JP2004163173A - Condition detection method of structure, detection apparatus and monitoring system - Google Patents

Condition detection method of structure, detection apparatus and monitoring system Download PDF

Info

Publication number
JP2004163173A
JP2004163173A JP2002327191A JP2002327191A JP2004163173A JP 2004163173 A JP2004163173 A JP 2004163173A JP 2002327191 A JP2002327191 A JP 2002327191A JP 2002327191 A JP2002327191 A JP 2002327191A JP 2004163173 A JP2004163173 A JP 2004163173A
Authority
JP
Japan
Prior art keywords
measurement
head
state
point
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002327191A
Other languages
Japanese (ja)
Other versions
JP4128854B2 (en
Inventor
Shinichi Hattori
晋一 服部
Takashi Shimada
隆史 島田
Takahiro Sakamoto
隆博 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002327191A priority Critical patent/JP4128854B2/en
Publication of JP2004163173A publication Critical patent/JP2004163173A/en
Application granted granted Critical
Publication of JP4128854B2 publication Critical patent/JP4128854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To overcome the problem such that a scaffold is built, and an operator climbs the scaffold, holds a measurement head in his/her hand and must detect a condition of a region higher than the ground such as bridge structures of roads, railroads, etc. (e.g. base plates, bridge railings, bridge piers) on the scaffold. <P>SOLUTION: The condition detection apparatus is provided with: a first mechanism 3; a second mechanism 4 mounted to the first mechanism 3; and the measurement head 5 mounted to the second mechanism 4 and having a function for detecting a condition of the structure to be measured while a measuring face faces a measured face 101 of a measured point 9p in a measured region 9a. The measurement head 5 is positioned to the measured region 9a through the second mechanism 4 by the first mechanism 3, depends on the second mechanism 4 and is moved to the measured point 9p. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、計測対象構造物に計測ヘッドを近接させ、計測ヘッドから発する振動、弾性波、他の信号に基づく計測対象構造物からの応答信号を検出する構造物の状態検出方法、検出装置、及び計測対象構造物の健全性や異常状態等を監視する構造物の状態監視システムに関するもので、例えば道路、鉄道などの橋梁構造物(例えば床版、壁高欄、橋脚、等)等のように、地上面より高所にある部位の状態検出に適した各種の構造物の状態検出方法、検出装置、及び監視システムに関するものである。
【0002】
【従来の技術】
従来、道路、鉄道などの橋梁構造物(例えば床版、壁高欄、橋脚、等)等の状態検出や、診断は、例えば特開2001−124744号公報に示されているように、コンクリ−ト構造物のような計測対象物にハンマで衝撃を与え、この衝撃によって生じる計測対象物の振動を計測ヘッドで、ハンマ衝撃に対する応答信号として検出し、計測対象物の欠陥を検出・診断するものがある。
【0003】
前記特開2001−124744号公報に示されているものは、ハンマでの衝撃によって生じる計測対象物の振動を、人の聴覚に依らずに、計測ヘッドで、ハンマ衝撃に対する応答信号として検出するもの、つまり、測定ヘッドを計測対象物に近接して磁界の変化を検出するコイを面状に設けることにより、道路、鉄道などの橋梁構造物(例えば床版、壁高欄、橋脚、等)等のような計測対象構造物の表面に現れる前記衝撃による固有振動から計測対象物内部の欠陥を検出する検査装置である。
【0004】
地上面より高所にある部位の状態検出を行う場合は、足場を組んで、その足場に操作員が登り、足場上で、例えば前記特開2001−124744号公報に示された測定ヘッドを操作員が手に持って行っている現状にある。具体的には、次のような手順で、地上面より高所にある部位の状態検出を行っていた。
1.地上面より高所にある部位の計測領域に、操作員がアクセスできるように足場等を構築する。
2.予め高所にある計測対象物の計測点を選定する。計測点は、一定ピッチの計測点が格子状に配された計測点群に設定されることが一般的である。
3.操作員が計測ヘッドを手に持って足場等に登り、足場等の上で、前記計測点に計測ヘッドを位置決めする。
4.計測ヘッドに計測開始指令を出し、計測を開始する。
5.計測完了後は、足場等の上で操作員が計測ヘッドを手に持って次の計測点へ移動し、前記2.以降の作業を繰り返し、前記予め設定された計測点群の計測を完了する。
【0005】
【特許文献1】
特開2001−124744号公報(段落番号0007〜0009、図1)
【0006】
【発明が解決しようとする課題】
従来の構造物の状態検出・診断方法は、前述のように、地上面より高所にある部位の状態検出・診断を行う場合、地上面より高所にある部位の計測領域に、操作員がアクセスできるように足場等を構築し、操作員が計測ヘッドを手に持って足場等に登り、足場等の上で、前記計測点に計測ヘッドを位置決めし、当該計測点での計測完了後は、足場等の上で操作員が計測ヘッドを手に持って次の計測点へ移動し足場等の上で計測点に計測ヘッドを位置決めし計測することを繰り返す。更に、或る領域の計測が完了し隣の領域や他の離れた領域での計測を引き続き行う場合は、足場等を解体した後、隣の領域や他の離れた領域で再び足場等を組まなければならない。従って、計測の準備に多大な時間と労力要し、操作員による計測作業も高所作業のため操作員の落下や計測ヘッドの落下等の危険が伴う上、測定に必要以上の時間を要すと共に場合によっては計測精度の信頼性が低下するなどの問題がある。
【0007】
この発明は前述のような実情に鑑みてなされたもので、地上面より高所にある部位の状態検出・診断を行う場合に、足場を組んだり、計測を足場の上での高所作業としなくて済むようにすること、ひいては危険性を伴わず計測精度の信頼性の低下を伴わないようにすることを目的とするものである。
【0008】
【課題を解決するための手段】
この発明に係る構造物の状態検出方法は、第1の機構、この第1の機構に取り付けられた第2の機構、及び計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備えた計測装置を使い、前記第1の機構により前記第2の機構を前記計測領域へ位置させ、前記第2の機構を使って前記計測ヘッドを前記計測点へ移動させるものである。
【0009】
また、この発明に係る構造物の状態検出装置は、第1の機構、この第1の機構に装着の第2の機構、及びこの第2の機構に搭載され計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記第1の機構により前記第2の機構を介して前記計測ヘッドが前記計測領域へ位置させられ、前記第2の機構に依存して前記計測ヘッドが前記計測点へ移動するものである。
【0010】
また、この発明に係る構造物の状態監視システムは、第1の機構、この第1の機構に装着の第2の機構、計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記計測ヘッドが前記計測領域へ位置させられ、前記第2の機構に依存して前記計測ヘッドが前記計測点へ移動し、この計測点へ移動した計測ヘッドの状態検出デ−タから前記計測対象構造物の状態を表示装置に表示し、前記計測対象構造物の状態を監視できるようにしたものである。
【0011】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図1及び図2(a)(b)に示す一事例に基づいて説明する。図1はシステム構成全体の一例を示す図、図2(a)は第2の機構の構造及び動作、及び第1の機構と第2の機構との動作関係、の一例を示す概念図、図2(b)は第2の機構の構造、及び第1の機構と第2の機構との構造及び動作の関係の一例を具体的構造で示す斜視図である。
【0012】
図1において、計測対象構造物1は、道路、鉄道などの橋梁構造物(例えば床版、壁高欄、橋脚、等)他の各種の計測対象構造物の、地表面2から可成り高い部分を例示してあり、その下面が計測対象面101となっている。
【0013】
第1の機構3は、前記地表面2に載置されるものであり、前記地表面2に載置される脚部301と、この脚部301に一端部が支えられ矢印3Vのようにその長手方向に長さが伸び又矢印3Vと逆の方向に縮む構造の柱状のリフティング機構部302と、このリフティング機構部302の前記脚部301と反対側の端に設けられた移動部303と、前記リフティング機構部302を伸縮させて前記移動部303を上下に移動させる油圧源、空気圧源、水圧源、他の駆動源304とで構成されている。なお、前記駆動源304の前記移動部303の上下動の操作は、前記第1の機構3に付随の操作盤のスイッチ(図示せず)を人為的に操作することにより行う。
【0014】
第2の機構4は、前記第1の機構3の前記移動部303に装着されており、2軸構造のリンク機構部401(詳細構造及び機能は図2(a)(b)により後述する)と、このリンク機構部401に取り付けられた支持部402とで構成されている。
【0015】
前記第2の機構4の前記支持部402の前記計測対象面101側に、計測ヘッド5が搭載されている。また、前記支持部402の前記地表面2側には、操作員6によって操作される棒状の操作手段7が螺着などによって連結されている。つまり、前記第2の機構4の荷重、前記計測ヘッド5の荷重、及び前記棒状の操作手段7の荷重は、前記第1の機構3がその前記移動部303を介して全て受け、操作員6は前記各荷重を受けることなく、容易に、前記計測ヘッド5を計測したい位置に位置決めできるように構成してある。
【0016】
前記計測ヘッド5は、前記計測対象面101を打振して前記計測対象構造物1に衝撃を与える打振部501と、前記計測対象構造物1に前記衝撃で生じる固有振動や反射波などの応答信号を検出するセンサ部502と、前記計測対象構造物1の内部欠陥の有無等を判別する診断機能部503と、この診断機能部503の診断結果を表示や鳴動等により報知する報知部504と、測定済みと否とを識別できるように前記計測対象面101にマ−キングするマ−キング部505と、前記センサ部502での測定デ−タや前記診断機能部503での診断結果を外部機器(CRT等の表示器、パソコン、サ−バ、監視所、保守所等)8へ出力する出力端子506と、定圧バネや電磁石(定反発力)で保持された定圧台盤507とを備えている。
【0017】
前記打振部501は、電磁式ハンマ−や純機械的ハンマ−等、人力に依らないハンマ−である。なお、この打振部501は、図1では前記計測ヘッド5に装着した場合を例示してあるが、前記計測ヘッド5から離して前記計測ヘッド5以外の他のものに装着してもよい。
【0018】
前記センサ部502は、接触式のもの、非接触式のもの、の何れでもよいが、図1では接触式のものを例示してあり、計測時には、定圧バネや電磁石によって、計測領域9内の計測点901における計測対象面101に所定の定圧力で押圧される。
【0019】
前記診断機能部503は、前記センサ部502が検出した前記計測対象構造物1に前記衝撃で生じる固有振動や反射波などの応答信号に基づいて前記計測対象構造物1内の状態を解析し欠陥や疑欠陥を判別する。例えば空洞、ひび割れ等の有無や大きさ、存在場所、方向、数、等を演算した結果と基準値とを比較し、或いは前記計測対象構造物1の竣工当初の計測時やこれまでの計測時における前記計測対象構造物1内の状態のデ−タとの偏差を求め当該検出偏差と基準許容偏差値との比較や当該検出偏差の経時的変化度合い、等から、欠陥、準欠陥、要短期間継続測定、等を判別する。
【0020】
前記報知部504は、前記計測ヘッド5による計測結果を、地表面2の操作員6が目視判別できるように、例えば、欠陥無しの場合は青色表示、欠陥有りの場合は赤色表示、準欠陥、要短期間継続測定の場合は黄色表示したり、欠陥有りの場合のみ赤色表示やブザ−が鳴るようにしたりするものである。
【0021】
測定済みと否とを識別できるように前記計測対象面101にマ−キングする前記マ−キング部505は、インクを浸透させた印とするのが最も簡易に実現できるが、必要に応じ例えばプリンタ機能を持たせたものとして、測定日、測定企業名、測定部署名、測定者、診断結果等をマ−キングしても良い。
【0022】
定圧バネや電磁石(定反発力)で保持された定圧台盤507は、前記打振部501と前記センサ部502と前記マ−キング部505とを、その前記計測対象面101側に保持しており、前記センサ部502が前記計測対象面101に押し付けられた場合、前記センサ部502は前記計測対象面101に所定の定圧力で接触し、計測場所を変えていった場合でも常に前記計測対象面101に所定の定圧力で接触するようにして、信頼度の高い安定した精度で計測できるようにしてある。
【0023】
なお、前記定圧台盤507を設けずに、前記打振部501と前記マ−キング部505とを前記計測ヘッド5に直接取り付け、前記センサ部502のみ前記定圧バネや電磁石(定反発力)を介して前記計測ヘッド5に保持するようにしても、前記センサ部502が前記計測対象面101に押し付けられた場合、前記センサ部502は前記計測対象面101に所定の定圧力で接触し、計測場所を変えていった場合でも常に前記計測対象面101に所定の定圧力で接触するようにして、信頼度の高い安定した精度で計測できる。
【0024】
前記センサ部502として非接触式のものを前記計測ヘッド5に装着する場合は、前記定圧台盤507は不要であり、前記定圧台盤507の代わりに、前記計測ヘッド5と前記計測対象面101との間隔を計測場所を変えていった場合でも一定にするための位置決め部材を、前記計測ヘッド5に設ければ、前述の図1の接触式の場合と同様に信頼度の高い安定した精度で計測できる。
【0025】
また、前記打振部501も前記定圧台盤507に保持されているので、前記センサ部502が前記計測対象面101に接触している状態において前記計測対象面101が扁平である限り前記計測対象面101との距離(0も含む)は計測場所を変えていった場合でも常に一定であり、従って、前記打振部501が前記計測対象面101に与える衝撃力も計測場所を変えていった場合でも一定となり、計測場所を変えていった場合でも常に一定の衝撃力の下に前記センサ部502は前記計測対象構造物1の内部状態を計測できる。
【0026】
前記マ−キング部505も前記定圧台盤507に保持されているので、前記センサ部502が前記計測対象面101に接触している状態において前記計測対象面101が扁平である限り前記計測対象面101との距離(0も含む)は計測場所を変えていった場合でも常に一定であり、従って、計測場所を変えていった場合でも常に前記計測対象面101に正確にマ−キングできる。
【0027】
前記第2の機構4の前記支持部402の前記地表面2側に連結された棒状の操作手段7は、操作員6が手で操作して、前記支持部402を矢印4Hの方向及び矢印4Hと逆の方向(便宜上X軸方向とも記す)の成分および前記X軸方向と直交し且つ計測対象構造物1の計測対象面101と平行をなす方向(便宜上Y軸方向とも記す)の成分の少なくとも一方を有する方向に移動させられる。この支持部402の前記X軸方向及びY軸方向の移動(以下「2次元の動き」と略記する)を許すように前記リンク機構部401は動作する。この支持部402の前記XY軸方向の成分の少なくとも一方を有する方向の移動によって前記計測ヘッド5は、計測対象構造物1の計測対象面101に沿って前記2次元の動きをする。
【0028】
また、前記棒状の操作手段7の下端部外面には前記計測ヘッド5の計測開始・停止用のオンオフスイッチ701が例えばU形クリップ等の固定具702で着脱可能に装着されている。前記オンオフスイッチ701と前記計測ヘッド5とを接続するケ−ブル703も前記棒状の操作手段7の外面に沿って延在し前記棒状の操作手段7の長手方向の数箇所で前記棒状の操作手段7の外面に固定具704で着脱可能に保持されている。
【0029】
前記オンオフスイッチ701をオン(ON)にすれば、前記打振部501、前記センサ部502、前記診断機能部503、前記報知部504、前記マ−キング部505、及び前記定圧台盤507はオン(ON)状態となり、前記オンオフスイッチ701をオフ(OFF)にすれば、前記打振部501、前記センサ部502、前記診断機能部503、前記報知部504、前記マ−キング部505、及び前記定圧台盤507はオフ(OFF)状態となる。
【0030】
なお、前記オンオフスイッチ701は、前記棒状の操作手段7の下端部外面に凹欠を設けて当該凹欠内に嵌め込み、当該凹欠に連通して前記棒状の操作手段7の外面にその長手方向に設けられた溝内に前記ケ−ブル703を嵌め込むようにしても良い。また、前記計測ヘッド5の計測開始・停止の操作は、例えば前記外部機器8のキ−ボ−ドから入力することにより行い、当該操作入力の信号が出力端子506を介して前記計測ヘッド5へ入力されるようにしてもよい。
【0031】
前記CRT等の表示器、パソコン、サ−バ、監視所、保守所等の外部機器8は、前記センサ部502が検出した前記計測対象構造物1に前記衝撃で生じる固有振動や反射波などの応答信号をアナログ信号として表示したり、前記空洞、ひび割れ等の有無や大きさ、存在場所、方向、数、等を演算した結果と基準値とを比較し、或いは前記計測対象構造物1の竣工当初の計測時やこれまでの計測時における前記計測対象構造物1内の状態のデ−タとの偏差を求め当該検出偏差と基準許容偏差値との比較や当該検出偏差の経時的変化度合い、等から、欠陥、準欠陥、要短期間継続測定、等を判別した結果を表示したり、前記空洞、ひび割れ等の有無や大きさ、存在場所、方向、数、等の前記計測対象構造物1内の状態を画像表示したりするもので、前記各種表示は、ソフトウェアにより、自動表示したり人為的検索操作やアイコン操作により選択的に行われるようにする等、必要に応じた表示が行われる。なお、前記診断機能部503は、前記計測ヘッド5に設ける代わりに、この外部機器8に設けてもよい。
【0032】
なお、前記計測ヘッド5と前記外部機器8との機能分担は、必要に応じて設定され、例えば、前記計測ヘッド5に計測機能のみ持たせ、前記外部機器8には前記各機能のうち計測機能以外の全機能を持たせるようにして、前記計測ヘッド5の荷重を軽くし、前記第1の機構3が受ける荷重を軽減することもできる。
【0033】
次に、計測準備作業、動作について説明する。最初に要点を概念的に説明し、その後に詳細な具体例を説明する。
【0034】
図1は、実線で示す移動部303,第2の機構4,計測ヘッド5は、第1の機構3により、計測領域9aへリフトアップされ、計測ヘッド5が操作手段7により測定点9pに移動されている状態を示し、一点鎖線で示す移動部303,第2の機構4,計測ヘッド5が、計測領域9aへリフトされてなく、計測ヘッド5も測定点9pに移動されていない最初の状態を示してある。
【0035】
先ず、計測準備作業、動作について要点を概念的に説明する。
【0036】
1A) 計測領域9aへのリフト機能を有した第1の機構3を地表面2上に設置する。この際、この第1の機構3を設置する地表面2上の位置は、計測対象構造物1の計測範囲の下方で、該第1の機構3の移動部303を上昇することにより該移動部303が計測範囲の中に入るように選定される。
【0037】
2A) 前記第1の機構3の駆動源304を操作して前記移動部303を上昇させ、該移動部303が計測対象構造物1の計測対象面101に近接する計測領域9aまで移動させる。
【0038】
3A) 次に、操作員6が、計測ヘッド5に連結された棒状の操作手段7を手元操作して前記計測ヘッド5を移動させ、その計測位置が所定の計測点9pに合うように調整する。この際、前記計測ヘッド5の水平方向の位置は、前記第1の機構3を基準として、リンク機構の機能を有した第2の移動機構4の自由度の範囲内にて任意に移動することができるため、予め計画した計測点9p,9n・・・に対し、順次、前記計測ヘッド5の位置をシフトすると共に、計測デ−タを採取・記録する。
【0039】
4A) このようにしてリンク機構の機能を有した第2の機構4の自由度の範囲内にて前記計測対象面101上の計測を完了後、一旦前記第1の機構3の移動部303を下降させて前記計測ヘッド5のセンサ部502他と前記計測対象面101との接触を解除した後、前記リフト機能を有した第1の機構3の設置位置を次の計測位置に移動する。
【0040】
5A) 以下、前記2A)〜前記4A)を前記計測対象面101の所定の計測範囲が計測完了されるまで繰り返す。前記計測対象面101の全面の計測を完了した場合は、前記第1の機構3の前記駆動源304を操作して前記移動部303を下降させ、該移動部303が地表面2上に到達するまで近づけ、作業を完了する。
【0041】
次に、計測準備作業、動作について詳細な一具体例を詳述する。
【0042】
1B) 先ず、第1の機構3を、計測対象構造物1の高所にある計測対象面101の下方の地表面2の上に設置する。この場合、第1の機構3のリフティング機構部302は伸長しておらず、その移動部303は地表面2近くの図示一点鎖線の位置にある。従って、第2の機構4及び計測ヘッド5も地表面2近くの図示一点鎖線の位置にある。
【0043】
2B) 次に、駆動源304を操作盤のスイッチ(図示せず)を上げ方向に操作し、前記リフティング機構部302を伸長させ、前記移動部303を、前記地表面2近くの図示一点鎖線の位置から、矢印3Vで示すように計測対象物1の方へ上方に向かって移動させ、計測領域9aの図示一点鎖線の位置へリフトする。この移動部303の計測領域9aの図示一点鎖線の位置へのリフトに伴って第2の機構4及び計測ヘッド5も、地表面2近くの図示一点鎖線の位置から、矢印4Vで示すように計測対象物1の方へ上方に向かって移動し計測領域9aの図示一点鎖線の位置へリフトされる。なお、この計測領域9aの図示一点鎖線の位置においては、計測ヘッド5の打振部501とセンサ部502とマ−キング部505の何れも、計測対象面101には接触しておらず、図示のように、計測対象面101から離間している。
【0044】
3B) 次に、前記計測領域9aの図示一点鎖線の位置へリフトされた第2の移動機構4の支持部402に、操作手段7を螺着などによって図示一点鎖線のように連結する。また、図示一点鎖線のようにオンオフスイッチ701を固定具702で着脱可能に装着し、前記オンオフスイッチ701と前記計測ヘッド5とを接続するケ−ブル703も前記棒状の操作手段7の外面に沿わせて前記棒状操作手段7の固定具704内に保持させる。
【0045】
4B) 次に、操作員6は前記棒状の操作手段7を手に持って、一点鎖線で示す位置から実線で示す位置まで矢印7Vで示すように動かすことによって、前記計測ヘッド5の打振部501とセンサ部502とマ−キング部505の何れもが計測対象面101から離間している状態のままで、第2の移動機構4の支持部402を、前記計測領域9aの図示一点鎖線の位置から実線の位置、即ち前記計測ヘッド5が最初の計測点9pに対応する位置、まで矢印4Hで示すように移動させる。
【0046】
5B) 然る後、操作員6は前記棒状の操作手段7を、矢印7Bで示すように計測対象物1の方へ上方に向かって押し上げて、前記打振部501とセンサ部502とマ−キング部505の何れもが計測対象面101から離間している状態の計測ヘッド5を、矢印5Vで示すように計測対象物1の方へ上方に向かって押し上げ、前記打振部501とセンサ部502とマ−キング部505の何れをも計測対象面101に当接させる(図示実線の状態)。
【0047】
6B1) 定圧台盤507が定圧バネを使用したものである場合は、それまでより若干強い力で更に前記棒状の操作手段7を矢印5Vで示すように計測対象物1の方へ上方に向かって押し上げ、つまり前記棒状の操作手段7を介して計測ヘッド5を矢印5Vで示すように計測対象物1の方へ上方に向かって更に押し上げ、定圧台盤507で定まる定圧力で前記打振部501とセンサ部502とマ−キング部505の何れをも計測対象面101に押し付ける。なお、前記計測対象物1の方へ上方に向かって更に押し上げる操作は、前記第1の機構3を駆動源304を操作して行うことは、該駆動源304に空気圧、油圧、水圧等を利用したものでは、該空気圧、油圧、水圧等を微妙に制御して大きなショック無しに前記センサ部502等を前記計測対象面101に押し付けることは一般には難しい。
【0048】
6B2) 前記定圧台盤507が電磁石(反発力)を使用したものである場合は、計測開始時にオンオフスイッチ701をオン(ON)にすることにより電磁石を付勢するようにすることにより前記センサ部502等を前記計測対象面101に押し付けるようにできるので、前記棒状の操作手段7をそれまでより若干強い力で更に矢印5Vで示すように計測対象物1の方へ上方に向かって押し上げる操作は必ずしも必要ではない。
【0049】
7B1) 次に、操作員6はオンオフスイッチ701をオン(ON)にし、計測点9pにおける計測対象構造物1の内部状態の計測を開始する。即ち、前記打振部501、センサ部502、診断機能部503、報知部504、及びマ−キング部505がオン(ON)状態となり、前記計測点9pにおいて前記打振部501はハンマ−機能で前記計測対象構造物1へ衝撃を与え始め、前記センサ部502は前記計測対象構造物1からの前記衝撃に対する前記応答信号を計測し始め、前記診断機能部503は前記センサ部502で計測した計測信号に基づいて前記計測対象構造物1内の状態を診断し始め、前記報知部504は前記計測対象構造物1内に異常が有った場合に報知できるようにスタンバイ状態となり、前記マ−キング部505は、計測対象面101への前記マ−キングを開始する。また、前記センサ部502で計測した計測信号及び前記診断機能部503による前記計測対象構造物1内の状態診断結果は出力端子506から外部機器8へ出力される、或いは該外部機器8から出力端子506を介して読み出される。
【0050】
7B2) 前記定圧台盤507が電磁石(反発力)を使用したものである場合は、前記オンオフスイッチ701をオン(ON)にした時点で、電磁石(反発力)が作動し、該電磁石(反発力)が前記定圧台盤507を矢印5Vで示すように計測対象物1の方へ上方に向かって押し上げ、前記定圧台盤507を介して、前記打振部501とセンサ部502とマ−キング部505の何れをも計測対象面101に所定の力で押し付けると共に、前記7B1)の動作が行われる。
【0051】
8B) 次に、前記計測点9pでの計測を終え、次の計測点9pnでの計測を引き続き行う場合は、操作員6は、前記オンオフスイッチ701を一旦オフ(OFF)にし、前記棒状の操作手段7を矢印5Vと反対の方向に前記計測対象物1から離れる方向に下方に若干引き下げ、つまり前記棒状の操作手段7を介して計測ヘッド5を矢印5Vと反対の方向に計測対象物1から離れる方向に引き下げ、前記計測ヘッド5の前記打振部501とセンサ部502とマ−キング部505の何れをも計測対象面101から離間させた後、前記棒状の操作手段7を矢印7Hの方向に引き、前記計測ヘッド5を、前記計測対象面101に非接触で前記次の計測点9pnに対応させる。
【0052】
前記計測ヘッド5を前記次の計測点9pnに対応させた後は、前記5B)〜前記7B2)までの操作及び動作を行う。
【0053】
9B) 前記計測ヘッド5の前記計測対象面101と平行な面(図1では水平な面)内での前記2次元の移動は、前記リンク機構部401の自由度の範囲内で、自由にできる。従って、前記リンク機構部401の自由度の範囲内で前記計測ヘッド5を移動させて当該範囲内での計測が終了した場合は、前記駆動源304により前記第1の機構3のリフティング機構部302を矢印3Vと反対の方向に図示下方に縮ませ、前記移動部303、前記第2の機構4、前記計測ヘッド5を地表面2近くの図示一点鎖線の位置まで降ろし、次の計測領域9bの直下の地表面2上へ前記第1の機構3を移動して設置し、以降、前述と同様な計測準備作業及び計測作業を行う。
【0054】
次に、前述の計測準備作業、動作の根拠となる第2の機構の構造及び動作、及び第1の機構3と第2の機構4との動作関係、を示す概念を示す図2(a)及び、第2の機構4の構造、及び第1の機構3と第2の機構4との構造及び動作の関係を示す具体的構成を示す図2(b)によって、第2の機構4の構造、及び第1の機構3と第2の機構4との構造及び動作の関係を詳細に説明する。
【0055】
図2(a)及び図2(b)において、前記第2の機構4の前記リンク機構部401は、第1の腕部4011と、第2の腕部4012と、これら第1及び第2の腕部4011,4012を枢着する中間軸構造部4013と、前記第1の腕部4011の前記中間軸構造部4013と反対側の端部を前記第1の機構3の移動部303に枢着する基幹軸構造部4014と、を有していると共に、前記第2の腕部4012の前記中間軸構造部401 3と反対側の自由端に前記支持部402を有している。
【0056】
前記操作手段7の計測対象面側の先端は自由継手(ユニバ−サルジョイント)403の地表面側結合部に着脱自在に螺着され、前記自由継手403の計測対象面側の結合部は、計測対象面側の端部に前記計測ヘッド5が搭載された結合部材404の地表面側の端部に結合されされている。前記自由継手403は、前述の図1において、操作員が地表面2上から棒状の操作手段7を操作する際、自由な位置から操作できるように操作上の余裕を持たせるものである。
【0057】
前記結合部材404の中間部分は、前記第2の腕部4012の自由端の前記支持部402を貫通し該支持部402に所定の結合力で嵌合してあり、従って、前記計測ヘッド5の荷重と前記操作手段7の荷重と前記自由継手403の荷重と前記結合部材404の荷重との総和の荷重では、前記結合部材404は、前記支持部402から地表面側に自然下降しないようになっており、また、前記操作手段7を矢印7Vのように計測対象面側へ、前記所定の結合力での嵌合に打ち勝つ所定の力で押し上げた場合は、前記結合部材404が前記自由継手403を介して矢印7Vのように計測対象面側へ押し上げられ、従って前記計測ヘッド5も矢印5Vのように計測対象面側へ押し上げられる。
【0058】
一方、前記操作手段7を操作し、計測対象面101(図1に図示)と平行をなすX軸方向7X1(図1における矢印7H方向(この実施の形態1においては水平方向))に移動させると、前記自由継手403及び前記結合部材404を介して、前記支持部402がX軸方向4X1(図1における矢印4H方向(この実施の形態1においては水平方向))に移動し、前記操作手段7のX軸方向7X1の移動及び前記支持部402のX軸方向4X1の移動に伴い、前記計測ヘッド5も、X軸方向5X1(この実施の形態1においては水平方向)に移動する。同様にして、前記操作手段7を操作し、前記計測対象面と平行をなすX軸方向7X2(前記X軸方向7X1と反対の方向、即ち図1における矢印7Hと反対の方向(この実施の形態1においては水平方向))に移動させると、前記計測ヘッド5は、X軸方向5X2(前記X軸方向5X1と反対の方向。この実施の形態1においては水平方向)に移動する。
【0059】
また、前記操作手段7を前記計測対象面と平行をなすY軸方向7Y1(前記X軸方向7X1,7X2と直交する方向、即ち図1における矢印7Hと直交する方向(この実施の形態1においては水平方向))に移動させると、前記計測ヘッド5は、Y軸方向5Y1(前記X軸方向5X1,5X2と直交する方向。この実施の形態1においては水平方向)に移動し、前記操作手段7を前記計測対象面と平行をなすY軸方向7Y2(前記Y軸方向7Y1と反対の方向)に移動させると、前記計測ヘッド5は、Y軸方向5Y2(前記Y軸方向5Y1と反対の)に移動する。
【0060】
また、前記操作手段7は、前記X軸方向7X1と前記Y軸方向7Y1との間、前記Y軸方向7Y1と前記X軸方向7X2との間、前記X軸方向7X2と前記Y軸方向7Y2との間、及び前記Y軸方向7Y2と前記X軸方向7X1との間、の任意の方向に前記計測対象面101(図1に図示)と平行をなして移動できる。即ち、前記操作手段7は、前記計測対象面101(図1に図示)と平行をなして(この実施の形態1においては水平方向)2次元の移動ができる。同様に、前記支持部402及び前記計測ヘッド5も、前記計測対象面101(図1に図示)と平行をなして(この実施の形態1においては水平方向)2次元の移動ができる。
【0061】
なお、前記第2の機構4の前記リンク機構部401の基本機能、即ち、前記基幹軸構造部4014による前記第1の機構3の移動部303を軸とした前記第1の腕部4011の枢動(矢印4014R)、及び中間基幹軸構造部4013による該中間基幹軸構造部4013を軸とした前記第1及び第2の腕部4011,4012の各々の枢動(矢印4013R)、により、前記基幹軸構造部4014を固定軸とした前記第1及び第2の腕部4011,4012の各々の長さによって制限される範囲内で、前記第2の腕部4012の自由端、即ち前記支持部402は、前記計測対象面101(図1に図示)と平行をなして(この実施の形態1においては水平方向)2次元の移動が自由にできる。従って、前記操作手段7は、前記計測対象面101(図1に図示)と平行をなして(この実施の形態1においては水平方向)2次元の移動が自由にでき、前記計測ヘッド5も、前記計測対象面101(図1に図示)と平行をなして(この実施の形態1においては水平方向)2次元の移動が自由にできる。
【0062】
前述の図2(a)及び(b)の説明から、図1における前述の操作、各部の動きが可能であることが分り、ひいては前記高所の計測対象構造物1の内部状態の計測が可能であることが分る。
【0063】
実施の形態2.
この発明の実施の形態2は、前述の図2(a)(b)のような中間軸構造部や基幹軸構造部を設けない他の構造の第2の機構の事例を示すものであり、以下、図3(a)(b)に基づいて説明する。図3(a)は第2の機構の構造及び動作、及び第1の機構と第2の機構との動作関係、の一例を示す概念図、図3(b)は第2の機構の構造、及び第1の機構と第2の機構との構造及び動作の関係の一例を具体的構造で示す斜視図である。
【0064】
図3(a)(b)において、第2の機構4は、対をなす棒状の枠部4051,4052と、対をなす棒状の第1のガイド部4061,4062と、対をなす棒状の第2のガイド部4071,4072と、対をなす第1の移動台4081,4082と、第2の移動台409とから構成されている。
【0065】
前記対をなす棒状の枠部4051,4052は計測対象面(図1における101)に平行な面内において互いに平行をなし、一方の枠部4051はその中央部で前記第1の機構3の移動部303に結合されている。
【0066】
前記第1のガイド部4061,4062は、前記計測対象面101に平行な面内において相互に平行をなすと共に前記枠部4051,4052と直交し、一方の第1のガイド部4061はその両端で前記対をなす棒状の枠部4051,4052の各々の一端を連結し、他方の第1のガイド部4062はその両端で前記対をなす棒状の枠部4051,4052の各々の他端を連結している。
【0067】
前記対を成す棒状の第2のガイド部4071,4072は、計測対象面(図1における101)に平行な面内において相互に平行をなすと共に前記第1のガイド部4061,4062と直交し、各々の一端は前記一方の第1のガイド部4061に支持され、各々の他端は前記他方の第1のガイド部4062に支持されている。
【0068】
一方の前記第1の移動台4081は、一方の前記棒状の第1のガイド部4061に前記第1のガイド部4061の長手方向(矢印4081Xの方向)に移動自在に装着され前記第2のガイド部4071,4072の各々の一端を支持している。他方の前記第1の移動台4082は、他方の前記棒状の第1のガイド部4062の長手方向(矢印4082Xの方向)に移動自在に装着され前記第2のガイド部4071,4072の各々の他端を支持している。
【0069】
前記第2の移動台409は、前記第2のガイド部4071,4072の両者に跨って該第2のガイド部4071,4072に該第2のガイド部4071,4072の長手方向(矢印409Yの方向)に移動自在に装着され、その中央部で、前記支持部402と結合し、該支持部402を介して前記計測ヘッド5を支持している。
【0070】
前記操作手段7を操作し、計測対象面101(図1に図示)と平行をなすX軸方向7X1(図1における矢印7H方向(この実施の形態1においては水平方向))、或いはX軸方向7X2(前記X軸方向7X1と反対の方向)に移動させると、前記自由継手403,前記結合部材404,前記第2の移動台409,及び前記第2のガイド部4071,4072を介して、前記第1の移動台4081,4082が、前記ガイド部4061,4062に沿って矢印4081X,4082X(図1における矢印7H方向(この実施の形態2においては水平方向)或いは矢印7Hと反対の方向)の方向に移動できる。
【0071】
前記操作手段7を前記計測対象面と平行をなすY軸方向7Y1(前記X軸方向7X1,7X2と直交する方向、即ち図1における矢印7Hと直交する方向(この実施の形態2においては水平方向))或いはY軸方向7Y2の方向に移動させると、前記自由継手403,及び前記結合部材404を介して、前記第2の移動台409が、前記第2のガイド部4071,4072に沿って矢印409Y(前記矢印4081X,4082Xと直交する方向(この実施の形態2においては水平方向))の方向に移動できる。
【0072】
また、前記操作手段7は、前述の実施の形態1の場合と同様に、前記X軸方向7X1と前記Y軸方向7Y1との間、前記Y軸方向7Y1と前記X軸方向7X2との間、前記X軸方向7X2と前記Y軸方向7Y2との間、及び前記Y軸方向7Y2と前記X軸方向7X1との間、の任意の方向に前記計測対象面101(図1に図示)と平行をなして移動できる。即ち、前記操作手段7は、前記計測対象面101(図1に図示)と平行をなして(この実施の形態2においては水平方向)2次元の移動ができる。
【0073】
従って、前記支持部402及び前記計測ヘッド5も、前述の実施の形態1の場合と同様に、前記計測対象面101(図1に図示)と平行をなして(この実施の形態2においては水平方向)2次元の移動ができる。
【0074】
なお、計測準備作業、動作についての概念的説明は、前述の1A)〜5A)と同じであり、計測準備作業、動作についての詳細な具体例の説明は、前記1B)〜9B)と同じであるので、何れも省略する。
【0075】
実施の形態3.
なお、前述の図3(b)において、前記第1の移動台4081,4082を、電動機で前記矢印4081X,4082Xの方向(前記X軸方向)に移動させ、前記第2の移動台409を、前記第1の移動台4081,4082とは別の電動機で前記矢印409Yの方向(前記Y軸方向)に移動させるように構成しても前記計測ヘッド5を前記計測対象面(図1における101)に平行な面内で2次元に移動させることができ、その場合は、操作手段7は設けずに、図1のオンオフスイッチ701や前記第1の機構3に付随の操作盤のスイッチ(図示せず)に、前記電動機の制御用スイッチを設ければよいし、場合によっては、マイクロプロセッサを使い計測用電動機自動制御プログラムにより、第1の機構3で前記計測領域にリフトされた前記計測ヘッド5の前記2次元の移動及び前記計測・診断を、計測開始操作後、自動的に行うようにすることも可能である。
【0076】
電動機を使用した場合は、図3(b)の構造のものに比し、操作性は良いが、若干高価になり、また、マイクロプロセッサを使い計測用電動機自動制御プログラムにより、第1の機構3で前記計測領域にリフトされた前記計測ヘッド5の前記2次元の移動及び前記計測・診断を、計測開始操作後、自動的に行うようにすれば、更に至便であるが、更に高価にもなる。
【0077】
前述の実施の形態1及び2は、電動機を使わずに安価なものにするため、第2の機構4における支持部402に、棒状等の操作手段7で外力(人力)を加えることにより、計測ヘッド5を、容易に計測対象面101に平行な面内で任意の方向に前記2次元に移動させることができる具体的構造を例示するものであるが、操作の容易性、至便性は、前述の実施の形態3の方が優る。
【0078】
実施の形態4.
以下、この発明の実施の形態4をシステム構成全体を例示す図4に基づいて説明する。この発明の実施の形態4は、第1の機構3の軽量化を図る一事例を示すもので、図4において、図1〜図3と同一または相当する部分には同一符号を付し、その説明は省略し、図1〜図3と異なる部分についてのみ説明する。
【0079】
図4において、前記第1の機構3の移動部303の計測対象面101側の先端に、摩擦性の緩衝材からなる固定部材305が装備されており、計測準備作業の当初、前記第1の機構3を伸長させて前記固定部材305の計測対象面101側の面を該計測対象面101に当接させる。
【0080】
前記第1の機構3は、前記第2の機構4、前記計測ヘッド5、及び前記操作手段7の重量を支えるため、前記計測対象面101に当接させる固定部材305を設けなかった場合は、前記第1の機構3の重量を転倒しないだけの重量にする必要があるが、前記第1の機構3の移動部303の前記計測対象面101側の先端の摩擦性の固定部材305を、前記計測対象面101に当接して固定することにより、前記第2の機構4、前記計測ヘッド5、及び前記操作手段7の重量が前記第1の機構3にもたらす転倒方向への回転モ−メントに拮抗させることが可能となり、前記第1の機構3の自重を軽くすることができ、前記第1の機構3の設置作業や次の計測範囲の場所への運搬作業が容易になる。
【0081】
又、前記固定部材305は緩衝材で形成されているので、前記固定部材305の計測対象面101側の面を該計測対象面101に当接させた場合に、前記計測対象面101や前記移動部303に取り付けた第2の機構4や第2の機構4に搭載の計測ヘッド5への前記当接によるショックが軽減される。
【0082】
以下、計測準備作業、動作について要点を概念的に説明する。
【0083】
1C) 計測領域9aへのリフト機能を有した第1の機構3を地表面2上に設置する。この際、この第1の機構3を設置する地表面2上の位置は、計測対象構造物1の計測範囲の下方で、該第1の機構3の移動部303を上昇することにより該移動部303が計測範囲の中に入るように選定される。
【0084】
2C) 前記第1の機構3の駆動源304を操作して前記移動部303を上昇させ、前記固定部305が計測対象構造物1の計測対象面101に近接する計測領域9aまで移動させ、更に、前記固定部305が該計測対象面101に当接し、所定の応力が前記固定部305に加わるまで前記第1の機構3を上昇させる。ここで、前記所定の応力とは、前記計測対象面101に対し過大な応力ではなく、前記固定部305の許容応力内に設定されており、また、前記所定の応力の確認は、前記第1の機構3の駆動源304の圧力計(図示せず)等を監視することにより行える。
【0085】
3C) 次に、操作員6が、計測ヘッド5に連結された棒状の操作手段7を手元操作して前記計測ヘッド5を移動させ、その計測位置が所定の計測点9pに合うように調整する。この際、前記計測ヘッド5の水平方向の位置は、前記第1の機構3を基準として、前記第2の機構4の支持部402の動き得る自由度の範囲内にて任意に移動することができるため、予め計画した計測点9p,9n・・・に対し、順次、前記計測ヘッド5の位置をシフトすると共に、計測デ−タを採取・記録する。
【0086】
4C) このようにして第2の機構4の支持部402の動き得る自由度の範囲内にて前記計測対象面101上の計測を完了後、一旦前記第1の機構3の移動部303及び前記固定部305を下降させて前記固定部305と前記計測対象面101との接触を解除した後、前記第1の機構3の設置位置を次の計測位置に移動する。なお、前記固定部305と前記計測対象面101との接触を解除した場合、前記計測ヘッド5のセンサ部502他も、前記計測対象面101との接触が解除されるようにしてある。
【0087】
5C) 以下、前記2C)〜前記4C)を前記計測対象面101の所定の計測範囲が計測完了されるまで繰り返す。前記計測対象面101の全面の計測を完了した場合は、前記第1の機構3の前記駆動源304を操作して前記移動部303を下降させ、該移動部303が地表面2上に到達するまで近づけ、作業を完了する。
【0088】
実施の形態5.
計測対象構造物1が橋脚と橋脚との間の高架の部分である場合、大型車両や電車の通過時に当該高架の部分は上下に揺れる。つまり図1の実線の状態や図4の状態で、橋脚と橋脚との間の高架の部分を計測いる際中に、大型車両や電車が通過した場合、前記高架部分の上下の揺れは、その揺れ幅が小さい場合は、計測ヘッド5の定圧台盤507や第2の機構4の撓み等で追従できるが、当該揺れ幅が大きい場合は、追従できるように、第2の機構1のリフティング機構部302と地表面2との間や、前記リフティング機構部302と移動部303との間にスプリング(つる巻きバネ)を介在させて前記追従ができるようにすれば、車両が通る時間帯や電車の運行時間帯でも計測が可能である。
【0089】
実施の形態6.
前述の図1及び図4は、高架橋の床版底面のような高所に存在する水平な計測対象面101を対象にした場合の実施形態の例であるが、例えば、壁高欄や橋脚側面の高所側面を計測するケ−スも存在する。このような場合は、前述の図1及び図4のように第1の機構3に対し計測ヘッド5の向きが固定関係であればそのままでは対処しにくく、何らかの工夫が必要になる。そこで、例えば、第1の機構3と第2の機構4との接続部に、第1の機構3の伸縮方向(前述の上下へのリフト方向)に対して第2の機構4を傾斜、或いは垂直に屈曲できる機構等の手段を追加すれば、例えば、壁高欄や橋脚側面の高所側面を計測するケ−スにも対処できる装置を実現でき、その一例がこの発明の実施の形態6である。
【0090】
以下、この発明の実施の形態6をシステム構成全体を例示す図5に基づいて説明する。図5において、図1〜図4と同一または相当する部分には同一符号を付し、その説明は省略し、図1〜図4と異なる部分についてのみ説明する。
【0091】
図5において、第1の機構3と第2の機構4との接続部に、第1の機構3の伸縮方向(前述の上下へのリフト方向)に対して第2の機構4を傾斜、或いは垂直に屈曲できる機構等の手段、換言すれば前記第1の機構3に対して前記計測ヘッド5の向きを変更できる向き変更手段306は、前記第1の機構3のリフティング機構部302の地表面2と反対側の先端に設けられた第1の接続腕3061と、前記移動部303の前記リフティング機構部302側の先端に設けられた第2の接続腕3062と、前記第1の接続腕3061と前記第2の接続腕3062とをボルト等で枢着する枢着部3063とで構成され、前記第1の接続腕3061と前記第2の接続腕3062とがなす角度を、矢印306Rで示すように、任意に変更設定できる、即ち前記第1の機構3と前記第2の機構4とがなす角度を任意に変更設定できる、即ち前記第1の機構3に対して前記計測ヘッド5の向きを任意に変更設定できるようにしてある。
【0092】
なお、前記枢着部において3063ボルト等で枢着する場合、波形座金等を介在することにより、前記第1の接続腕3061と前記第2の接続腕3062とがなす角度は、前記任意設定後に振動等により変わる可能性を防止できる。
【0093】
図5において、計測対象構造物1は、例えば前述の壁高欄や橋脚等であり、その計測対象面101は、地表面2に対して垂直をなしており、この垂直の計測対象面101に前記計測ヘッド5の打振部501,センサ部502,及びマ−キング部505が当接するように、前記図1及び図4で水平であった第2の機構4は垂直にしてある。
【0094】
以下、計測準備作業、動作について要点を概念的に説明する。
【0095】
1D) 計測領域9aへのリフト機能を有した第1の機構3を地表面2上に設置する。この際、この第1の機構3を設置する地表面2上の位置は、計測対象構造物1の計測範囲の下方で、該第1の機構3の移動部303を上昇することにより該移動部303が計測範囲の中に入るように選定される。
【0096】
2D) 前記第1の機構3の駆動源304を操作して前記移動部303を上昇させ、該移動部303が計測対象構造物1の高所の計測領域9aまで移動させる。
【0097】
3D) 次に、操作員6が、計測ヘッド5に連結された棒状の操作手段7を手元操作して前記計測ヘッド5を移動させ、その計測位置が所定の計測点9pに合うように調整する。この際、前記計測ヘッド5の鉛直方向の位置は、前記第1の機構3を基準として、前記第2の機構4の支持部402の動き得る自由度の範囲内にて任意に移動することができるため、予め計画した計測点9p,9n・・・に対し、順次、前記計測ヘッド5の位置をシフトすると共に、計測デ−タを採取・記録する。
【0098】
4D) 計測ヘッド5が前記接触方式の場合は、操作員6は、操作手段7で前記計測ヘッド5を計測対象面101の計測点9aに対向させた後、更に、前記操作手段7で前記計測ヘッド5を計測対象面101に向けて押し出し、計測ヘッド5の打振部501,センサ部502,及びマ−キング部505を計測対象面101に接触させ圧接させる。
【0099】
5D) このようにして前記第2の機構4の支持部402の動き得る自由度の範囲内にて前記計測対象面101上の計測を完了後、一旦前記第1の機構3の移動部303を下降させて前記計測ヘッド5のセンサ部502他と前記計測対象面101との接触を解除した後、前記リフト機能を有した第1の機構3の設置位置を次の計測位置に移動する。
【0100】
6D) 以下、前記2D)〜前記4D)を前記計測対象面101の所定の計測範囲が計測完了されるまで繰り返す。前記計測対象面101の全面の計測を完了した場合は、前記第1の機構3の前記駆動源304を操作して前記移動部303を下降させ、該移動部303が地表面2上に到達するまで近づけ、作業を完了する。
【0101】
なお、図5では計測対象面101と地表面2とのなす角度が90°(垂直)の場合について例示してあるが、前記この発明の実施の形態6においては、前述のように、前記枢着部3063により、前記第1の接続腕3061と前記第2の接続腕3062とがなす角度を任意に変更設定できるので、計測対象面101と地表面2とのなす角度が90°以外の各種角度の場合であっても対処できる。
【0102】
実施の形態7.
前述のこの発明の実施の形態6においては、前記向き変更手段306を、前記第1の機構3のリフティング機構部302と前記移動部303との間に設けた場合を例示したが、前記向き変更手段306は前記移動部303と前記第2の機構4との間に設けても、また、前記第2の機構4の支持部402と前記計測ヘッド5との間に設けても、前述の実施の形態6と同等の機能を呈す。更に、前述の実施の形態6に追加して、前記第2の機構4の支持部402と前記計測ヘッド5との間にも向き変更手段306を設けたり、前記向き変更手段306を前記移動部303と前記第2の機構4との間に設けしかも前記第2の機構4の支持部402と前記計測ヘッド5との間に設け設けたりすれば、測定対象構造物の水平面や垂直面に溝や小径部などの複雑な形状の部分の計測も可能となる。
【0103】
実施の形態8.
この発明の実施の形態8は、前述の図1〜図5における第2の機構4に代えて該第2の機構4より簡易で安価な構造のガイド構造体を採用した事例を示すものであり、以下、図6及び図7に基づいて説明する。図6はシステム構成全体の一例を示す図、図7はガイド構造体の構造及び動作、及び第1の機構とガイド構造体との動作関係の一例を示す概念図であり、これら図6及び図7において、図1〜図5と同一または相当する部分には同一符号を付し、その説明は省略し、図1〜図5と異なる部分についてのみ説明する。
【0104】
図6及び図7において、第1の機構3の移動部303に、ガイド構造体10が固定して設けられている。このガイド構造体10は外枠1001が四角形の閉曲構造を有しており、前記外枠1001内には、図示のように枝構造1 002〜1007が設けられている。前記外枠1001と枝構造1002〜1007との間には、ガイド溝となる連続する複数の小空間区画10sd1〜10sd9を形成してある。また、前記前記外枠1001、前記枝構造1002〜1007、及び前記小空間区画10sd1〜10sd9は、前記ガイド構造体10が前記第1の機構3で計測領域9aへリフトされた状態において、何れも前記計測対象面101と平行をなして延在している状態となるように構成されている。
【0105】
これら複数の小空間区画10sd1〜10sd9の何れも閉曲せず、図示のように前記小空間区画10sd1と前記小空間区画10sd5とは直接連通し、同様に前記小空間区画10sd2と前記小空間区画10sd6、前記小空間区画10sd3と前記小空間区画10sd7、前記小空間区画10sd4と前記小空間区画10sd8とはそれぞれ直接連通している。また、前記小空間区画10sd9は、前記小空間区画10sd1と前記小空間区画10sd2と前記小空間区画10sd3と前記小空間区画10sd4とを連通する小空間区画である。
【0106】
前記ガイド溝となる連続する複数の小空間区画10sd1〜10sd9を形成することにより、棒状の操作手段7を操作して四角柱状の支持部材402を、前記連続する複数の小空間区画10sd1〜10sd9内の任意の位置に移動でき、従って前記支持部材402に搭載された計測ヘッド5も、前記操作手段7を操作して前記連続する複数の小空間区画10sd1〜10sd9内の任意の位置に対応した計測対象面101に対向する位置に移動できる。
【0107】
前記四角柱状の支持部材402は、第1の機構3及び前記ガイド構造体10とは独立した構造体で、その先端面に結合部材404を介して計測ヘッド5を搭載しており、前記計測ヘッド5と反対側の面(図6における下端面)に棒状の操作手段7が着脱自在に螺着などにより連結される。
【0108】
前記外枠1001や前記枝構造1002〜1007は、前記任意の位置で前記四角柱状の支持部材402と面接触して支持する支点として利用され、棒状の操作手段7の操作時における該操作手段7の傾斜の方向の力を軽減できる。従って、操作員6は、前記計測ヘッド5と前記支持部材402と前記操作手段の垂直方向の重量を支えるだけで、前記ガイド構造体10の前記連続する複数の小空間区画10sd1〜10sd9の範囲内で自由に、前記計測ヘッド5により、前述のこの発明の実施の形態1〜5と同等の計測が出来る。
【0109】
実施の形態9.
この発明の実施の形態9は、前述の図1〜図7に比べ小さな操作力で計測ヘッド5を計測点へシフトできる第2の機構4を採用した事例を示すものであり、以下、図8及び図9に基づいて説明する。図8はシステム構成全体の一例を示す図、図9は第2の機構4の構造及び動作、及び第1の機構と第2の機構4との動作関係の一例を示す概念図であり、これら図8及び図9において、図1〜図7と同一または相当する部分には同一符号を付し、その説明は省略し、図1〜図7と異なる部分についてのみ説明する。
【0110】
図8及び図9において、第2の機構4は、第1の機構3の移動部303に固定された四角形の支持枠部4100と、この支持枠部4000の各辺部の中央部に取り付けられ夫々計測対象面101に平行な面内に配設された4台の巻上機4101〜4104と、これら巻上機4101〜4104から繰り出された各ワイヤ4101W〜4104Wで吊り下げられた支持部402とで構成されている。
【0111】
前記巻上機4101〜4104は、夫々巻上トルクが同じで何れも定トルクの自動巻上機構を採用し、前記各ワイヤ4101W〜4104Wの張力がバランスするようにしてある。前記支持部402は、前述の図1〜図7と同様に、計測対象面101側に結合部材404を介して計測ヘッド5を搭載し、地表面2側には棒状の操作手段7が自由継手403を介して着脱自在に螺着などにより連結されている。つまり、前記支持部402、前記計測ヘッド5、及び操作手段7は、前記ワイヤ4101W〜4104Wで吊り下げられており、前記支持部402、前記計測ヘッド5、及び操作手段7の全重量を前記各ワイヤ4101W〜4104Wが均等に分担して支えている。
【0112】
従って、前記支持部402は、前記各巻上機4101〜4104の相対的位置関係で決まる自由度の範囲内で前記計測対象面101に平行な面ないで前述の2次元の移動ができ、前記操作手段7で前記支持部402を移動させた場合、操作員は前記支持部402、前記計測ヘッド5、及び操作手段7の重量を支えることなく、しかも前記各ワイヤ4101W〜4104Wの張力バランスの下に、大きな力を加えることなく前記支持部402を介して前記計測ヘッド5を計測点9pへ移動させることができる。
【0113】
実施の形態10.
この発明の実施の形態10は、前述の図1〜図9に比べ計測ヘッド5の移動範囲を広くすることができる一事例を示すものであり、以下、システム構成全体を示す図10に基づいて説明する。なお、図10において、図1〜図9と同一または相当する部分には同一符号を付し、その説明は省略し、図1〜図9と異なる部分についてのみ説明する。
【0114】
図10において、第2の機構4は、図示のように前述のX軸方向に互いに所定間隔を隔てて地表面2に可移動に設置された対を成す第1の機構3001及び3002に跨って架設されており、この第2の機構4に支持部402が該第2の機構4に沿って可移動に装着されている。
【0115】
前記第1の機構3001及び3002は前述の図1〜図9における第1の機構3と同じ機能を有した同じ機構であり、図示のように各々、脚部3011,3012と、リフティング機構部3021,3022と、移動部3031,3032とを有し、各々、共通の駆動源304及び共通のスイッチ(図示せず)によって、各リフティング機構部3021,3022は計測対象面101の高さに対応した所望の同じ長さに同時に調整される。
【0116】
なお、この第1の機構3001及び3002は、前述のX軸方向のみでなく、前述のY軸方向にも対を成して設置して計2対の第1の機構を配設し、前記第2の機構4をそれら2対の第1の機構に跨って装着してもよい。また、前記駆動源304及びスイッチ(図示せず)は、前記各第1の機構3001及び3002の各々に対して個別に設けて、第1の機構3001を設置の地表面2と第2の機構3002を設置の地表面2との垂直方向のレベルの差に応じて、第1の機構3001及び3002の長さを個々に調整できるようにすれば、状態検出装置の使用個所が、第1の機構3001及び3002を設置する地表面が同一レベルの場合のみ特定されず至便である。
【0117】
前述の第2の機構4は、その具体的構造を、好ましくは前述のこの発明の実施の形態2や実施の形態3のようにした方がよいが、実施の形態2や実施の形態3以外の実施の形態のようにしてもよい。また、この第2の機構4は、前述のX軸方向及び前述のY軸方向の少なくとも一の方向に長さを調整できるようにしてもよい。
【0118】
この発明の実施の形態10の場合は、前述のように、対を成す第1の機構3001及び3002を、互いに所定間隔を隔てて地表面2に設置し、これら対を成す第1の機構3001及び3002に跨って第2の機構4を架設した構成としてあるので、その構成上、前述のこの発明の他の実施の形態に比べて第1の機構3001及び3002が安定し、全体的に機械的強度が大きくなるので、前記第1の機構3001及び3002の間隔を大きくできる。従って、計測ヘッド5の移動範囲を広くでき、例えば、計測領域9bについては、他の実施の形態では、第1の機構3を移動しなければ計測できなかったものが、この実施の形態10では、第1の機構3001及び3002を移動することなく、計測ヘッド5を移動させるだけで計測可能となり、計測作業を効率的に行うことが出来る。
【0119】
【発明の効果】
請求項1に記載の発明は前述のように、第1の機構、この第1の機構に装着の第2の機構、及び計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備えた計測装置を使い、前記第1の機構により前記第2の機構を前記計測領域へ位置させ、前記第2の機構を使って前記計測ヘッドを前記計測点へ移動させるようにしたので、計測対象構造物の状態検出を行うに当たり、地上面より高所にある部位の状態検出・診断を行う場合に、足場を組んだり、計測を足場の上での高所作業としなくて済み、ひいては危険性を伴わず計測精度の信頼性の低下を伴わない状態検出が可能となる効果がある。
【0120】
また、請求項3に記載の発明は前述のように、第1の機構、この第1の機構に装着の第2の機構、及びこの第2の機構に搭載され計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記第1の機構により前記第2の機構を介して前記計測ヘッドが前記計測領域へ位置させられ、前記第2の機構に依存して前記計測ヘッドが前記計測点へ移動するようにしたので、請求項1に記載の発明の方法を実施する構造物の状態検出装置を実現できる効果がある。
【0121】
また、請求項16に記載の発明は前述のように、第1の機構、この第1の機構に装着の第2の機構、計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記計測ヘッドが前記計測領域へ位置させられ、前記第2の機構に依存して前記計測ヘッドが前記計測点へ移動し、この計測点へ移動した計測ヘッドの状態検出デ−タから前記計測対象構造物の状態を表示装置に表示するようにしたので、請求項1に記載の発明の方法を実施する構造物の状態監視システムを実現できると共に、計測現場及び遠隔地の少なくとも一方で、例えば計測中の計測対象構造物の状態をリアルタイムに監視したり、計測デ−タに基づいて計測対象構造物の状態を自動診断した結果を確認する等の、計測対象構造物の状態の画面上で監視することができる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1のシステム構成全体の一例を示す図。
【図2】この発明の実施の形態1を示す図で、(a)は第2の機構の構造及び動作、及び第1の機構と第2の機構との動作関係、の一例を示す概念図、(b)は第2の機構の構造、及び第1の機構と第2の機構との構造及び動作の関係の一例を具体的に示す斜視図。
【図3】この発明の実施の形態2を示す図で、(a)は第2の機構の構造及び動作、及び第1の機構と第2の機構との動作関係、の一例を示す概念図、(b)は第2の機構の構造、及び第1の機構と第2の機構との構造及び動作の関係の一例を具体的構造で示す斜視図。
【図4】この発明の実施の形態4のシステム構成全体の一例を示す図。
【図5】この発明の実施の形態6のシステム構成全体の一例を示す図。
【図6】この発明の実施の形態8のシステム構成全体の一例を示す図。
【図7】この発明の実施の形態8を示す図で、第2の機構の構造及び動作、及び第1の機構と第2の機構との動作関係、の一例を示す概念図。
【図8】この発明の実施の形態9のシステム構成全体の一例を示す図。
【図9】この発明の実施の形態9を示す図で、第2の機構の構造及び動作、及び第1の機構と第2の機構との動作関係、の一例を示す概念図。
【図10】この発明の実施の形態10のシステム構成全体の一例を示す図。
【符号の説明】
1 計測対象構造物、 2 地表面、
3,3001,3002 第1の機構 4 第2の機構、
5 計測ヘッド、 6 操作者、
7 操作手段、 8 外部機器、
9a 計測領域、 9p 計測点、
10 ガイド構造体、 101 計測対象面、
305 固定部材、 306 向き変更手段、
4101〜4104 巻上機。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for detecting a state of a structure that detects a response signal from a measurement target structure based on a vibration, an elastic wave, and other signals emitted from the measurement head, by bringing the measurement head close to the measurement target structure, a detection device, Also, it relates to a state monitoring system for a structure that monitors the soundness or an abnormal state of a structure to be measured, such as a bridge structure such as a road or a railway (for example, a floor slab, a railing, a pier, etc.). The present invention relates to a method, a detection device, and a monitoring system for detecting the state of various structures suitable for detecting the state of a part located at a height above the ground surface.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, state detection and diagnosis of bridge structures such as roads and railways (for example, floor slabs, wall railings, piers, etc.) have been disclosed in, for example, JP-A-2001-124744. A hammer impacts a measuring object such as a structure, and the vibration of the measuring object caused by the impact is detected by a measuring head as a response signal to the hammer impact, and the defect of the measuring object is detected and diagnosed. is there.
[0003]
Japanese Unexamined Patent Application Publication No. 2001-124744 discloses a method of detecting a vibration of a measurement object caused by an impact with a hammer as a response signal to a hammer impact with a measuring head without depending on human hearing. In other words, by providing a plane-shaped carp that detects a change in the magnetic field by bringing the measuring head close to the object to be measured, a bridge structure such as a road or a railroad (for example, a floor slab, a wall section, a pier, etc.) is provided. This is an inspection device that detects a defect inside the measurement object from the natural vibration caused by the impact on the surface of the measurement object structure.
[0004]
In the case of detecting the state of a part higher than the ground surface, a scaffold is assembled, an operator climbs the scaffold, and operates, for example, a measuring head disclosed in JP-A-2001-124744 on the scaffold. It is in the current situation that the members have brought in their hands. Specifically, the state of a portion located higher than the ground surface is detected by the following procedure.
1. A scaffold or the like is constructed so that the operator can access the measurement area at a location higher than the ground surface.
2. A measurement point of the measurement object at a high place is selected in advance. In general, the measurement points are set in a measurement point group in which measurement points at a constant pitch are arranged in a grid.
3. The operator climbs on a scaffold or the like with the measuring head in his hand, and positions the measuring head at the measurement point on the scaffold or the like.
4. A measurement start command is issued to the measurement head to start measurement.
5. After the measurement is completed, the operator moves the measurement head to the next measurement point by holding the measurement head on a scaffold or the like. The subsequent operations are repeated to complete the measurement of the preset measurement point group.
[0005]
[Patent Document 1]
JP 2001-124744 A (paragraphs 0007 to 0009, FIG. 1)
[0006]
[Problems to be solved by the invention]
As described above, in the conventional method for detecting and diagnosing the state of a structure, when detecting and diagnosing the state of a part higher than the ground surface, an operator places a measurement area of the part higher than the ground surface on the measurement area. Construct a scaffold etc. so that it can be accessed, the operator climbs up the scaffold etc. with the measuring head in hand, positions the measuring head on the measuring point on the scaffold etc., and after the measurement at the measuring point is completed The operator repeatedly moves the measurement head to the next measurement point by holding the measurement head on a scaffold or the like, positions the measurement head at the measurement point on the scaffold or the like, and performs measurement. Furthermore, when the measurement in a certain area is completed and the measurement in the adjacent area or another distant area is to be continued, the scaffold or the like is dismantled, and then the scaffold or the like is assembled again in the adjacent area or another distant area. There must be. Therefore, it takes a great deal of time and effort to prepare for measurement, and the measurement work by the operator is also a high-altitude operation, so there is a danger of the operator falling or the measurement head falling, and more time is required than necessary for measurement. In addition, in some cases, there is a problem that the reliability of measurement accuracy is reduced.
[0007]
The present invention has been made in view of the above-described circumstances, and when detecting and diagnosing the state of a portion higher than the ground surface, assembling a scaffold or measuring as a work at a height from the scaffold. It is an object of the present invention to eliminate the need for the measurement, and to prevent the measurement accuracy from deteriorating without danger.
[0008]
[Means for Solving the Problems]
The method for detecting a state of a structure according to the present invention measures a first mechanism, a second mechanism attached to the first mechanism, and a state in which a measurement surface faces a measurement target surface of a measurement point in a measurement area. Using a measuring device having a measuring head having a function of detecting a state of a target structure, the first mechanism is used to position the second mechanism in the measurement area, and the measurement is performed using the second mechanism. The head is moved to the measurement point.
[0009]
In addition, the structure state detection device according to the present invention includes a first mechanism, a second mechanism mounted on the first mechanism, and a measurement surface mounted on the second mechanism and having a measurement surface in a measurement area. A measurement head having a function of detecting a state of the measurement target structure in a state facing the measurement target surface, wherein the measurement head is positioned in the measurement region via the second mechanism by the first mechanism; The measuring head moves to the measuring point depending on the second mechanism.
[0010]
Further, the structure state monitoring system according to the present invention includes a first mechanism, a second mechanism mounted on the first mechanism, and a structure to be measured in a state where the measurement object structure faces a measurement target surface of a measurement point in a measurement area. A measuring head having a function of detecting a state of the measuring head, wherein the measuring head is positioned in the measuring area, the measuring head moves to the measuring point depending on the second mechanism, and moves to the measuring point. The state of the structure to be measured is displayed on the display device from the state detection data of the measuring head, so that the state of the structure to be measured can be monitored.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described based on an example shown in FIGS. 1 and 2A and 2B. FIG. 1 is a diagram illustrating an example of the entire system configuration, and FIG. 2A is a conceptual diagram illustrating an example of the structure and operation of a second mechanism, and an operational relationship between the first mechanism and the second mechanism. FIG. 2B is a perspective view showing a specific example of the structure of the second mechanism, and an example of the relationship between the structure and operation of the first mechanism and the second mechanism.
[0012]
In FIG. 1, a measurement target structure 1 is a portion of a bridge structure such as a road or a railroad (for example, a floor slab, a railing, a pier, etc.) or other various measurement target structures that are considerably high from the ground surface 2. The lower surface is a measurement target surface 101.
[0013]
The first mechanism 3 is mounted on the ground surface 2, and includes a leg 301 mounted on the ground surface 2, and one end supported by the leg 301, as shown by an arrow 3 </ b> V. A columnar lifting mechanism 302 having a structure extending in the longitudinal direction and contracting in a direction opposite to the arrow 3V; a moving section 303 provided at an end of the lifting mechanism 302 opposite to the leg 301; It is composed of a hydraulic source, an air pressure source, a water pressure source, and another drive source 304 for moving the moving unit 303 up and down by expanding and contracting the lifting mechanism 302. The up / down movement of the moving section 303 of the drive source 304 is performed by manually operating a switch (not shown) of an operation panel attached to the first mechanism 3.
[0014]
The second mechanism 4 is mounted on the moving section 303 of the first mechanism 3, and has a biaxial link mechanism section 401 (detailed structure and functions will be described later with reference to FIGS. 2A and 2B). And a support section 402 attached to the link mechanism section 401.
[0015]
A measurement head 5 is mounted on the measurement target surface 101 side of the support portion 402 of the second mechanism 4. Further, a rod-shaped operation means 7 operated by an operator 6 is connected to the ground surface 2 side of the support portion 402 by screwing or the like. In other words, the load of the second mechanism 4, the load of the measuring head 5, and the load of the rod-shaped operation means 7 are all received by the first mechanism 3 via the moving portion 303, and the operator 6 Is configured so that the measuring head 5 can be easily positioned at a position to be measured without receiving the loads.
[0016]
The measurement head 5 includes a vibration unit 501 that vibrates the measurement target surface 101 to give an impact to the measurement target structure 1, and a natural vibration or a reflected wave generated by the impact on the measurement target structure 1. A sensor unit 502 for detecting a response signal, a diagnostic function unit 503 for determining the presence / absence of an internal defect in the structure 1 to be measured, and a notifying unit 504 for displaying a diagnosis result of the diagnostic function unit 503 by display, sound, or the like. A marking unit 505 for marking the measurement target surface 101 so as to be able to discriminate whether or not the measurement has been completed; and a measurement data from the sensor unit 502 and a diagnosis result from the diagnosis function unit 503. An output terminal 506 for outputting to an external device (a display such as a CRT, a personal computer, a server, a monitoring station, a maintenance office, etc.) 8 and a constant pressure platform 507 held by a constant pressure spring or an electromagnet (constant repulsion). Have.
[0017]
The vibrating section 501 is a hammer that does not depend on human power, such as an electromagnetic hammer or a purely mechanical hammer. In addition, FIG. 1 illustrates a case where the vibration unit 501 is attached to the measurement head 5, but the vibration unit 501 may be attached to something other than the measurement head 5 apart from the measurement head 5.
[0018]
The sensor unit 502 may be a contact type or a non-contact type, but FIG. 1 illustrates a contact type, and at the time of measurement, a constant pressure spring or an electromagnet is used to measure the position in the measurement area 9. The measurement target surface 101 at the measurement point 901 is pressed with a predetermined constant pressure.
[0019]
The diagnostic function unit 503 analyzes a state in the measurement target structure 1 based on a response signal such as a natural vibration or a reflected wave generated by the impact on the measurement target structure 1 detected by the sensor unit 502 to detect a defect in the measurement target structure 1. And suspect defects. For example, comparing the result of calculating the presence or absence and size of cavities, cracks, etc., the location, direction, number, etc. with a reference value, or at the time of initial measurement of the target structure 1 at the time of completion or up to now The deviation from the data of the state in the structure 1 to be measured is obtained from the comparison of the detected deviation with the reference allowable deviation value and the degree of change of the detected deviation with time, and the like, and the defect, quasi-defect, short-term The interim continuous measurement is determined.
[0020]
The notification unit 504 displays the measurement result of the measurement head 5 so that the operator 6 on the ground surface 2 can visually determine the result, for example, if there is no defect, blue display, if there is a defect, red display, quasi-defect, In the case of continuous measurement for a short period of time, a yellow display is used, and a red display or a buzzer sounds only when there is a defect.
[0021]
The marking section 505 for marking the measurement target surface 101 so as to be able to discriminate whether or not the measurement has been completed can be most easily realized by using a mark impregnated with ink. As a function, a measurement date, a name of a measurement company, a signature of a measurement department, a measurer, a diagnosis result, and the like may be marked.
[0022]
The constant-pressure platform 507 held by a constant-pressure spring or an electromagnet (constant repulsion) holds the vibration unit 501, the sensor unit 502, and the marking unit 505 on the measurement target surface 101 side. When the sensor unit 502 is pressed against the measurement target surface 101, the sensor unit 502 comes into contact with the measurement target surface 101 at a predetermined constant pressure, and the measurement target is always changed even when the measurement location is changed. The surface 101 is brought into contact with a predetermined constant pressure so that measurement can be performed with high reliability and stable accuracy.
[0023]
In addition, the vibration part 501 and the marking part 505 are directly attached to the measuring head 5 without providing the constant-pressure base plate 507, and only the sensor part 502 uses the constant-pressure spring or the electromagnet (constant repulsion). Even if the sensor unit 502 is held on the measurement head 5 via the sensor unit 502, when the sensor unit 502 is pressed against the measurement target surface 101, the sensor unit 502 comes into contact with the measurement target surface 101 at a predetermined constant pressure, and the measurement is performed. Even if the location is changed, the measurement target surface 101 is always brought into contact with a predetermined constant pressure, so that measurement can be performed with high reliability and stable accuracy.
[0024]
When a non-contact type sensor unit is mounted on the measurement head 5 as the sensor unit 502, the constant-pressure base plate 507 is unnecessary, and instead of the constant-pressure base plate 507, the measurement head 5 and the measurement target surface 101 are replaced. When the measuring head 5 is provided with a positioning member for keeping the distance between the measuring head 5 and the measuring position constant even when the measuring place is changed, a highly reliable and stable accuracy can be obtained as in the case of the contact type shown in FIG. Can be measured with
[0025]
Further, since the vibration unit 501 is also held by the constant-pressure base plate 507, the measurement object is measured as long as the measurement object surface 101 is flat while the sensor unit 502 is in contact with the measurement object surface 101. The distance (including 0) to the surface 101 is always constant even when the measurement location is changed, and therefore, the impact force given by the vibration unit 501 to the measurement target surface 101 also changes the measurement location. However, even when the measurement place is changed, the sensor unit 502 can always measure the internal state of the measurement target structure 1 under a constant impact force even when the measurement place is changed.
[0026]
Since the marking section 505 is also held by the constant pressure platform 507, the measurement target surface 101 is flat as long as the sensor section 502 is in contact with the measurement target surface 101 as long as the measurement target surface 101 is flat. The distance (including 0) to the measurement surface 101 is always constant even when the measurement location is changed, and therefore, even when the measurement location is changed, the measurement target surface 101 can always be accurately marked.
[0027]
The rod-shaped operating means 7 connected to the ground surface 2 side of the support portion 402 of the second mechanism 4 is operated by an operator 6 by hand to move the support portion 402 in the direction of arrow 4H and the arrow 4H. And at least a component in a direction (also referred to as an X-axis direction for convenience) and a direction orthogonal to the X-axis direction and parallel to the measurement target surface 101 of the measurement target structure 1 (also referred to as a Y-axis direction for convenience). Moved in one direction. The link mechanism 401 operates to allow the movement of the support 402 in the X-axis direction and the Y-axis direction (hereinafter abbreviated as “two-dimensional movement”). The measurement head 5 makes the two-dimensional movement along the measurement target surface 101 of the measurement target structure 1 by the movement of the support portion 402 in a direction having at least one of the components in the XY axis direction.
[0028]
On the outer surface of the lower end of the rod-shaped operation means 7, an on / off switch 701 for starting / stopping measurement of the measuring head 5 is detachably mounted by a fixture 702 such as a U-shaped clip. A cable 703 for connecting the on / off switch 701 and the measuring head 5 also extends along the outer surface of the rod-shaped operating means 7 and extends at several points in the longitudinal direction of the rod-shaped operating means 7. 7 is detachably held by a fixture 704 on the outer surface of the base 7.
[0029]
When the on / off switch 701 is turned on (ON), the vibration unit 501, the sensor unit 502, the diagnostic function unit 503, the notification unit 504, the marking unit 505, and the constant pressure platform 507 are turned on. (ON) state, and when the on / off switch 701 is turned off (OFF), the vibration unit 501, the sensor unit 502, the diagnostic function unit 503, the notification unit 504, the marking unit 505, and the The constant pressure base plate 507 is turned off.
[0030]
The on / off switch 701 is provided with a notch on the outer surface of the lower end of the rod-shaped operating means 7 and fitted into the notch, and communicates with the notch on the outer surface of the rod-shaped operating means 7 in the longitudinal direction. The cable 703 may be fitted into a groove provided in the cable. The operation of starting and stopping the measurement of the measuring head 5 is performed, for example, by inputting from a keyboard of the external device 8, and a signal of the operation input is transmitted to the measuring head 5 via an output terminal 506. You may make it input.
[0031]
An external device 8 such as a display such as a CRT, a personal computer, a server, a monitoring station, a maintenance office, and the like, emits natural vibrations and reflected waves generated by the impact on the measurement target structure 1 detected by the sensor unit 502. The response signal is displayed as an analog signal, or the result of calculating the presence or absence, size, location, direction, number, etc. of the cavities and cracks is compared with a reference value, or the completion of the structure 1 to be measured A deviation from the data of the state in the structure 1 to be measured at the time of the initial measurement or at the time of the previous measurement is obtained, the detected deviation is compared with a reference allowable deviation value, the degree of change of the detected deviation with time, From the results, the results of discriminating defects, quasi-defects, short-term continuous measurement, and the like are displayed, and the measurement target structure 1 such as presence or absence, size, location, direction, and number of the cavities and cracks, etc. To display the status inside The various displays are by software, etc. that to be selectively performed by the automatic display or human search operation and icon manipulation, the display as needed are performed. Note that the diagnostic function unit 503 may be provided in the external device 8 instead of being provided in the measurement head 5.
[0032]
The function allocation between the measuring head 5 and the external device 8 is set as necessary. For example, the measuring head 5 has only the measuring function, and the external device 8 has the measuring function among the functions. By providing all functions other than the above, the load on the measuring head 5 can be reduced, and the load on the first mechanism 3 can be reduced.
[0033]
Next, measurement preparation work and operation will be described. First, the gist is conceptually described, and then a detailed specific example is described.
[0034]
In FIG. 1, the moving unit 303, the second mechanism 4, and the measuring head 5 indicated by solid lines are lifted up to the measuring area 9a by the first mechanism 3, and the measuring head 5 is moved to the measuring point 9p by the operating means 7. The first state in which the moving unit 303, the second mechanism 4, and the measurement head 5 are not lifted to the measurement area 9a and the measurement head 5 is not moved to the measurement point 9p, which is indicated by a dashed line. Is shown.
[0035]
First, the main points of the measurement preparation work and operation will be conceptually described.
[0036]
1A) A first mechanism 3 having a lift function to a measurement area 9a is installed on the ground surface 2. At this time, the position on the ground surface 2 where the first mechanism 3 is installed is moved downward by moving the moving section 303 of the first mechanism 3 below the measurement range of the structure 1 to be measured. 303 is selected so as to fall within the measurement range.
[0037]
2A) The driving unit 304 of the first mechanism 3 is operated to raise the moving unit 303, and the moving unit 303 moves to the measurement area 9a close to the measurement target surface 101 of the measurement target structure 1.
[0038]
3A) Next, the operator 6 moves the measuring head 5 by operating the rod-shaped operating means 7 connected to the measuring head 5 at hand, and adjusts the measuring position so as to match the predetermined measuring point 9p. . At this time, the horizontal position of the measuring head 5 is arbitrarily moved within the range of the degree of freedom of the second moving mechanism 4 having the function of the link mechanism with reference to the first mechanism 3. , The position of the measurement head 5 is sequentially shifted with respect to the measurement points 9p, 9n... Planned in advance, and measurement data is collected and recorded.
[0039]
4A) After the measurement on the measurement target surface 101 is completed within the range of the degree of freedom of the second mechanism 4 having the function of the link mechanism, the moving unit 303 of the first mechanism 3 is temporarily stopped. After the sensor unit 502 of the measuring head 5 is lowered to release the contact between the sensor unit 502 and the measurement target surface 101, the installation position of the first mechanism 3 having the lift function is moved to the next measurement position.
[0040]
5A) Hereinafter, the steps 2A) to 4A) are repeated until the measurement of the predetermined measurement range of the measurement target surface 101 is completed. When the measurement of the entire surface of the measurement target surface 101 is completed, the driving unit 304 of the first mechanism 3 is operated to lower the moving unit 303, and the moving unit 303 reaches the ground surface 2. To complete the work.
[0041]
Next, a detailed example of the measurement preparation operation and operation will be described in detail.
[0042]
1B) First, the first mechanism 3 is installed on the ground surface 2 below the measurement target surface 101 at a high place of the measurement target structure 1. In this case, the lifting mechanism 302 of the first mechanism 3 is not extended, and the moving part 303 is located near the ground surface 2 at a position indicated by a chain line in the figure. Therefore, the second mechanism 4 and the measuring head 5 are also located near the ground surface 2 at the position indicated by the dashed line.
[0043]
2B) Next, the driver (not shown) of the operation panel is operated to raise the driving source 304 to extend the lifting mechanism 302, and move the moving unit 303 to the position indicated by the dashed line near the ground surface 2. From the position, as shown by the arrow 3V, the object is moved upward toward the measurement object 1, and lifted to the position indicated by the dashed line in the measurement area 9a. As the moving area 303 is lifted to the position indicated by the dashed line in the measurement area 9a, the second mechanism 4 and the measurement head 5 are also measured from the position indicated by the dashed line near the ground surface 2 as indicated by the arrow 4V. It moves upward toward the object 1 and is lifted to the position indicated by the dashed line in the measurement area 9a. At the position indicated by the dashed line in the measurement area 9a, none of the vibration unit 501, the sensor unit 502, and the marking unit 505 of the measurement head 5 is in contact with the measurement target surface 101. As shown in FIG.
[0044]
3B) Next, the operating means 7 is connected to the support portion 402 of the second moving mechanism 4 lifted to the position indicated by the dashed line in the measurement area 9a as shown by the dashed line in the drawing. An on / off switch 701 is removably mounted with a fixture 702 as shown by a dashed line in the figure, and a cable 703 connecting the on / off switch 701 and the measuring head 5 is also provided along the outer surface of the rod-shaped operating means 7. Then, it is held in the fixture 704 of the rod-shaped operation means 7.
[0045]
4B) Next, the operator 6 holds the rod-shaped operating means 7 in his / her hand and moves it from the position shown by the dashed line to the position shown by the solid line as shown by the arrow 7V. With all of the sensor 501, the sensor unit 502, and the marking unit 505 being separated from the measurement target surface 101, the support unit 402 of the second moving mechanism 4 is moved to the position indicated by the dashed line in the measurement area 9a. The measuring head 5 is moved from the position to the position indicated by the solid line, that is, the position corresponding to the first measuring point 9p, as indicated by the arrow 4H.
[0046]
5B) Thereafter, the operator 6 pushes the rod-shaped operation means 7 upward toward the measurement target 1 as shown by an arrow 7B, and the vibration section 501, the sensor section 502, and the The measuring head 5 in a state where any of the king portions 505 is separated from the measurement target surface 101 is pushed upward toward the measurement target 1 as shown by an arrow 5V, and the vibration unit 501 and the sensor unit Both the 502 and the marking unit 505 are brought into contact with the measurement target surface 101 (the state of the solid line in the figure).
[0047]
6B1) When the constant-pressure base plate 507 uses a constant-pressure spring, the rod-shaped operating means 7 is further upwardly moved toward the measuring object 1 as indicated by an arrow 5V with a slightly stronger force than before. Pushing up, that is, the measuring head 5 is further pushed upward toward the measuring object 1 as shown by an arrow 5V through the rod-shaped operating means 7, and the vibrating unit 501 is pressed at a constant pressure determined by a constant pressure base plate 507. , The sensor unit 502 and the marking unit 505 are pressed against the measurement target surface 101. In addition, the operation of further pushing the measurement object 1 upward is performed by operating the first mechanism 3 by the drive source 304, and the drive source 304 uses air pressure, hydraulic pressure, water pressure, or the like. In this case, it is generally difficult to delicately control the air pressure, oil pressure, water pressure and the like to press the sensor unit 502 and the like against the measurement target surface 101 without a large shock.
[0048]
6B2) When the constant pressure base plate 507 uses an electromagnet (repulsive force), an on / off switch 701 is turned on (ON) at the start of measurement to energize the electromagnet, whereby the sensor unit is turned on. 502 and the like can be pressed against the measurement target surface 101, so that the operation of pushing the rod-shaped operation means 7 upward with a slightly stronger force toward the measurement target 1 as shown by an arrow 5V is not necessary. It is not necessary.
[0049]
7B1) Next, the operator 6 turns on (ON) the on / off switch 701, and starts measuring the internal state of the measurement target structure 1 at the measurement point 9p. That is, the vibration unit 501, the sensor unit 502, the diagnostic function unit 503, the notification unit 504, and the marking unit 505 are turned on (ON). At the measurement point 9p, the vibration unit 501 has a hammer function. The sensor unit 502 starts applying an impact to the measurement target structure 1, the sensor unit 502 starts measuring the response signal to the impact from the measurement target structure 1, and the diagnostic function unit 503 performs measurement using the sensor unit 502. The state of the inside of the measurement target structure 1 is diagnosed based on the signal, and the notification unit 504 is in a standby state so as to be able to notify when there is an abnormality in the measurement target structure 1, and the marking is performed. The unit 505 starts the marking on the measurement target surface 101. Further, the measurement signal measured by the sensor unit 502 and the state diagnosis result in the measurement target structure 1 by the diagnostic function unit 503 are output from the output terminal 506 to the external device 8 or output from the external device 8 to the output terminal. Read via 506.
[0050]
7B2) When the constant pressure base plate 507 uses an electromagnet (repulsive force), the electromagnet (repulsive force) is activated when the on / off switch 701 is turned on (ON), and the electromagnet (repulsive force) is activated. ) Pushes up the constant pressure platform 507 upwardly toward the measuring object 1 as indicated by an arrow 5V, and the vibration section 501, the sensor section 502, and the marking section via the constant pressure platform 507. Any one of the blocks 505 is pressed against the measurement target surface 101 with a predetermined force, and the operation of 7B1) is performed.
[0051]
8B) Next, when the measurement at the measurement point 9p has been completed and the measurement at the next measurement point 9pn is to be continued, the operator 6 turns off the on / off switch 701 once and turns off the rod-shaped operation. The means 7 is slightly pulled down in the direction opposite to the arrow 5V in a direction away from the measuring object 1, that is, the measuring head 5 is moved from the measuring object 1 in the direction opposite to the arrow 5V via the rod-shaped operating means 7. After pulling down in the direction in which the measuring head 5 is moved away, and all of the vibrating part 501, the sensor part 502, and the marking part 505 of the measuring head 5 are separated from the measurement target surface 101, the rod-shaped operating means 7 is moved in the direction of arrow 7H. Then, the measurement head 5 is caused to correspond to the next measurement point 9 pn without contacting the measurement target surface 101.
[0052]
After the measurement head 5 is made to correspond to the next measurement point 9pn, the operations and operations from 5B) to 7B2) are performed.
[0053]
9B) The two-dimensional movement of the measurement head 5 in a plane (horizontal plane in FIG. 1) parallel to the measurement target surface 101 can be freely performed within a range of the freedom of the link mechanism 401. . Accordingly, when the measurement head 5 is moved within the range of the degree of freedom of the link mechanism 401 and the measurement within the range is completed, the driving source 304 lifts the lifting mechanism 302 of the first mechanism 3. Is contracted downward in the direction opposite to the arrow 3V, and the moving unit 303, the second mechanism 4, and the measurement head 5 are lowered to a position indicated by a dashed line near the ground surface 2, and the next measurement area 9b The first mechanism 3 is moved and installed on the ground surface 2 immediately below, and thereafter, the same measurement preparation work and measurement work as described above are performed.
[0054]
Next, FIG. 2A showing the concept of the above-described measurement preparation work, the structure and operation of the second mechanism that is the basis of the operation, and the operational relationship between the first mechanism 3 and the second mechanism 4. The structure of the second mechanism 4 is shown in FIG. 2B showing the structure of the second mechanism 4 and the specific structure showing the relationship between the structure and operation of the first mechanism 3 and the second mechanism 4. , And the relationship between the structure and operation of the first mechanism 3 and the second mechanism 4 will be described in detail.
[0055]
2A and 2B, the link mechanism 401 of the second mechanism 4 includes a first arm 4011, a second arm 4012, and the first and second arms 4012. An intermediate shaft structure 4013 for pivotally connecting the arms 4011 and 4012 and an end of the first arm 4011 on the opposite side to the intermediate shaft structure 4013 are pivotally connected to the moving unit 303 of the first mechanism 3. And a support portion 402 at a free end of the second arm portion 4012 opposite to the intermediate shaft structure portion 4013.
[0056]
The tip of the operation means 7 on the measurement target surface side is detachably screwed to a ground surface side joint of a free joint (universal joint) 403, and the joint of the free joint 403 on the measurement target surface side is measured. The measurement head 5 is mounted to the end on the target surface side, and is connected to the end on the ground surface side of the connection member 404. The free joint 403 has a margin for operation so that when the operator operates the rod-shaped operating means 7 from above the ground surface 2 in FIG.
[0057]
The intermediate portion of the coupling member 404 penetrates through the support portion 402 at the free end of the second arm portion 4012 and is fitted to the support portion 402 with a predetermined coupling force. With the total load of the load, the load of the operation means 7, the load of the free joint 403, and the load of the coupling member 404, the coupling member 404 does not naturally descend from the support portion 402 to the ground surface side. When the operating means 7 is pushed up to the surface to be measured as indicated by an arrow 7V with a predetermined force that overcomes the fitting with the predetermined coupling force, the coupling member 404 is freed from the free joint 403. Is pushed up to the surface to be measured as shown by an arrow 7V, so that the measuring head 5 is also pushed up to the surface to be measured as shown by an arrow 5V.
[0058]
On the other hand, the operating means 7 is operated to move in the X-axis direction 7X1 (direction of arrow 7H in FIG. 1 (horizontal direction in the first embodiment)) parallel to the measurement target surface 101 (shown in FIG. 1). Then, the support portion 402 moves in the X-axis direction 4X1 (the direction of arrow 4H in FIG. 1 (the horizontal direction in the first embodiment)) via the free joint 403 and the coupling member 404, and The measurement head 5 also moves in the X-axis direction 5X1 (the horizontal direction in the first embodiment) with the movement of the X-axis 7 in the X-axis direction 7X1 and the movement of the support portion 402 in the X-axis direction 4X1. Similarly, by operating the operating means 7, the X-axis direction 7X2 parallel to the measurement target surface (the direction opposite to the X-axis direction 7X1; that is, the direction opposite to the arrow 7H in FIG. 1 (this embodiment) 1), the measuring head 5 moves in the X-axis direction 5X2 (the direction opposite to the X-axis direction 5X1; the horizontal direction in the first embodiment).
[0059]
Further, the operating means 7 is moved in the Y-axis direction 7Y1 (parallel to the X-axis directions 7X1 and 7X2, ie, the direction perpendicular to the arrow 7H in FIG. 1 (in this first embodiment, (The horizontal direction)), the measuring head 5 moves in the Y-axis direction 5Y1 (the direction orthogonal to the X-axis directions 5X1 and 5X2; the horizontal direction in the first embodiment). Is moved in the Y-axis direction 7Y2 (the direction opposite to the Y-axis direction 7Y1) parallel to the measurement target surface, the measurement head 5 moves in the Y-axis direction 5Y2 (the direction opposite to the Y-axis direction 5Y1). Moving.
[0060]
Further, the operating means 7 is provided between the X-axis direction 7X1 and the Y-axis direction 7Y1, between the Y-axis direction 7Y1 and the X-axis direction 7X2, and between the X-axis direction 7X2 and the Y-axis direction 7Y2. , And in any direction between the Y-axis direction 7Y2 and the X-axis direction 7X1 in parallel with the measurement target surface 101 (shown in FIG. 1). That is, the operating means 7 can move two-dimensionally (in the horizontal direction in the first embodiment) in parallel with the measurement target surface 101 (shown in FIG. 1). Similarly, the support section 402 and the measurement head 5 can also move two-dimensionally (in the horizontal direction in the first embodiment) parallel to the measurement target surface 101 (shown in FIG. 1).
[0061]
The basic function of the link mechanism 401 of the second mechanism 4, that is, the pivot of the first arm 4011 about the moving part 303 of the first mechanism 3 by the main shaft structure 4014. Movement (arrow 4014R) and the pivotal movement (arrow 4013R) of each of the first and second arms 4011 and 4012 about the intermediate main shaft structure 4013 by the intermediate main shaft structure 4013. The free end of the second arm portion 4012, that is, the support portion, within a range limited by the length of each of the first and second arm portions 4011 and 4012 using the main shaft structure portion 4014 as a fixed axis. Reference numeral 402 denotes a two-dimensional movement which is parallel to the measurement target surface 101 (shown in FIG. 1) (in the horizontal direction in the first embodiment). Therefore, the operating means 7 can freely move two-dimensionally (in the horizontal direction in the first embodiment) parallel to the measurement target surface 101 (shown in FIG. 1), and the measuring head 5 The two-dimensional movement can be freely performed parallel to the measurement target surface 101 (shown in FIG. 1) (in the horizontal direction in the first embodiment).
[0062]
2 (a) and 2 (b) described above, it is understood that the above-described operation and movement of each part in FIG. 1 are possible, and that the internal state of the measurement target structure 1 at the high place can be measured. It turns out that it is.
[0063]
Embodiment 2 FIG.
Embodiment 2 of the present invention shows an example of a second mechanism having another structure without the intermediate shaft structure and the main shaft structure as shown in FIGS. 2 (a) and 2 (b). Hereinafter, description will be made with reference to FIGS. FIG. 3A is a conceptual diagram showing an example of the structure and operation of the second mechanism, and an operation relationship between the first mechanism and the second mechanism. FIG. 3B is a diagram showing the structure of the second mechanism. FIG. 4 is a perspective view showing a specific example of the relationship between the structure and operation of the first mechanism and the second mechanism in a specific structure.
[0064]
3A and 3B, the second mechanism 4 includes a pair of bar-shaped frame portions 4051 and 4052, a pair of bar-shaped first guide portions 4061 and 4062, and a pair of bar-shaped first guide portions 4061 and 4062. It comprises two guide portions 4071 and 4072, a pair of first moving tables 4081 and 4082, and a second moving table 409.
[0065]
The pair of bar-shaped frame portions 4051 and 4052 are parallel to each other in a plane parallel to the measurement target surface (101 in FIG. 1), and one of the frame portions 4051 is a central portion of which the first mechanism 3 moves. Unit 303.
[0066]
The first guide portions 4061 and 4062 are mutually parallel in a plane parallel to the measurement target surface 101 and are orthogonal to the frame portions 4051 and 4052. One of the first guide portions 4061 is at both ends thereof. One end of each of the paired bar-shaped frame portions 4051 and 4052 is connected, and the other first guide portion 4062 connects the other end of each of the paired bar-shaped frame portions 4051 and 4052 at both ends. ing.
[0067]
The pair of rod-shaped second guide portions 4071 and 4072 are parallel to each other in a plane parallel to the measurement target surface (101 in FIG. 1) and are orthogonal to the first guide portions 4061 and 4062, One end of each is supported by the one first guide portion 4061, and the other end is supported by the other first guide portion 4062.
[0068]
One of the first movable tables 4081 is attached to one of the rod-shaped first guide portions 4061 so as to be movable in the longitudinal direction of the first guide portion 4061 (the direction of arrow 4081X). One end of each of the portions 4071 and 4072 is supported. The other first movable table 4082 is mounted movably in the longitudinal direction (the direction of arrow 4082X) of the other rod-shaped first guide section 4062, and the other of the second guide sections 4071 and 4072 is attached to each other. Supports the edge.
[0069]
The second movable table 409 is provided between the second guide portions 4071 and 4072 so that the second guide portions 4071 and 4072 extend in the longitudinal direction of the second guide portions 4071 and 4072 (the direction of the arrow 409Y). ) Is movably attached to the support portion 402 at the center thereof, and supports the measuring head 5 via the support portion 402.
[0070]
By operating the operating means 7, the X-axis direction 7X1 (direction of arrow 7H in FIG. 1 (horizontal direction in the first embodiment) parallel to the measurement target surface 101 (shown in FIG. 1)) or the X-axis direction 7X2 (in a direction opposite to the X-axis direction 7X1), the free joint 403, the coupling member 404, the second moving table 409, and the second guide portions 4071, 4072 The first movable tables 4081, 4082 are moved along the guide portions 4061, 4062 in the directions of arrows 4081X, 4082X (the direction of the arrow 7H in FIG. 1 (the horizontal direction in the second embodiment) or the direction opposite to the arrow 7H). Can move in any direction.
[0071]
The operating means 7 is moved in the Y-axis direction 7Y1 (parallel to the X-axis directions 7X1 and 7X2, ie, the direction perpendicular to the arrow 7H in FIG. 1 (horizontal direction in the second embodiment)). )) Or by moving in the Y-axis direction 7Y2, the second movable table 409 moves along the second guide portions 4071 and 4072 through the free joint 403 and the coupling member 404 by arrows. 409Y (the direction perpendicular to the arrows 4081X and 4082X (the horizontal direction in the second embodiment)).
[0072]
The operating means 7 is provided between the X-axis direction 7X1 and the Y-axis direction 7Y1, between the Y-axis direction 7Y1 and the X-axis direction 7X2, as in the case of the first embodiment. Parallel to the measurement target surface 101 (shown in FIG. 1) in any direction between the X-axis direction 7X2 and the Y-axis direction 7Y2 and between the Y-axis direction 7Y2 and the X-axis direction 7X1. You can move. That is, the operation means 7 can move two-dimensionally (in the horizontal direction in the second embodiment) in parallel with the measurement target surface 101 (shown in FIG. 1).
[0073]
Therefore, the support portion 402 and the measurement head 5 are also parallel to the measurement target surface 101 (shown in FIG. 1) as in the case of the above-described first embodiment (the horizontal in this second embodiment). Direction) Two-dimensional movement is possible.
[0074]
The conceptual description of the measurement preparation work and the operation is the same as that of the above-described 1A) to 5A), and the detailed description of the measurement preparation work and the operation is the same as that of the above 1B) to 9B). Since there is, both are omitted.
[0075]
Embodiment 3 FIG.
In FIG. 3B, the first moving tables 4081 and 4082 are moved by electric motors in the directions of the arrows 4081X and 4082X (the X-axis direction), and the second moving table 409 is moved. Even if it is configured to be moved in the direction of the arrow 409Y (the Y-axis direction) by an electric motor different from the first moving tables 4081 and 4082, the measurement head 5 is moved to the measurement target surface (101 in FIG. 1). In this case, the operation means 7 is not provided, and the on / off switch 701 of FIG. 1 and a switch of an operation panel attached to the first mechanism 3 (shown in FIG. ) May be provided with a control switch for the electric motor, and in some cases, the motor is automatically lifted to the measurement area by the first mechanism 3 by the measurement motor automatic control program using a microprocessor. The two-dimensional movement and the measurement and diagnosis of the measuring head 5, after the measurement start operation, it is possible to automatically carry out.
[0076]
When an electric motor is used, the operability is better than that of the structure shown in FIG. 3B, but the operation becomes slightly more expensive. If the two-dimensional movement of the measurement head 5 lifted to the measurement area and the measurement / diagnosis are automatically performed after the measurement start operation, it is more convenient but more expensive. .
[0077]
In the first and second embodiments, in order to reduce the cost without using an electric motor, measurement is performed by applying an external force (manpower) to the support portion 402 of the second mechanism 4 with the operating means 7 such as a rod. This is an example of a specific structure capable of easily moving the head 5 two-dimensionally in an arbitrary direction within a plane parallel to the measurement target surface 101. The operability and convenience are described above. Embodiment 3 is superior.
[0078]
Embodiment 4 FIG.
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. Embodiment 4 of the present invention shows an example in which the weight of the first mechanism 3 is reduced. In FIG. 4, the same or corresponding parts as those in FIGS. The description will be omitted, and only the portions different from those in FIGS. 1 to 3 will be described.
[0079]
In FIG. 4, a fixing member 305 made of a frictional cushioning material is provided at the tip of the moving unit 303 of the first mechanism 3 on the measurement target surface 101 side. The mechanism 3 is extended to bring the surface of the fixed member 305 on the measurement target surface 101 side into contact with the measurement target surface 101.
[0080]
The first mechanism 3 supports the weight of the second mechanism 4, the measuring head 5, and the operating means 7. Therefore, when the fixing member 305 to be brought into contact with the measurement target surface 101 is not provided, Although it is necessary to make the weight of the first mechanism 3 small enough not to overturn, the frictional fixing member 305 at the tip of the moving section 303 of the first mechanism 3 on the measurement target surface 101 side is replaced by The rotation of the second mechanism 4, the measuring head 5, and the operating means 7 in the overturning direction caused by the weight of the first mechanism 3 caused by the weight of the second mechanism 4, the measurement head 5, and the operating means 7 is achieved by abutting and fixing the measurement target surface 101. It is possible to antagonize, the weight of the first mechanism 3 can be reduced, and the work of installing the first mechanism 3 and the work of transporting the first mechanism 3 to a place in the next measurement range become easy.
[0081]
Further, since the fixing member 305 is formed of a cushioning material, when the surface of the fixing member 305 on the measurement target surface 101 side is brought into contact with the measurement target surface 101, the measurement target surface 101 and the movement Shock caused by the contact with the second mechanism 4 attached to the unit 303 and the measurement head 5 mounted on the second mechanism 4 is reduced.
[0082]
Hereinafter, the main points of the measurement preparation work and the operation will be conceptually described.
[0083]
1C) The first mechanism 3 having a lift function to the measurement area 9a is installed on the ground surface 2. At this time, the position on the ground surface 2 where the first mechanism 3 is installed is moved downward by moving the moving section 303 of the first mechanism 3 below the measurement range of the structure 1 to be measured. 303 is selected so as to fall within the measurement range.
[0084]
2C) Operate the drive source 304 of the first mechanism 3 to raise the moving unit 303, move the fixed unit 305 to the measurement area 9a close to the measurement target surface 101 of the measurement target structure 1, and Then, the fixing mechanism 305 comes into contact with the measurement target surface 101, and the first mechanism 3 is raised until a predetermined stress is applied to the fixing mechanism 305. Here, the predetermined stress is not an excessive stress on the measurement target surface 101, but is set within an allowable stress of the fixing portion 305, and the predetermined stress is determined by the first stress. It can be performed by monitoring a pressure gauge (not shown) of the drive source 304 of the mechanism 3 described above.
[0085]
3C) Next, the operator 6 moves the measuring head 5 by operating the rod-shaped operating means 7 connected to the measuring head 5 at hand, and adjusts the measuring position so as to match the predetermined measuring point 9p. . At this time, the horizontal position of the measuring head 5 can be arbitrarily moved within the range of the degree of freedom in which the support portion 402 of the second mechanism 4 can move with reference to the first mechanism 3. Therefore, the position of the measurement head 5 is sequentially shifted with respect to the measurement points 9p, 9n,... Planned in advance, and measurement data is collected and recorded.
[0086]
4C) After the measurement on the measurement target surface 101 is completed within the range of the degree of freedom in which the support unit 402 of the second mechanism 4 can move, the moving unit 303 of the first mechanism 3 and the After the fixing unit 305 is lowered to release the contact between the fixing unit 305 and the measurement target surface 101, the installation position of the first mechanism 3 is moved to the next measurement position. When the contact between the fixed portion 305 and the measurement target surface 101 is released, the contact between the sensor portion 502 of the measurement head 5 and the measurement target surface 101 is released.
[0087]
5C) Hereinafter, the steps 2C) to 4C) are repeated until the measurement of the predetermined measurement range of the measurement target surface 101 is completed. When the measurement of the entire surface of the measurement target surface 101 is completed, the driving unit 304 of the first mechanism 3 is operated to lower the moving unit 303, and the moving unit 303 reaches the ground surface 2. To complete the work.
[0088]
Embodiment 5 FIG.
When the measurement target structure 1 is an elevated portion between piers, the elevated portion swings up and down when a large vehicle or a train passes. That is, when a large vehicle or a train passes while measuring the elevated portion between the piers in the state of the solid line in FIG. 1 or the state of FIG. 4, the vertical swing of the elevated portion is When the swing width is small, the lifting mechanism of the second mechanism 1 can follow up when the swing width is large, but can be followed by bending of the constant-pressure base plate 507 of the measuring head 5 or the second mechanism 4 or the like. If the following can be performed by interposing a spring (a helical spring) between the section 302 and the ground surface 2 or between the lifting mechanism section 302 and the moving section 303, the time zone during which the vehicle passes or the train Can be measured even during operation hours.
[0089]
Embodiment 6 FIG.
FIGS. 1 and 4 described above are examples of the embodiment in the case where the horizontal measurement target surface 101 existing at a high place such as the floor of a viaduct floor is targeted. There is also a case for measuring the high altitude side. In such a case, if the direction of the measurement head 5 is fixed with respect to the first mechanism 3 as shown in FIGS. 1 and 4 described above, it is difficult to cope with the situation as it is, and some contrivance is required. Therefore, for example, the second mechanism 4 is inclined at the connecting portion between the first mechanism 3 and the second mechanism 4 with respect to the expansion / contraction direction of the first mechanism 3 (the above-described vertical lift direction), or By adding a mechanism such as a mechanism that can bend vertically, it is possible to realize a device that can cope with, for example, a case that measures the height of a side of a railing or the side of a pier. An example of this is the sixth embodiment of the present invention. is there.
[0090]
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIG. 5, which illustrates the entire system configuration. In FIG. 5, the same or corresponding parts as in FIGS. 1 to 4 are denoted by the same reference numerals, the description thereof will be omitted, and only different parts from FIGS.
[0091]
In FIG. 5, the second mechanism 4 is inclined at the connecting portion between the first mechanism 3 and the second mechanism 4 with respect to the expansion and contraction direction of the first mechanism 3 (the above-described vertical lift direction), or Means such as a mechanism that can bend vertically, in other words, a direction changing means 306 that can change the direction of the measuring head 5 with respect to the first mechanism 3 is provided on the ground surface of the lifting mechanism 302 of the first mechanism 3. A first connecting arm 3061 provided at a tip opposite to the second connecting arm; a second connecting arm 3062 provided at a tip of the moving unit 303 on the lifting mechanism 302 side; and a first connecting arm 3061. And a pivot portion 3063 for pivotally connecting the second connection arm 3062 with a bolt or the like, and an angle formed by the first connection arm 3061 and the second connection arm 3062 is indicated by an arrow 306R. Can be changed arbitrarily, immediately The angle between the first mechanism 3 and the second mechanism 4 can be arbitrarily changed and set, that is, the direction of the measurement head 5 with respect to the first mechanism 3 can be arbitrarily changed and set. .
[0092]
In the case of pivoting at the pivot portion with 3063 bolts or the like, the angle formed by the first connecting arm 3061 and the second connecting arm 3062 after the arbitrary setting by interposing a corrugated washer or the like. Possibility of being changed by vibration or the like can be prevented.
[0093]
In FIG. 5, the measurement target structure 1 is, for example, the above-mentioned wall railing or a pier, and the measurement target surface 101 is perpendicular to the ground surface 2. The second mechanism 4 which is horizontal in FIGS. 1 and 4 is made vertical so that the vibration part 501, the sensor part 502, and the marking part 505 of the measuring head 5 come into contact with each other.
[0094]
Hereinafter, the main points of the measurement preparation work and the operation will be conceptually described.
[0095]
1D) A first mechanism 3 having a lift function to the measurement area 9a is installed on the ground surface 2. At this time, the position on the ground surface 2 where the first mechanism 3 is installed is moved downward by moving the moving section 303 of the first mechanism 3 below the measurement range of the structure 1 to be measured. 303 is selected so as to fall within the measurement range.
[0096]
2D) The driving unit 304 of the first mechanism 3 is operated to raise the moving unit 303, and the moving unit 303 moves to the high-level measurement area 9a of the structure 1 to be measured.
[0097]
3D) Next, the operator 6 moves the measuring head 5 by operating the rod-shaped operating means 7 connected to the measuring head 5 at hand, and adjusts the measuring position so as to match the predetermined measuring point 9p. . At this time, the position of the measuring head 5 in the vertical direction can be arbitrarily moved within the range of the degree of freedom in which the support portion 402 of the second mechanism 4 can move based on the first mechanism 3. Therefore, the position of the measurement head 5 is sequentially shifted with respect to the measurement points 9p, 9n,... Planned in advance, and measurement data is collected and recorded.
[0098]
4D) When the measuring head 5 is of the contact type, the operator 6 makes the operating head 7 face the measuring head 5 to the measuring point 9a of the measurement target surface 101, and then further performs the measuring by the operating means 7. The head 5 is extruded toward the measurement target surface 101, and the vibration part 501, the sensor part 502, and the marking part 505 of the measurement head 5 are brought into contact with and pressed against the measurement target surface 101.
[0099]
5D) After the measurement on the measurement target surface 101 is completed within the range of the degree of freedom in which the support unit 402 of the second mechanism 4 can move, the moving unit 303 of the first mechanism 3 is temporarily stopped. After the sensor unit 502 of the measuring head 5 is lowered to release the contact between the sensor unit 502 and the measurement target surface 101, the installation position of the first mechanism 3 having the lift function is moved to the next measurement position.
[0100]
6D) Hereinafter, the steps 2D) to 4D) are repeated until the measurement of the predetermined measurement range of the measurement target surface 101 is completed. When the measurement of the entire surface of the measurement target surface 101 is completed, the driving unit 304 of the first mechanism 3 is operated to lower the moving unit 303, and the moving unit 303 reaches the ground surface 2. To complete the work.
[0101]
Although FIG. 5 illustrates the case where the angle between the measurement target surface 101 and the ground surface 2 is 90 ° (vertical), in the sixth embodiment of the present invention, as described above, Since the angle formed by the first connection arm 3061 and the second connection arm 3062 can be arbitrarily changed and set by the attachment portion 3063, various angles other than 90 ° between the measurement target surface 101 and the ground surface 2 can be set. It can handle even angles.
[0102]
Embodiment 7 FIG.
In the above-described sixth embodiment of the present invention, the case where the direction changing unit 306 is provided between the lifting mechanism 302 of the first mechanism 3 and the moving unit 303 has been described. The means 306 may be provided between the moving part 303 and the second mechanism 4 or between the support part 402 of the second mechanism 4 and the measuring head 5. It has the same function as the sixth mode. Further, in addition to the above-described sixth embodiment, a direction changing unit 306 is provided between the support unit 402 of the second mechanism 4 and the measuring head 5 or the direction changing unit 306 is connected to the moving unit. If it is provided between 303 and the second mechanism 4 and is provided between the support part 402 of the second mechanism 4 and the measuring head 5, a groove is formed on the horizontal or vertical surface of the structure to be measured. It is also possible to measure a part with a complicated shape such as a small diameter part.
[0103]
Embodiment 8 FIG.
Embodiment 8 of the present invention shows an example in which a guide structure having a simpler and cheaper structure than the second mechanism 4 is employed instead of the second mechanism 4 in FIGS. 1 to 5 described above. Hereinafter, description will be made with reference to FIGS. FIG. 6 is a diagram showing an example of the entire system configuration, and FIG. 7 is a conceptual diagram showing an example of the structure and operation of the guide structure, and an example of the operation relationship between the first mechanism and the guide structure. In FIG. 7, the same or corresponding parts as those in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof will be omitted. Only different parts from FIGS. 1 to 5 will be described.
[0104]
In FIGS. 6 and 7, the guide structure 10 is fixedly provided on the moving portion 303 of the first mechanism 3. The guide structure 10 has an outer frame 1001 having a rectangular closed structure, and a branch structure 1002 to 1007 is provided in the outer frame 1001 as shown in the figure. Between the outer frame 1001 and the branch structures 1002 to 1007, a plurality of continuous small space sections 10sd1 to 10sd9 serving as guide grooves are formed. The outer frame 1001, the branch structures 1002 to 1007, and the small space sections 10sd1 to 10sd9 are all in a state where the guide structure 10 is lifted to the measurement area 9a by the first mechanism 3. It is configured to be in a state of extending parallel to the measurement target surface 101.
[0105]
None of the plurality of small space sections 10sd1 to 10sd9 are closed, and the small space section 10sd1 and the small space section 10sd5 directly communicate as shown in the figure, and similarly, the small space section 10sd2 and the small space section 10sd6, the small space section 10sd3 and the small space section 10sd7, and the small space section 10sd4 and the small space section 10sd8 are in direct communication with each other. The small space section 10sd9 is a small space section that communicates the small space section 10sd1, the small space section 10sd2, the small space section 10sd3, and the small space section 10sd4.
[0106]
By forming the plurality of continuous small space sections 10sd1 to 10sd9 serving as the guide grooves, the rod-shaped operation means 7 is operated to move the rectangular pillar-shaped support member 402 into the plurality of continuous small space sections 10sd1 to 10sd9. Therefore, the measuring head 5 mounted on the support member 402 can also operate the operating means 7 to perform measurement corresponding to an arbitrary position in the continuous plurality of small space sections 10sd1 to 10sd9. It can be moved to a position facing the target surface 101.
[0107]
The quadrangular prism-shaped support member 402 is a structure independent of the first mechanism 3 and the guide structure 10, and has a measurement head 5 mounted on a distal end surface thereof via a coupling member 404. A rod-shaped operating means 7 is detachably connected to a surface (the lower end surface in FIG. 6) opposite to the surface 5 by screwing or the like.
[0108]
The outer frame 1001 and the branch structures 1002 to 1007 are used as fulcrums that are brought into surface contact with and supported by the quadrangular prism-shaped support members 402 at the arbitrary positions. The force in the direction of the inclination can be reduced. Therefore, the operator 6 only needs to support the vertical weight of the measuring head 5, the support member 402, and the operating means, and is within the range of the continuous small space sections 10sd1 to 10sd9 of the guide structure 10. Thus, measurement equivalent to that of the above-described first to fifth embodiments of the present invention can be freely performed by the measurement head 5.
[0109]
Embodiment 9 FIG.
The ninth embodiment of the present invention shows an example in which the second mechanism 4 capable of shifting the measuring head 5 to the measuring point with a smaller operation force than the above-described FIGS. 1 to 7 is employed. A description will be given based on FIG. FIG. 8 is a diagram showing an example of the entire system configuration, and FIG. 9 is a conceptual diagram showing an example of the structure and operation of the second mechanism 4, and an example of the operational relationship between the first mechanism and the second mechanism 4. 8 and 9, parts that are the same as or correspond to those in FIGS. 1 to 7 are given the same reference numerals, and descriptions thereof are omitted. Only parts that are different from FIGS. 1 to 7 are described.
[0110]
8 and 9, the second mechanism 4 is attached to a rectangular support frame 4100 fixed to the moving section 303 of the first mechanism 3, and attached to the center of each side of the support frame 4000. Four hoisting machines 4101 to 4104 disposed in a plane parallel to the measurement target surface 101, respectively, and a support portion 402 suspended by the wires 4101W to 4104W unreeled from the hoisting machines 4101 to 4104. It is composed of
[0111]
Each of the hoists 4101 to 4104 employs an automatic hoisting mechanism having the same hoisting torque and a constant torque, so that the tension of the wires 4101W to 4104W is balanced. As in the above-described FIGS. 1 to 7, the support section 402 has the measurement head 5 mounted on the measurement target surface 101 side via the coupling member 404, and the rod-shaped operating means 7 has a free joint on the ground surface 2 side. It is detachably connected via a screw connection or the like via 403. That is, the support section 402, the measuring head 5, and the operating means 7 are suspended by the wires 4101W to 4104W, and the total weight of the supporting section 402, the measuring head 5, and the operating means 7 The wires 4101W to 4104W are equally shared and supported.
[0112]
Therefore, the support portion 402 can perform the above-described two-dimensional movement without a plane parallel to the measurement target surface 101 within a range of a degree of freedom determined by a relative positional relationship between the hoists 4101 to 4104. When the support section 402 is moved by the means 7, the operator does not support the weight of the support section 402, the measuring head 5, and the operating means 7 and under the tension balance of the wires 4101W to 4104W. The measurement head 5 can be moved to the measurement point 9p via the support portion 402 without applying a large force.
[0113]
Embodiment 10 FIG.
The tenth embodiment of the present invention shows an example in which the moving range of the measuring head 5 can be widened as compared with FIGS. 1 to 9 described above. Hereinafter, based on FIG. 10 showing the entire system configuration. explain. In FIG. 10, the same or corresponding parts as those in FIGS. 1 to 9 are denoted by the same reference numerals, and the description thereof will be omitted. Only different parts from FIGS.
[0114]
In FIG. 10, the second mechanism 4 extends over a pair of first mechanisms 3001 and 3002 movably installed on the ground surface 2 at predetermined intervals in the X-axis direction as described above. A support portion 402 is movably mounted on the second mechanism 4 along the second mechanism 4.
[0115]
The first mechanisms 3001 and 3002 are the same mechanisms having the same functions as those of the first mechanism 3 in FIGS. 1 to 9 described above. As shown, the legs 3011 and 3012 and the lifting mechanism 3021 are respectively illustrated. , 3022 and moving units 3031 and 3032, and each lifting mechanism 3021 and 3022 corresponds to the height of the measurement target surface 101 by a common driving source 304 and a common switch (not shown). Simultaneously adjusted to the same desired length.
[0116]
The first mechanisms 3001 and 3002 are installed in pairs not only in the X-axis direction but also in the Y-axis direction to provide a total of two pairs of first mechanisms. The second mechanism 4 may be mounted over the two pairs of the first mechanisms. Further, the drive source 304 and a switch (not shown) are separately provided for each of the first mechanisms 3001 and 3002, and the first mechanism 3001 is installed on the ground surface 2 and the second mechanism. If the length of the first mechanisms 3001 and 3002 can be individually adjusted according to the difference in the vertical level between the ground surface 2 of the installation and the ground surface 2, the location where the state detection device is used can be changed to the first position. This is convenient because it is not specified only when the ground surfaces on which the mechanisms 3001 and 3002 are installed are at the same level.
[0117]
The above-mentioned second mechanism 4 preferably has a specific structure preferably as in the above-described second and third embodiments of the present invention, but other than the second and third embodiments. It may be as in the embodiment. Further, the length of the second mechanism 4 may be adjusted in at least one of the X-axis direction and the Y-axis direction.
[0118]
In the case of Embodiment 10 of the present invention, as described above, a pair of first mechanisms 3001 and 3002 are installed on the ground surface 2 at a predetermined interval from each other, and these paired first mechanisms 3001 And 3002, the first mechanism 3001 and 3002 are more stable than the other embodiments of the present invention described above, so that the mechanical Since the target strength is increased, the distance between the first mechanisms 3001 and 3002 can be increased. Therefore, the moving range of the measurement head 5 can be widened. For example, in the measurement area 9b, the measurement could not be performed without moving the first mechanism 3 in the other embodiments. The measurement can be performed only by moving the measuring head 5 without moving the first mechanisms 3001 and 3002, and the measuring operation can be performed efficiently.
[0119]
【The invention's effect】
As described above, according to the first aspect of the present invention, measurement is performed with the first mechanism, the second mechanism mounted on the first mechanism, and the measurement surface facing the measurement target surface at the measurement point in the measurement area. Using a measuring device having a measuring head having a function of detecting a state of a target structure, the first mechanism is used to position the second mechanism in the measurement area, and the measurement is performed using the second mechanism. Since the head is moved to the measurement point, when detecting the state of the structure to be measured, when detecting and diagnosing the state of a portion higher than the ground surface, a scaffold is assembled or measurement is performed. This eliminates the need for high-altitude work on the surface, and has the effect of enabling state detection without danger and without a decrease in the reliability of measurement accuracy.
[0120]
According to a third aspect of the present invention, as described above, the first mechanism, the second mechanism mounted on the first mechanism, and the measurement surface mounted on the second mechanism and having a measurement surface in a measurement area. A measurement head having a function of detecting the state of the measurement target structure in a state where the measurement head faces the measurement target surface, and the measurement head is positioned in the measurement area via the second mechanism by the first mechanism. Since the measuring head is moved to the measuring point depending on the second mechanism, there is an effect that a structure state detecting apparatus for implementing the method of the invention according to claim 1 can be realized. .
[0121]
According to a sixteenth aspect of the present invention, as described above, the first mechanism, the second mechanism mounted on the first mechanism, and the structure to be measured in a state facing the surface to be measured at the measurement point in the measurement area. A measurement head having a function of detecting a state of an object, wherein the measurement head is positioned in the measurement area, and the measurement head moves to the measurement point depending on the second mechanism, and moves to the measurement point. Since the state of the structure to be measured is displayed on the display device from the state detection data of the moved measuring head, a structure state monitoring system for implementing the method of the present invention can be realized. At the same time, at least one of the measurement site and the remote place, for example, monitors the state of the structure to be measured during measurement in real time, or confirms the result of automatically diagnosing the state of the structure to be measured based on the measurement data. Etc. There is an effect that can be monitored on the screen of the state of the measurement target structure.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an entire system configuration according to a first embodiment of the present invention.
FIGS. 2A and 2B are diagrams showing Embodiment 1 of the present invention, and FIG. 2A is a conceptual diagram showing an example of the structure and operation of a second mechanism, and an operational relationship between the first mechanism and the second mechanism. (B) is a perspective view specifically showing an example of the structure of the second mechanism and the relationship between the structure and operation of the first mechanism and the second mechanism.
FIGS. 3A and 3B are diagrams showing Embodiment 2 of the present invention, in which FIG. 3A is a conceptual diagram showing an example of the structure and operation of a second mechanism, and an operational relationship between the first mechanism and the second mechanism. And (b) is a perspective view showing a specific example of the structure of the second mechanism, and an example of the relationship between the structure and operation of the first mechanism and the second mechanism.
FIG. 4 is a diagram showing an example of an entire system configuration according to a fourth embodiment of the present invention.
FIG. 5 is a diagram showing an example of an entire system configuration according to a sixth embodiment of the present invention.
FIG. 6 is a diagram showing an example of an entire system configuration according to an eighth embodiment of the present invention.
FIG. 7 is a view showing an eighth embodiment of the present invention, and is a conceptual diagram showing an example of the structure and operation of a second mechanism, and an operational relationship between the first mechanism and the second mechanism.
FIG. 8 is a diagram showing an example of an entire system configuration according to a ninth embodiment of the present invention.
FIG. 9 is a view showing a ninth embodiment of the present invention, and is a conceptual diagram showing an example of the structure and operation of a second mechanism, and an operational relationship between the first mechanism and the second mechanism.
FIG. 10 is a diagram showing an example of the entire system configuration according to the tenth embodiment of the present invention.
[Explanation of symbols]
1 target structure, 2 ground surface,
3,3001,3002 First mechanism 4 Second mechanism,
5 measuring head, 6 operator,
7 operation means, 8 external devices,
9a measurement area, 9p measurement point,
10 guide structure, 101 measurement target surface,
305 fixing member, 306 orientation changing means,
4101 to 4104 hoisting machines.

Claims (16)

第1の機構、この第1の機構に装着の第2の機構、及び計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備えた計測装置を使い、前記第1の機構により前記第2の機構を前記計測領域へ位置させ、前記第2の機構を使って前記計測ヘッドを前記計測点へ移動させる構造物の状態検出方法。A first mechanism, a second mechanism mounted on the first mechanism, and a measurement head having a function of detecting a state of the structure to be measured in a state where the measurement surface faces a measurement surface of a measurement point in a measurement area. Detecting the state of a structure in which the second mechanism is positioned in the measurement area by the first mechanism, and the measurement head is moved to the measurement point using the second mechanism. Method. 請求項1に記載の計測方法において、前記計測ヘッドを前記計測点へ移動させた後に前記計測面に当接させ、当該計測点での計測後に他の計測点での状態検出をする場合は、前記当接を解除した後に前記第2の機構を使って前記計測ヘッドを前記他の計測点へ移動させ、当該計測ヘッドを前記計測面に当接させることを特徴とする構造物の状態検出方法。In the measurement method according to claim 1, when the measurement head is moved to the measurement point, the measurement head is brought into contact with the measurement surface, and a state is detected at another measurement point after measurement at the measurement point. A method for detecting a state of a structure, comprising: moving the measurement head to the other measurement point using the second mechanism after releasing the contact, and bringing the measurement head into contact with the measurement surface. . 第1の機構、この第1の機構に装着の第2の機構、及びこの第2の機構に搭載され計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記第1の機構により前記第2の機構を介して前記計測ヘッドが前記計測領域へ位置させられ、前記第2の機構に依存して前記計測ヘッドが前記計測点へ移動する構造物の状態検出装置。A first mechanism, a second mechanism mounted on the first mechanism, and a state of the structure to be measured in a state in which the measurement surface mounted on the second mechanism faces the measurement target surface of the measurement point in the measurement area A measurement head having a function of performing detection, wherein the measurement head is positioned in the measurement region by the first mechanism via the second mechanism, and the measurement head is dependent on the second mechanism. An apparatus for detecting a state of a structure moving to the measurement point. 請求項3に記載の計測装置において、前記計測ヘッドが前記計測点へ移動した後に前記計測面に当接し、当該計測点での状態検出後の他の計測点での状態検出に先立って前記当接が解除された後に、前記第2の機構に依存して前記計測ヘッドが前記他の計測点へ移動し、当該計測ヘッドが当該前記他の計測点で前記計測面に当接することを特徴とする構造物の状態検出装置。4. The measuring device according to claim 3, wherein the measuring head comes into contact with the measuring surface after moving to the measuring point, and the contact is performed before detecting a state at another measuring point after detecting a state at the measuring point. After the contact is released, the measurement head moves to the other measurement point depending on the second mechanism, and the measurement head comes into contact with the measurement surface at the other measurement point. For detecting the state of a moving structure. 請求項3および請求項4の何れか一に記載の計測装置において、前記第2の機構に依存して前記計測ヘッドが前記計測対象面に対して2次元の動きをして前記計測点へ移動することを特徴とする構造物の状態検出装置。5. The measuring device according to claim 3, wherein the measuring head moves two-dimensionally with respect to the measurement target surface and moves to the measurement point depending on the second mechanism. A structure state detection device, comprising: 請求項3および請求項4の何れか一に記載の計測装置において、前記計測ヘッドに連結の操作手段を有し、この操作手段の操作に応じて前記第2の機構に依存して前記計測ヘッドが前記計測対象面に対して2次元の動きをして前記計測点へ移動することを特徴とする構造物の状態検出装置。The measuring device according to claim 3, further comprising an operation unit connected to the measurement head, wherein the measurement head is dependent on the second mechanism in accordance with an operation of the operation unit. Moves two-dimensionally to the measurement point and moves to the measurement point. 請求項3〜請求項6の何れか一に記載の計測装置において、前記第1の機構は計測領域へ移動させられる移動部を有し、前記第2の機構はリンク機構であり、前記第2の機構が前記移動部によって前記計測領域へ移動させられ、前記計測ヘッドが前記第2の機構に依存して前記計測対象面に対して2次元の動きをして前記計測点へ移動することを特徴とする構造物の状態検出装置。7. The measuring device according to claim 3, wherein the first mechanism has a moving unit that is moved to a measurement area, the second mechanism is a link mechanism, and the second mechanism is a link mechanism. 8. Mechanism is moved to the measurement area by the moving unit, and the measurement head moves two-dimensionally with respect to the measurement target surface and moves to the measurement point depending on the second mechanism. Characteristic structure state detection device. 請求項3〜請求項6の何れか一に記載の計測装置において、前記第1の機構は計測領域へ移動させられる移動部を有し、前記第2の機構は各々の軸心が互いに交差し各々前記計測領域において前記計測面に沿って延在する第1及び第2の軸を有すると共に前記移動部によって前記計測領域へ移動させられ、前記計測ヘッドは前記第1及び第2の軸に沿って前記計測対象面に対して2次元の動きをして前記計測点へ移動することを特徴とする構造物の状態検出装置。The measuring device according to any one of claims 3 to 6, wherein the first mechanism has a moving part that is moved to a measurement area, and the second mechanism has axes that intersect each other. Each of the measurement areas has first and second axes extending along the measurement surface in the measurement area and is moved to the measurement area by the moving unit, and the measurement head is moved along the first and second axes. A two-dimensional movement with respect to the measurement target surface to move to the measurement point. 請求項6〜請求項8の何れか一に記載の計測装置において、前記第1の機構が、前記第2の機構と前記計測ヘッドと前記操作手段の合計荷重に耐える耐荷重能力を有していることを特徴とする構造物の状態検出装置。The measuring device according to any one of claims 6 to 8, wherein the first mechanism has a load-bearing capacity to withstand a total load of the second mechanism, the measuring head, and the operating means. An apparatus for detecting a state of a structure. 請求項9に記載の計測装置において、前記計測ヘッドが前記計測点へ移動した後に前記計測面に当接し、当該計測点での計測後の他の計測点での計測に先立って前記当接が解除された後に、前記第2の機構に依存して前記計測ヘッドが前記他の計測点へ移動し、当該計測ヘッドが当該他の計測点で前記計測面に当接することを特徴とする構造物の状態検出装置。The measuring device according to claim 9, wherein the measuring head comes into contact with the measurement surface after moving to the measurement point, and the contact is made before measurement at another measurement point after measurement at the measurement point. The structure wherein the measurement head moves to the other measurement point depending on the second mechanism after the release, and the measurement head comes into contact with the measurement surface at the other measurement point. State detection device. 請求項3〜請求項10の何れか一に記載の計測装置において、前記第1の機構の前記計測対象構造物側の端部に、前記第1の機構の長さが伸びることによって前記計測対象構造物に当接する固定部材が設けられていることを特徴とする構造物の状態検出装置。The measuring device according to any one of claims 3 to 10, wherein a length of the first mechanism is extended to an end of the first mechanism on the side of the structure to be measured. An apparatus for detecting a state of a structure, comprising a fixing member that is in contact with the structure. 請求項3〜請求項11の何れか一に記載の計測装置において、前記第1の機構に対する前記計測ヘッドの向きを変える向き変更手段を備えていることを特徴とする構造物の状態検出装置。The structure state detecting device according to any one of claims 3 to 11, further comprising: a direction changing unit that changes a direction of the measuring head with respect to the first mechanism. (実施形態1〜7+αをカバ−) 機構、この機構に取り付けられたガイド構造体、操作手段、及びこの操作手段に搭載され計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記機構により前記ガイドが前記計測領域へ位置させられ、前記操作手段により前記ガイド構造体にガイドされて前記計測対象面に対して2次元の動きをして前記計測ヘッドが前記計測点へ移動する構造物の状態検出装置。(Embodiments 1 to 7 + α are covered) Mechanism, guide structure attached to this mechanism, operating means, and measurement in a state in which the measurement surface mounted on the operation means faces the measurement target surface of the measurement point in the measurement area A measurement head having a function of detecting the state of the target structure; the mechanism positions the guide in the measurement area; the operation unit guides the guide to the measurement structure; An apparatus for detecting a state of a structure in which the measurement head moves to the measurement point in a two-dimensional movement. 第1の機構、この第1の機構に取り付けられ計測対象構造物の計測対象面に沿って相互に間隔を隔てて配設された複数の巻上機を有する第2の機構、前記複数の巻上機によって吊架された支持部、及びこの支持部に搭載され計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記第1の機構により前記計測ヘッドが前記計測領域へ位置させられ、前記支持部に依存して前記計測ヘッドが前記計測点へ移動する構造物の状態検出装置。A first mechanism, a second mechanism having a plurality of hoists attached to the first mechanism and spaced apart from each other along a surface to be measured of the structure to be measured, the plurality of windings A support unit suspended by the upper machine and a measurement head mounted on the support unit and having a function of detecting the state of the structure to be measured in a state where the measurement surface faces the measurement surface of the measurement point in the measurement area A state detection device for a structure in which the measurement head is positioned in the measurement area by the first mechanism, and the measurement head moves to the measurement point depending on the support. 互いに間隔を隔てて配設される対をなす第1の機構、前記対をなす第1の機構に跨る第2の機構、この第2の機構に可移動に装着の支持部、及びこの第2の支持部材に搭載され計測面が計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記第1の機構により前記第2の機構及び前記支持部を介して前記計測ヘッドが前記計測領域へ位置させられ、前記支持部の前記第2の機構に沿った移動に伴って前記計測ヘッドが前記計測対象面と平行をなして前記計測点へ移動する構造物の状態検出装置。A pair of first mechanisms arranged at a distance from each other, a second mechanism spanning the paired first mechanism, a supporting portion movably mounted on the second mechanism, and the second mechanism. A measurement head mounted on the support member and having a function of detecting the state of the measurement target structure in a state in which the measurement surface faces the measurement target surface of the measurement point in the measurement region, and the second mechanism is provided by the first mechanism. The measurement head is positioned in the measurement area via a mechanism and the support, and the measurement head is parallel to the measurement target surface with the movement of the support along the second mechanism. A state detector for a structure that moves to a measurement point. 第1の機構、この第1の機構に装着の第2の機構、計測領域における計測点の計測対象面に対向した状態で計測対象構造物の状態検出を行う機能を有する計測ヘッドを備え、前記計測ヘッドが前記計測領域へ位置させられ、前記第2の機構に依存して前記計測ヘッドが前記計測点へ移動し、この計測点へ移動した計測ヘッドの状態検出デ−タから前記計測対象構造物の状態を表示装置に表示する構造物の状態監視システム。A first mechanism, a second mechanism mounted on the first mechanism, a measurement head having a function of detecting the state of the structure to be measured in a state facing the surface to be measured at the measurement point in the measurement area, A measurement head is positioned in the measurement area, the measurement head moves to the measurement point depending on the second mechanism, and the state of the measurement target structure is measured based on state detection data of the measurement head moved to the measurement point. Structure status monitoring system that displays the status of an object on a display device.
JP2002327191A 2002-11-11 2002-11-11 Structure state detection method, detection apparatus, and monitoring system Expired - Fee Related JP4128854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327191A JP4128854B2 (en) 2002-11-11 2002-11-11 Structure state detection method, detection apparatus, and monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327191A JP4128854B2 (en) 2002-11-11 2002-11-11 Structure state detection method, detection apparatus, and monitoring system

Publications (2)

Publication Number Publication Date
JP2004163173A true JP2004163173A (en) 2004-06-10
JP4128854B2 JP4128854B2 (en) 2008-07-30

Family

ID=32805909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327191A Expired - Fee Related JP4128854B2 (en) 2002-11-11 2002-11-11 Structure state detection method, detection apparatus, and monitoring system

Country Status (1)

Country Link
JP (1) JP4128854B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424086B1 (en) 2014-02-28 2014-07-28 (주) 토건테크 Safety examination apparatus for bridge using point displacement measuring instrument
JP2015219027A (en) * 2014-05-14 2015-12-07 鹿島建設株式会社 Physical property evaluation device
JP2017089102A (en) * 2015-11-02 2017-05-25 学校法人日本大学 System and program for determining road deterioration
CN106950286A (en) * 2017-02-28 2017-07-14 河海大学 The detection of steel bridge deck top board welding line ultrasonic walks dolly certainly
KR102187015B1 (en) * 2020-06-23 2020-12-04 주식회사 청안아이에스엠 Strike device for safety diagnosis of structures
CN112748187A (en) * 2021-01-25 2021-05-04 河北建筑工程学院 Concrete acoustic emission damage recognition device based on internet of things
CN114264725A (en) * 2021-12-30 2022-04-01 合肥火眼智能科技有限公司 Handheld general ultrasonic flaw detector
KR102650506B1 (en) * 2023-07-24 2024-03-22 주식회사 동진이앤씨 Sound test device for safety diagnosis of high-rise structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458146A (en) * 1990-06-26 1992-02-25 Shigeru Horinouchi Peeling place search body and peeling place detecting device for structure wall surface
JPH05164749A (en) * 1991-12-13 1993-06-29 Nisshin Kaihatsu Kk Sounding device for inspecting floating of exterior wall or the like and inspecting method using it
JPH06347450A (en) * 1993-06-07 1994-12-22 Tokyo Electric Power Co Inc:The Deterioration inspection device for aerial wire
JP2001124744A (en) * 1999-10-27 2001-05-11 Junichi Kakumoto Inspection apparatus for concrete structure
JP2001349876A (en) * 2000-06-09 2001-12-21 Mitsubishi Heavy Ind Ltd Hammering testing device for structure, and hammering testing device for tunnel
JP3084967U (en) * 2001-10-01 2002-04-05 国土交通省関東地方整備局長 Diagnostic and cleaning equipment for concrete deterioration / fragile parts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458146A (en) * 1990-06-26 1992-02-25 Shigeru Horinouchi Peeling place search body and peeling place detecting device for structure wall surface
JPH05164749A (en) * 1991-12-13 1993-06-29 Nisshin Kaihatsu Kk Sounding device for inspecting floating of exterior wall or the like and inspecting method using it
JPH06347450A (en) * 1993-06-07 1994-12-22 Tokyo Electric Power Co Inc:The Deterioration inspection device for aerial wire
JP2001124744A (en) * 1999-10-27 2001-05-11 Junichi Kakumoto Inspection apparatus for concrete structure
JP2001349876A (en) * 2000-06-09 2001-12-21 Mitsubishi Heavy Ind Ltd Hammering testing device for structure, and hammering testing device for tunnel
JP3084967U (en) * 2001-10-01 2002-04-05 国土交通省関東地方整備局長 Diagnostic and cleaning equipment for concrete deterioration / fragile parts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424086B1 (en) 2014-02-28 2014-07-28 (주) 토건테크 Safety examination apparatus for bridge using point displacement measuring instrument
JP2015219027A (en) * 2014-05-14 2015-12-07 鹿島建設株式会社 Physical property evaluation device
JP2017089102A (en) * 2015-11-02 2017-05-25 学校法人日本大学 System and program for determining road deterioration
CN106950286A (en) * 2017-02-28 2017-07-14 河海大学 The detection of steel bridge deck top board welding line ultrasonic walks dolly certainly
KR102187015B1 (en) * 2020-06-23 2020-12-04 주식회사 청안아이에스엠 Strike device for safety diagnosis of structures
CN112748187A (en) * 2021-01-25 2021-05-04 河北建筑工程学院 Concrete acoustic emission damage recognition device based on internet of things
CN114264725A (en) * 2021-12-30 2022-04-01 合肥火眼智能科技有限公司 Handheld general ultrasonic flaw detector
KR102650506B1 (en) * 2023-07-24 2024-03-22 주식회사 동진이앤씨 Sound test device for safety diagnosis of high-rise structures

Also Published As

Publication number Publication date
JP4128854B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP3595492B2 (en) Structural hammer inspection system and tunnel hammer inspection system
WO2022160606A1 (en) Defect detection apparatus for track slab, and detection method therefor
JP4214872B2 (en) Inspection method for bridge equipment
KR101460014B1 (en) System for vibration test bed
JP2004163173A (en) Condition detection method of structure, detection apparatus and monitoring system
CN107340335A (en) A kind of general adjustable bidirectional slide-type column defects of concrete structure detection means
CN110411772B (en) Elevator no-load static traction test detection method and device
WO2018157671A1 (en) Elevator safety detection device and detection method
KR101786736B1 (en) Bridge safety test equipment
KR102287738B1 (en) Pier inspection method of suspension type using fixing clamp assembly member
WO2020124153A1 (en) A hoist system and method
KR100746938B1 (en) Wireless diagnosis device for girder bridge making use of pre-stress beam
JP2008051675A (en) Maximum response member angle measuring instrument for elevated bridge post
CN110319799B (en) Bridge tunnel crack depth measuring instrument
CN111252692A (en) Automatic jacking and posture adjusting device for airplane
CN109653518A (en) It is a kind of can quality inspection and electromagnetism lifting accurate adjustment the efficient preassembling equipment of prefabricated member
KR101792464B1 (en) Bridge lifting method and lifting apparatus controling apparatus processing wire and wireless
CN215263274U (en) Device for detecting glass curtain wall
JP2010091382A (en) Collision-testing device
CN111560860B (en) Construction method for measuring segmental prefabricated spliced single tower
CN218546634U (en) Ultrasonic flaw detection equipment for building engineering
JPH05302832A (en) Leveling apparatus for large structure
CN207585833U (en) A kind of low-frequency vibration experimental rig
JPH03212503A (en) Bridge inspection device
CN218824096U (en) Excitation equipment for detecting internal defects of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees