JP2004166469A - Inverter system - Google Patents

Inverter system Download PDF

Info

Publication number
JP2004166469A
JP2004166469A JP2002365891A JP2002365891A JP2004166469A JP 2004166469 A JP2004166469 A JP 2004166469A JP 2002365891 A JP2002365891 A JP 2002365891A JP 2002365891 A JP2002365891 A JP 2002365891A JP 2004166469 A JP2004166469 A JP 2004166469A
Authority
JP
Japan
Prior art keywords
capacitor
power supply
capacity
low
inductive load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365891A
Other languages
Japanese (ja)
Inventor
Yukifumi Adachi
幸史 安立
Seiji Sakuma
清二 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Lighting Ltd
Original Assignee
Hitachi Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Lighting Ltd filed Critical Hitachi Lighting Ltd
Priority to JP2002365891A priority Critical patent/JP2004166469A/en
Publication of JP2004166469A publication Critical patent/JP2004166469A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inverter system with a high power factor, by enlarging the opportunity of power feeding of a rectification power supply. <P>SOLUTION: The inverter system includes: a pair of first and second switching elements 11, 12 turned on and off alternately; first and second flywheel diodes 21, 22 connected antiparallelly with the switching elements 11, 12; an inductive load circuit 30 with one end connected to a cross point of the switching elements 11, 12; a first capacitor 41 for forming a forward directional current to the inductive load circuit 30 through the switching element 11; a second capacitor 42 for forming a reverse directional current to the inductive load circuit 30 through the switching element 12; a first auxiliary diode 51 connected in parallel with the capacitor 42 for preventing reverse charge of the capacitor 42; a second auxiliary diode 52; a capacitor 60 with large capacity for applying a voltage of the capacitor 42 through the diode 52; and a rectifying power supply 70 for rectifying the voltage of an AC power supply 71. The rectifying power supply 70 is arranged in a position for charging the capacitor 41 through the diode 52. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は交流電源電圧を整流する整流電源の下でインバータ回路を駆動し、誘導性負荷へ高周波電力を供給するインバータ装置に関するものである。
【0002】
【従来の技術】
交流電源電圧を整流する整流電源の下でインバータ回路を駆動し、誘導性負荷へ高周波電力を供給するインバータ装置は既知である。整流電源電圧は低周波周期で変動するので不安定である。整流電源電圧が高い高原期にはよいが、それが低い谷間期には前記インバータ回路への電力供給が不足する。このため、主として高原期に充電が深まり、谷間期に放電過多となる平滑用コンデンサ(大容量コンデンサ)を付加する必要がある。
【0003】
【発明が解決しようとする課題】
一般の前記平滑用コンデンサは前記整流電源と並列である。この場合の整流電源は給電機会過少となり、低力率となる。整流電源の給電機会はその電圧がピーク値となる時期に限られ、低頻度・僅少期間の給電となる。本発明の目的は、整流電源の給電機会を拡張し、それによって高力率のインバータ装置を得ることである。
【0004】
【課題を解決するための手段】
本発明は、順直列一対の交互にオンオフする第一および第二のスイッチング素子(11・12)を備え、前記各スイッチング素子(11・12)と逆並列に接続する第一および第二のフライホイールダイオード(21・22)を備え、前記両スイッチング素子(11・12)の交点に一端を接続する誘導性負荷回路(30)を備え、その放電で前記第一スイッチング素子(11)を介して前記誘導性負荷回路(30)に順方向電流を形成する低容量第一コンデンサ(41)を備え、その放電で前記第二スイッチング素子(12)を介して前記誘導性負荷回路{30)に逆方向電流を形成する低容量第二コンデンサ(42)を備え、前記低容量第二コンデンサ(42)の逆充電を阻止するようにそれと並列に接続する第一補助ダイオード(51)を備え、第二補助ダイオード(52)を備え、前記低容量第二コンデンサ(42)の電圧を前記第二補助ダイオード(52)を介して印加する位置に配置する大容量コンデンサ(60)を備え、交流電源(71)電圧を整流する整流電源(70)を備える。前記大容量コンデンサ(60)は平滑用として機能する。その充電は前記第二補助ダイオード(52)を介してなされる。その放電は前記整流電源(70)を介してなされる。後者の折りに、整流電源給電機会が生まれる。
【0005】
【発明の実施の形態】
図1を利用して本発明の実施形態について説明する。図1装置は、順直列一対の交互にオンオフする第一および第二のスイッチング素子(11)・(12)を備える。各スイッチング素子(11)・(12)と逆並列に接続する第一および第二のフライホイールダイオード(21)・(22)を備える。フライホイールダイオード21(22)は各スイッチング素子11(12)の寄生ダイオードでもよい。両スイッチング素子(11)・(12)の交点に一端を接続する誘導性負荷回路(30)を備える。誘導性負荷回路(30)の例は、放電灯点灯回路である。図示のそれは、放電灯(蛍光ランプ)(31)と放電灯(31)に直列のバラスト用インダクタ(32)と放電灯(31)に並列の予熱用コンデンサ(33)を含む。それらの入力段に変圧器を配置する変圧器付き誘導性負荷回路(30)であってもかまわない。変圧器付きの場合はその漏洩インダクタンスをバラスト用インダクタ(32)として利用することが可能である。
【0006】
図1についてさらに説明する。その放電で前記第一スイッチング素子(11)を介して前記誘導性負荷回路(30)に順方向電流を形成する低容量第一コンデンサ(41)を備え、その放電で前記第二スイッチング素子(12)を介して前記誘導性負荷回路(30)に逆方向電流を形成する低容量第二コンデンサ(42)を備える。前記低容量第二コンデンサ(42)の逆充電を阻止するようにそれと並列に接続する第一補助ダイオード(51)を備え、第二補助ダイオード(52)を備え、前記低容量第二コンデンサ(42)の電圧を前記第こ補助ダイオード(52)を介して印加する位置に配置する大容量コンデンサ(60)を備える。交流電源(71)電圧を整流する整流電源(70)を備え、前記整流電源(70)を前記第二補助ダイオード(52)を介して前記低容量第一コンデンサ(41)を充電する位置に配置している。大容量コンデンサ(60)は平滑用コンデンサである。大容量・小容量の表現は相対的である。
【0007】
図2〜図7を用いて、図1装置の動作について説明する。なお、以下の動作における図1中のVPO、VP1、VP2の各電位は図1に示す条件とする。V60は大容量コンデンサ(60)両端電圧、V70は整流電源(70)両端電圧である。図2:i16070、i142・図3:i230・図4:i330・図5:i46070、i441・図6:i53070・図7:i630の順に電流が流れ、その後は図2からの繰り返しとなる。i330は誘導性負荷回路(30)の放電電流であり、低容量第一コンデンサ(41)を充電する。i630はi441の放電電流であり、大容量コンデンサ(60)を充電する。i16070、i46070は大容量コンデンサ(60)の放電電流であり、整流電源(70)を順方向に経由する。図1の整流電源(70)はその電圧が低い場合であっても、i16070、i46070、i53070の給電機会を持つので、高力率である。i53070の動作について補足する。i16070、i330により低容量第一コンデンサ(41)が高圧に充電され、その影響でその後のi441(放電電流)を形成する。i441は誘導性負荷回路(30)に電磁エネルギ(順方向電流による電磁エネルギ)を蓄積する。誘導性負荷回路(30)電流(順方向電流)の慣性に助成されて、さらに次の153070が形成される。
【0008】
i16070の動作について補足する。i53070は誘導性負荷回路(30)に電磁エネルギを蓄積する。スイッチング素子11がオフすると、誘導性負荷回路(30)電流(I順方向電流)の慣性に助成されて、i630が形成される。i630は第二補助ダイオード(52)を介して大容量コンデンサ(60)を充電する。その後スイッチング素子(12)がオンすることにより、大容量コンデンサ(60)の放電電流I16070が流れる。また、スイッチング素子(11)がオンしたときにも同様に大容量コンデンサ(60)の放電電流i46070が流れる。
【0009】
図8の実施例について説明する。VPO、VP1、VP2の各電位は図1に示す条件と同様である。低容量第三コンデンサ(43)と大容量コンデンサ(60)の直列接続された場合の合成容量は図1の低容量第二コンデンサ(42)の容量とほぼ一致し、その複合コンデンサ回路が図1における低容量第二コンデンサ(42)となる。
【0010】
【発明の効果】
本発明によれば、整流電源の給電機会が拡張され、それにより高力率であって効率のよいインバータ装置が得られる。
【図面の簡単な説明】
【図1】本発明に係るインバータ装置の回路図である。
【図2】図1の動作説明図である。
【図3】図1の動作説明図である。
【図4】図1の動作説明図である。
【図5】図1の動作説明図である。
【図6】図1の動作説明図である。
【図7】図1の動作説明図である。
【図8】本発明に係る他のインバータ装置の回路図である。
【符号の説明】
11・12:スイッチング素子
21・22:フライホイールダイオード
30:誘導性負荷回路
41・42・43:低容量コンデンサ
51・52:補助ダイオード
60:大容量コンデンサ
70:整流電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inverter device that drives an inverter circuit under a rectified power supply that rectifies an AC power supply voltage and supplies high-frequency power to an inductive load.
[0002]
[Prior art]
2. Description of the Related Art An inverter device that drives an inverter circuit under a rectified power supply that rectifies an AC power supply voltage and supplies high-frequency power to an inductive load is known. The rectified power supply voltage is unstable because it fluctuates at a low frequency cycle. The power supply to the inverter circuit is insufficient during the valley period when the rectified power supply voltage is high, but is low during the low valley period. For this reason, it is necessary to add a smoothing capacitor (large-capacity capacitor), which is charged mainly during the plateau period and discharges excessively during the valley period.
[0003]
[Problems to be solved by the invention]
The general smoothing capacitor is in parallel with the rectified power supply. In this case, the rectified power supply has an insufficient power supply opportunity and a low power factor. The power supply opportunity of the rectified power supply is limited to the time when the voltage reaches a peak value, and the power supply is performed at a low frequency and for a short period. SUMMARY OF THE INVENTION An object of the present invention is to extend the power supply opportunity of a rectified power supply and thereby obtain a high power factor inverter device.
[0004]
[Means for Solving the Problems]
The present invention includes a first series and a second series of switching elements (11 and 12) that are alternately turned on and off, and a first and a second fly connected in anti-parallel with the switching elements (11 and 12). An inductive load circuit (30) having one end connected to an intersection of the two switching elements (11 and 12), and having a discharge via the first switching element (11); The inductive load circuit (30) includes a low-capacity first capacitor (41) for forming a forward current, and discharges the capacitor to the inductive load circuit (30) via the second switching element (12). A first auxiliary diode (51) connected in parallel with the low-capacitance second capacitor (42) to prevent reverse charging of the low-capacity second capacitor (42). And a large-capacity capacitor (60) arranged at a position where the voltage of the low-capacity second capacitor (42) is applied via the second auxiliary diode (52). And a rectified power supply (70) for rectifying the voltage of the AC power supply (71). The large capacity capacitor (60) functions as a smoothing capacitor. The charging is performed via the second auxiliary diode (52). The discharge is performed via the rectified power supply (70). On the latter occasion, there is an opportunity to supply rectified power.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG. The apparatus in FIG. 1 includes a first series and a second series of switching elements (11) and (12) that are turned on and off alternately. First and second flywheel diodes (21) and (22) are connected in anti-parallel with the switching elements (11) and (12). The flywheel diode 21 (22) may be a parasitic diode of each switching element 11 (12). An inductive load circuit (30) having one end connected to the intersection of the two switching elements (11) and (12) is provided. An example of the inductive load circuit (30) is a discharge lamp lighting circuit. It comprises a discharge lamp (fluorescent lamp) (31), a ballast inductor (32) in series with the discharge lamp (31) and a preheating capacitor (33) in parallel with the discharge lamp (31). An inductive load circuit (30) with a transformer in which a transformer is arranged at those input stages may be used. When a transformer is provided, the leakage inductance can be used as a ballast inductor (32).
[0006]
FIG. 1 will be further described. A low-capacity first capacitor (41) for forming a forward current in the inductive load circuit (30) via the first switching element (11) through the discharge; and discharging the second switching element (12). ), A low-capacity second capacitor (42) for forming a reverse current in the inductive load circuit (30). A first auxiliary diode (51) connected in parallel with the low-capacity second capacitor (42) so as to prevent reverse charging of the low-capacity second capacitor (42); a second auxiliary diode (52); A) a large-capacitance capacitor (60) arranged at a position where the voltage of (1) is applied through the second auxiliary diode (52). An AC power supply (71) includes a rectified power supply (70) for rectifying a voltage, and the rectified power supply (70) is arranged at a position where the low-capacity first capacitor (41) is charged via the second auxiliary diode (52). are doing. The large capacity capacitor (60) is a smoothing capacitor. The expressions of large capacity and small capacity are relative.
[0007]
1 will be described with reference to FIGS. 2 to 7. Note that the potentials VPO, VP1, and VP2 in FIG. 1 in the following operation are the conditions shown in FIG. V60 is the voltage across the large capacity capacitor (60), and V70 is the voltage across the rectified power supply (70). FIG. 2: i16070, i142, FIG. 3: i230, FIG. 4: i330, FIG. 5: i46070, i441, FIG. 6: i53070, FIG. 7: i630, and then the current flow is repeated from FIG. i330 is a discharge current of the inductive load circuit (30), and charges the low-capacity first capacitor (41). i630 is a discharge current of i441, and charges the large-capacity capacitor (60). i16070 and i46070 are discharge currents of the large-capacity capacitor (60) and pass through the rectified power supply (70) in the forward direction. The rectified power supply (70) of FIG. 1 has a high power factor because it has power supply opportunities of i16070, i46070, and i53070 even when the voltage is low. The supplement of the operation of i53070 is added. The low-capacity first capacitor (41) is charged to a high voltage by i16070 and i330, and a subsequent i441 (discharge current) is formed by its influence. i441 stores electromagnetic energy (electromagnetic energy due to forward current) in the inductive load circuit (30). Aided by the inertia of the inductive load circuit (30) current (forward current), a further 153070 is formed.
[0008]
The operation of i16070 will be supplemented. i53070 stores electromagnetic energy in the inductive load circuit (30). When the switching element 11 is turned off, i630 is formed by the inertia of the inductive load circuit (30) current (I forward current). i630 charges the large capacity capacitor (60) via the second auxiliary diode (52). Thereafter, when the switching element (12) is turned on, a discharge current I16070 of the large capacity capacitor (60) flows. Similarly, when the switching element (11) is turned on, the discharge current i46070 of the large-capacity capacitor (60) flows.
[0009]
The embodiment of FIG. 8 will be described. The potentials of VPO, VP1, and VP2 are the same as the conditions shown in FIG. The combined capacitance of the low-capacity third capacitor (43) and the large-capacity capacitor (60) when they are connected in series is approximately equal to the capacitance of the low-capacity second capacitor (42) of FIG. , The low capacitance second capacitor (42).
[0010]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the power supply opportunity of a rectified power supply is extended, and thereby a high power factor and an efficient inverter apparatus are obtained.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an inverter device according to the present invention.
FIG. 2 is an operation explanatory diagram of FIG. 1;
FIG. 3 is an operation explanatory diagram of FIG. 1;
FIG. 4 is an operation explanatory diagram of FIG. 1;
FIG. 5 is an operation explanatory diagram of FIG. 1;
FIG. 6 is an operation explanatory diagram of FIG. 1;
FIG. 7 is an operation explanatory diagram of FIG. 1;
FIG. 8 is a circuit diagram of another inverter device according to the present invention.
[Explanation of symbols]
11 ・ 12: Switching elements 21 ・ 22: Flywheel diode 30: Inductive load circuits 41 ・ 42 ・ 43: Low capacity capacitors 51 ・ 52: Auxiliary diode 60: Large capacity capacitor 70: Rectified power supply

Claims (1)

順直列一対の交互にオンオフする第一および第二のスイッチング素子を備え、前記各スイッチング素子と逆並列に接続する第一および第二のフライホイールダイオードを備え、前記両スイッチング素子の交点に一端を接続する誘導性負荷回路を備え、その放電で前記第一スイッチング素子を介して前記誘導性負荷回路に順方向電流を形成する低容量第一コンデンサを備え、その放電で前記第二スイッチング素子を介して前記誘導性負荷回路に逆方向電流を形成する低容量第二コンデンサを備え、前記低容量第二コンデンサの逆充電を阻止するようにそれと並列に接続する第一補助ダイオードを備え、第二補助ダイオードを備え、前記低容量第二コンデンサの電圧を前記第二補助ダイオードを介して印加する位置に配置する大容量コンデンサを備え、交流電源電圧を整流する整流電源を備え、前記整流電源を前記第二補助ダイオードを介して前記低容量第一コンデンサを充電する位置に配置したことを特徴とするインバータ装置。A first series and a second series of switching elements that are alternately turned on and off are provided, and first and second flywheel diodes are connected in anti-parallel with the respective switching elements.One end is provided at an intersection of the two switching elements. A low-capacity first capacitor that forms a forward current in the inductive load circuit through the first switching element when the discharge is performed, and includes a low-capacity first capacitor that forms a forward current through the second switching element when the discharge is performed. A low-capacity second capacitor for forming a reverse current in the inductive load circuit, and a first auxiliary diode connected in parallel with the low-capacity second capacitor so as to prevent reverse charging of the low-capacity second capacitor. A large-capacitance capacitor including a diode, which is disposed at a position where the voltage of the low-capacity second capacitor is applied through the second auxiliary diode. For example, the AC supply voltage comprises a rectifier power supply for rectifying an inverter apparatus, characterized in that the rectified power is arranged at a position to charge the low capacitance first capacitor via the second auxiliary diode.
JP2002365891A 2002-11-13 2002-11-13 Inverter system Pending JP2004166469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365891A JP2004166469A (en) 2002-11-13 2002-11-13 Inverter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365891A JP2004166469A (en) 2002-11-13 2002-11-13 Inverter system

Publications (1)

Publication Number Publication Date
JP2004166469A true JP2004166469A (en) 2004-06-10

Family

ID=32809857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365891A Pending JP2004166469A (en) 2002-11-13 2002-11-13 Inverter system

Country Status (1)

Country Link
JP (1) JP2004166469A (en)

Similar Documents

Publication Publication Date Title
JP2004166470A (en) Inverter system
JPH11127575A (en) Highly efficient inexpensive power converter
JP4323049B2 (en) Power converter
JP2000003798A (en) Discharge lamp lighting device and lighting system
JP2004166469A (en) Inverter system
TWI762415B (en) Buck-boost bidirectional DC-DC resonant converter and control method thereof
JP3332297B2 (en) Power supply
JP2004166474A (en) Inverter apparatus
JP2004159482A (en) Inverter device
JP3332295B2 (en) Power supply
JP2004166471A (en) Inverter system
JP2000014172A (en) Inverter device
JP2004120991A (en) Inverter system
JP3413966B2 (en) Inverter device
JP3931591B2 (en) Power supply
JP4473533B2 (en) Discharge lamp lighting device
JP2004166468A (en) Inverter system
JP2000023472A (en) Inverter
JP2004159480A (en) Inverter device
JP2004350486A (en) Inverter device
JP2000102255A (en) Inverter device
JP2004165108A (en) Fluorescent lamp lighting device
JP2000184755A (en) Inverter
JP2004120990A (en) Inverter device
JP2000184748A (en) Inverter