JP2004162640A - Control valve for variable displacement compressor - Google Patents

Control valve for variable displacement compressor Download PDF

Info

Publication number
JP2004162640A
JP2004162640A JP2002330720A JP2002330720A JP2004162640A JP 2004162640 A JP2004162640 A JP 2004162640A JP 2002330720 A JP2002330720 A JP 2002330720A JP 2002330720 A JP2002330720 A JP 2002330720A JP 2004162640 A JP2004162640 A JP 2004162640A
Authority
JP
Japan
Prior art keywords
control valve
valve
opening
variable displacement
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002330720A
Other languages
Japanese (ja)
Inventor
Satoshi Umemura
聡 梅村
Hideki Mizutani
秀樹 水谷
Masakazu Murase
正和 村瀬
Tatsuya Hirose
達也 廣瀬
Tomoji Hashimoto
友次 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2002330720A priority Critical patent/JP2004162640A/en
Priority to KR1020030062498A priority patent/KR20040042801A/en
Priority to EP03025917A priority patent/EP1420162A3/en
Priority to US10/712,910 priority patent/US20040118140A1/en
Priority to CNA200310120943XA priority patent/CN1508426A/en
Priority to BR0305196-0A priority patent/BR0305196A/en
Publication of JP2004162640A publication Critical patent/JP2004162640A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1886Open (not controlling) fluid passage
    • F04B2027/1895Open (not controlling) fluid passage between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0403Refractory metals, e.g. V, W
    • F05C2201/0406Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0475Copper or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve for a variable displacement compressor in which leakage of refrigerant gas in a completely closed state is reduced. <P>SOLUTION: The variable displacement type swash plate compressor 1 can change a delivery capacity thereof by changing pressure of a crank chamber 5. The control valve CV controls pressure of the crank chamber 5 by changing opening of an air supply passage 7 connecting an oil separator 4 as a high pressure area with the crank chamber 5. In the control valve CV, a bearing surface 32a of a valve seat 32 and an open/close face 31a of a valve element part 31 for adjusting the opening of the air supply passage 7 are made of high-hardness materials. Case hardening by nickel phosphorus plating of material of the valve seat 32 is performed to form the bearing surface 32a of the valve seat 32 made of high-hardness material. Further, case hardening by salt bath nitriding of material of the valve element part 31 is performed to form the open/close face 31a of the valve element part 31 made of high-hardness material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルを構成する容量可変型圧縮機の吐出容量を制御するための制御弁に関する。
【0002】
【従来の技術】
冷凍サイクルに用いられる容量可変型斜板式圧縮機(以下圧縮機とする)は、斜板収容室であるクランク室の内圧を調節することで、斜板の傾斜角度つまり吐出容量を変更可能な構成を有している(例えば、特許文献1参照。)。
【0003】
すなわち、前記圧縮機には、クランク室の内圧調節のために制御弁が備えられている。制御弁は、例えば、冷凍サイクルの高圧領域とクランク室とを接続する給気通路の開度を変更する。冷凍サイクルの低圧領域とクランク室とは抽気通路を介して連通されている。
【0004】
そして、前記制御弁の開度を調節することで、給気通路を介した高圧領域からクランク室への高圧冷媒ガスの導入量と、抽気通路を介したクランク室から低圧領域へのガス導出量とのバランスが制御され、クランク室の内圧が決定される。クランク室の内圧変更に応じて斜板の傾斜角度が変更される結果、ピストンのストロークすなわち圧縮機の吐出容量が調節される。
【0005】
【特許文献1】
特開2001−173556号公報(第15−16頁、第12図)
【0006】
【発明が解決しようとする課題】
ところが、近年、冷凍サイクルの冷媒として、従来のフロンに代えて二酸化炭素を用いることが一般的となりつつある。冷媒として二酸化炭素を使用すると、冷凍サイクルの高圧と低圧との差が、フロン冷媒を用いた場合よりも遙かに大きくなる(例えば10MPa)。従って、冷凍サイクル内の圧力差を利用して圧縮機の吐出容量を調節する前記構成においては、冷凍サイクル内に生じる大きな高低圧差に基づいて、制御弁の内部を冷媒ガスが高速で流動されることがある。
【0007】
前記制御弁の内部を冷媒ガスが高速で流動すると、該冷媒ガス中に含まれる、フィルタで除去しきれない微小異物(例えば10〜20μmの固体粒子)によって、制御弁の内部にエロージョンが発生する。制御弁の構造上、冷媒ガスの流線を大きくかつ複雑に屈曲させることとなる弁開度調節位置付近においてエロージョンが発生し易い。特に、弁開度調節位置を構成する弁座の座面及び弁体の開閉面に傷が発生すると、制御弁の全閉状態、言い換えれば弁座の座面と弁体の開閉面との当接状態においても、傷を介して冷媒ガスが漏れてしまい、制御弁の全閉状態に応じた圧縮機の吐出容量を維持できなくなる問題がある。
【0008】
本発明の目的は、全閉状態における冷媒ガスの漏れを低減可能な容量可変型圧縮機の制御弁を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明の制御弁は、通路の開度調節を行なう弁座の座面及び弁体の開閉面の少なくとも一方が、高硬度な材質で構成されている。従って、冷媒ガスに含まれる異物(固体粒子)の衝突によっても、弁座の座面及び弁体の開閉面の少なくとも一方には傷が付き難くなる。よって、該傷の発生に起因した、制御弁の全閉状態における冷媒ガスの漏れを低減することができ、制御弁の全閉状態に応じた容量可変型圧縮機の吐出容量を維持することが可能となる。
【0010】
なお、前記「高硬度な材質」とは、冷凍サイクル内の高低圧差の大きさや異物の材質・サイズ等を勘案してエロージョンが発生し難い硬度の材質のことである。
【0011】
請求項2の発明は請求項1において、前記弁座の座面及び弁体の開閉面の両方が高硬度な材質で構成されている。従って、冷媒ガスに含まれる異物(固体粒子)の衝突によっても、高硬度な材質で構成された弁座の座面及び弁体の開閉面には傷が付き難くなる。よって、制御弁の全閉状態における冷媒ガスの漏れを、より効果的に低減することができる。
【0012】
また、前記座面と開閉面は異なる材質よりなっている。従って、該両面間において、所謂「ともがね現象」が発生することを防止できる。
請求項3の発明は請求項1又は2において、冷媒圧縮用の容量可変型圧縮機の制御弁に適用するのに特に好適な「高硬度な材質」について言及するものである。すなわち、前記高硬度な材質は、高硬度な材質は、ニッケルめっき、ニッケル−リンめっき、ニッケル−ボロンめっき、ニッケル−リン−ボロンめっき、ニッケル−ボロン−タングステンめっき、クロムめっき、銅めっき、塩浴窒化、イオン窒化、ガス軟窒化、浸炭のいずれか一種による素材(弁座の素材及び/又は弁体の素材)の表面硬化よりなっている。
【0013】
請求項4の発明は請求項1〜3のいずれかにおいて、前記冷凍サイクルの高圧領域には、該領域を流動する冷媒ガスから潤滑油を分離するためのオイルセパレータが配設されている。前記通路は、オイルセパレータとクランク室とを接続することで、オイルセパレータで分離された潤滑油をクランク室へ供給するための供給通路も兼ねている。
【0014】
前記オイルセパレータにおいては、冷媒ガスからの潤滑油の分離と同時に異物も分離されることとなる。従って、例えば、前記通路が供給通路を兼用しない構成と比較して、制御弁の内部を多くの異物が通過されることとなる。しかし、弁座の座面及び弁体の開閉面の少なくとも一方が高硬度な材質で構成されており、このような厳しい条件下においても、制御弁の全閉状態における冷媒ガスの漏れを確実に低減することが可能となる。つまり、請求項1〜3の発明は、通路が、オイルセパレータからクランク室への潤滑油の供給通路を兼用する場合において適用するのに特に好適なのである。
【0015】
請求項5の発明は請求項1〜4のいずれかにおいて、前記冷凍サイクルの冷媒としては二酸化炭素が用いられている。従って、従来技術において述べたように、制御弁の内部を冷媒ガスが高速で流動されることがある。しかし、弁座の座面及び弁体の開閉面の少なくとも一方が高硬度な材質で構成されており、このような厳しい条件下においても、制御弁の全閉状態における冷媒ガスの漏れを低減することが可能となる。つまり、請求項1〜4の発明は、二酸化炭素冷媒を取り扱う制御弁に対して適用するのに特に好適なのである。
【0016】
【発明の実施の形態】
以下、本発明を具体化した一実施の形態について説明する。
図1(a)中においては、車両用空調装置の冷凍サイクルを構成する容量可変型斜板式圧縮機(以下、単に圧縮機とする)1が模式的に示されている。該圧縮機1は、図示しない斜板の回転によって圧縮室1aの容積が変化することで、吸入室2から圧縮室1aへの冷媒ガスの吸入、及び吸入冷媒ガスの圧縮、並びに圧縮済み冷媒ガスの圧縮室1aから吐出室3への吐出が行われる。吐出室3の出口付近には、冷媒ガス中にミスト状として含まれる潤滑油を冷媒ガスから分離するためのオイルセパレータ4が配設されている。なお、冷凍サイクルの冷媒としては二酸化炭素が用いられている。
【0017】
前記圧縮機1において、斜板収容室たるクランク室5と、冷凍サイクルの低圧領域としての吸入室2とは、抽気通路6を介して接続されている。冷凍サイクルの高圧領域としてのオイルセパレータ4と、クランク室5とは、給気通路7を介して接続されている。オイルセパレータ4において冷媒ガスから分離された潤滑油は、冷媒ガスの一部とともに給気通路7を介してクランク室5に供給され、該クランク室5内における各摺動部分の潤滑に供される。つまり、給気通路7は、オイルセパレータ4で分離された潤滑油をクランク室5へ供給するための供給通路も兼ねている。
【0018】
なお、前記給気通路7の上流側(オイルセパレータ4側)には、冷媒ガス中から異物を除去するためのフィルタ8が配設されている。該フィルタ8は、冷媒ガスの流れを阻害しないこととの兼ね合いで、20〜30μm以上の異物のみを除去可能なメッシュサイズに設定されている。
【0019】
前記給気通路7の途中には、該通路7の開度を調節可能な制御弁CVが配設されている。そして、制御弁CVの開度を調節することで、給気通路7を介した吐出室3からクランク室5への高圧冷媒ガスの導入量と、抽気通路6を介したクランク室5から吸入室2へのガス導出量とのバランスが制御され、クランク室5の内圧が決定される。クランク室5の内圧変更に応じて斜板の傾斜角度が変更される結果、圧縮機1の吐出容量が調節されることとなる。
【0020】
例えば、前記制御弁CVの開度が小さくされてクランク室5の圧力が低下すると、斜板の傾斜角度が増大し、圧縮機1の吐出容量が増大される。逆に、制御弁CVの開度が大きくされてクランク室5の圧力が上昇すると、斜板の傾斜角度が減少し、圧縮機1の吐出容量が減少される。
【0021】
次に、前記制御弁CVについて詳述する。
図1(a)に示すように、前記制御弁CVのバルブハウジング10は、上半部のバルブボディ11と下半部のアクチュエータハウジング12とからなっている。バルブボディ11内には、図面下方側から順に、弁室22、連通路23及び感圧室24が区画されている。弁室22及び連通路23内には、バルブロッド25がバルブハウジング10の軸方向(図面上下方向)に移動可能に配設されている。連通路23と感圧室24とは、該連通路23に挿入されたバルブロッド25の上端部によって遮断されている。
【0022】
前記連通路23は、給気通路7の上流部を介して圧縮機1のオイルセパレータ4と連通されている。弁室22は、給気通路7の下流部を介して圧縮機1のクランク室5と連通されている。弁室22及び連通路23は給気通路7の一部を構成する。
【0023】
図1(a)及び図1(b)に示すように、前記弁室22内には、バルブロッド25の中間部に形成された、弁体としての弁体部31が配置されている。バルブボディ11において、弁室22と連通路23との境界に位置する段差は弁座32をなしており、従って、連通路23は弁孔をなしている。そして、バルブロッド25が、図1(a)の位置つまり連通路23(給気通路7)の開放状態から、弁体部31が弁座32に着座する位置へ上動すると、該弁体部31が有する平面状の開閉面31aと、弁座32が有する平面状の座面32aとが当接されて連通路23(給気通路7)が遮断される。弁室22内にはロッド付勢バネ60が配置されている。該ロッド付勢バネ60は、弁体部31が弁座32から離間する方向に向けてバルブロッド25を付勢する。
【0024】
前記感圧室24内にはベローズ33が収容配置されている。ベローズ33の上端部はバルブハウジング10に固定されている。ベローズ33の下端部にはバルブロッド25の上端部が嵌合されている。感圧室24内は、有底円筒状をなすベローズ33によって、該ベローズ33の内空間である第1圧力室49と、外空間である第2圧力室50とに区画されている。
【0025】
前記吐出室3から図示しない外部冷媒回路への吐出通路40上には、固定絞り41が配設されている。第1圧力室49は第1検圧通路42を介して、固定絞り41よりも上流側(吐出室3側)で吐出通路40に接続されている。第2圧力室50は第2検圧通路43を介して、固定絞り41よりも下流側で吐出通路40に接続されている。従って、ベローズ33は、固定絞り41の前後の圧力差に応じて下端部が変位されることで、この圧力差の変動をバルブロッド25(弁体部31)の位置決めに反映させる。なお、ベローズ33は、固定絞り41の前後の圧力差の変動を打ち消す側に圧縮機1の吐出容量が変更されるように、弁体部31を動作させる。
【0026】
前記バルブハウジング10の下方側には電磁アクチュエータ部51が設けられている。電磁アクチュエータ部51は、アクチュエータハウジング12内の中心部に有底円筒状の収容筒52を備えている。収容筒52において上方側の開口には、円柱状のセンタポスト53が嵌入固定されている。このセンタポスト53の嵌入により、収容筒52内の最下部にはプランジャ室54が区画されている。
【0027】
前記プランジャ室54内には、プランジャ56が軸方向に移動可能に収容されている。センタポスト53の中心には軸方向に延びるガイド孔57が貫通形成され、該ガイド孔57内には、バルブロッド25の下端側が軸方向に移動可能に配置されている。バルブロッド25の下端部は、プランジャ室54内においてプランジャ56に嵌合固定されている。従って、プランジャ56とバルブロッド25とは常時一体となって上下動する。
【0028】
前記収容筒52の外周側には、センタポスト53及びプランジャ56を跨ぐ範囲にコイル61が巻回配置されている。このコイル61には、図示しないエアコンECUの指令に基づき電力が供給される。従って、コイル61への電力供給量に応じた大きさの電磁力(電磁吸引力)が、プランジャ56とセンタポスト53との間に発生し、この電磁力はプランジャ56を介してバルブロッド25(弁体部31)に伝達される。
【0029】
上記構成の制御弁CVにおいては、前記電磁アクチュエータ部51が弁体部31に付与する電磁力を外部からの電力供給量に応じて変更することで、ベローズ33による弁体部31の位置決め動作の基準となる、固定絞り41前後の圧力差の制御目標(設定差圧)を変更可能である。つまり、制御弁CVは、コイル61への電力供給量によって決定された設定差圧を維持するように、この圧力差の変動に応じて内部自律的にバルブロッド25(弁体部31)を位置決めする構成となっている。また、この設定差圧は、コイル61への電力供給量を調節することで外部から変更可能となっている。
【0030】
さて、従来技術においても述べたように、冷凍サイクル内の圧力差を利用して圧縮機1の吐出容量を調節する本実施の形態においては、冷凍サイクル内に生じる大きな高低圧差に基づいて、給気通路7内を冷媒ガスが高速で流動されることがある。そこで、給気通路7を開閉する制御弁CVの内部においては、弁開度調節位置たる弁座32の座面32a及び弁体部31の開閉面31aの両方が、エロージョン対策のために高硬度な材質で構成されている。
【0031】
なお、本実施形態においての「高硬度な材質」とは、冷凍サイクルの高低差が10MPa程度にまで大きくなることがあり、又エロージョンの原因となる異物が、酸化珪素等よりなる、高硬度でかつ微小(10〜20μm)な固体粒子であるので、ビッカース硬さが500以上の材質のことを指す。
【0032】
前記弁座32は素材が真鍮であり、該素材のビッカース硬さは200程度である。従って、弁座32の座面32aを高硬度な材質とするために、該弁座32の素材の表面には、ニッケル−リンめっきによる高硬度被膜32bが形成されている。よって、弁座32の座面32aは、ビッカース硬さが500〜800の高硬度な材質で構成されることとなる。
【0033】
また、前記バルブロッド25(弁体部31)は素材がSUSであり、該素材のビッカース硬さは300程度である。従って、弁体部31の開閉面31aを高硬度な材質とするために、該弁体部31の素材の表面には、塩浴窒化(タフトライド)によって高硬度被膜31bが形成されている。よって、弁体部31の開閉面31aは、ビッカース硬さが900〜1100の高硬度な材質で構成されることとなる。
【0034】
なお、前記各高硬度被膜31b,32bの膜厚は数μm〜1mm程度であって、図1(b)において各高硬度被膜31b,32bの膜厚は、理解を容易とするために誇張して描いてある。また、図1(b)ではロッド付勢バネ60の図示を省略している。
【0035】
本実施の形態によれば、以下のような効果を得ることができる。
(1) 制御弁CVにおいては、弁座32の座面32a及び弁体部31の開閉面31aが高硬度な材質で構成されている。従って、冷媒ガスに含まれる異物の衝突によっても、弁座32の座面32a及び弁体部31の開閉面31aには傷が付き難くなる。よって、該傷の発生に起因した、制御弁CVの全閉状態における冷媒ガスの漏れを低減することができ、制御弁CVの全閉状態に応じた圧縮機1の吐出容量(本実施形態においては最大吐出容量)を維持することが可能となる。
【0036】
(2) 弁座32の高硬度被膜32bと、弁体部31の高硬度被膜31bとが異なる材料で形成されている。従って、弁座32の座面32aと弁体部31の開閉面31aとの間においてともがね現象が発生することを防止できる。
【0037】
(3) 給気通路7は、オイルセパレータ4で分離された潤滑油をクランク室5へ供給するための供給通路も兼ねている。オイルセパレータ4においては、冷媒ガスからの潤滑油の分離と同時に異物も分離されることとなる。従って、例えば、給気通路7が供給通路を兼用しない構成と比較して、制御弁CVの内部を多くの異物が通過されることとなる。しかし、前記制御弁CVは、弁座32の座面32a及び弁体部31の開閉面31aが高硬度な材質で構成されており、このような厳しい条件下においても、制御弁CVの全閉状態における冷媒ガスの漏れを確実に低減することが可能となる。つまり、給気通路7が、オイルセパレータ4からクランク室5への潤滑油の供給通路を兼用する構成において本発明を具体化することは、その効果(制御弁CVの全閉状態における冷媒ガスの漏れの低減)を奏するのに特に有効となる。
【0038】
(4) 圧縮機1は冷凍サイクルに用いられる冷媒圧縮機であって、この冷凍サイクルの冷媒としては二酸化炭素が用いられている。従って、例えばフロン冷媒を用いた場合と比較して、制御弁CVにおける冷媒の高低圧差が遙かに大きくなり、冷媒の流速が遙かに高速になって弁座32の座面32a及び弁体部31の開閉面31aには異物による傷が付きやすくなる。つまり、二酸化炭素冷媒圧縮機の制御弁において本発明を具体化することは、その効果(制御弁CVの全閉状態における冷媒ガスの漏れの低減)を奏するのに特に有効となる。
【0039】
なお、本発明の趣旨から逸脱しない範囲で以下の態様でも実施できる。
・上記実施形態を変更し、弁座32の座面32a及び弁体部31の開閉面31aの一方のみを高硬度な材質で構成すること。このようにしても上記実施形態の(1)と同様な効果(制御弁CVの全閉状態における冷媒ガスの漏れの低減)を奏する。しかし、当然ではあるが、該効果をより確実に奏するのは、弁座32の座面32a及び弁体部31の開閉面31aの両方が高硬度な材質で構成された上記実施形態の方である。
【0040】
・上記実施形態において弁座32の座面32aは、ニッケル−リンめっきによる弁座32の素材の表面硬化によって高硬度な材質で構成されていた。これを変更し、ニッケルめっき、ニッケル−リン−ボロンめっき、ニッケル−ボロンめっき、ニッケル−ボロン−タングステンめっき、クロムめっき、銅めっきのいずれか一つによる弁座32の素材の表面硬化によって、座面32aを高硬度な材質で構成すること。
【0041】
又は、弁座32の座面32aの高硬度化は、めっきによる素材の表面硬化に限定されるものではなく、イオン窒化、ガス軟窒化、塩浴窒化のいずれか一つによる弁座32の素材の表面硬化によるものであってもよい。
【0042】
或いは、弁座32の素材を浸炭用鋼とし、該素材の浸炭による表面硬化によって、座面32aを高硬度な材質で構成すること。
・上記実施形態において弁体部31の開閉面31aは、塩浴窒化による弁体部31の素材の表面硬化によって高硬度な材質で構成されていた。これを変更し、イオン窒化やガス軟窒化等の他の窒化処理による弁体部31の素材の表面硬化によって、開閉面31aを高硬度な材質で構成すること。
【0043】
又は、弁体部31の開閉面31aの高硬度化は、窒化処理による素材の表面硬化に限定されるものではない。弁体部31の開閉面31aの高硬度化は、ニッケルめっき、ニッケル−リンめっき、ニッケル−リン−ボロンめっき、ニッケル−ボロンめっき、ニッケル−ボロン−タングステンめっき、クロムめっき、銅めっきのいずれか一つによる弁体部31の素材の表面硬化によるものであってもよい。
【0044】
或いは、弁体部31(バルブロッド25)の素材を浸炭用鋼とし、該素材の浸炭による表面硬化によって、開閉面31aを高硬度な材質で構成すること。
・弁座32の素材は真鍮に限らず、他の銅系の材料や、アルミニウム系の材料やSUSであってもよい。
【0045】
・上記実施形態において制御弁CVは、冷凍サイクルの高圧領域(オイルセパレータ4)とクランク室5とを接続する給気通路7の開度を変更することでクランク室5の圧力を調節する、所謂入れ側制御弁に具体化されていた。これを変更し、クランク室5と冷凍サイクルの低圧領域(例えば吸入室2)とを接続する抽気通路6の開度を変更することでクランク室5の圧力を調節する、所謂抜き側制御弁に具体化すること。
【0046】
・上記実施形態において制御弁CVは、外部からの電力供給量によって決定された設定差圧を維持するように、この圧力差の変動に応じて内部自律的に弁体部31を位置決めする、所謂外部制御弁に具体化されていた。しかし、本発明は、外部制御弁において具体化することに限定されるものではなく、内部制御弁や、単なる電磁弁において具体化してもよい。
【0047】
上記実施形態から把握できる技術的思想について記載する。
(1)前記弁座の座面及び弁体の開閉面の両方が高硬度な材質で構成されている請求項1に記載の容量可変型圧縮機の制御弁。
【0048】
(2)前記高硬度な材質とは、ビッカース硬さが500以上の材質のことである請求項1〜5のいずれか又は前記技術的思想(1)に記載の容量可変型圧縮機の制御弁。
【0049】
【発明の効果】
上記本発明によれば、全閉状態における冷媒ガスの漏れを低減可能な容量可変型圧縮機の制御弁を提供することができる。
【図面の簡単な説明】
【図1】(a)は容量可変型斜板式圧縮機の模式図及び制御弁の断面図であって、(b)は(a)において弁開度調節位置付近の拡大図。
【符号の説明】
1…容量可変型圧縮機としての容量可変型斜板式圧縮機、2…冷凍サイクルの低圧領域としての吸入室、4…高圧領域としてのオイルセパレータ、5…クランク室、6…クランク室と吸入室とを接続する抽気通路、7…クランク室とオイルセパレータとを接続する給気通路、31…弁体としての弁体部、31a…弁体部の開閉面、32…弁座、32a…弁座の座面、CV…制御弁。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control valve for controlling a displacement of a variable displacement compressor that constitutes a refrigeration cycle.
[0002]
[Prior art]
A variable displacement swash plate compressor (hereinafter referred to as a compressor) used in a refrigeration cycle is configured such that the inclination angle of the swash plate, that is, the discharge capacity, can be changed by adjusting the internal pressure of a crank chamber that is a swash plate storage chamber. (For example, see Patent Document 1).
[0003]
That is, the compressor is provided with a control valve for adjusting the internal pressure of the crank chamber. The control valve changes, for example, an opening degree of an air supply passage connecting the high pressure region of the refrigeration cycle and the crankcase. The low pressure region of the refrigeration cycle and the crank chamber are communicated via a bleed passage.
[0004]
By adjusting the opening of the control valve, the amount of high-pressure refrigerant gas introduced into the crank chamber from the high-pressure region through the air supply passage and the amount of gas discharged from the crank chamber to the low-pressure region through the bleed passage are increased. Is controlled, and the internal pressure of the crankcase is determined. As a result of changing the inclination angle of the swash plate according to the change in the internal pressure of the crank chamber, the stroke of the piston, that is, the displacement of the compressor is adjusted.
[0005]
[Patent Document 1]
JP 2001-173556 A (pages 15 to 16, FIG. 12)
[0006]
[Problems to be solved by the invention]
However, in recent years, it has become common to use carbon dioxide as a refrigerant for a refrigeration cycle instead of conventional chlorofluorocarbon. When carbon dioxide is used as the refrigerant, the difference between the high pressure and the low pressure of the refrigeration cycle is much larger than when refrigerant gas is used (for example, 10 MPa). Therefore, in the above-described configuration in which the discharge capacity of the compressor is adjusted using the pressure difference in the refrigeration cycle, the refrigerant gas flows at high speed inside the control valve based on the large high-low pressure difference generated in the refrigeration cycle. Sometimes.
[0007]
When the refrigerant gas flows at high speed inside the control valve, erosion occurs inside the control valve due to minute foreign substances (for example, solid particles of 10 to 20 μm) contained in the refrigerant gas and which cannot be removed by the filter. . Due to the structure of the control valve, erosion is likely to occur in the vicinity of the valve opening adjustment position where the streamline of the refrigerant gas is bent in a large and complicated manner. In particular, if the seat surface of the valve seat and the opening / closing surface of the valve body constituting the valve opening adjustment position are damaged, the control valve is fully closed, in other words, the contact between the seat surface of the valve seat and the opening / closing surface of the valve body. Even in the contact state, there is a problem that the refrigerant gas leaks through the flaw and the discharge capacity of the compressor cannot be maintained according to the fully closed state of the control valve.
[0008]
An object of the present invention is to provide a control valve of a variable displacement compressor that can reduce leakage of refrigerant gas in a fully closed state.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the control valve according to the first aspect of the present invention, at least one of the seat surface of the valve seat for adjusting the opening of the passage and the opening / closing surface of the valve element is made of a material having high hardness. Therefore, even if foreign matter (solid particles) contained in the refrigerant gas collides, at least one of the seat surface of the valve seat and the opening / closing surface of the valve element is hardly damaged. Therefore, it is possible to reduce the leakage of the refrigerant gas in the fully closed state of the control valve due to the occurrence of the scratch, and to maintain the discharge capacity of the variable displacement compressor according to the fully closed state of the control valve. It becomes possible.
[0010]
The “high-hardness material” is a material having a hardness that does not easily cause erosion in consideration of the magnitude of the high-low pressure difference in the refrigeration cycle, the material and size of foreign matter, and the like.
[0011]
According to a second aspect of the present invention, in the first aspect, both the seat surface of the valve seat and the open / close surface of the valve element are made of a material having high hardness. Therefore, even when the foreign matter (solid particles) contained in the refrigerant gas collides, the seat surface of the valve seat made of a high-hardness material and the opening / closing surface of the valve element are hardly damaged. Therefore, leakage of the refrigerant gas in the fully closed state of the control valve can be more effectively reduced.
[0012]
The seat surface and the opening / closing surface are made of different materials. Therefore, it is possible to prevent a so-called “watching phenomenon” from occurring between the two surfaces.
The invention of claim 3 refers to “high-hardness material” particularly suitable for being applied to a control valve of a variable displacement compressor for compressing refrigerant in claim 1 or 2. That is, the high-hardness material is a high-hardness material such as nickel plating, nickel-phosphorus plating, nickel-boron plating, nickel-phosphorus-boron plating, nickel-boron-tungsten plating, chromium plating, copper plating, and salt bath. It consists of surface hardening of a material (valve seat material and / or valve body material) by any one of nitriding, ion nitriding, gas nitrocarburizing, and carburizing.
[0013]
According to a fourth aspect of the present invention, in any one of the first to third aspects, an oil separator for separating lubricating oil from refrigerant gas flowing in the high-pressure region of the refrigeration cycle is provided. The passage also serves as a supply passage for supplying the lubricating oil separated by the oil separator to the crank chamber by connecting the oil separator and the crank chamber.
[0014]
In the oil separator, foreign matter is also separated simultaneously with the separation of the lubricating oil from the refrigerant gas. Therefore, for example, a larger amount of foreign matter passes through the inside of the control valve as compared with a configuration in which the passage does not double as a supply passage. However, at least one of the seat surface of the valve seat and the opening / closing surface of the valve element is made of a high-hardness material, and even under such severe conditions, leakage of the refrigerant gas in the fully closed state of the control valve is ensured. It becomes possible to reduce. That is, the inventions of claims 1 to 3 are particularly suitable for application when the passage also serves as a supply passage of lubricating oil from the oil separator to the crank chamber.
[0015]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, carbon dioxide is used as a refrigerant of the refrigeration cycle. Therefore, as described in the related art, the refrigerant gas may flow at a high speed inside the control valve. However, at least one of the seat surface of the valve seat and the opening / closing surface of the valve body is made of a material having high hardness, and even under such severe conditions, leakage of the refrigerant gas in the fully closed state of the control valve is reduced. It becomes possible. That is, the inventions of claims 1 to 4 are particularly suitable for application to a control valve that handles carbon dioxide refrigerant.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
FIG. 1A schematically shows a variable displacement type swash plate type compressor (hereinafter simply referred to as a compressor) 1 which constitutes a refrigeration cycle of a vehicle air conditioner. The compressor 1 sucks refrigerant gas from the suction chamber 2 into the compression chamber 1a, compresses the suction refrigerant gas, and compresses the compressed refrigerant gas by changing the volume of the compression chamber 1a by rotation of a swash plate (not shown). Is discharged from the compression chamber 1a to the discharge chamber 3. An oil separator 4 for separating lubricating oil contained in the refrigerant gas as a mist from the refrigerant gas is disposed near the outlet of the discharge chamber 3. Note that carbon dioxide is used as a refrigerant of the refrigeration cycle.
[0017]
In the compressor 1, a crank chamber 5 serving as a swash plate housing chamber and a suction chamber 2 serving as a low pressure region of a refrigeration cycle are connected via a bleed passage 6. The oil separator 4 as a high-pressure region of the refrigeration cycle and the crankcase 5 are connected via an air supply passage 7. The lubricating oil separated from the refrigerant gas in the oil separator 4 is supplied to the crank chamber 5 through the air supply passage 7 together with a part of the refrigerant gas, and is used for lubrication of each sliding portion in the crank chamber 5. . That is, the supply passage 7 also serves as a supply passage for supplying the lubricating oil separated by the oil separator 4 to the crank chamber 5.
[0018]
A filter 8 for removing foreign matter from the refrigerant gas is provided upstream of the air supply passage 7 (on the side of the oil separator 4). The filter 8 is set to a mesh size capable of removing only foreign matters of 20 to 30 μm or more in consideration of not obstructing the flow of the refrigerant gas.
[0019]
A control valve CV capable of adjusting the opening degree of the passage 7 is provided in the middle of the air supply passage 7. By adjusting the opening of the control valve CV, the amount of high-pressure refrigerant gas introduced from the discharge chamber 3 into the crank chamber 5 through the air supply passage 7 and the suction chamber from the crank chamber 5 through the bleed passage 6 The balance with the amount of gas led out to 2 is controlled, and the internal pressure of the crank chamber 5 is determined. As a result of the inclination angle of the swash plate being changed in accordance with the change in the internal pressure of the crank chamber 5, the displacement of the compressor 1 is adjusted.
[0020]
For example, when the opening of the control valve CV is reduced and the pressure in the crank chamber 5 decreases, the inclination angle of the swash plate increases, and the discharge capacity of the compressor 1 increases. Conversely, when the opening of the control valve CV is increased and the pressure in the crank chamber 5 increases, the inclination angle of the swash plate decreases, and the displacement of the compressor 1 decreases.
[0021]
Next, the control valve CV will be described in detail.
As shown in FIG. 1A, a valve housing 10 of the control valve CV includes an upper half valve body 11 and a lower half actuator housing 12. In the valve body 11, a valve chamber 22, a communication passage 23, and a pressure-sensitive chamber 24 are partitioned in this order from the lower side in the drawing. A valve rod 25 is provided in the valve chamber 22 and the communication passage 23 so as to be movable in the axial direction of the valve housing 10 (vertical direction in the drawing). The communication passage 23 and the pressure-sensitive chamber 24 are shut off by the upper end of the valve rod 25 inserted into the communication passage 23.
[0022]
The communication passage 23 communicates with the oil separator 4 of the compressor 1 via an upstream portion of the air supply passage 7. The valve chamber 22 communicates with the crank chamber 5 of the compressor 1 via a downstream portion of the air supply passage 7. The valve chamber 22 and the communication passage 23 constitute a part of the air supply passage 7.
[0023]
As shown in FIGS. 1A and 1B, a valve body 31 as a valve body, which is formed in an intermediate portion of the valve rod 25, is disposed in the valve chamber 22. In the valve body 11, a step located at the boundary between the valve chamber 22 and the communication passage 23 forms a valve seat 32, and therefore, the communication passage 23 forms a valve hole. When the valve rod 25 moves upward from the position shown in FIG. 1A, that is, the open state of the communication passage 23 (the air supply passage 7), to a position where the valve body 31 is seated on the valve seat 32, the valve body 25 The flat opening / closing surface 31a of the valve seat 31 and the flat seat surface 32a of the valve seat 32 come into contact with each other, and the communication passage 23 (the air supply passage 7) is shut off. A rod urging spring 60 is disposed in the valve chamber 22. The rod urging spring 60 urges the valve rod 25 in a direction in which the valve body 31 is separated from the valve seat 32.
[0024]
A bellows 33 is accommodated in the pressure-sensitive chamber 24. The upper end of the bellows 33 is fixed to the valve housing 10. The lower end of the bellows 33 is fitted with the upper end of the valve rod 25. The inside of the pressure-sensitive chamber 24 is divided by a bellows 33 having a bottomed cylindrical shape into a first pressure chamber 49 as an inner space of the bellows 33 and a second pressure chamber 50 as an outer space.
[0025]
A fixed throttle 41 is provided on a discharge passage 40 from the discharge chamber 3 to an external refrigerant circuit (not shown). The first pressure chamber 49 is connected to the discharge passage 40 on the upstream side (the discharge chamber 3 side) of the fixed throttle 41 via the first pressure detection passage 42. The second pressure chamber 50 is connected to the discharge passage 40 downstream of the fixed throttle 41 via the second pressure detection passage 43. Therefore, the lower end of the bellows 33 is displaced in accordance with the pressure difference before and after the fixed throttle 41, and the fluctuation of this pressure difference is reflected on the positioning of the valve rod 25 (valve body 31). In addition, the bellows 33 operates the valve body 31 so that the displacement of the compressor 1 is changed to the side that cancels the fluctuation of the pressure difference before and after the fixed throttle 41.
[0026]
An electromagnetic actuator 51 is provided below the valve housing 10. The electromagnetic actuator section 51 includes a cylindrical housing cylinder 52 with a bottom at the center in the actuator housing 12. A cylindrical center post 53 is fitted and fixed to the upper opening of the housing cylinder 52. Due to the fitting of the center post 53, a plunger chamber 54 is defined at the lowermost part in the housing cylinder 52.
[0027]
A plunger 56 is accommodated in the plunger chamber 54 so as to be movable in the axial direction. A guide hole 57 extending in the axial direction is formed through the center of the center post 53, and the lower end of the valve rod 25 is disposed in the guide hole 57 so as to be movable in the axial direction. The lower end of the valve rod 25 is fitted and fixed to the plunger 56 in the plunger chamber 54. Accordingly, the plunger 56 and the valve rod 25 always move up and down integrally.
[0028]
A coil 61 is wound around the outer periphery of the housing cylinder 52 so as to straddle the center post 53 and the plunger 56. Electric power is supplied to the coil 61 based on a command from an air conditioner ECU (not shown). Accordingly, an electromagnetic force (electromagnetic attraction) having a magnitude corresponding to the amount of power supplied to the coil 61 is generated between the plunger 56 and the center post 53, and the electromagnetic force is transmitted via the plunger 56 to the valve rod 25 ( It is transmitted to the valve body 31).
[0029]
In the control valve CV having the above configuration, the electromagnetic force applied to the valve body 31 by the electromagnetic actuator unit 51 is changed according to the amount of electric power supplied from the outside, so that the bellows 33 controls the positioning operation of the valve body 31. The control target (set differential pressure) of the pressure difference before and after the fixed throttle 41 serving as a reference can be changed. In other words, the control valve CV positions the valve rod 25 (valve element portion 31) autonomously internally in accordance with the change in the pressure difference so as to maintain the set differential pressure determined by the amount of power supplied to the coil 61. Configuration. The set differential pressure can be changed externally by adjusting the amount of power supplied to the coil 61.
[0030]
Now, as described in the related art, in the present embodiment in which the discharge capacity of the compressor 1 is adjusted using the pressure difference in the refrigeration cycle, the supply is controlled based on the large high-low pressure difference generated in the refrigeration cycle. The refrigerant gas may flow at a high speed in the air passage 7. Therefore, inside the control valve CV that opens and closes the air supply passage 7, both the seat surface 32a of the valve seat 32 and the opening and closing surface 31a of the valve body 31, which are the valve opening adjustment positions, have high hardness to prevent erosion. It is composed of various materials.
[0031]
The “high hardness material” in the present embodiment means that the height difference of the refrigeration cycle may be as large as about 10 MPa, and the foreign matter that causes erosion is made of silicon oxide or the like. In addition, since the particles are fine (10 to 20 μm) solid particles, the material has a Vickers hardness of 500 or more.
[0032]
The valve seat 32 is made of brass, and has a Vickers hardness of about 200. Therefore, in order to make the seat surface 32a of the valve seat 32 a high-hardness material, a high-hardness coating 32b formed by nickel-phosphorus plating is formed on the surface of the material of the valve seat 32. Therefore, the seat surface 32a of the valve seat 32 is made of a high hardness material having a Vickers hardness of 500 to 800.
[0033]
The material of the valve rod 25 (valve element portion 31) is SUS, and the Vickers hardness of the material is about 300. Therefore, in order to make the opening / closing surface 31a of the valve body 31 a high-hardness material, a high-hardness coating 31b is formed on the surface of the material of the valve body 31 by salt bath nitriding (taftride). Therefore, the opening / closing surface 31a of the valve element portion 31 is made of a high-hardness material having a Vickers hardness of 900 to 1100.
[0034]
The thickness of each of the high-hardness coatings 31b and 32b is about several μm to 1 mm. In FIG. 1B, the thickness of each of the high-hardness coatings 31b and 32b is exaggerated for easy understanding. It is drawn. In FIG. 1B, the illustration of the rod urging spring 60 is omitted.
[0035]
According to the present embodiment, the following effects can be obtained.
(1) In the control valve CV, the seat surface 32a of the valve seat 32 and the open / close surface 31a of the valve body 31 are made of a material having high hardness. Therefore, even when the foreign matter included in the refrigerant gas collides, the seat surface 32a of the valve seat 32 and the opening / closing surface 31a of the valve body 31 are hardly damaged. Therefore, it is possible to reduce the leakage of the refrigerant gas in the fully closed state of the control valve CV due to the occurrence of the flaw, and the discharge capacity of the compressor 1 according to the fully closed state of the control valve CV (in the present embodiment, Is the maximum discharge capacity).
[0036]
(2) The high hardness coating 32b of the valve seat 32 and the high hardness coating 31b of the valve body 31 are formed of different materials. Accordingly, it is possible to prevent the occurrence of a bouncing phenomenon between the seat surface 32a of the valve seat 32 and the opening / closing surface 31a of the valve body 31.
[0037]
(3) The supply passage 7 also serves as a supply passage for supplying the lubricating oil separated by the oil separator 4 to the crank chamber 5. In the oil separator 4, foreign matter is also separated at the same time as the separation of the lubricating oil from the refrigerant gas. Therefore, for example, compared with the configuration in which the air supply passage 7 does not double as the supply passage, more foreign matter passes through the inside of the control valve CV. However, in the control valve CV, the seat surface 32a of the valve seat 32 and the opening / closing surface 31a of the valve body portion 31 are made of a material having high hardness. Even under such severe conditions, the control valve CV is fully closed. Leakage of the refrigerant gas in the state can be reliably reduced. That is, embodying the present invention in a configuration in which the air supply passage 7 also serves as a supply passage of the lubricating oil from the oil separator 4 to the crank chamber 5 has the effect (the refrigerant gas flow when the control valve CV is fully closed). This is particularly effective for achieving a reduction in leakage.
[0038]
(4) The compressor 1 is a refrigerant compressor used in a refrigeration cycle, and carbon dioxide is used as a refrigerant in the refrigeration cycle. Therefore, as compared with the case of using Freon refrigerant, for example, the difference between the high and low pressures of the refrigerant in the control valve CV becomes much larger, the flow velocity of the refrigerant becomes much higher, and the seat surface 32a of the valve seat 32 and the valve element The opening / closing surface 31a of the portion 31 is easily damaged by foreign matter. That is, embodying the present invention in the control valve of the carbon dioxide refrigerant compressor is particularly effective in achieving the effect (reduction of refrigerant gas leakage when the control valve CV is fully closed).
[0039]
The present invention can be implemented in the following modes without departing from the spirit of the present invention.
Modification of the above embodiment, in which only one of the seat surface 32a of the valve seat 32 and the opening / closing surface 31a of the valve body 31 is made of a material having high hardness. Even in this case, the same effect (reduction of refrigerant gas leakage in the fully closed state of the control valve CV) as in (1) of the above embodiment can be obtained. However, as a matter of course, the effect is more reliably exerted in the above-described embodiment in which both the seat surface 32a of the valve seat 32 and the opening / closing surface 31a of the valve body portion 31 are made of a hard material. is there.
[0040]
In the above embodiment, the seat surface 32a of the valve seat 32 is made of a material having high hardness by surface hardening of the material of the valve seat 32 by nickel-phosphorus plating. By changing this, the surface of the valve seat 32 is hardened by one of nickel plating, nickel-phosphorus-boron plating, nickel-boron plating, nickel-boron-tungsten plating, chromium plating, and copper plating. 32a is made of a material having high hardness.
[0041]
Alternatively, the increase in hardness of the seat surface 32a of the valve seat 32 is not limited to the surface hardening of the material by plating, and the material of the valve seat 32 is formed by any one of ion nitriding, gas soft nitriding, and salt bath nitriding. Surface curing.
[0042]
Alternatively, the material of the valve seat 32 is made of carburizing steel, and the seat surface 32a is made of a material of high hardness by surface hardening due to carburizing of the material.
In the above-described embodiment, the opening / closing surface 31a of the valve body 31 is made of a material having high hardness by surface hardening of the material of the valve body 31 by salt bath nitriding. By changing this, the opening / closing surface 31a is made of a material having high hardness by surface hardening of the material of the valve body portion 31 by another nitriding treatment such as ion nitriding or gas soft nitriding.
[0043]
Alternatively, the increase in hardness of the opening / closing surface 31a of the valve body 31 is not limited to the surface hardening of the material by the nitriding treatment. The hardness of the opening / closing surface 31a of the valve element portion 31 is increased by one of nickel plating, nickel-phosphorus plating, nickel-phosphorus-boron plating, nickel-boron plating, nickel-boron-tungsten plating, chromium plating, and copper plating. This may be due to the surface hardening of the material of the valve body part 31.
[0044]
Alternatively, the material of the valve body 31 (valve rod 25) is made of carburizing steel, and the opening and closing surface 31a is made of a material having high hardness by surface hardening due to carburizing of the material.
The material of the valve seat 32 is not limited to brass, but may be another copper-based material, an aluminum-based material, or SUS.
[0045]
In the above-described embodiment, the control valve CV adjusts the pressure in the crank chamber 5 by changing the opening of the air supply passage 7 that connects the high-pressure region (oil separator 4) of the refrigeration cycle and the crank chamber 5. It was embodied in the inlet control valve. By changing the opening degree of the bleed passage 6 connecting the crank chamber 5 and the low pressure region of the refrigeration cycle (for example, the suction chamber 2), the pressure in the crank chamber 5 is adjusted. Be embodied.
[0046]
In the above embodiment, the control valve CV internally and autonomously positions the valve body 31 in accordance with the change in the pressure difference so as to maintain the set differential pressure determined by the amount of electric power supplied from the outside. It was embodied in an external control valve. However, the present invention is not limited to being embodied in an external control valve, but may be embodied in an internal control valve or a simple solenoid valve.
[0047]
The technical idea that can be grasped from the above embodiment will be described.
(1) The control valve of the variable displacement compressor according to claim 1, wherein both the seat surface of the valve seat and the open / close surface of the valve body are made of a material having high hardness.
[0048]
(2) The high-hardness material is a material having a Vickers hardness of 500 or more, and the control valve of the variable displacement compressor according to any one of claims 1 to 5 or the technical idea (1). .
[0049]
【The invention's effect】
According to the present invention, it is possible to provide a control valve of a variable displacement compressor which can reduce leakage of refrigerant gas in a fully closed state.
[Brief description of the drawings]
FIG. 1A is a schematic view of a variable displacement swash plate type compressor and a cross-sectional view of a control valve, and FIG. 1B is an enlarged view of the vicinity of a valve opening adjustment position in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Variable capacity swash plate type compressor as a variable capacity compressor, 2 ... Suction chamber as a low pressure area of a refrigeration cycle, 4 ... Oil separator as a high pressure area, 5 ... Crank chamber, 6 ... Crank chamber and suction chamber , An air extraction passage connecting the crank chamber and the oil separator, 31 a valve element as a valve element, 31a an opening / closing surface of the valve element, 32 a valve seat, 32a a valve seat. , CV ... control valve.

Claims (5)

冷凍サイクルを構成するとともにクランク室の圧力に基づいて吐出容量を変更可能な容量可変型圧縮機に用いられ、前記クランク室と冷凍サイクルの高圧領域又は低圧領域とを接続する通路の開度を変更することで、クランク室の圧力を調節する制御弁において、
前記通路の開度調節を行なう弁座の座面及び弁体の開閉面の少なくとも一方を、高硬度な材質で構成したことを特徴とする容量可変型圧縮機の制御弁。
Used in a variable displacement compressor that constitutes a refrigeration cycle and that can change the discharge capacity based on the pressure in the crankcase, changes the opening of a passage connecting the crankcase to a high-pressure region or a low-pressure region of the refrigeration cycle. By doing so, in the control valve that regulates the pressure in the crankcase,
A control valve for a variable displacement compressor, wherein at least one of a seat surface of a valve seat and an opening / closing surface of a valve body for adjusting an opening degree of the passage is made of a material having high hardness.
前記弁座の座面及び弁体の開閉面の両方が高硬度な材質で構成されており、該座面と開閉面は異なる材質よりなっている請求項1に記載の容量可変型圧縮機の制御弁。2. The variable displacement compressor according to claim 1, wherein both a seat surface of the valve seat and an opening / closing surface of the valve body are made of a material having high hardness, and the seat surface and the opening / closing surface are made of different materials. Control valve. 前記高硬度な材質は、ニッケルめっき、ニッケル−リンめっき、ニッケル−ボロンめっき、ニッケル−リン−ボロンめっき、ニッケル−ボロン−タングステンめっき、クロムめっき、銅めっき、塩浴窒化、イオン窒化、ガス軟窒化、浸炭のいずれか一種による素材の表面硬化よりなっている請求項1又は2に記載の容量可変型圧縮機の制御弁。The high hardness materials include nickel plating, nickel-phosphorus plating, nickel-boron plating, nickel-phosphorus-boron plating, nickel-boron-tungsten plating, chromium plating, copper plating, salt bath nitriding, ion nitriding, and gas nitrocarburizing. 3. The control valve for a variable displacement compressor according to claim 1, wherein the control valve is formed by surface hardening of a material by any one of carburizing and carburizing. 前記冷凍サイクルの高圧領域には、該領域を流動する冷媒ガスから潤滑油を分離するためのオイルセパレータが配設されており、前記通路は、オイルセパレータとクランク室とを接続することで、オイルセパレータで分離された潤滑油をクランク室へ供給するための供給通路も兼ねている請求項1〜3のいずれかに記載の容量可変型圧縮機の制御弁。In the high-pressure region of the refrigeration cycle, an oil separator for separating lubricating oil from the refrigerant gas flowing in the region is provided, and the passage connects the oil separator and a crankcase, thereby providing an oil separator. The control valve for a variable displacement compressor according to any one of claims 1 to 3, wherein the control valve also serves as a supply passage for supplying the lubricating oil separated by the separator to the crank chamber. 前記冷凍サイクルの冷媒としては二酸化炭素が用いられている請求項1〜4のいずれかに記載の容量可変型圧縮機の制御弁。The control valve of the variable displacement compressor according to any one of claims 1 to 4, wherein carbon dioxide is used as a refrigerant of the refrigeration cycle.
JP2002330720A 2002-11-14 2002-11-14 Control valve for variable displacement compressor Pending JP2004162640A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002330720A JP2004162640A (en) 2002-11-14 2002-11-14 Control valve for variable displacement compressor
KR1020030062498A KR20040042801A (en) 2002-11-14 2003-09-08 A control valve for variable displacement compressor
EP03025917A EP1420162A3 (en) 2002-11-14 2003-11-12 Control valve for variable displacement compressor
US10/712,910 US20040118140A1 (en) 2002-11-14 2003-11-12 Control valve for variable displacement compressor
CNA200310120943XA CN1508426A (en) 2002-11-14 2003-11-13 Control valve for volume-variable compressor
BR0305196-0A BR0305196A (en) 2002-11-14 2003-11-13 Variable Displacement Compressor Control Valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330720A JP2004162640A (en) 2002-11-14 2002-11-14 Control valve for variable displacement compressor

Publications (1)

Publication Number Publication Date
JP2004162640A true JP2004162640A (en) 2004-06-10

Family

ID=32171396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330720A Pending JP2004162640A (en) 2002-11-14 2002-11-14 Control valve for variable displacement compressor

Country Status (6)

Country Link
US (1) US20040118140A1 (en)
EP (1) EP1420162A3 (en)
JP (1) JP2004162640A (en)
KR (1) KR20040042801A (en)
CN (1) CN1508426A (en)
BR (1) BR0305196A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006523A1 (en) * 2004-07-13 2006-01-19 Sanden Corporation Capacity control valve for variable displacement swash plate type compressor
JP2007177627A (en) * 2005-12-27 2007-07-12 Sanden Corp Discharge capacity control valve of variable displacement compressor
JP2007297946A (en) * 2006-04-28 2007-11-15 Sanden Corp Discharge capacity control valve of variable displacement compressor
JP2007315187A (en) * 2006-05-23 2007-12-06 Sanden Corp Variable displacement compressor
WO2011055688A1 (en) * 2009-11-09 2011-05-12 株式会社フジキン Control valve device
JP2016020682A (en) * 2014-06-19 2016-02-04 株式会社テージーケー Control valve for variable capacity type compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161514A2 (en) * 2011-05-23 2012-11-29 학교법인 두원학원 Control valve for a variable capacity compressor and method for manufacturing same
DE102012202859A1 (en) * 2012-02-24 2013-08-29 Mahle International Gmbh Valve system for charge exchange control
CN104373650A (en) * 2014-11-18 2015-02-25 温州仁谦汽车油泵有限公司 Leaf spring type constant pressure valve
CN104697505B (en) * 2015-03-20 2017-03-08 张家港海纳德智能科技有限公司 A kind of rotatable parts for instrument of surveying and mapping and its manufacture method
US11060493B2 (en) * 2019-03-29 2021-07-13 Delphi Technologies Ip Limited Fuel pump for gasoline direct injection
KR20220159467A (en) * 2020-04-22 2022-12-02 이구루코교 가부시기가이샤 capacity control valve

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683804A (en) * 1985-01-18 1987-08-04 Taiho Kogyo Kabushiki Kaisha Swash plate type compressor shoe
US4875658A (en) * 1986-10-08 1989-10-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electromagnetic valve
US5080131A (en) * 1989-09-26 1992-01-14 Lintec Co., Ltd. Mass flow controller
US5676309A (en) * 1994-12-06 1997-10-14 The Lee Company Thermally responsive flow control valve
JPH10281060A (en) * 1996-12-10 1998-10-20 Toyota Autom Loom Works Ltd Variable displacement compressor
JP3585150B2 (en) * 1997-01-21 2004-11-04 株式会社豊田自動織機 Control valve for variable displacement compressor
JP3469435B2 (en) * 1997-06-27 2003-11-25 日本ピストンリング株式会社 Valve seat for internal combustion engine
JP4000694B2 (en) * 1997-12-26 2007-10-31 株式会社豊田自動織機 Capacity control valve in variable capacity compressor
JP3728387B2 (en) * 1998-04-27 2005-12-21 株式会社豊田自動織機 Control valve
JPH11336660A (en) * 1998-05-27 1999-12-07 Toyota Autom Loom Works Ltd Variable displacement compressor and assembling method therefor
US6321564B1 (en) * 1999-03-15 2001-11-27 Denso Corporation Refrigerant cycle system with expansion energy recovery
EP1061257B1 (en) * 1999-06-15 2005-01-26 Fujikoki Corporation Regulating valve for variable displacement swash plate compressor and its assembly method
JP4418571B2 (en) * 2000-04-11 2010-02-17 シーケーディ株式会社 High temperature gas control valve
EP1172556A3 (en) * 2000-07-14 2004-05-12 Kabushiki Kaisha Toyota Jidoshokki Swash plate compressor piston shoes
JP3918516B2 (en) * 2001-11-07 2007-05-23 株式会社豊田自動織機 Swash plate compressor
US6840054B2 (en) * 2001-12-21 2005-01-11 Visteon Global Technologies, Inc. Control strategy of a variable displacement compressor operating at super critical pressures
US6715995B2 (en) * 2002-01-31 2004-04-06 Visteon Global Technologies, Inc. Hybrid compressor control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006523A1 (en) * 2004-07-13 2006-01-19 Sanden Corporation Capacity control valve for variable displacement swash plate type compressor
JP2006029144A (en) * 2004-07-13 2006-02-02 Sanden Corp Displacement control valve of variable displacement swash plate type compressor
JP2007177627A (en) * 2005-12-27 2007-07-12 Sanden Corp Discharge capacity control valve of variable displacement compressor
JP2007297946A (en) * 2006-04-28 2007-11-15 Sanden Corp Discharge capacity control valve of variable displacement compressor
JP4607047B2 (en) * 2006-04-28 2011-01-05 サンデン株式会社 Variable displacement compressor discharge capacity control valve
JP2007315187A (en) * 2006-05-23 2007-12-06 Sanden Corp Variable displacement compressor
JP4599327B2 (en) * 2006-05-23 2010-12-15 サンデン株式会社 Variable capacity compressor
WO2011055688A1 (en) * 2009-11-09 2011-05-12 株式会社フジキン Control valve device
JP2011099542A (en) * 2009-11-09 2011-05-19 Fujikin Inc Control valve device
JP2016020682A (en) * 2014-06-19 2016-02-04 株式会社テージーケー Control valve for variable capacity type compressor

Also Published As

Publication number Publication date
CN1508426A (en) 2004-06-30
US20040118140A1 (en) 2004-06-24
EP1420162A3 (en) 2004-09-15
KR20040042801A (en) 2004-05-20
EP1420162A2 (en) 2004-05-19
BR0305196A (en) 2004-08-31

Similar Documents

Publication Publication Date Title
US20060218953A1 (en) Control valve for variable displacement compressor
JP2004162640A (en) Control valve for variable displacement compressor
JP6626789B2 (en) Control valve for variable displacement compressor
JP2015178795A (en) capacity control valve
JP4547332B2 (en) Control valve for variable capacity compressor
US20050265853A1 (en) Control valve for variable displacement compressor
US7437881B2 (en) Control valve for variable displacement compressor
EP1717444A1 (en) Displacement control valve for clutchless type variable displacement compressor
JP2002089442A (en) Control valve for variable displacement compressor
JP2003328936A (en) Volume control valve for variable displacement compressor
US8202062B2 (en) Compressor and method for operating the same
US20040057840A1 (en) Capacity control valve for variable displacement compressor
JP2004137980A (en) Displacement control valve for variable displacement compressor
KR20080044170A (en) Compressor
US20080120991A1 (en) Compressor having a mechanism for separating and recovering lubrication oil
US20040191078A1 (en) Control valve for variable displacement compressor
JP3924713B2 (en) Control valve for variable displacement compressor
US7364408B2 (en) Crank case shut off valve
JP6709408B2 (en) Control valve
JP2005265107A (en) Check valve
KR20050031895A (en) Control valve for variable capacity type compressor
WO2019181334A1 (en) Compressor
JP2006177210A (en) Control valve for variable displacement compressor
JP2020197240A (en) Control valve
JP2018025124A (en) Compressor