JP2004168592A - Fuel reforming apparatus - Google Patents

Fuel reforming apparatus Download PDF

Info

Publication number
JP2004168592A
JP2004168592A JP2002336009A JP2002336009A JP2004168592A JP 2004168592 A JP2004168592 A JP 2004168592A JP 2002336009 A JP2002336009 A JP 2002336009A JP 2002336009 A JP2002336009 A JP 2002336009A JP 2004168592 A JP2004168592 A JP 2004168592A
Authority
JP
Japan
Prior art keywords
exhaust gas
air
reforming
fuel
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002336009A
Other languages
Japanese (ja)
Inventor
Atsumi Ida
敦巳 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002336009A priority Critical patent/JP2004168592A/en
Publication of JP2004168592A publication Critical patent/JP2004168592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel reforming apparatus in which a waste gas in a vaporization part is effectively used. <P>SOLUTION: The fuel reforming apparatus 1 has (1) the vaporization part 2, a reforming part 3 and a CO purification part 4 and at least a part of the waste gas 10 in the vaporization part 2 is introduced into the reforming part 3 and is used as oxidation air for oxidation reforming in the reforming part 3. The fuel reforming apparatus 1 has (2) the vaporization part 2, the reforming part 3 and the CO purification part 4 and at least a part of the waste gas 10 in the vaporization part 2 is introduced into the CO purification part 4 to be used as the oxidation air of CO oxidation in the CO purification part 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液状燃料から燃料電池(たとえば、固体高分子電解質型燃料電池)等に使用する水素含有燃料ガスを生成する燃料改質装置に関する。
【0002】
【従来の技術】
従来の燃料改質装置101は、図3に示すように、蒸発部102、改質部103、CO浄化部104を有する。流路107は蒸発部102と改質部103とを接続し、流路108は改質部103とCO浄化部104とを接続し、流路109はCO浄化部104と燃料電池とを接続している。液状燃料(たとえば、メタノール、ガソリン等)105は水を混ぜられ、熱交換器である蒸発部102で燃焼エア106の熱によって気化され、改質部103で酸化エア110が導入されて水蒸気改質と酸化改質が行われて水素含有ガスが生成され、CO浄化部104で別の酸化エア111が導入されてCOが低減される。
蒸発部102の燃焼エア106は、燃料の一部を燃焼させたもので、蒸発部102で熱を奪われて、その熱が液状燃料105と水の気化に用いられ、温度が下げられた燃焼エアである排ガスはそのまま外気に排気される。燃焼エア106と、水を混合された液状燃料105とは、蒸発部102で混じり合わない。
改質部103では、気化された燃料と水、および導入された酸化エア110(蒸発部102の排ガスとは別のエア)により、
CHOH+HO → 3H+CO−熱 …… 水蒸気改質
CHOH+1/2O → 2H+CO+熱 …… 酸化改質
が行われ、H、CO、HO、N、THC(Total Hydro−Carbon、燃えかすのHC)、COを含む水素含有ガスが生成される。COは燃料電池(Fuel Cell)で触媒のCO被毒を起こし、触媒がHと反応しなくなる。
それを防止するために、CO浄化部104で別の酸化エア111(蒸発部102の排ガスとは別のエア)が導入されてCOがCOに酸化され、浄化される。COが除去された水素含有ガスは燃料電池に供給され、燃料電池は水素含有ガスを燃料ガスとして電気化学反応により発電する。
従来の燃料改質装置において、蒸発部102の排ガスは、通常、外気に捨てられている。したがって、蒸発部102の排ガスを改質部103やCO浄化部104に導入して燃料と水の蒸発ガスに混ぜて蒸発部102の排ガス中に残っている酸素を改質部103での酸化改質の酸素やCO浄化部104でのCO酸化用の酸素に使用することは、行われていない。
従来、特開平10−297903号公報は、蒸発部の排ガスを改質部の床に導き、蒸発部の排ガスを改質部を通る燃料と水の蒸発ガスに混ぜることなく、蒸発部の排ガスの熱で改質部を温め、排ガスの熱を利用することを開示している。
【0003】
【特許文献1】
特開平10−297903号公報
【0004】
【発明が解決しようとする課題】
しかし、従来の改質装置では、蒸発部の燃焼エアは蒸発部の温度上限があるため、理論空燃比以上に投入されており、排ガスにはかなり多くのOが含まれているのかかわらず、そのまま外気に捨てていたため、エアの供給に無駄がある。また、燃焼ガスが燃料(メタノール、ガソリン等)の一部を燃やして作られた場合、THCを含むため、それを外気に捨てると、環境上望ましくない。
また、改質部やCO浄化部に空気を導入するのに専用のコンプレッサーが必要であり、装置費用上、および車両搭載スペース上、コンプレッサー削減が望まれていた。
本発明の目的は、蒸発部の排ガスの有効利用をはかった燃料改質装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 蒸発部、改質部、CO浄化部を有する燃料改質装置であって、蒸発部の排ガスの少なくとも一部を改質部に導入し改質部での酸化改質の酸化エアとして使用する燃料改質装置。
(2) 蒸発部、改質部、CO浄化部を有する燃料改質装置であって、蒸発部の排ガスの少なくとも一部をCO浄化部に導入しCO浄化部でのCO酸化の酸化エアとして使用する燃料改質装置。
【0006】
上記(1)の燃料改質装置では、蒸発部の排ガスの少なくとも一部を改質部に導入し改質部での酸化改質の酸化エアとして使用するので、排ガスを外気に捨てていた場合に比べ、あるいは排ガスの熱しか利用していなかった場合に比べ、排ガスの酸素の有効利用がはかられる。
また、THCを含む排ガスを全量外気に排出していた従来では、THC排出による環境上の問題が生じたが、本発明では、エアを蒸発部に導入する場合は蒸発部の排ガスはTHCを含まず、また従来同様に燃焼エアを蒸発部に導入した場合でも排ガスが改質部、CO浄化部に流れTHCも酸化され浄化されるので、環境上有利である。
また、改質部に酸化エアを供給する専用コンプレッサーが必要でなくなり、コストおよび設置スペースの削減上有利である。
上記(2)の燃料改質装置では、蒸発部の排ガスの少なくとも一部をCO浄化部に導入しCO酸化の酸化エアとして使用するので、排ガスを外気に捨てていた場合に比べ、排ガスの酸素の有効利用がはかられる。
また、THCを含む排ガスを全量外気に排出していた従来では、THC排出による環境上の問題が生じたが、本発明では、エアを蒸発部に導入する場合は蒸発部の排ガスはTHCを含まず、また従来同様に燃焼エアを蒸発部に導入した場合でも排ガスがCO浄化部に流れTHCも酸化され浄化されるので、環境上有利である。
また、CO浄化部に酸化エアを供給する専用コンプレッサーが必要でなくなり、コストおよび設置スペースの削減上有利である。
【0007】
【発明の実施の形態】
以下に、本発明の燃料改質装置の望ましい実施例を、図1、図2を参照して説明する。図1は本発明の実施例1を示し、図2は本発明の実施例2を示す。
本発明の実施例1、2にわたって共通する部分には、本発明の実施例1、2にわたって同じ符合を付してある。
【0008】
まず、本発明の実施例1、2にわたって共通する部分を、図1を参照して説明する。
本発明の燃料改質装置1は、蒸発部2、改質部3、CO浄化部4を有する。流路7は蒸発部2と改質部3とを接続し、流路8は改質部3とCO浄化部4とを接続し、流路9はCO浄化部4と燃料電池(FC)とを接続している。
【0009】
蒸発部2は、水が混ぜられた液状改質燃料5(たとえば、メタノール、ディメチルエーテル、その他のHC燃料等、以下、単に燃料という)、または水のみ(たとえば、ガソリン、液化天然ガスを燃料とする場合)を、熱で、蒸発、気化させる熱交換器である。蒸発部2での熱は、蒸発部2に常温のエア6が供給され蒸発部2で化学反応によりたとえば500℃程度に昇温された時の熱か(図1、図2はこの場合を示す)、または、燃料5の一部あるいはFCで用いられる水素の一部を燃焼させて得た熱である。蒸発部2では、水が混ぜられた液状燃料5とエア6とは混ざり合わない。蒸発部2にて気化された燃料および水は、流路7を介して改質部3に流れる。蒸発部2で燃料および水の蒸発に熱を奪われて蒸発部2から出るエア6である排ガス10は、蒸発部2を出る時には、たとえば、数百℃になっている。
【0010】
蒸発部2からの排ガス10は、化学反応で昇温された場合であっても、あるいは燃料5の一部あるいはFCの水素の一部を燃焼をさせて昇温された場合であっても、蒸発部2の温度に上限があるため理論空気比以上にエアを投入しているので、相当量のOを含んでいる。蒸発部2からの排ガス10は、従来その全量が外気に捨てられていたが、本発明では、その少なくとも一部(全量でもよい)が、流路11を通して、改質部3に、またはCO浄化部4に、または改質部3とCO浄化部4の両方に、導入される。そして、蒸発部2からの排ガス10は、導入された部位で、燃料5と水を蒸発させたガスに混合される。
【0011】
従来は、改質部に蒸発部からの排ガスとは別の酸化エアが導入され、CO浄化部に蒸発部からの排ガスとは別の酸化エアが導入されていたが、本発明ではこれらの酸化エアの導入はなく、蒸発部2からの排ガス10が酸化エアとして用いられる。
蒸発部2からの排ガス10の、改質部3、CO浄化部4への供給は、エア6を蒸発部2の供給するコンプレッサー14によるエア6の圧力上昇によって行われる。すなわち、コンプレッサー14によってエア6は圧力上昇しており、排ガス10もそれに対応して圧力が、改質部3、CO浄化部4内のガス圧より上がっており、その差圧で、排ガス10が改質部3、CO浄化部4に流れる。
【0012】
蒸発部2からの排ガス10が酸化エアとして改質部3、CO浄化部4に供給される場合、排ガス10の酸素量を測定し、供給タイミング、供給量(余剰は外気に排出する)をコントロールするために、蒸発部2からの排ガス10出口に酸素センサー12が設けられ、流路11に流量制御弁13(三方弁または2個の二方弁)が設けられる。
【0013】
改質部3では、蒸発部2からの排ガス10が酸化エア6として用いられ、水蒸気改質と酸化改質が行われて水素含有ガスが生成される。水蒸気改質と酸化改質の反応式および改質ガスのガス組成は前記と同じである。水蒸気改質の水蒸気は燃料5が蒸発部2に導入される時に混合された水の蒸気が用いられ、酸化改質の酸素は蒸発部2からの排ガス10中にある酸素が用いられる。
【0014】
また、CO浄化部14では、蒸発部2からの排ガス10が酸化エア6として用いられ、COが酸化反応でCOとされることにより、COが浄化される。CO浄化部14でのCOの浄化は、COがFCで触媒を被毒し水素をプロトンに変換する電気化学反応を阻害するので、それを防止するために行われる。
【0015】
つぎに、本発明の実施例1、実施例2に共通な部分の作用を説明する。
蒸発部2の排ガス10の少なくとも一部を改質部3、CO浄化部4の少なくとも一方に導入し改質部3での酸化改質の酸化エア、CO浄化部4のCO酸化の酸化エアとして使用するので、排ガスを全量外気に捨てていた場合に比べ、あるいは排ガスの熱しか利用していなかった場合に比べ、排ガスの酸素の有効利用がはかられる。
【0016】
また、THCを含む排ガスを全量外気に排出していた従来では、THC排出による環境上の問題が生じるが、本発明では、エア6を蒸発部2に導入する場合は排ガス10はTHCを含まず、また従来同様に燃焼エアを蒸発部2に導入した場合でも排ガス10が改質部3、CO浄化部4に流れTHCも酸化され浄化されるので、環境上有利である。
【0017】
また、改質部に酸化エアを供給する専用コンプレッサーが必要でなくなり、コストおよび設置スペースの削減上有利である。
すなわち、従来のように、別の酸化ガスを改質部3、CO浄化部4に導入する場合は、それぞれ、専用のコンプレッサーが必要であったが、本発明では、従来からも必要であった、エア6を蒸発部2の供給するコンプレッサー14で、酸化ガスの供給コンプレッサーをまかなうことができ、機器の削減によるコストダウンがはかられるとともに、車両への搭載時のスペースが小で済む。
また、改質反応は約300℃で行われるが、従来のように常温のエアを酸化ガスとして用いる場合に比べて、本発明のように数百℃の排ガス10が酸化ガスに用いられる場合は数百℃分の酸化ガス昇温エネルギーが助かる。
【0018】
つぎに、本発明の各実施例を説明する。
本発明の実施例1では、図1に示すように、蒸発部2の排ガス10の少なくとも一部(全量でもよい)が流路11を通して改質部3に供給される。排ガス10の圧力は改質部3の圧力より大である。改質部3に入る排ガス量は弁13により調整される。改質部3には、従来設けられていた酸化エア供給用の、流路とコンプレッサーは設けられていない。
排ガス10中の酸素(Oが十数%含まれている)が酸化エアとして有効利用される。排ガス10のTHC処理も自動的になされる。排ガス10は数百℃であり、常温の酸化エアを供給していた従来に比べて熱エネルギーも節約できる。コンプレッサー14がエア6供給と共に、排ガス10を改質部3に供給するコンプレッサーとしても働くので、従来必要であった酸化エア供給用のコンプレッサーが不要となり、その分、コストダウンできる。
【0019】
本発明の実施例2では、図2に示すように、蒸発部2の排ガス10の少なくとも一部(全量でもよい)が流路11を通してCO浄化部4に供給される。図2の例では、CO浄化部4に供給されると共に、改質部3にも供給される場合を示している。排ガス10の圧力はCO浄化部4の圧力より大である。CO浄化部4に入る排ガス量は弁13により調整される。CO浄化部4には、従来設けられていた酸化エア供給用の、流路とコンプレッサーは設けられていない。
排ガス10中の酸素(Oが十数%含まれている)が酸化エアとして有効利用される。排ガス10のTHC処理も自動的になされる。排ガス10は数百℃であり、常温の酸化エアを供給していた従来に比べて熱エネルギーも節約できる。コンプレッサー14がエア6供給と共に、排ガス10をCO浄化部4に供給するコンプレッサーとしても働くので、従来必要であった酸化エア供給用のコンプレッサーが不要となり、その分、コストダウンできる。
【0020】
【発明の効果】
請求項1の燃料改質装置によれば、蒸発部の排ガスの少なくとも一部を改質部に導入し改質部の酸化エアとして使用するので、排ガスを全量外気に捨てていた場合に比べ、あるいは排ガスを改質部に回しても排ガスの熱しか利用していなかった場合に比べ、排ガスに含まれる酸素の有効利用がはかられる。
また、THCを含む排ガスを全量外気に排出していた従来に比べて、THC処理において、環境上有利である。
また、改質部に酸化エアを供給する専用コンプレッサーが必要でなくなる。
請求項2の燃料改質装置によれば、蒸発部の排ガスの少なくとも一部をCO浄化部に導入しCO酸化の酸化エアとして使用するので、排ガスを全量外気に捨てていた場合に比べ、排ガスの酸素の有効利用がはかられる。
また、THCを含む排ガスを全量外気に排出していた従来に比べて、THC処理において、環境上有利である。
また、CO浄化部に酸化エアを供給する専用コンプレッサーが必要でなくなり、コストおよび設置スペースの削減上有利である。
【図面の簡単な説明】
【図1】本発明の実施例1の燃料改質装置の系統図である。
【図2】本発明の実施例2の燃料改質装置の系統図である。
【図3】従来の燃料改質装置の系統図である。
【符号の説明】
1 燃料改質装置
2 蒸発部
3 改質部
4 CO浄化部
5 改質される燃料
6 エア(燃焼エアである場合を含む)
7 蒸発部と改質部を接続する流路
8 改質部とCO浄化部を接続する流路
9 CO浄化部と燃料電池を接続する流路
10 排ガス
11 排ガス流路
12 酸素センサー
13 弁
14 コンプレッサー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel reformer that generates a hydrogen-containing fuel gas used in a fuel cell (for example, a solid polymer electrolyte fuel cell) from a liquid fuel.
[0002]
[Prior art]
As shown in FIG. 3, the conventional fuel reformer 101 includes an evaporator 102, a reformer 103, and a CO purifier 104. A flow path 107 connects the evaporator 102 and the reformer 103, a flow path 108 connects the reformer 103 and the CO purifier 104, and a flow path 109 connects the CO purifier 104 and the fuel cell. ing. Liquid fuel (for example, methanol, gasoline, etc.) 105 is mixed with water, vaporized by the heat of combustion air 106 in an evaporator 102 as a heat exchanger, and oxidized air 110 is introduced in a reformer 103 to perform steam reforming. The oxidative reforming is performed to generate a hydrogen-containing gas, and another oxidizing air 111 is introduced in the CO purification unit 104 to reduce CO.
The combustion air 106 of the evaporator 102 burns a part of the fuel. The heat is deprived by the evaporator 102 and the heat is used for vaporizing the liquid fuel 105 and water. Exhaust gas, which is air, is directly exhausted to the outside air. The combustion air 106 and the liquid fuel 105 mixed with water do not mix in the evaporator 102.
In the reforming unit 103, the fuel and water vaporized and the oxidized air 110 (an air different from the exhaust gas from the evaporating unit 102) are used.
CH 3 OH + H 2 O → 3H 2 + CO 2 -heat... Steam reforming CH 3 OH + 1 / 2O 2 → 2H 2 + CO 2 + heat... Oxidative reforming is performed, and H 2 , CO 2 , H 2 O, N 2. A hydrogen-containing gas containing THC (Total Hydro-Carbon, HC of flammables) and CO is generated. CO undergoes the CO poisoning of the catalyst in the fuel cell (Fuel Cell), the catalyst will not react with H 2.
To prevent this, (exhaust gas separate air from the evaporators 102) is introduced CO different oxidation air 111 in a CO purification unit 104 is oxidized to CO 2, it is purified. The hydrogen-containing gas from which CO has been removed is supplied to a fuel cell, and the fuel cell uses the hydrogen-containing gas as a fuel gas to generate power by an electrochemical reaction.
In a conventional fuel reformer, the exhaust gas from the evaporator 102 is usually discarded into the outside air. Therefore, the exhaust gas from the evaporator 102 is introduced into the reformer 103 and the CO purifier 104 to be mixed with the fuel and water evaporative gas, and the oxygen remaining in the exhaust gas from the evaporator 102 is oxidized by the reformer 103. It is not used for quality oxygen or oxygen for CO oxidation in the CO purification unit 104.
Conventionally, Japanese Patent Application Laid-Open No. 10-297903 discloses that the exhaust gas of the evaporating section is guided to the floor of the reforming section, and the exhaust gas of the evaporating section is not mixed with the fuel and water vapor passing through the reforming section. It discloses that the reforming section is heated by heat and the heat of exhaust gas is used.
[0003]
[Patent Document 1]
JP 10-297903 A
[Problems to be solved by the invention]
However, in the conventional reformer, the combustion air in the evaporating section has a temperature upper limit in the evaporating section, so that the air is injected at a stoichiometric air-fuel ratio or higher, and although the exhaust gas contains a considerable amount of O 2, However, since the air was simply discarded to the outside air, there is no use in supplying air. Further, if the combustion gas is made by burning a part of fuel (methanol, gasoline, etc.), it contains THC, and if it is discarded in the open air, it is not environmentally desirable.
In addition, a dedicated compressor is required to introduce air into the reforming section and the CO purification section, and it has been desired to reduce the number of compressors in terms of equipment cost, vehicle mounting space, and the like.
It is an object of the present invention to provide a fuel reformer that makes effective use of exhaust gas from an evaporator.
[0005]
[Means for Solving the Problems]
The present invention that achieves the above object is as follows.
(1) A fuel reformer having an evaporator, a reformer, and a CO purifier, wherein at least a part of the exhaust gas from the evaporator is introduced into the reformer, and is used as oxidized air for oxidative reforming in the reformer. The fuel reformer used.
(2) A fuel reformer having an evaporator, a reformer, and a CO purifier, wherein at least a part of the exhaust gas from the evaporator is introduced into the CO purifier and used as oxidizing air for CO oxidation in the CO purifier. Fuel reformer.
[0006]
In the fuel reforming apparatus (1), at least a part of the exhaust gas from the evaporating section is introduced into the reforming section and used as oxidizing air for oxidative reforming in the reforming section. As compared with the case where only the heat of the exhaust gas is used, the oxygen of the exhaust gas can be more effectively used.
In addition, in the related art where the entire amount of exhaust gas containing THC was exhausted to the outside air, an environmental problem due to THC emission occurred. However, in the present invention, when air is introduced into the evaporator, the exhaust gas of the evaporator includes THC. In addition, even when the combustion air is introduced into the evaporator as in the conventional case, the exhaust gas flows to the reformer and the CO purifier, and the THC is oxidized and purified, which is environmentally advantageous.
Also, a dedicated compressor for supplying oxidizing air to the reforming section is not required, which is advantageous in reducing cost and installation space.
In the fuel reforming apparatus of the above (2), at least a part of the exhaust gas from the evaporating section is introduced into the CO purification section and used as oxidizing air for CO oxidation. Can be used effectively.
In addition, in the related art where the entire amount of exhaust gas containing THC was exhausted to the outside air, an environmental problem due to THC emission occurred. However, in the present invention, when air is introduced into the evaporator, the exhaust gas of the evaporator includes THC. In addition, even when the combustion air is introduced into the evaporator as in the conventional case, the exhaust gas flows into the CO purifier and the THC is oxidized and purified, which is environmentally advantageous.
Further, a dedicated compressor for supplying oxidizing air to the CO purifying unit is not required, which is advantageous in reducing cost and installation space.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the fuel reformer of the present invention will be described with reference to FIGS. FIG. 1 shows a first embodiment of the present invention, and FIG. 2 shows a second embodiment of the present invention.
Portions common to the first and second embodiments of the present invention are denoted by the same reference numerals throughout the first and second embodiments of the present invention.
[0008]
First, portions common to the first and second embodiments of the present invention will be described with reference to FIG.
The fuel reforming apparatus 1 of the present invention has an evaporator 2, a reformer 3, and a CO purifier 4. The flow path 7 connects the evaporating section 2 and the reforming section 3, the flow path 8 connects the reforming section 3 and the CO purifying section 4, and the flow path 9 connects the CO purifying section 4 and the fuel cell (FC). Are connected.
[0009]
The evaporating section 2 is provided with a liquid reformed fuel 5 mixed with water (for example, methanol, dimethyl ether, other HC fuel, etc., hereinafter simply referred to as fuel), or water alone (for example, gasoline or liquefied natural gas as fuel). ) Is a heat exchanger that evaporates and vaporizes with heat. The heat in the evaporator 2 is the heat when the room temperature air 6 is supplied to the evaporator 2 and the temperature is raised to, for example, about 500 ° C. by a chemical reaction in the evaporator 2 (FIGS. 1 and 2 show this case). ) Or heat obtained by burning part of the fuel 5 or part of hydrogen used in FC. In the evaporator 2, the liquid fuel 5 mixed with water and the air 6 do not mix. The fuel and water vaporized in the evaporator 2 flow to the reformer 3 via the flow path 7. Exhaust gas 10, which is air 6 that is deprived of heat by evaporation of fuel and water in evaporator 2 and exits evaporator 2, is at, for example, several hundred degrees Celsius when exiting evaporator 2.
[0010]
The exhaust gas 10 from the evaporator 2 may be heated by a chemical reaction, or may be heated by burning a part of the fuel 5 or a part of hydrogen of FC, Since the temperature of the evaporating section 2 has an upper limit, the air is supplied at a rate higher than the stoichiometric air ratio, and therefore contains a considerable amount of O 2 . Conventionally, the entire amount of the exhaust gas 10 from the evaporating section 2 has been discarded to the outside air. However, in the present invention, at least a part (or the entire amount) of the exhaust gas 10 may pass through the flow path 11 to the reforming section 3 or the CO purification. It is introduced into the section 4 or both the reforming section 3 and the CO purification section 4. Then, the exhaust gas 10 from the evaporator 2 is mixed with the fuel 5 and the gas obtained by evaporating the water at the introduced portion.
[0011]
Conventionally, oxidizing air different from the exhaust gas from the evaporating section was introduced into the reforming section, and oxidizing air different from the exhaust gas from the evaporating section was introduced into the CO purification section. No air is introduced, and the exhaust gas 10 from the evaporator 2 is used as oxidizing air.
The supply of the exhaust gas 10 from the evaporator 2 to the reformer 3 and the CO purifier 4 is performed by increasing the pressure of the air 6 by the compressor 14 that supplies the air 6 to the evaporator 2. That is, the pressure of the air 6 is increased by the compressor 14, and the pressure of the exhaust gas 10 is also increased correspondingly from the gas pressure in the reforming unit 3 and the CO purification unit 4. It flows to the reforming section 3 and the CO purification section 4.
[0012]
When the exhaust gas 10 from the evaporation unit 2 is supplied as oxidizing air to the reforming unit 3 and the CO purification unit 4, the amount of oxygen in the exhaust gas 10 is measured, and the supply timing and supply amount (excess surplus is discharged to the outside air) are controlled. For this purpose, an oxygen sensor 12 is provided at the outlet of the exhaust gas 10 from the evaporator 2, and a flow control valve 13 (a three-way valve or two two-way valves) is provided in the flow path 11.
[0013]
In the reforming section 3, the exhaust gas 10 from the evaporating section 2 is used as oxidizing air 6, and steam reforming and oxidizing reforming are performed to generate a hydrogen-containing gas. The reaction formulas of steam reforming and oxidation reforming and the gas composition of the reformed gas are the same as described above. As the steam for the steam reforming, water vapor mixed when the fuel 5 is introduced into the evaporator 2 is used, and as the oxygen for the oxidative reforming, oxygen in the exhaust gas 10 from the evaporator 2 is used.
[0014]
In the CO purifying unit 14, the exhaust gas 10 from the evaporating unit 2 is used as the oxidizing air 6, and the CO is purified by converting the CO into an CO 2 by an oxidation reaction. The purification of CO in the CO purifying unit 14 is performed to prevent an electrochemical reaction that converts poisoning of the catalyst by FC into hydrogen and conversion of hydrogen into protons.
[0015]
Next, an operation of a portion common to the first and second embodiments of the present invention will be described.
At least a part of the exhaust gas 10 from the evaporating unit 2 is introduced into at least one of the reforming unit 3 and the CO purifying unit 4 to serve as oxidizing air for oxidizing reforming in the reforming unit 3 and oxidizing air for CO oxidizing in the CO purifying unit 4. Since the exhaust gas is used, the effective use of oxygen in the exhaust gas can be achieved as compared with a case where the entire amount of the exhaust gas is discarded to the outside air or a case where only the heat of the exhaust gas is used.
[0016]
Further, in the related art in which the exhaust gas containing THC is entirely discharged to the outside air, an environmental problem due to THC emission occurs. However, in the present invention, when the air 6 is introduced into the evaporating section 2, the exhaust gas 10 does not contain THC. Further, even when the combustion air is introduced into the evaporating section 2 as in the conventional case, the exhaust gas 10 flows to the reforming section 3 and the CO purifying section 4, and the THC is oxidized and purified, which is environmentally advantageous.
[0017]
Also, a dedicated compressor for supplying oxidizing air to the reforming section is not required, which is advantageous in reducing cost and installation space.
That is, when another oxidizing gas is introduced into the reforming unit 3 and the CO purifying unit 4 as in the related art, a dedicated compressor is required for each of them. The compressor 14 that supplies the air 6 from the evaporating section 2 can serve as a compressor for supplying the oxidizing gas, thereby reducing costs by reducing the number of devices and reducing the space required for mounting on a vehicle.
Further, although the reforming reaction is performed at about 300 ° C., when the exhaust gas 10 of several hundred degrees Celsius is used as the oxidizing gas as in the present invention, as compared with the conventional case where the normal temperature air is used as the oxidizing gas, The oxidizing gas heating energy for several hundred degrees Celsius is saved.
[0018]
Next, each embodiment of the present invention will be described.
In the first embodiment of the present invention, as shown in FIG. 1, at least a part (or the entire amount) of the exhaust gas 10 of the evaporating unit 2 is supplied to the reforming unit 3 through the flow path 11. The pressure of the exhaust gas 10 is higher than the pressure of the reforming section 3. The amount of exhaust gas entering the reforming section 3 is adjusted by the valve 13. The reforming section 3 is not provided with a flow path and a compressor for supplying oxidizing air which are conventionally provided.
Oxygen (containing more than 10% of O 2) in the exhaust gas 10 is effectively used as oxidizing air. The THC treatment of the exhaust gas 10 is also automatically performed. The exhaust gas 10 has a temperature of several hundred degrees Celsius, and can save thermal energy as compared with the conventional case where oxidized air at normal temperature is supplied. Since the compressor 14 also functions as a compressor that supplies the exhaust gas 10 to the reforming section 3 together with the supply of the air 6, a compressor for supplying oxidizing air, which was conventionally required, becomes unnecessary, and the cost can be reduced accordingly.
[0019]
In the second embodiment of the present invention, as shown in FIG. 2, at least a part (or the entire amount) of the exhaust gas 10 of the evaporating unit 2 is supplied to the CO purification unit 4 through the flow path 11. In the example of FIG. 2, a case is shown in which the gas is supplied to the CO purification unit 4 and also supplied to the reforming unit 3. The pressure of the exhaust gas 10 is higher than the pressure of the CO purification unit 4. The amount of exhaust gas entering the CO purification unit 4 is adjusted by the valve 13. The CO purifier 4 is not provided with a channel and a compressor for supplying oxidizing air, which are conventionally provided.
Oxygen (containing more than 10% of O 2) in the exhaust gas 10 is effectively used as oxidizing air. The THC treatment of the exhaust gas 10 is also automatically performed. The exhaust gas 10 has a temperature of several hundred degrees Celsius, and can save thermal energy as compared with the conventional case where oxidized air at normal temperature is supplied. Since the compressor 14 also functions as a compressor that supplies the exhaust gas 10 to the CO purification unit 4 together with the supply of the air 6, a compressor for supplying oxidizing air, which was conventionally required, becomes unnecessary, and the cost can be reduced accordingly.
[0020]
【The invention's effect】
According to the fuel reforming apparatus of claim 1, at least a part of the exhaust gas of the evaporating section is introduced into the reforming section and used as the oxidizing air of the reforming section. Or, even when the exhaust gas is sent to the reforming section, the effective use of oxygen contained in the exhaust gas can be achieved as compared with the case where only the heat of the exhaust gas is used.
In addition, compared with the conventional method in which the entire amount of exhaust gas containing THC is discharged to the outside air, it is environmentally advantageous in the THC treatment.
Also, a dedicated compressor for supplying oxidizing air to the reforming section is not required.
According to the fuel reformer of the second aspect, at least a part of the exhaust gas from the evaporating section is introduced into the CO purifying section and used as oxidizing air for CO oxidation. Effective use of oxygen can be achieved.
In addition, compared with the conventional method in which the entire amount of exhaust gas containing THC is discharged to the outside air, it is environmentally advantageous in the THC treatment.
Further, a dedicated compressor for supplying oxidizing air to the CO purifying unit is not required, which is advantageous in reducing cost and installation space.
[Brief description of the drawings]
FIG. 1 is a system diagram of a fuel reforming apparatus according to a first embodiment of the present invention.
FIG. 2 is a system diagram of a fuel reforming apparatus according to a second embodiment of the present invention.
FIG. 3 is a system diagram of a conventional fuel reformer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel reformer 2 Evaporator 3 Reformer 4 CO purifier 5 Fuel to be reformed 6 Air (including the case of combustion air)
7 Flow path connecting the evaporating section and the reforming section 8 Flow path connecting the reforming section and the CO purifying section 9 Flow path connecting the CO purifying section and the fuel cell 10 Exhaust gas 11 Exhaust gas flow path 12 Oxygen sensor 13 Valve 14 Compressor

Claims (2)

蒸発部、改質部、CO浄化部を有する燃料改質装置であって、蒸発部の排ガスの少なくとも一部を改質部に導入し改質部での酸化改質の酸化エアとして使用する燃料改質装置。A fuel reforming apparatus having an evaporator, a reformer, and a CO purifier, wherein at least a part of the exhaust gas from the evaporator is introduced into the reformer and used as oxidizing air for oxidative reforming in the reformer. Reformer. 蒸発部、改質部、CO浄化部を有する燃料改質装置であって、蒸発部の排ガスの少なくとも一部をCO浄化部に導入しCO浄化部でのCO酸化の酸化エアとして使用する燃料改質装置。A fuel reforming apparatus having an evaporator, a reformer, and a CO purifier, wherein at least a part of exhaust gas from the evaporator is introduced into the CO purifier and used as oxidized air for CO oxidation in the CO purifier. Quality equipment.
JP2002336009A 2002-11-20 2002-11-20 Fuel reforming apparatus Pending JP2004168592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336009A JP2004168592A (en) 2002-11-20 2002-11-20 Fuel reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336009A JP2004168592A (en) 2002-11-20 2002-11-20 Fuel reforming apparatus

Publications (1)

Publication Number Publication Date
JP2004168592A true JP2004168592A (en) 2004-06-17

Family

ID=32699963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336009A Pending JP2004168592A (en) 2002-11-20 2002-11-20 Fuel reforming apparatus

Country Status (1)

Country Link
JP (1) JP2004168592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117039080A (en) * 2023-10-08 2023-11-10 成都岷山绿氢能源有限公司 Fuel cell system with carbon removal function and carbon removal method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117039080A (en) * 2023-10-08 2023-11-10 成都岷山绿氢能源有限公司 Fuel cell system with carbon removal function and carbon removal method
CN117039080B (en) * 2023-10-08 2024-01-23 成都岷山绿氢能源有限公司 Fuel cell system with carbon removal function and carbon removal method

Similar Documents

Publication Publication Date Title
JP4325181B2 (en) Fuel cell system
JP2009504558A (en) Fuel cell system and method for operating reformer
JP4464594B2 (en) Fuel cell power generation system
JP3532458B2 (en) Fuel reformer for solid oxide fuel cell
JP2001223017A (en) Fuel gas generating system for fuel cell
CA2668723C (en) Method and apparatus for improving water balance in fuel cell power unit
JP2007331985A (en) Hydrogen generator and fuel cell power generation system using the same
US20040226218A1 (en) Fuel reforming apparatus and fuel cell system
JPH08106913A (en) Fuel cell power generating system
JP2003151599A (en) Fuel cell system
JP2003229161A (en) Fuel cell generating system and its operation method
JP3450991B2 (en) Fuel cell system
JP3906083B2 (en) Solid polymer fuel cell power generator
JP2004168592A (en) Fuel reforming apparatus
JP3734966B2 (en) Hydrogen generator
JP2002260702A (en) Reformer and fuel cell system equipped with same
JP2005129462A (en) Fuel cell system
JP2007188894A (en) Fuel cell power generating system
JPH097620A (en) Solid high polymer type fuel cell power generator
JP2003317778A (en) Exhaust gas combustor of fuel cell, and fuel cell power generation system
US20050198899A1 (en) System and process for producing a reformate
JP2003017108A (en) Reforming device and fuel cell system
JP2007087784A (en) Fuel cell cogeneration system
JP2002216826A (en) Reforming device and fuel cell system equipped with same
JP2005203229A (en) Fuel cell system