JP2004167056A - Gait training apparatus - Google Patents

Gait training apparatus Download PDF

Info

Publication number
JP2004167056A
JP2004167056A JP2002337715A JP2002337715A JP2004167056A JP 2004167056 A JP2004167056 A JP 2004167056A JP 2002337715 A JP2002337715 A JP 2002337715A JP 2002337715 A JP2002337715 A JP 2002337715A JP 2004167056 A JP2004167056 A JP 2004167056A
Authority
JP
Japan
Prior art keywords
training
trainee
walking
lower limb
muscle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337715A
Other languages
Japanese (ja)
Inventor
Ryokichi Hirata
亮吉 平田
Taisuke Sakaki
泰輔 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002337715A priority Critical patent/JP2004167056A/en
Publication of JP2004167056A publication Critical patent/JP2004167056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to carry out a gait training corresponding to a muscular fatigue degree even if a patient is tired by controlling an amount of a care for a lower limb of the patient based on a change in a contractile force of a muscle. <P>SOLUTION: A muscular sound figure measuring means 15 is attached to the limb of a trainee 11 to measure the muscular sound figure. A training result evaluating member 5 performs a spectrum analysis of the muscular sound figure of the trainee 11 measured in an evaluation territory of a training track by the muscular sound figure measuring means 15, and transmits an action command to a training track generating member 3 to control the amount of care for the lower limb of the trainee 11 by a lower limb drive member 12 corresponding to a deviation between peak values of the power of the muscular sound figure spectrum of a healthy limb side and an affected limb side of the trainee 11 in the gait training. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、運動機能や脳機能などに傷害を持つ患者を対象とし、リハビリテーションを行っている患者の状態を計測し、患者の状態に応じて歩行運動を行わせる歩行訓練装置および方法に関するものである。
【0002】
【従来の技術】
従来の歩行訓練装置として、実際の歩行運動に促した訓練を臥位にて実施することを目的としているものが特開2000−102576号公報に開示されているので、その従来技術について図面を用いて説明する。
図9は従来の歩行訓練装置の構成を示す図である。111はベースであり、112はその上に固定された基部である。113、114、115は駆動軸であり、116、117はリンク、118は力センサ、119は把持部である。駆動軸113は基部112に内蔵されたモータによって駆動され、リンク116を旋回することができる。駆動軸114は基部112に内蔵されたモータによって駆動され、リンク116の中の動力伝達機構を介して動力が伝えられてリンク117をリンク116に対して旋回することができる。駆動軸115は基部112に内蔵されたモータによって駆動され、リンク116、117の中の動力伝達機構を介して動力が伝えられて把持部119をリンク117に対して旋回することができる。駆動軸115と把持部119の間には力センサ118が設けられており、把持部119と駆動軸115の間に作用する力が検出されて力信号Fを出力する。また基部112に設けられている駆動軸113、114、115用のモータには回転センサが内蔵されており、駆動軸113、114、115の回転位置、回転速度、回転加速度のいずれかが検出できるようになっている。把持部119には横臥した人の下腿が固定され、足裏に対面する部位が足裏面の力を受けるようになっている。そして、仮想床面生成部121と、軌道教示部122と、負荷情報変換部123と、肢体駆動部124と、仮想重力設定部125とから構成された制御装置120により、仮想進行方向FFに向かって歩行する際の負荷が患者に与えることができるようになっている(たとえば特許文献1)。
【0003】
【特許文献1】
特開2000−102576号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の歩行訓練装置においては、歩行訓練を行う場合、仮想進行方向に向かって歩行する際の負荷が患者に与えられるが、患者の肢体の筋肉の収縮力の変化に応じて肢体駆動部の患者の下肢への介助量を調整できず、患者が疲労してきた場合、患者の下肢が強制的に訓練させられる可能性があった。
一方、筋音図とは、活動筋上の体表面に現れる微細振動であり、筋繊維の径が側方へ拡大変化する結果生じるものである。筋音図は、筋の電気的活動を反映する筋電図と運動の駆動力である筋力との中間に位置し、筋の機械的活動を示すものである。
本発明はこれらの課題を解決するためになされたものであり、歩行訓練を行っている患者の肢体の筋肉の収縮力を計測するとともに、筋肉の収縮力の変化に応じて患者の下肢への介助量を調整し、患者が疲労してきた場合でも患者の筋肉の疲労度に応じた歩行訓練を行うことができる歩行訓練装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
そこで本発明の歩行訓練装置は、歩行訓練装置に取り付けられた力センサと角度センサのセンシング情報をもとに、力制御によって装置の動作を制御する下肢駆動部と、訓練軌道に対する訓練者の肢体が発生する力の大きさを評価する訓練結果評価部と、前記下肢駆動部に前記訓練者の足関節を駆動する足関節駆動部と、コントローラ内に訓練データを記憶する訓練データ記憶部と、前記コントローラに動作指令を与え歩行パターンにあわせて前記下肢駆動部と前記足関節駆動部とを駆動し両下肢を協調させて動作させる訓練軌道を生成する訓練軌道生成部と、を備えて前記訓練者の状態に応じて歩行運動を行わせる前記歩行訓練装置において、前記訓練者の肢体に筋音図を計測する筋音図計測手段を備え、前記訓練結果評価部が、前記訓練軌道の評価する区間において、前記筋音図計測手段により計測された前記訓練者の筋音図のスペクトル解析を行うとともに、歩行訓練を行っている前記訓練者の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、前記下肢駆動部の前記訓練者の下肢への介助量を調整するよう前記訓練軌道生成部に動作指令を与えることを特徴としている。
このようになっているため、訓練者の筋肉の収縮力の変化に応じた歩行訓練ができ、訓練者が疲労してきた場合でも訓練者の筋肉の疲労度に応じた歩行訓練ができる。
【0006】
また本発明の歩行訓練装置は、前記筋音図計測手段として、ピエゾ接触型センサを用い、あるいは、コンデンサマイクロホンを用い、あるいは、加速度計を用いることを特徴としている。
これによって訓練者の筋肉の収縮力の変化に応じた歩行訓練ができ、訓練者が疲労してきた場合でも訓練者の筋肉の疲労度に応じた歩行訓練ができる。
また本発明の歩行訓練装置は、前記訓練結果評価部が前記筋音図計測手段を用いて計測された、歩行1周期における前記訓練者の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差を求め、筋音図のスペクトルの偏差を何段階かで評価し、前記評価に応じて前記訓練者の患足側の下肢の発生する力の大きさを何倍かに増幅して歩行訓練を実施させることを特徴としている。
これによって訓練者の収縮力の変化に応じて患足側の運動を介助することができ、効率的な訓練ができる。
【0007】
【発明の実施の形態】
以下、本発明の第1の実施の形態の歩行訓練装置について図に基づいて説明する。図1は、本発明の第1の実施の形態の歩行訓練装置のシステム構成を示す図である。1は歩行訓練装置、2はコントローラ、3は訓練軌道生成部、4は訓練データ記憶部、5は訓練結果評価部、6は力センサ、7は角度センサ、8は大腿装着部、9は下腿装着部、10は訓練軌道(歩行パターン)、11は訓練者、12は下肢駆動部、13は足関節駆動部、14は操作パネル、15は筋音図計測手段である。図2は、健常者の歩行周期の位相と股関節、膝関節および足関節の関節運動との関係を示す図である。歩行周期の位相は、踵接地、足底接地、立脚中期、踵離地、足尖離地、遊脚初期および遊脚後期から構成され、各位相に応じて股関節、膝関節および足関節の屈曲・伸展運動が繰り返される。図3は、本発明の実施の形態の歩行訓練装置における歩行パターンの実現を示す図である。訓練軌道生成部がコントローラに動作指令を与え、コントローラが下肢駆動部、足関節駆動部を制御し歩行パターンを実現した図である。(a)は踵接地、(b)は足底接地、(c)は立脚中期、(d)は踵離地、(e)は足尖離地、(f)は遊脚初期、(g)は遊脚後期を実現した図である。医師や理学療法士が、操作パネルを用いて、訓練内容(訓練モード(他動運動訓練、自動介助運動訓練など)、繰り返し回数、運動の硬さ(メカニカルインピーダンス制御の慣性、粘性、剛性の係数)、訓練軌道(歩行パターン))を入力し、訓練データ記憶部から訓練軌道(歩行パターン)のデータが呼び出される。そして、コントローラが下肢駆動部、足関節駆動部を制御し、踵接地、足底接地、立脚中期、踵離地、足尖離地、遊脚初期および遊脚後期を1周期とする歩行パターンに沿って、訓練の動作を繰り返す。また、力センサにより訓練者の発生する力を検出し、コントローラが下肢駆動部をメカニカルインピーダンス制御して、訓練者に無理な負荷がかからないようにする。
【0008】
図4は、本発明の第1の実施の形態の筋音図のスペクトル解析結果のパワーの一例を示す図である。MVCとはMaximum Voluntary Contractionの略称で、最大随意筋力のことである。図5は、本発明の第1の実施の形態の筋肉の収縮力の変化に伴う筋音図のスペクトル解析結果のパワー及び平均周波数の推移の一例を示す図である。図4、図5に示すように筋音図のスペクトルは5〜70Hzと広い範囲に分布し、発揮力が大きくなるにつれて5〜15Hzの帯域に大きなピークが現れる。平均周波数も発揮力が大きくなるにつれて増加する。筋力を漸増させていくと、まず遅筋繊維が活動を始め、その筋繊維数の増加によって筋力の調整が行われる。発揮力が30〜40%MVC以上に達すると、既に活動している遅筋繊維の発火頻度の増加に加えて、発揮張力も発射頻度も高い速筋繊維が参加してくる。しかし、その筋固有の筋力レベルに達すると、参加する筋繊維の数は限界となる。その筋力レベルは母指内転筋のような小さい筋で50%MVC、大腿四頭筋のような大きな筋では80〜90%MVCと言われている。そして、それ以上の大きな筋力発揮は筋繊維の発火頻度の上昇によって支えられている。
【0009】
以下、歩行周期の足尖離地の位相における下肢の踏出しを評価することを例として、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢駆動部の訓練者の下肢への介助量を調整する方法について説明する。
まず、訓練結果評価部は、健足側と患足側の大腿四頭筋に装着された筋音図計測手段を用いて計測された、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行う。そして、筋音図の周波数の5〜15Hzの帯域における、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差を求める。ここでは、歩行周期の足尖離地の位相における下肢の踏出しを評価するため、大腿四頭筋の筋音図のスペクトルのパワーの偏差を3段階で評価する場合について説明する。今回の歩行周期の足尖離地の位相における、健足側と患足側の大腿四頭筋の筋音図のスペクトルのパワーの偏差を
(1)|(健足側のスペクトルのピーク値)−(患足側のスペクトルのピーク値)|<ε
(2)ε<|(健足側のスペクトルのピーク値)−(患足側のスペクトルのピーク値)|<ε
(3)|(健足側のスペクトルのピーク値)−(患足側のスペクトルのピーク値)|>εの3段階で評価すると、次の歩行周期の足尖離地の位相における患足側の下肢の発生する力の大きさFが、
(1)のときF=(患足側の下肢の発生する力の大きさ)、
(2)のときF=1.5×(患足側の下肢の発生する力の大きさ)、
(3)のときF=2×(患足側の下肢の発生する力の大きさ)と変更する。
ただし、ε、ε、εの大小関係はε<ε<εである。
【0010】
本発明の実施の形態の歩行訓練装置は、筋音図計測手段を備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことである。
本発明の実施の形態の歩行訓練装置によれば、筋音図計測手段を備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことで、訓練者の患足側の下肢が発生する力の大きさが同じ場合でも、大腿四頭筋の筋音図のスペクトルのパワーの偏差が大きい程、装置の介助量が大きくなり、訓練者の下肢に負担をかけることがない。すなわち、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢肢駆動部の訓練者の下肢への介助量を調整することができる。なお、上記したように歩行周期の足尖離地の位相における下肢の踏出しを評価し、患足側の大腿四頭筋の活動を介助するのみでなく、踵接地、足底接地、立脚中期、踵離地、足尖離地、遊脚初期および遊脚後期の歩行1周期において、健足側と患足側のいずれかの筋の筋音図のスペクトルのパワーを評価し、前記いずれかの筋の活動を介助してもよい。
【0011】
次に本発明の第2の実施の形態の歩行訓練装置について図6を用いて説明する。
図6において、1は歩行訓練装置、2はコントローラ、3は訓練軌道生成部、4は訓練データ記憶部、5は訓練結果評価部、6は力センサ、7は角度センサ、8は大腿装着部、9は下腿装着部、10は訓練軌道(歩行パターン)、11は訓練者、12は下肢駆動部、13は足関節駆動部、14は操作パネル、16はピエゾ接触型センサである。図1に示す筋音図計測手段15としてピエゾ接触型センサ16を用いることで、第1の実施の形態と同様にして、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢駆動部の訓練者の下肢への介助量を調整することができる。
本発明の実施の形態の歩行訓練装置は、筋音図計測手段としてピエゾ接触型センサを備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことである。
【0012】
本発明の実施の形態の歩行訓練装置によれば、筋音図計測手段としてピエゾ接触型センサを備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことで、訓練者の患足側の下肢が発生する力の大きさが同じ場合でも、大腿四頭筋の筋音図のスペクトルのパワーの偏差が大きい程、装置の介助量が大きくなり、訓練者の下肢に負担をかけることがない。すなわち、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢駆動部の訓練者の下肢への介助量を調整することができる。
【0013】
次に本発明の第3の実施の形態の歩行訓練装置について図7を用いて説明する。
図7において、1は歩行訓練装置、2はコントローラ、3は訓練軌道生成部、4は訓練データ記憶部、5は訓練結果評価部、6は力センサ、7は角度センサ、8は大腿装着部、9は下腿装着部、10は訓練軌道(歩行パターン)、11は訓練者、12は下肢駆動部、13は足関節駆動部、14は操作パネル、17はコンデンサマイクロホンである。図1に示す筋音図計測手段15としてコンデンサマイクロホン17を用いることで、第1の実施の形態と同様にして、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢駆動部の訓練者の下肢への介助量を調整することができる。
本発明の実施の形態の歩行訓練装置は、筋音図計測手段としてコンデンサマイクロホンを備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことである。
【0014】
本発明の実施の形態の歩行訓練装置によれば、筋音図計測手段としてコンデンサマイクロホンを備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことで、訓練者の患足側の下肢が発生する力の大きさが同じ場合でも、大腿四頭筋の筋音図のスペクトルのパワーの偏差が大きい程、装置の介助量が大きくなり、訓練者の下肢に負担をかけることがない。すなわち、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢肢駆動部の訓練者の下肢への介助量を調整することができる。
【0015】
次に本発明の第4の実施の形態の歩行訓練装置について図8を用いて説明する。
図8において、1は歩行訓練装置、2はコントローラ、3は訓練軌道生成部、4は訓練データ記憶部、5は訓練結果評価部、6は力センサ、7は角度センサ、8は大腿装着部、9は下腿装着部、10は訓練軌道(歩行パターン)、11は訓練者、12は下肢駆動部、13は足関節駆動部、14は操作パネル、18は加速度計である。図1に示す筋音図計測手段15として加速度計18を用いることで、第1の実施の形態と同様にして、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢駆動部の訓練者の下肢への介助量を調整することができる。
本発明の実施の形態の歩行訓練装置は、筋音図計測手段として加速度計を備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことである。
本発明の実施の形態の歩行訓練装置によれば、筋音図計測手段として加速度計を備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことで、訓練者の患足側の下肢が発生する力の大きさが同じ場合でも、大腿四頭筋の筋音図のスペクトルのパワーの偏差が大きい程、装置の介助量が大きくなり、訓練者の下肢に負担をかけることがない。すなわち、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢駆動部の訓練者の下肢への介助量を調整することができる。
【0016】
次に本発明の第5の実施の形態の歩行訓練装置について図1に基づいて説明する。図1において、1は歩行訓練装置、2はコントローラ、3は訓練軌道生成部、4は訓練データ記憶部、5は訓練結果評価部、6は力センサ、7は角度センサ、8は大腿装着部、9は下腿装着部、10は訓練軌道(歩行パターン)、11は訓練者、12は下肢駆動部、13は足関節駆動部、14は操作パネル、15は筋音図計測手段である。第1の実施の形態と同様に、歩行周期の足尖離地の位相における下肢の踏出しを評価するため、大腿四頭筋の筋音図のスペクトルのパワーの偏差を3段階で評価する場合について説明する。今回の歩行周期の足尖離地の位相における、健足側と患足側の大腿四頭筋の筋音図のスペクトルのパワーの偏差を(1)|(健足側のスペクトルのピーク値)−(患足側のスペクトルのピーク値)|<ε
(2)ε<|(健足側のスペクトルのピーク値)−(患足側のスペクトルのピーク値)|<ε
(3)|(健足側のスペクトルのピーク値)−(患足側のスペクトルのピーク値)|>ε
の3段階で評価すると、次の歩行周期の足尖離地の位相における患足側の下肢の発生する力の大きさFが、
(1)のときF=(患足側の下肢の発生する力の大きさ)、
(2)のときF=1.5×(患足側の下肢の発生する力の大きさ)、
(3)のときF=2×(患足側の下肢の発生する力の大きさ)と変更する。
ただし、ε、ε、εの大小関係はε<ε<εである。
【0017】
本発明の実施の形態の歩行訓練装置は、筋音図計測手段を備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことである。
本発明の実施の形態の歩行訓練装置によれば、筋音図計測手段を備え、歩行1周期における健足側と患足側の筋音図のスペクトル解析を行い、健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、患足側の下肢の動作の介助を行うことで、訓練者の患足側の下肢が発生する力の大きさが同じ場合でも、大腿四頭筋の筋音図のスペクトルのパワーの偏差が大きい程、装置の介助量が大きくなり、訓練者の下肢に負担をかけることがない。すなわち、歩行訓練を行っている訓練者の肢体の筋肉の収縮力の変化に応じて、下肢駆動部の訓練者の下肢への介助量を調整することができる。
【0018】
【発明の効果】
請求項1記載の歩行訓練装置によれば、訓練者11の肢体に筋音図を計測する筋音図計測手段15を備え、前記訓練結果評価部5が、前記訓練軌道10の評価する区間において、前記筋音図計測手段15により計測された訓練者11の筋音図のスペクトル解析を行うとともに、歩行訓練を行っている訓練者11の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、前記下肢駆動部12の訓練者11の下肢への介助量を調整するよう前期訓練軌道生成部3に動作指令を与えることで、訓練者の筋肉の収縮力の変化に応じた歩行訓練ができ、訓練者が疲労してきた場合でも訓練者の筋肉の疲労度に応じた歩行訓練ができる。
請求項2記載の歩行訓練装置によれば、訓練者11の肢体に筋音図を計測する筋音図計測手段15を備え、前記訓練結果評価部5が、前記訓練軌道10の評価する区間において、ピエゾ接触型センサ16により計測された訓練者11の筋音図のスペクトル解析を行うとともに、歩行訓練を行っている訓練者11の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、前記下肢駆動部12の訓練者11の下肢への介助量を調整するよう前期訓練軌道生成部3に動作指令を与えることで、訓練者の筋肉の収縮力の変化に応じた歩行訓練ができ、訓練者が疲労してきた場合でも訓練者の筋肉の疲労度に応じた歩行訓練ができる。
請求項3記載の歩行訓練装置によれば、訓練者11の肢体に筋音図を計測する筋音図計測手段15を備え、前記訓練結果評価部5が、前記訓練軌道10の評価する区間において、コンデンサマイクロホン17により計測された訓練者11の筋音図のスペクトル解析を行うとともに、歩行訓練を行っている訓練者11の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、前記下肢駆動部12の訓練者11の下肢への介助量を調整するよう前期訓練軌道生成部3に動作指令を与えることで、訓練者の筋肉の収縮力の変化に応じた歩行訓練ができ、訓練者が疲労してきた場合でも訓練者の筋肉の疲労度に応じた歩行訓練ができる。
請求項4記載の歩行訓練装置によれば、訓練者11の肢体に筋音図を計測する筋音図計測手段15を備え、前記訓練結果評価部5が、前記訓練軌道10の評価する区間において、加速度計18により計測された訓練者11の筋音図のスペクトル解析を行うとともに、歩行訓練を行っている訓練者11の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、前記下肢駆動部12の訓練者11の下肢への介助量を調整するよう前期訓練軌道生成部3に動作指令を与えることで、訓練者の筋肉の収縮力の変化に応じた歩行訓練ができ、訓練者が疲労してきた場合でも訓練者の筋肉の疲労度に応じた歩行訓練ができる。
請求項5記載の歩行訓練装置によれば、前記訓練結果評価部5が筋音図計測手段15を用いて計測された、歩行1周期における訓練者11の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差を求め、筋音図のスペクトルの偏差を何段階かで評価し、前記評価に応じて訓練者11の患足側の下肢の発生する力の大きさを何倍かに増幅して歩行訓練を実施させることで、訓練者の収縮力の変化に応じて患足側の運動を介助することができ、効率的な訓練ができる。
【図面の簡単な説明】
【図1】本発明の歩行訓練装置の第1実施例のシステム構成図
【図2】健常者の歩行周期の位相と股関節、膝関節および足関節の関節運動との関係を示す図
【図3】歩行訓練装置による歩行パターン図
【図4】筋音図のスペクトル解析結果のパワー図
【図5】筋肉の収縮力の変化に伴う筋音図のスペクトル解析結果のパワー及び平均周波数の推移図
【図6】本発明の歩行訓練装置の第2実施例のシステム構成図
【図7】本発明の歩行訓練装置の第3実施例のシステム構成図
【図8】本発明の歩行訓練装置の第4実施例のシステム構成図
【図9】従来の歩行訓練装置のシステム構成図
【符号の説明】
1 歩行訓練装置
2 コントローラ
3 訓練データ生成部
4 訓練データ記憶部
5 訓練結果評価部
6 力センサ
7 角度センサ
8 大腿装着部
9 下腿装着部
10 訓練軌道(歩行パターン)
11 訓練者
12 下肢駆動部
13 足関節駆動部
14 操作パネル
15 筋音図計測手段
16 ピエゾ型接触センサ
17 コンデンサマイクロホン
18 加速度計
110 駆動装置
111 ベース
112 基部
113、114、115 駆動軸
116、117 リンク
118 力センサ
119 把持部
120 制御装置
121 仮想床面生成部
122 軌道教示部
123 負荷情報変換部
124 肢体駆動部
125 仮想重力設定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a walking training apparatus and a method for measuring the state of a patient who is performing rehabilitation, and performing a walking exercise in accordance with the state of the patient, for a patient having an injury to motor function or brain function. is there.
[0002]
[Prior art]
As a conventional gait training device, one that aims to carry out training that encourages actual walking motion in a lying position is disclosed in Japanese Patent Laid-Open No. 2000-102576. Will be explained.
FIG. 9 is a diagram showing a configuration of a conventional walking training device. 111 is a base, and 112 is a base fixed thereon. 113, 114, and 115 are drive shafts, 116 and 117 are links, 118 is a force sensor, and 119 is a grip. The drive shaft 113 is driven by a motor built in the base 112 and can turn the link 116. The drive shaft 114 is driven by a motor built in the base 112, and power is transmitted through a power transmission mechanism in the link 116 to turn the link 117 with respect to the link 116. The drive shaft 115 is driven by a motor built in the base 112, and power is transmitted through a power transmission mechanism in the links 116 and 117 so that the gripper 119 can turn with respect to the link 117. A force sensor 118 is provided between the drive shaft 115 and the gripper 119, and a force acting between the gripper 119 and the drive shaft 115 is detected to output a force signal F. The motor for the drive shafts 113, 114, and 115 provided on the base 112 has a built-in rotation sensor, and can detect any one of the rotation position, the rotation speed, and the rotation acceleration of the drive shafts 113, 114, and 115. It has become. The lower leg of a reclining person is fixed to the grip portion 119, and a portion facing the sole receives the force of the sole. Then, the control device 120 including the virtual floor surface generation unit 121, the trajectory teaching unit 122, the load information conversion unit 123, the limb driving unit 124, and the virtual gravity setting unit 125 moves toward the virtual traveling direction FF. The load at the time of walking can be given to a patient (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-102576 A
[Problems to be solved by the invention]
However, in the above-described conventional walking training apparatus, when performing walking training, a load is applied to the patient when walking in the virtual traveling direction, but the limb drive is performed according to a change in the contraction force of the muscles of the limb of the patient. If the patient's lower limb assistance could not be adjusted and the patient became tired, the patient's lower limb could be forced to train.
On the other hand, a myocardiogram is a minute vibration that appears on the body surface on the active muscle, and is a result of the diameter of the muscle fiber expanding and changing to the side. The muscle sound diagram is located between the electromyogram reflecting the electrical activity of the muscle and the muscle force which is the driving force of the movement, and indicates the mechanical activity of the muscle.
The present invention has been made in order to solve these problems, and measures the contraction force of the muscles of the limb of a patient who is undergoing gait training. An object of the present invention is to provide a walking training device that can adjust the amount of assistance and can perform walking training according to the degree of muscle fatigue of a patient even when the patient is tired.
[0005]
[Means for Solving the Problems]
Therefore, a walking training device of the present invention includes a lower limb driving unit that controls the operation of the device by force control based on sensing information of a force sensor and an angle sensor attached to the walking training device, and a limb of a trainee with respect to a training trajectory. A training result evaluation unit that evaluates the magnitude of the force generated, an ankle drive unit that drives the ankle joint of the trainee in the lower limb drive unit, and a training data storage unit that stores training data in a controller. A training trajectory generation unit that generates a training trajectory that gives an operation command to the controller and drives the lower limb driving unit and the ankle joint driving unit in accordance with a walking pattern to operate both lower limbs in cooperation with each other. The walking training device for performing a walking exercise in accordance with the state of the trainee, the walking training device further includes a muscle sound diagram measuring unit that measures a muscle sound diagram on the limb of the trainee, and the training result evaluation unit includes the training result evaluating unit. In a section to be evaluated on the road, a spectrum analysis of the trainee's muscle sound diagram measured by the muscle sound diagram measuring means is performed, and the muscles on the healthy foot side and the affected foot side of the trainee who are performing walking training. An operation command is given to the training trajectory generating unit to adjust the amount of assistance of the lower limb driving unit to the lower limb of the trainee according to the deviation of the peak value of the power of the spectrum of the sound diagram.
Because of this, the walking training can be performed according to the change in the contraction force of the trainee's muscles, and even when the trainee is tired, the walking training can be performed according to the trainee's muscle fatigue level.
[0006]
Further, the walking training apparatus of the present invention is characterized in that a piezo-contact type sensor, a condenser microphone, or an accelerometer is used as the muscle sound diagram measuring means.
Thereby, walking training can be performed according to the change in the contraction force of the trainee's muscles, and even when the trainee becomes tired, walking training can be performed according to the trainee's muscle fatigue level.
In the walking training device of the present invention, the training result evaluation unit measures the spectrum of the muscle sound map on the healthy foot side and the affected foot side of the trainee in one cycle of walking, which is measured using the muscle sound chart measuring means. Find the deviation of the peak value of the power, evaluate the deviation of the spectrum of the myocardiogram in several steps, and multiply the magnitude of the force generated by the lower limb of the trainee's affected foot according to the evaluation. It is characterized by amplifying and performing walking training.
Thereby, the exercise on the affected foot side can be assisted according to the change in the contraction force of the trainee, and efficient training can be performed.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a walking training device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a system configuration of the walking training device according to the first embodiment of the present invention. 1 is a walking training device, 2 is a controller, 3 is a training trajectory generation unit, 4 is a training data storage unit, 5 is a training result evaluation unit, 6 is a force sensor, 7 is an angle sensor, 8 is a thigh mounting unit, and 9 is a lower leg. A wearing section, 10 is a training trajectory (walking pattern), 11 is a trainee, 12 is a lower limb driving section, 13 is an ankle driving section, 14 is an operation panel, and 15 is a muscle sound diagram measuring means. FIG. 2 is a diagram showing the relationship between the phase of the walking cycle and the joint movements of the hip joint, knee joint, and ankle joint of a healthy person. The phase of the walking cycle is composed of heel contact, sole contact, mid-stance, heel takeoff, foot tip takeoff, early swing and early swing, and the hip, knee and ankle flexion according to each phase.・ Extension movement is repeated. FIG. 3 is a diagram illustrating the realization of a walking pattern in the walking training device according to the embodiment of the present invention. FIG. 5 is a diagram in which a training trajectory generating unit gives an operation command to a controller, and the controller controls a lower limb driving unit and an ankle joint driving unit to realize a walking pattern. (A) is heel contact, (b) is sole contact, (c) is mid-stance, (d) is heel off, (e) is foot apex, (f) is early swing, (g) FIG. 4 is a diagram that realizes the latter half of the swing leg. Doctors and physiotherapists use the operation panel to provide training content (training mode (passive exercise training, automatic assistive exercise training, etc.), repetition count, exercise hardness (mechanical impedance control inertia, viscosity, rigidity coefficient ), A training trajectory (walking pattern)) is input, and the training trajectory (walking pattern) data is called from the training data storage unit. Then, the controller controls the lower limb drive unit and the ankle joint drive unit, and forms a walking pattern having one cycle of heel contact, sole contact, middle stance, heel takeoff, foot tip takeoff, free leg early and late free leg. Along the way, repeat the training action. Further, the force generated by the trainee is detected by the force sensor, and the controller controls the lower limb driving unit in mechanical impedance so that the trainee is not subjected to an unreasonable load.
[0008]
FIG. 4 is a diagram illustrating an example of the power of the spectrum analysis result of the myocardial diagram according to the first embodiment of the present invention. MVC is an abbreviation for Maximum Voluntary Contraction, and refers to maximum voluntary muscle strength. FIG. 5 is a diagram showing an example of transition of power and average frequency of the result of spectrum analysis of a muscle sound diagram accompanying a change in muscle contraction force according to the first embodiment of the present invention. As shown in FIGS. 4 and 5, the spectrum of the myocardiogram is distributed over a wide range of 5 to 70 Hz, and a large peak appears in a band of 5 to 15 Hz as the exertion power increases. The average frequency also increases as the performance increases. As the muscular strength is gradually increased, the slow muscle fibers start to be active, and the muscular strength is adjusted by increasing the number of the muscle fibers. When the exertion power reaches 30 to 40% MVC or more, fast muscle fibers having a high tension and a high firing frequency participate in addition to an increase in the firing frequency of the already active slow muscle fibers. However, once the muscle's intrinsic strength level is reached, the number of participating muscle fibers is limited. The muscle strength level is said to be 50% MVC for small muscles such as the adductor thumb and 80-90% MVC for large muscles such as the quadriceps. Greater muscle strength is supported by an increase in the firing frequency of muscle fibers.
[0009]
Hereinafter, as an example of evaluating the stepping of the lower limb in the phase of the apex separation of the walking cycle, the training of the lower limb driving unit is performed according to the change in the contraction force of the muscles of the limb of the trainee performing the walking training. A method for adjusting the amount of assistance to the lower limbs of a person will be described.
First, the training result evaluation unit measures the muscle sound of the healthy foot and the affected foot in one cycle of walking, which is measured using the muscle sound diagram measurement means attached to the quadriceps muscles of the healthy foot and the affected foot. Perform spectrum analysis of the figure. Then, the deviation of the peak value of the power of the spectrum of the myocardium between the healthy foot and the affected foot in the band of 5 to 15 Hz of the frequency of the myocardiogram is obtained. Here, a description will be given of a case where the deviation of the power of the spectrum of the muscle sound map of the quadriceps femoris is evaluated in three stages in order to evaluate the stepping of the lower limb in the phase of the foot tip separation in the walking cycle. (1) | (peak value of spectrum of healthy foot side) − (Peak value of spectrum on affected side) | <ε 1 ,
(2) ε 1 <| (peak value of spectrum on healthy foot side) − (peak value of spectrum on affected foot side) | <ε 2 ,
(3) | (peak value of the spectrum of Kenashi side) - (the peak value of the spectrum of患足side) |> When ε is evaluated in three of three stages,患足in the next walking cycle of toe Hanarechi phase The magnitude F of the force generated by the lower leg on the side is
In the case of (1), F = (the magnitude of the force generated by the lower leg on the affected foot side),
In the case of (2), F = 1.5 × (the magnitude of the force generated by the lower leg on the affected foot side),
In the case of (3), change to F = 2 × (the magnitude of the force generated by the lower leg on the affected foot side).
However, the magnitude relationship between ε 1 , ε 2 , and ε 3 is ε 123 .
[0010]
The walking training apparatus according to the embodiment of the present invention includes a muscle sound map measuring means, performs a spectral analysis of a muscle sound map on the healthy foot side and the affected foot side in one cycle of walking, and performs muscle analysis on the healthy foot side and the affected foot side. The purpose is to assist the movement of the lower limb on the affected foot in accordance with the deviation of the peak value of the power of the spectrum of the sound diagram.
According to the gait training device of the embodiment of the present invention, the muscular sound diagram measuring means is provided, and the spectrum analysis of the muscular sound diagram of the healthy foot side and the affected foot side in one cycle of walking is performed. According to the deviation of the peak value of the power of the spectrum of the muscle sound diagram, by assisting the movement of the lower limb of the affected foot side, even if the magnitude of the force generated by the lower limb of the trainee's affected side is the same The greater the deviation of the power of the spectrum of the quadriceps femoris muscle, the greater the amount of assistance of the device and the less burden is placed on the lower limb of the trainee. That is, the amount of assistance of the lower limb limb driving unit to the lower limb of the trainee can be adjusted according to the change in the contraction force of the muscles of the limbs of the trainee performing the walking training. In addition, as described above, the stepping of the lower limb in the phase of the apex separation of the walking cycle is evaluated, and not only assisting the activity of the quadriceps muscle on the affected foot side, but also the heel contact, the sole contact, and the mid In one cycle of walking in the heel off, the apex off, the early swing phase and the late swing phase, the power of the spectrum of the muscle sound map of the muscle on either the healthy foot side or the affected foot side is evaluated, May assist in the activities of the muscles.
[0011]
Next, a walking training device according to a second embodiment of the present invention will be described with reference to FIG.
6, 1 is a walking training device, 2 is a controller, 3 is a training trajectory generation unit, 4 is a training data storage unit, 5 is a training result evaluation unit, 6 is a force sensor, 7 is an angle sensor, and 8 is a thigh mounting unit. Reference numeral 9 denotes a lower leg mounting portion, 10 denotes a training trajectory (walking pattern), 11 denotes a trainee, 12 denotes a lower limb driving unit, 13 denotes an ankle driving unit, 14 denotes an operation panel, and 16 denotes a piezo contact type sensor. By using the piezo-contact type sensor 16 as the muscle sound diagram measuring means 15 shown in FIG. 1, in the same manner as in the first embodiment, the change in the contraction force of the muscles of the limbs of the trainee performing the walking training can be obtained. Accordingly, the amount of assistance of the lower limb driving unit to the lower limb of the trainee can be adjusted.
The walking training device according to the embodiment of the present invention includes a piezo-contact type sensor as a muscle sound map measuring means, performs a spectrum analysis of a muscle sound map of a healthy foot side and a diseased foot side in one cycle of walking, and The purpose is to assist the movement of the lower limb of the affected foot in accordance with the deviation of the peak value of the power of the spectrum of the myocardiogram on the affected foot.
[0012]
According to the walking training apparatus of the embodiment of the present invention, a piezo-contact type sensor is provided as a muscle sound map measuring means, and the spectrum analysis of the muscle sound maps of the healthy foot side and the affected foot side in one cycle of walking is performed. The magnitude of the force generated by the trainee's lower limb by assisting the movement of the lower limb of the trainee in accordance with the deviation of the peak value of the power of the spectrum of the myocardiogram between the lower limb and the affected limb Even if the powers are the same, the greater the deviation of the power of the spectrum of the quadriceps muscle sound map, the greater the amount of assistance of the device and the less burden on the trainee's lower limbs. That is, the amount of assistance of the lower limb driving unit to the lower limb of the trainee can be adjusted in accordance with the change in the contraction force of the muscles of the limbs of the trainee performing the walking training.
[0013]
Next, a walking training device according to a third embodiment of the present invention will be described with reference to FIG.
In FIG. 7, 1 is a walking training device, 2 is a controller, 3 is a training trajectory generation unit, 4 is a training data storage unit, 5 is a training result evaluation unit, 6 is a force sensor, 7 is an angle sensor, and 8 is a thigh mounting unit. Reference numeral 9 denotes a lower leg mounting portion, 10 denotes a training trajectory (walking pattern), 11 denotes a trainee, 12 denotes a lower limb driving unit, 13 denotes an ankle driving unit, 14 denotes an operation panel, and 17 denotes a condenser microphone. By using the condenser microphone 17 as the muscle sound diagram measuring means 15 shown in FIG. 1, in the same manner as in the first embodiment, according to the change in the contraction force of the muscles of the limbs of the trainee who is performing walking training. The amount of assistance of the lower limb drive to the lower limb of the trainee can be adjusted.
The walking training apparatus according to the embodiment of the present invention includes a condenser microphone as a muscle sound map measuring means, performs a spectrum analysis of a muscle sound map on the healthy foot side and the affected foot side in one cycle of walking, and performs It is to assist the movement of the lower limb on the affected foot side according to the deviation of the peak value of the power of the spectrum of the myocardiogram on the side.
[0014]
According to the walking training device of the embodiment of the present invention, a condenser microphone is provided as a muscle sound map measuring means, and a spectrum analysis of a muscle sound map on a healthy foot side and an affected foot side in one cycle of walking is performed, and By assisting the movement of the lower limb of the affected foot in accordance with the deviation of the peak value of the power of the spectrum of the muscle sound diagram on the affected foot, the magnitude of the force generated by the lower limb of the trainee on the affected foot is reduced. Even in the same case, the greater the deviation of the power of the spectrum of the quadriceps femoris muscle, the greater the amount of assistance of the device and the less burden on the lower limbs of the trainee. That is, the amount of assistance of the lower limb limb driving unit to the lower limb of the trainee can be adjusted according to the change in the contraction force of the muscles of the limbs of the trainee performing the walking training.
[0015]
Next, a walking training device according to a fourth embodiment of the present invention will be described with reference to FIG.
8, 1 is a walking training device, 2 is a controller, 3 is a training trajectory generation unit, 4 is a training data storage unit, 5 is a training result evaluation unit, 6 is a force sensor, 7 is an angle sensor, and 8 is a thigh mounting unit. , 9 is a lower leg mounting portion, 10 is a training trajectory (walking pattern), 11 is a trainee, 12 is a lower limb driving unit, 13 is an ankle driving unit, 14 is an operation panel, and 18 is an accelerometer. By using the accelerometer 18 as the muscle sound diagram measuring means 15 shown in FIG. 1, according to the change in the contraction force of the muscles of the limbs of the trainee performing the walking training, as in the first embodiment. The amount of assistance of the lower limb drive to the lower limb of the trainee can be adjusted.
The walking training apparatus according to the embodiment of the present invention includes an accelerometer as a muscle sound map measuring means, performs a spectrum analysis of a muscle sound map on the healthy foot side and the affected foot side in one cycle of walking, and performs It is to assist the movement of the lower limb on the affected foot side according to the deviation of the peak value of the power of the spectrum of the myocardiogram on the side.
According to the walking training apparatus of the embodiment of the present invention, an accelerometer is provided as a muscle sound map measuring means, and a spectrum analysis of a muscle sound map on a healthy foot side and a diseased foot side in one cycle of walking is performed. By assisting the movement of the lower limb of the affected foot in accordance with the deviation of the peak value of the power of the spectrum of the muscle sound diagram on the affected foot, the magnitude of the force generated by the lower limb of the trainee on the affected foot is reduced. Even in the same case, the greater the deviation of the power of the spectrum of the quadriceps femoris muscle, the greater the amount of assistance of the device and the less burden on the lower limbs of the trainee. That is, the amount of assistance of the lower limb driving unit to the lower limb of the trainee can be adjusted in accordance with the change in the contraction force of the muscles of the limbs of the trainee performing the walking training.
[0016]
Next, a walking training device according to a fifth embodiment of the present invention will be described with reference to FIG. In FIG. 1, 1 is a walking training device, 2 is a controller, 3 is a training trajectory generation unit, 4 is a training data storage unit, 5 is a training result evaluation unit, 6 is a force sensor, 7 is an angle sensor, and 8 is a thigh mounting unit. , 9 is a lower leg mounting portion, 10 is a training trajectory (walking pattern), 11 is a trainee, 12 is a lower limb driving unit, 13 is an ankle driving unit, 14 is an operation panel, and 15 is a muscle sound diagram measuring means. As in the first embodiment, in order to evaluate the stepping of the lower limb in the phase of foot-to-foot separation in the walking cycle, the power deviation of the spectrum of the quadriceps femoris muscle is evaluated in three stages. Will be described. (1) | (peak value of spectrum of healthy foot side) − (Peak value of spectrum on affected side) | <ε 1 ,
(2) ε 1 <| (peak value of spectrum on healthy foot side) − (peak value of spectrum on affected foot side) | <ε 2 ,
(3) | (peak value of spectrum on healthy foot side) − (peak value of spectrum on affected foot side) |> ε 3
When evaluated in three stages, the magnitude F of the force generated by the lower limb on the affected foot side in the phase of the apex separation of the next walking cycle is:
In the case of (1), F = (the magnitude of the force generated by the lower leg on the affected foot side),
In the case of (2), F = 1.5 × (the magnitude of the force generated by the lower leg on the affected foot side),
In the case of (3), change to F = 2 × (the magnitude of the force generated by the lower leg on the affected foot side).
However, the magnitude relationship between ε 1 , ε 2 , and ε 3 is ε 123 .
[0017]
The walking training apparatus according to the embodiment of the present invention includes a muscle sound map measuring means, performs a spectral analysis of a muscle sound map on the healthy foot side and the affected foot side in one cycle of walking, and performs muscle analysis on the healthy foot side and the affected foot side. The purpose is to assist the movement of the lower limb on the affected foot in accordance with the deviation of the peak value of the power of the spectrum of the sound diagram.
According to the gait training device of the embodiment of the present invention, the muscular sound diagram measuring means is provided, and the spectrum analysis of the muscular sound diagram of the healthy foot side and the affected foot side in one cycle of walking is performed. According to the deviation of the peak value of the power of the spectrum of the muscle sound diagram, by assisting the movement of the lower limb of the affected foot side, even if the magnitude of the force generated by the lower limb of the trainee's affected side is the same The greater the deviation of the power of the spectrum of the quadriceps femoris muscle, the greater the amount of assistance of the device and the less burden is placed on the lower limb of the trainee. That is, the amount of assistance of the lower limb driving unit to the lower limb of the trainee can be adjusted in accordance with the change in the contraction force of the muscles of the limbs of the trainee performing the walking training.
[0018]
【The invention's effect】
According to the walking training device according to claim 1, the training result evaluation unit 5 includes the muscle sound diagram measurement unit 15 that measures a muscle sound diagram on a limb of the trainee 11, and the training result evaluation unit 5 evaluates the training trajectory 10 in a section to be evaluated. The spectrum analysis of the muscle sound diagram of the trainee 11 measured by the muscle sound diagram measuring means 15 is performed, and the spectrum of the muscle sound diagram of the healthy foot side and the affected foot side of the trainee 11 performing the walking training is analyzed. By giving an operation instruction to the training trajectory generating unit 3 to adjust the amount of assistance of the lower limb driving unit 12 to the lower limb of the trainee 11 according to the deviation of the peak value of the power, the contraction force of the trainee's muscles Can be performed in accordance with the change of the trainee, and even when the trainee becomes tired, the walk training can be performed in accordance with the degree of muscle fatigue of the trainee.
According to the walking training device of the second aspect, the muscular diagram measuring means 15 for measuring the muscular diagram on the limb of the trainee 11 is provided. , The spectrum analysis of the muscle sound map of the trainee 11 measured by the piezo contact sensor 16 and the power of the spectrum of the muscle sound map of the healthy foot side and the affected foot side of the trainee 11 performing the walking training. By giving an operation command to the training trajectory generating unit 3 so as to adjust the amount of assistance of the lower limb driving unit 12 to the lower limb of the trainee 11 according to the deviation of the peak value, the change in the contraction force of the muscle of the trainer is changed. Walking training can be performed according to the degree of fatigue of the muscles of the trainee, even if the trainee becomes tired.
According to the walking training device of the third aspect, the training sound evaluation device 5 is provided with the muscle sound diagram measuring means 15 for measuring the muscle sound diagram on the limb of the trainee 11, and the training result evaluation unit 5 evaluates the training trajectory 10 in the section to be evaluated. , A spectrum analysis of the muscle sound diagram of the trainee 11 measured by the condenser microphone 17, and a peak value of the power of the spectrum of the muscle sound diagram on the healthy foot side and the affected foot side of the trainee 11 performing the walking training. By giving an operation command to the training trajectory generating unit 3 to adjust the amount of assistance of the lower limb driving unit 12 to the lower limb of the trainee 11 in accordance with the deviation of Walking training can be performed, and even when the trainee becomes tired, walking training can be performed in accordance with the degree of muscle fatigue of the trainee.
According to the gait training device of the fourth aspect, the limb of the trainee 11 is provided with the muscular diagram measuring means 15 for measuring the muscular diagram, and the training result evaluating unit 5 is used in the section where the training trajectory 10 is evaluated. The peak value of the power of the spectrum of the muscle sound map of the trainee 11 performing the walking training while showing the muscle analysis of the muscle sound map of the trainee 11 measured by the accelerometer 18 By giving an operation command to the training trajectory generating unit 3 to adjust the amount of assistance of the lower limb driving unit 12 to the lower limb of the trainee 11 in accordance with the deviation of Walking training can be performed, and even when the trainee becomes tired, walking training can be performed in accordance with the degree of muscle fatigue of the trainee.
According to the walking training device of the fifth aspect, the training result evaluation unit 5 measures the muscle sound on the healthy foot side and the affected foot side of the trainee 11 in one cycle of walking, which is measured using the muscle sound diagram measuring means 15. The deviation of the peak value of the power of the spectrum of the figure is obtained, the deviation of the spectrum of the myocardiogram is evaluated in several steps, and according to the evaluation, the magnitude of the force generated by the lower leg of the trainee 11 on the affected foot side is determined. By amplifying the walking training by several times, the exercise on the affected foot side can be assisted according to the change in the contraction force of the trainee, and efficient training can be performed.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a first embodiment of a walking training device of the present invention. FIG. 2 is a diagram showing a relationship between a phase of a walking cycle of a healthy person and joint movements of a hip joint, a knee joint, and an ankle joint. FIG. 4 is a power diagram of a spectrum analysis result of a muscle sound diagram. FIG. 5 is a transition diagram of a power and an average frequency of a spectrum analysis result of a muscle sound diagram accompanying a change in muscle contraction force. FIG. 6 is a system configuration diagram of a second embodiment of the walking training device of the present invention. FIG. 7 is a system configuration diagram of a third embodiment of the walking training device of the present invention. FIG. 8 is a fourth diagram of the walking training device of the present invention. FIG. 9 is a system configuration diagram of a conventional walking training device.
Reference Signs List 1 walking training device 2 controller 3 training data generation unit 4 training data storage unit 5 training result evaluation unit 6 force sensor 7 angle sensor 8 thigh mounting unit 9 crus mounting unit 10 training trajectory (walking pattern)
DESCRIPTION OF SYMBOLS 11 Trainer 12 Lower limb drive part 13 Foot joint drive part 14 Operation panel 15 Muscle sound figure measuring means 16 Piezo-type contact sensor 17 Condenser microphone 18 Accelerometer 110 Drive 111 Base 112 Base 113, 114, 115 Drive shaft 116, 117 Link 118 Force sensor 119 Gripping unit 120 Control device 121 Virtual floor generation unit 122 Trajectory teaching unit 123 Load information conversion unit 124 Limb drive unit 125 Virtual gravity setting unit

Claims (5)

歩行訓練装置に取り付けられた力センサと角度センサのセンシング情報をもとに、力制御によって装置の動作を制御する下肢駆動部と、
訓練軌道に対する訓練者の肢体が発生する力の大きさを評価する訓練結果評価部と、
前記下肢駆動部に前記訓練者の足関節を駆動する足関節駆動部と、
コントローラ内に訓練データを記憶する訓練データ記憶部と、
前記コントローラに動作指令を与え歩行パターンにあわせて前記下肢駆動部と前記足関節駆動部とを駆動し両下肢を協調させて動作させる訓練軌道を生成する訓練軌道生成部と、
を備えて前記訓練者の状態に応じて歩行運動を行わせる前記歩行訓練装置において、
前記訓練者の肢体に筋音図を計測する筋音図計測手段を備え、
前記訓練結果評価部が、前記訓練軌道の評価する区間において、前記筋音図計測手段により計測された前記訓練者の筋音図のスペクトル解析を行うとともに、歩行訓練を行っている前記訓練者の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差に応じて、前記下肢駆動部の前記訓練者の下肢への介助量を調整するよう前記訓練軌道生成部に動作指令を与える
ことを特徴とする歩行訓練装置。
Based on the sensing information of the force sensor and the angle sensor attached to the walking training device, a lower limb driving unit that controls the operation of the device by force control,
A training result evaluation unit that evaluates the magnitude of the force generated by the trainee's limb with respect to the training trajectory,
An ankle drive that drives the ankle of the trainee to the lower limb drive,
A training data storage unit for storing training data in the controller;
A training trajectory generation unit that generates a training trajectory that drives the lower limb driving unit and the ankle joint driving unit in accordance with a walking pattern by giving an operation command to the controller and operates both lower limbs in cooperation with each other,
In the walking training device that has a to perform a walking exercise according to the state of the trainee,
A muscle sound diagram measuring means for measuring a muscle sound diagram on the limb of the trainee,
The training result evaluation unit performs a spectrum analysis of the trainee's muscle sound diagram measured by the muscle sound diagram measurement unit in a section to be evaluated of the training trajectory, and the trainee performing the walking training. An operation command is issued to the training trajectory generation unit to adjust the amount of assistance of the lower limb driving unit to the lower limb of the trainee according to the deviation of the peak value of the power of the spectrum of the muscle sound diagram on the healthy foot side and the affected foot side. Walking training device, characterized by giving
前記筋音図計測手段として、ピエゾ接触型センサを用いることを特徴とする請求項1に記載の歩行訓練装置。The walking training device according to claim 1, wherein a piezo-contact-type sensor is used as the muscle sound diagram measuring means. 前記筋音図計測手段として、コンデンサマイクロホンを用いることを特徴とする請求項1に記載の歩行訓練装置。The walking training device according to claim 1, wherein a condenser microphone is used as the muscle sound diagram measuring means. 前記筋音図計測手段として、加速度計を用いることを特徴とする請求項1に記載の歩行訓練装置。The walking training device according to claim 1, wherein an accelerometer is used as the muscle sound diagram measuring means. 前記訓練結果評価部が前記筋音図計測手段を用いて計測された、歩行1周期における前記訓練者の健足側と患足側の筋音図のスペクトルのパワーのピーク値の偏差を求め、筋音図のスペクトルの偏差を何段階かで評価し、前記評価に応じて前記訓練者の患足側の下肢の発生する力の大きさを何倍かに増幅して歩行訓練を実施させることを特徴とする請求項1に記載の歩行訓練装置。The training result evaluating unit measures the deviation of the peak value of the power of the spectrum of the muscle sound map on the healthy foot side and the affected foot side of the trainee in one cycle of walking, which is measured using the muscle sound chart measurement unit, Evaluating the deviation of the spectrum of the muscle sound diagram at several stages, and performing the walking training by amplifying the magnitude of the force generated by the lower limb of the affected foot side of the trainee several times according to the evaluation. The walking training device according to claim 1, wherein:
JP2002337715A 2002-11-21 2002-11-21 Gait training apparatus Pending JP2004167056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337715A JP2004167056A (en) 2002-11-21 2002-11-21 Gait training apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337715A JP2004167056A (en) 2002-11-21 2002-11-21 Gait training apparatus

Publications (1)

Publication Number Publication Date
JP2004167056A true JP2004167056A (en) 2004-06-17

Family

ID=32701146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337715A Pending JP2004167056A (en) 2002-11-21 2002-11-21 Gait training apparatus

Country Status (1)

Country Link
JP (1) JP2004167056A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064657A1 (en) * 2004-12-16 2006-06-22 Honda Motor Co., Ltd. External force control method, external force control system and external force control program
JP2006239086A (en) * 2005-03-02 2006-09-14 Matsushita Electric Works Ltd Walking sensation generating device
JP2007020835A (en) * 2005-07-15 2007-02-01 National Institute Of Advanced Industrial & Technology Rehabilitation apparatus
JP2007130172A (en) * 2005-11-09 2007-05-31 Toyohashi Univ Of Technology Walking assist control method and its walking assist controller
JP2008192004A (en) * 2007-02-06 2008-08-21 Hiroshima Univ Input information processor, input information processing method, input information processing program and computer-readable recording medium for recording program thereof
JP2009297206A (en) * 2008-06-12 2009-12-24 Tohoku Univ Measuring system for noninvasively evaluating damaged state of human muscle
JP2010264320A (en) * 2010-09-01 2010-11-25 Tokyo Institute Of Technology Gait evaluation system and gait evaluation method
JP2011182824A (en) * 2010-03-04 2011-09-22 Oki Electric Industry Co Ltd Action condition estimating device, action condition learning device, action condition estimation method, the action condition learning method, and program
JP2014076199A (en) * 2012-10-11 2014-05-01 Panasonic Corp Body motion detection apparatus and human-body stimulation apparatus comprising the apparatus
CN105662789A (en) * 2016-03-30 2016-06-15 北京精密机电控制设备研究所 Exoskeleton system for monitoring and controlling disabled limb movement based on healthy limb movement
JP2016165338A (en) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 Walking assist device
CN109793644A (en) * 2017-11-17 2019-05-24 丰田自动车株式会社 Gait evaluation device, gait training system and gait evaluation method
CN113813566A (en) * 2021-10-08 2021-12-21 上海卓道医疗科技有限公司 Ankle joint rehabilitation training device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167223A (en) * 2004-12-16 2006-06-29 Honda Motor Co Ltd Method, system, and program for controlling external force
JP4541867B2 (en) * 2004-12-16 2010-09-08 本田技研工業株式会社 External force control method, external force control system, and external force control program
WO2006064657A1 (en) * 2004-12-16 2006-06-22 Honda Motor Co., Ltd. External force control method, external force control system and external force control program
US7860562B2 (en) 2004-12-16 2010-12-28 Honda Motor Co., Ltd. External force control method, external force control system and external force control program
JP2006239086A (en) * 2005-03-02 2006-09-14 Matsushita Electric Works Ltd Walking sensation generating device
JP2007020835A (en) * 2005-07-15 2007-02-01 National Institute Of Advanced Industrial & Technology Rehabilitation apparatus
JP4618795B2 (en) * 2005-07-15 2011-01-26 独立行政法人産業技術総合研究所 Rehabilitation equipment
JP4724832B2 (en) * 2005-11-09 2011-07-13 国立大学法人豊橋技術科学大学 Walking assistance control method and walking assistance control device
JP2007130172A (en) * 2005-11-09 2007-05-31 Toyohashi Univ Of Technology Walking assist control method and its walking assist controller
JP2008192004A (en) * 2007-02-06 2008-08-21 Hiroshima Univ Input information processor, input information processing method, input information processing program and computer-readable recording medium for recording program thereof
JP2009297206A (en) * 2008-06-12 2009-12-24 Tohoku Univ Measuring system for noninvasively evaluating damaged state of human muscle
JP2011182824A (en) * 2010-03-04 2011-09-22 Oki Electric Industry Co Ltd Action condition estimating device, action condition learning device, action condition estimation method, the action condition learning method, and program
JP2010264320A (en) * 2010-09-01 2010-11-25 Tokyo Institute Of Technology Gait evaluation system and gait evaluation method
JP2014076199A (en) * 2012-10-11 2014-05-01 Panasonic Corp Body motion detection apparatus and human-body stimulation apparatus comprising the apparatus
US9802040B2 (en) 2012-10-11 2017-10-31 Panasonic Intellectual Property Management Co., Ltd. Body motion detection device and human body stimulation apparatus comprising said device
JP2016165338A (en) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 Walking assist device
CN105662789A (en) * 2016-03-30 2016-06-15 北京精密机电控制设备研究所 Exoskeleton system for monitoring and controlling disabled limb movement based on healthy limb movement
CN109793644A (en) * 2017-11-17 2019-05-24 丰田自动车株式会社 Gait evaluation device, gait training system and gait evaluation method
CN113813566A (en) * 2021-10-08 2021-12-21 上海卓道医疗科技有限公司 Ankle joint rehabilitation training device

Similar Documents

Publication Publication Date Title
Lenzi et al. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking
CN106264988A (en) Exoskeleton ankle joint installations
JP4156933B2 (en) Device for retraining and / or training of human lower limbs
US6666831B1 (en) Method, apparatus and system for automation of body weight support training (bwst) of biped locomotion over a treadmill using a programmable stepper device (psd) operating like an exoskeleton drive system from a fixed base
Chen et al. Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges
CN105796286B (en) Use the lower limb exoskeleton robot control method of air bag sensor
JP4168242B2 (en) Rehabilitation support device
JP6175050B2 (en) Active robotic walking training system and method
CN101827635B (en) Strengthen training system and the method for lower limb off-axis neuromuscularcontrol ability
Zanotto et al. ALEX III: A novel robotic platform with 12 DOFs for human gait training
Ward et al. Stroke survivors' gait adaptations to a powered ankle–foot orthosis
JP2004167056A (en) Gait training apparatus
JP2014073199A (en) Walking support device and walking support program
Ortlieb et al. An assistive lower limb exoskeleton for people with neurological gait disorders
US20210251838A1 (en) Bio-inspired adaptive impedance based controller for human-robot interaction and method
Vashista et al. A novel approach to apply gait synchronized external forces on the pelvis using A-TPAD to reduce walking effort
Hasan et al. State of the art technologies for exoskeleton human lower extremity rehabilitation robots
JP2005211086A (en) Walking training apparatus
JP2001029409A (en) Foot joint exercise device and method for controlling the same
Wang et al. Design of an ankle exoskeleton that recycles energy to assist propulsion during human walking
JP2005013442A (en) Walking exercise equipment and control method of walking exercise equipment
JP2005074063A (en) Gait training apparatus
JP2004081676A (en) Biofeedback apparatus and method
Munawar et al. AssistOn-Gait: An overground gait trainer with an active pelvis-hip exoskeleton
JP5263799B2 (en) Somatosensory integrated assessment training system