristics do not change under a temperature condition of 50 to 150 ° C, particularly 70 to 130 ° C. When the proton conductive solid electrolyte 11 is made of a polymer material, the porous body 16 is also preferably made of a polymer material in consideration of problems such as separation, and specifically, a fluororesin such as Teflon (registered trademark) or an epoxy resin. , A phenol resin, a polyimide, a polyetherimide, a polypropylene or a polyester.
[0026]
The porous body 16 covering the reference electrode 15 suppresses rapid diffusion of hydrogen gas generated from hydrogen ions that have moved through the proton conductive solid electrolyte 11. For this reason, since the reference electrode 15 is always covered with pure hydrogen gas, a stable reference potential can be obtained. The average pore size of the pores of the porous body 16 is preferably 0.01 to 0.1 μm, and the pore size distribution is preferably 0.005 to 0.5 μm. The porosity of the porous body 16 may be 10% or less, and preferably 2 to 5%. With the pores within the above range, the periphery of the reference electrode 15 can be efficiently filled with pure hydrogen gas.
[0027]
The detection electrode 12, the first counter electrode 14, and the reference electrode 15 are connected to the potentiostat 2, respectively. The potentiostat 2 measures a potential difference between the detection electrode 12 and the reference electrode 15 and applies a voltage set by the waveform setting device 3 to the detection electrode 12 and the first counter electrode 14 based on the potential difference.
[0028]
When the composition of the test gas fluctuates greatly, it is preferable to flow a predetermined bias current.However, when the composition of the test gas hardly fluctuates and it is not necessary to consider the deterioration of the electrodes, the bias current is increased. Or a bias voltage may be applied. As will be described later in detail, when a predetermined voltage is applied (or a predetermined current is applied) between the second counter electrode 13 and the reference electrode 15, the reference electrode 15 moves through the proton conductive solid electrolyte 11. Hydrogen is generated from the hydrogen ions.
[0029]
FIG. 2 is a schematic sectional view of another carbon monoxide gas sensor element according to the first embodiment of the present invention and a detecting device including the same. In this carbon monoxide gas detection device, the detection electrode 12 and the first counter electrode 14 of the carbon monoxide gas sensor element 5 are installed opposite to the proton conductive solid electrolyte 11, and the first counter electrode 14 and the second counter electrode 13 is the same as the carbon monoxide gas detection device shown in FIG. 1 except that 13 is set on the same surface.
[0030]
(2) Second aspect
FIG. 3 is a schematic sectional view showing a second carbon monoxide gas sensor element of the present invention and a detecting device including the same. The carbon monoxide gas detection device shown in FIG. 1 has a detection electrode 12 and a reference electrode 15 on one surface of a proton conductive solid electrolyte 11 of a carbon monoxide gas sensor element 6 and a counter electrode 14 on the other surface. Same as gas detection device. In this detection device, the counter electrode 14 is exposed to a gas containing at least hydrogen.
[0031]
(3) Hardware section
FIG. 4 is a schematic diagram showing an example of the hardware unit 7 in the carbon monoxide gas detection device of the present invention. The hardware unit 7 includes a current detection circuit centered on a current-voltage converter 71 for detecting a current flowing from the carbon monoxide gas sensor element 1, and an analog signal generated from the current-voltage converter 71. An A / D converter 72 for converting to a digital signal; an arithmetic unit and a signal generating unit centered on a microcomputer 73; a display unit 74 for outputting the obtained result; and a digital signal generated from the microcomputer 73 It has a D / A converter 75 for converting into a signal, and a voltage application circuit including a power amplifier 76 for amplifying the signal output from the D / A converter 75. The method for measuring the concentration of carbon monoxide according to each embodiment of the present invention can be implemented by setting a program of the microcomputer 73.
[0032]
[2] Method for measuring carbon monoxide concentration
A preferred method for measuring the concentration of carbon monoxide by the carbon monoxide gas detection device of the present invention will be described in detail below, but the present invention is not limited thereto.
[0033]
(1) First method
When a bias voltage is applied between the reference electrode and the second counter electrode, hydrogen is oxidized at the second counter electrode by the reaction of the formula (1) to generate protons. The generated protons move in the proton conductive solid electrolyte, and hydrogen is generated by the reaction of the formula (2) at the reference electrode.
H2→ 2H++ 2e      ... (1)
2H++ 2e→ H2      ... (2)
[0034]
The generated hydrogen diffuses and passes through the reference electrode. However, since the reference electrode is covered with the porous body, rapid diffusion of hydrogen gas is suppressed, and the area around the reference electrode is filled with pure hydrogen gas.
[0035]
The bias voltage is preferably from 20 to 300 mV, more preferably from 50 to 100 mV. By setting the applied voltage within the above range, only the hydrogen gas in the test gas can be selectively ionized at the second counter electrode, so that only the reaction (2) occurs at the reference electrode. In the present invention, by reducing the voltage applied between the second counter electrode and the reference electrode to reduce the amount of generated hydrogen, it is possible to prevent the porous body from being damaged by a pressure load. If the time for applying the bias voltage is 10 seconds or more, even if there is a slight gap between the porous body and the reference electrode, the surroundings of the reference electrode are sufficiently replaced by pure hydrogen gas.
[0036]
For example, when a sweep voltage of a triangular wave is applied to the detection electrode and the first counter electrode as shown in FIG. 5A, the pattern of the current flowing through the detection electrode becomes, for example, as shown in FIG. 5B. That is, when the potential is low, no current flows because the detection electrode is adsorbed by carbon monoxide in the test gas, but when the potential is swept to a higher potential side, the carbon monoxide adsorbed on the detection electrode is expressed by the formula (3). A current starts to flow due to oxidation and desorption by the reaction. Hydrogen is further adsorbed on the exposed detection electrode, oxidized by the reaction of the formula (1), and a current flows.
CO + H2O → CO2+ 2H++ 2e  ... (3)
[0037]
When the sweep direction is reversed when the upper limit of the predetermined sweep range is reached, adsorption of the detection electrode by carbon monoxide does not occur, and only the oxidation reaction of hydrogen represented by the formula (1) occurs. Therefore, the flowing current has a pattern as shown in FIG. If there is no carbon monoxide in the test gas, the detection electrode does not adsorb, so that the current value does not decrease as shown by the solid line in the process of increasing the voltage, and the current change is indicated by the dotted line.
[0038]
The adsorption of carbon monoxide to the sensing electrode is a chemical behavior that occurs within a certain potential range, and depends on the type of electrode material or the set temperature. Therefore, the voltage to be swept must be set in a range where carbon monoxide is adsorbed on the detection electrode. For example, when the detection electrode is a Pt electrode or a Pt-Au electrode, the applied voltage is preferably 0 to about 600 mV (vs. standard hydrogen electrode).
[0039]
The sweep speed is preferably from 20 to 500 mV / sec, and more preferably from 50 to 300 mV / sec. When the sweep speed exceeds 500 mV / sec, the measurement time is shortened but the measurement error becomes too large. When the sweep speed is less than 20 mV / sec, the measurement time becomes long and the response becomes too low, which is not preferable. .
[0040]
The degree of dent of the current curve generated when the voltage is swept in the positive direction depends on the concentration of carbon monoxide in the test gas. Therefore, the current curve shown in FIG. 5B is integrated with respect to the sweep time, and the electric quantity A generated during the positive and negative sweeps is calculated.1And B1And the amount of electricity B generated during the sweep in the negative direction1A generated during the sweep in the positive direction from1It can be seen that the difference obtained by subtracting is dependent on the concentration of carbon monoxide. Therefore, this difference (B1-A1) Can be used to determine the concentration of carbon monoxide.
[0041]
After measuring the carbon monoxide concentration, aging is performed by applying a pulse voltage of 500 to 1100 mV to the detection electrode and the first counter electrode for 0.5 to 5 seconds to oxidize the carbon monoxide adsorbed on the detection electrode. I do. The oxidized carbon monoxide desorbs from the sensing electrode as carbon dioxide. Aging using a pulse voltage is preferable because the time can be easily controlled and the influence on the electrolyte and the like is small.
[0042]
(2) Second method
When a bias voltage is applied between the second counter electrode and the reference electrode as in the first method, the area around the reference electrode is filled with sufficient hydrogen gas. In this state, as shown in FIG. 6A, a pulse voltage is applied twice between the detection electrode and the first counter electrode. The first voltage is set to a potential at which carbon monoxide is adsorbed to the detection electrode, and the second voltage is set to a potential at which carbon monoxide adsorbed to the detection electrode is oxidized and desorbed. The other measurement conditions are the same as those of the first method. By the application of the pulse voltage, a current flows through the detection electrode as shown in FIG.
[0043]
When a pulse voltage of the first set potential is applied between the detection electrode and the first counter electrode, hydrogen and carbon monoxide are adsorbed to the detection electrode, but carbon monoxide is not oxidized. Only happens. On the other hand, when a second pulse voltage of the set potential is applied, hydrogen and carbon monoxide are adsorbed on the detection electrode, and the reactions of the formulas (1) and (3) occur. Therefore, a larger current flows in the second application than in the first application. Current value D flowing at the second application1From the current value C flowing at the first application1The difference of the current value obtained by subtracting the value depends on the concentration of carbon monoxide. Therefore, the concentration of carbon monoxide can be obtained from the difference.
[0044]
The voltage applied between the sensing electrode and the first counter electrode must be set in the area where carbon monoxide is adsorbed or desorbed, and the set potential needs to be adjusted according to the type of electrode material and the set temperature. There is. For example, when a Pt electrode is used as the detection electrode, the adsorption potential is between 0 and about 600 mV (vs. standard hydrogen electrode), and the desorption potential is 800- ± 300 mV (vs.
It is preferable to set the standard hydrogen electrode).
[0045]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0046]
Example 1
As shown in FIG. 1, a Pt-Au alloy electrode as a detection electrode 12 and a Pt electrode as a second counter electrode 13 are respectively electroless-plated on one surface of a proton exchange polymer electrolyte 11 (NAFION 117) having a diameter of 15 mm. Further, a Pt electrode as the first counter electrode 14 and a Pt-Au alloy electrode as the reference electrode 15 were formed on the other surface by electroless plating. The reference electrode 15 was coated with Teflon (registered trademark / thickness 20 μm, porosity 3%). The obtained carbon monoxide gas sensor element 1 is fixed to a sensor element holder (not shown), and the sensor element 16 shown in FIG.
It was connected to the control unit 7 having a one-boat microcomputer 73 (H8 / 3048F chip manufactured by Hitachi, Ltd.) of Bit.
[0047]
After the temperature of the carbon monoxide gas sensor element 1 was set to 90 ° C. using a temperature control heater (not shown), 60% hydrogen gas, 15% carbon dioxide gas, and 25% A test gas containing nitrogen gas and 0 to 100 ppm of carbon monoxide gas was prepared, and the four electrodes 12 to 14 were exposed to the obtained test gas. With a bias voltage of 80 mV applied between the reference electrode 15 and the second counter electrode 13, a triangular wave sweep voltage shown in FIG. 5A is applied between the detection electrode 12 and the counter electrode 14 to perform detection. The current flowing through the electrode 12 was measured. The sweep voltage was in the range of 30 to 800 mV (vs. standard hydrogen electrode) based on the potential of the reference electrode 15, and the sweep speed was 200 mV / sec.
[0048]
Example 2
The carbon monoxide gas sensor element 1 manufactured in the same manner as in Example 1 was connected to the control unit, and a constant bias voltage of 80 mV was applied between the reference electrode 15 and the second counter electrode 13. In this state, a pulse voltage of 0.5 seconds was applied to the detection electrode 12 and the first counter electrode 14 after 10 seconds and 11 seconds, respectively, as shown in FIG. 6, and the flowing current was measured. The first pulse potential was 60 mV (vs. standard hydrogen electrode) and the second pulse potential was 600 mV (vs. standard hydrogen electrode). The other measurement conditions were the same as in Example 1.
[0049]
Comparative Example 1
As shown in FIG. 9, carbon monoxide produced in the same manner as in Example 1 except that the reference electrode and the second counter electrode are not provided and a bias voltage is not applied between the reference electrode and the second counter electrode. The gas sensor element A was fixed to a cell holder (not shown), and connected to the control unit 7 in FIG. Based on the potential of the counter electrode exposed to the test gas, the voltage of 30 to 800 mV (vs. the test gas electrode) corresponding to the sweep range of Example 1 is set to the detection electrode A.2And counter electrode A3, And the flowing current was measured. The other measurement conditions were the same as in Example 1.
[0050]
Comparative Example 2
The same carbon monoxide gas sensor element A as in Comparative Example 1 was connected to the control unit 7 in FIG. 4, and a pulse voltage was applied twice to the detection electrode and the counter electrode in the same manner as in Example 2, and the flowing current was measured. Based on the potential of the counter electrode exposed to the test gas, the first pulse voltage was 60 mV (vs. the test gas electrode) and the second pulse voltage was 600 mV (vs. the test gas electrode). Was. The other measurement conditions were the same as in Example 1.
[0051]
The currents in Example 1 and Comparative Example 1 are shown in FIGS. 5B and 5C, respectively. In the two-electrode comparative example 1, it was found that the reference potential was unstable because the reference counter electrode was exposed to the test gas. On the other hand, in Example 1 of the four-electrode type, it was found that a stable reference potential was obtained because the reference electrode serving as the reference was always exposed to pure hydrogen gas.
[0052]
Currents in Example 2 and Comparative Example 2 are shown in FIGS. 6 (b) and (c), respectively. Comparing (b) and (c) of FIG. 6, it was found that there was a difference in the results between Example 2 of the four-electrode type and Comparative Example 2 of the two-electrode type. From the results of FIG. 5 described above, it is understood that this difference is caused by the deviation of the reference potential in Comparative Example 2 of the two-electrode type, considering that the four-electrode type provides a more stable reference potential.
[0053]
Next, as shown in FIGS. 5 (b) and 5 (c), the current values of Example 1 and Comparative Example 1 are integrated with respect to time, and the electric quantity A generated during the positive and negative sweeps.1, B1And A2, B2Are obtained, and the difference between the quantities of electricity (B1-A1) And (B)2-A2) Was calculated. The difference between these amounts of electricity was determined at various carbon monoxide gas concentrations within the range of 0 to 100 ppm, and the relationship between the concentration of carbon monoxide and the difference between the amounts of electricity was determined. FIG. 7 shows the results. As is clear from FIG. 7, the difference in the amount of electricity in Example 1 is larger than that in Comparative Example 1, and the gradient of the difference in amount of electricity is generally larger in Example 1 than in Comparative Example 1. Therefore, it can be seen that Example 1 has higher detection accuracy of the carbon monoxide concentration than Comparative Example 1.
[0054]
As shown in FIGS. 6B and 6C, respectively, the difference (D) between the current values of Example 2 and Comparative Example 2 that occurred during the sweeping in the positive and negative directions.1-C1) And (D2-C2) Was calculated. The difference between these current values was determined at various carbon monoxide gas concentrations within the range of 0 to 100 ppm, and the relationship between the carbon monoxide concentration and the difference between the current values was determined. FIG. 8 shows the results. As is clear from FIG. 8, the difference in the current value is larger in Example 2 than in Comparative Example 2, and the slope of the curve indicating the difference in current value with respect to the concentration of carbon monoxide is also larger in Example 2 than in Comparative Example 2. Greater than. Therefore, it can be seen that Example 2 has higher detection accuracy of the carbon monoxide concentration than Comparative Example 2.
[0055]
【The invention's effect】
As described above, in the carbon monoxide gas detection device of the present invention, since the reference electrode for obtaining the reference potential is covered with the porous material, pure carbon generated from hydrogen ions moving in the proton conductive solid electrolyte is used. It will always be covered with hydrogen gas. Therefore, the reference potential is stabilized, and the concentration of carbon monoxide in the fuel gas can be accurately measured. Further, since all the electrodes are formed of the same solid electrolyte, the entire sensor element can be reduced in size and weight. Such a carbon monoxide gas detection device is effective for monitoring a reformed gas for a fuel cell, controlling a fuel cell system, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a carbon monoxide gas detecting device according to one embodiment of the present invention.
FIG. 2 is a schematic sectional view showing a carbon monoxide gas detecting device according to another embodiment of the present invention.
FIG. 3 is a schematic sectional view showing a carbon monoxide gas detecting device according to still another embodiment of the present invention.
FIG. 4 is a schematic diagram showing a control device for connecting a carbon monoxide gas sensor element of the present invention.
5A and 5B are graphs showing a relationship between a sweep voltage and a response current in Example 1 and Comparative Example 1, wherein FIG. 5A shows an applied triangular wave sweep voltage, and FIG. 5B shows Example 1 (four-electrode type). (C) shows the current in Comparative Example 1 (two-electrode type).
FIG. 6 is a graph showing the relationship between the applied voltage and the response current in Example 2 and Comparative Example 2, where (a) shows the applied pulse voltage, and (b) shows the relationship in Example 2 (four-electrode type). (C) shows the current in Comparative Example 2 (two-electrode type).
FIG. 7 is a graph showing the relationship between the concentration of carbon monoxide in the test gas and the difference in the amount of electricity in Example 1 and Comparative Example 1.
FIG. 8 is a graph showing the relationship between the concentration of carbon monoxide in a test gas and the difference in current value in Example 2 and Comparative Example 2.
FIG. 9 is a schematic cross-sectional view showing a carbon monoxide gas detection device according to a conventional example and a comparative example.
[Explanation of symbols]
100 ··· Carbon monoxide gas detector in prior art example and comparative example
101 ・ ・ ・ Solid electrolyte
102 ・ ・ ・ Detecting electrode
103 ... counter electrode
1 ... Carbon monoxide gas sensor element according to an embodiment of the present invention
11 ・ ・ ・ Proton conductive solid electrolyte
12 ... Detection electrode
13 ... second counter electrode
14 ... first counter electrode
15 Reference electrode
16 ... porous body
2 ... Potentiostat
3: Waveform setting device
4: External power supply
5. Carbon monoxide gas sensor element according to another embodiment of the present invention
6 ... Carbon monoxide gas sensor element according to still another embodiment of the present invention
7 ... Hardware part
71 ... current-voltage converter
72 ··· A / D converter
73 ・ ・ ・ Microcomputer
74 ・ ・ ・ Display unit
75 D / A converter
76 ・ ・ ・ Power amplifier

Claims (7)

プロトン伝導性固体電解質と、前記プロトン伝導性固体電解質の両面に設けられた第一及び第二の電極対とを有し、前記第一の電極対は検知電極及び第一の対極からなり、前記第二の電極対は第二の対極及び多孔体に被覆された参照電極からなることを特徴とする一酸化炭素ガスセンサ素子。Having a proton conductive solid electrolyte and first and second electrode pairs provided on both surfaces of the proton conductive solid electrolyte, wherein the first electrode pair comprises a detection electrode and a first counter electrode, The carbon monoxide gas sensor element, wherein the second electrode pair comprises a second counter electrode and a reference electrode coated on the porous body. 請求項1に記載の一酸化炭素ガスセンサ素子において、前記検知電極及び前記第二の対極は前記プロトン伝導性固体電解質の同じ面に設けられていることを特徴とする一酸化炭素ガスセンサ素子。2. The carbon monoxide gas sensor element according to claim 1, wherein the detection electrode and the second counter electrode are provided on the same surface of the proton conductive solid electrolyte. 3. 請求項1に記載の一酸化炭素ガスセンサ素子において、前記検知電極及び前記第二の対極は前記プロトン伝導性固体電解質の異なる面に設けられていることを特徴とする一酸化炭素ガスセンサ素子。2. The carbon monoxide gas sensor element according to claim 1, wherein the detection electrode and the second counter electrode are provided on different surfaces of the proton conductive solid electrolyte. 3. プロトン伝導性固体電解質と、前記プロトン伝導性固体電解質の一面に形成された検知電極及び多孔体に被覆された参照電極と、前記プロトン伝導性固体電解質の他面に形成された対極とからなることを特徴とする一酸化炭素ガスセンサ素子。A proton conductive solid electrolyte, a detection electrode formed on one surface of the proton conductive solid electrolyte, a reference electrode coated on a porous body, and a counter electrode formed on the other surface of the proton conductive solid electrolyte. A carbon monoxide gas sensor element characterized by the above-mentioned. 請求項1〜4のいずれかに記載の一酸化炭素ガスセンサ素子と、前記検知電極と前記第一の対極との間に電圧を印加する手段と、前記参照電極と前記第二の対極との間にバイアス電流を流すかバイアス電圧を印加する手段と、前記検知電極と前記参照電極との間の電位差を測定する手段とを有することを特徴とする一酸化炭素ガス検知装置。The carbon monoxide gas sensor element according to claim 1, means for applying a voltage between the detection electrode and the first counter electrode, and between the reference electrode and the second counter electrode. A means for applying a bias current or applying a bias voltage to the first electrode, and a means for measuring a potential difference between the detection electrode and the reference electrode. 請求項5に記載の一酸化炭素ガス検知装置において、さらに前記電位差に基づいて前記検知電極と前記第一の対極との間に印加する電圧値を設定する手段を有することを特徴とする一酸化炭素ガス検知装置。6. The carbon monoxide gas detection device according to claim 5, further comprising: a unit that sets a voltage value applied between the detection electrode and the first counter electrode based on the potential difference. Carbon gas detector. 請求項5又は6に記載の一酸化炭素ガス検知装置において、前記参照電極と前記第二の対極(又は前記対極)との間に印加するバイアス電圧が20〜300 mVの定電圧であることを特徴とする一酸化炭素ガス検知装置。7. The carbon monoxide gas detection device according to claim 5, wherein a bias voltage applied between the reference electrode and the second counter electrode (or the counter electrode) is a constant voltage of 20 to 300 mV. Characteristic carbon monoxide gas detector.
JP2002334117A 2002-11-18 2002-11-18 Carbon monoxide gas sensor element and carbon monoxide gas detector Pending JP2004170147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334117A JP2004170147A (en) 2002-11-18 2002-11-18 Carbon monoxide gas sensor element and carbon monoxide gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334117A JP2004170147A (en) 2002-11-18 2002-11-18 Carbon monoxide gas sensor element and carbon monoxide gas detector

Publications (1)

Publication Number Publication Date
JP2004170147A true JP2004170147A (en) 2004-06-17

Family

ID=32698652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334117A Pending JP2004170147A (en) 2002-11-18 2002-11-18 Carbon monoxide gas sensor element and carbon monoxide gas detector

Country Status (1)

Country Link
JP (1) JP2004170147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130443A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Fuel cell system
JP2012505391A (en) * 2008-10-10 2012-03-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Apparatus and related method for determining carbon monoxide concentration
JP2012185048A (en) * 2011-03-07 2012-09-27 Nippon Soken Inc Gas sensor element and gas concentration detection method
KR20140083159A (en) * 2012-12-24 2014-07-04 한국전자통신연구원 dual side micro gas sensor and manufacturing method of the same
JP2014228420A (en) * 2013-05-23 2014-12-08 国立大学法人 長崎大学 CO sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130443A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Fuel cell system
JP2012505391A (en) * 2008-10-10 2012-03-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Apparatus and related method for determining carbon monoxide concentration
JP2012185048A (en) * 2011-03-07 2012-09-27 Nippon Soken Inc Gas sensor element and gas concentration detection method
KR20140083159A (en) * 2012-12-24 2014-07-04 한국전자통신연구원 dual side micro gas sensor and manufacturing method of the same
KR101993782B1 (en) 2012-12-24 2019-07-02 한국전자통신연구원 dual side micro gas sensor and manufacturing method of the same
JP2014228420A (en) * 2013-05-23 2014-12-08 国立大学法人 長崎大学 CO sensor

Similar Documents

Publication Publication Date Title
JP3868419B2 (en) Gas sensor
JP2001215214A (en) Hydrogen gas sensor
JP3953677B2 (en) Gas sensor
CA2332632C (en) Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
US6488836B1 (en) CO gas sensor and method of using same
US6090268A (en) CO gas sensor and CO gas concentration measuring method
JP5377651B2 (en) Apparatus and related method for determining carbon monoxide concentration
TW200307125A (en) Detection of carbon monoxide in hydrogen-based gas streams
AU2004208761B2 (en) Method for the detection of carbon monoxide in a hydrogen-rich gas stream
US20230280322A1 (en) Hydrogen gas sensor and methods and systems using same to quantitate hydrogen gas and/or to assess hydrogen gas purity
JP2004170147A (en) Carbon monoxide gas sensor element and carbon monoxide gas detector
US6764582B2 (en) Hydrogen sensor
Velayutham et al. Nafion based amperometric hydrogen sensor
Pijolat et al. CO detection in H2 reducing atmosphere with mini fuel cell
JP2002243697A (en) Carbon monoxide sensor and fuel cell system using the same
JP2001041925A (en) Co gas sensor
JP2004212157A (en) Gas sensor
JP2004117123A (en) Gas sensor
JP4661943B2 (en) CO gas sensor
JP2008270063A (en) Evaluation method and evaluation device of electrolyte film for fuel cell
JP2003207483A (en) Gas sensor
JP2003149191A (en) Gas sensor
US20030042139A1 (en) Gas sensor
JP2003021616A (en) Gaseous hydrogen concentration detector
JP2001099809A (en) Carbon monoxide sensor