JP2004162121A - High strength non-heat treated steel sheet with excellent weld heat affected zone toughness/corrosion resistance - Google Patents

High strength non-heat treated steel sheet with excellent weld heat affected zone toughness/corrosion resistance Download PDF

Info

Publication number
JP2004162121A
JP2004162121A JP2002329329A JP2002329329A JP2004162121A JP 2004162121 A JP2004162121 A JP 2004162121A JP 2002329329 A JP2002329329 A JP 2002329329A JP 2002329329 A JP2002329329 A JP 2002329329A JP 2004162121 A JP2004162121 A JP 2004162121A
Authority
JP
Japan
Prior art keywords
corrosion resistance
toughness
affected zone
steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002329329A
Other languages
Japanese (ja)
Inventor
Manabu Hoshino
学 星野
Naoki Saito
直樹 斎藤
Kenji Kato
謙治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002329329A priority Critical patent/JP2004162121A/en
Publication of JP2004162121A publication Critical patent/JP2004162121A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide non-heat treated high strength steel having excellent weld heat affected zone (HAZ) toughness and corrosion resistance. <P>SOLUTION: The as-hot-rolled high strength non-heat treated steel sheet having excellent HAZ toughness/corrosion resistance is composed of steel having a composition which contains, by mass, ≤0.05% C, 0.01 to 1.0% Si, 0.1 to 2% Mn, ≤0.03% P, ≤0.01% S, 3 to 7% Cr, 0.005 to 2% Al, 0.03 to 0.20% Ti and 0.02% N and selectively contains 0.01 to 5% Cu, 0.01 to 5% Ni, 0.005 to 1% Mo, 0.005 to 0.1% V and 0.005 to 0.050% Nb and in which the value of Tp represented by equation Tp=1601-(34%Cr+287%Al)+(33%Mn+60%Cu+107%Ni) is made to be 1,150 to 1,400. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶接熱影響部靱性および耐食性に優れた非調質高強度鋼に係るものである。
【0002】
【従来の技術】
【特許文献1】特開平5−279791号
【特許文献2】特開平6−179949号
【特許文献3】特開平6−179950号
【特許文献4】特開平6−179951号
【特許文献5】特開平6−2150082 号
【特許文献6】特開平7−3388号
【特許文献7】特開平11−350082 号
【0003】
近年、各種建築構造物や貯槽容器等にステンレス鋼の使用が拡大されてきている。しかしながら、スレンレス鋼、特にオーステナイト系ステンレス鋼は、耐食性は優れているものの、高価であると同時に、降伏強度が低いということ欠点がある。このような事情から、近年、前記した特開平5−279791号公報、特開平6−179949号公報、特開平6−179950号公報、特開平6−179951号公報、特開平6−212256号公報、特開平6−212257号公報、特開平7−3388号公報、さらに、特開平11−350082 号公報などにおいて、耐食性の向上あるいは耐食性と加工性の向上を目的としたCrにAlを添加した鋼が提案されている。 これらの鋼は、耐食性あるいは耐食性と加工性の向上にはある程度有効と認められるが、粗大なフェライトの生成により溶接熱影響部靱性に劣り、かつMnなどが多量に添加される場合があり、溶接構造物への適用に際し大きな妨げとなっている。
【0004】
【発明が解決しようとする課題】
本発明は、こうした現状に鑑みて、室内環境や、大気中環境において、腐食抵抗が大きくかつ溶接熱影響部靱性が優れかつ耐食性が良好な低コストで製造可能な鋼板を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明者らは上記の目的を達成すべく、結露腐食環境、大気腐食環境、水道水腐食環境、コンクリート腐食環境、海水腐食環境等の腐食環境において優れた耐食性を有する鋼を開発するべく、種々の観点から検討を行った。まず、優れた溶接部靭性と同時に上記の該腐食環境において耐食性を向上させる手段を種々検討した結果、Crを2〜7%含有する鋼に、Alを0.005〜2%を添加した鋼が上述した多くの腐食環境で非常に優れた耐食性を示すことを見出した。しかしながら、このような鋼はフェライト相変態域が広く、例えば、溶接時に1200℃以上に加熱されると粗大フェライトが生成し、このために靭性が大きく低下する懸念がある。そこで、発明者らは、多くの実験を重ねた結果、溶接時に起こるフェライト相変態の生成を抑制するための手段として、添加合金元素量との関係を定量化することに成功し、次に示すTp なる式の範囲を満たす合金添加量の時に、高温域でのフェライトの生成が抑制されることを見出した。
【0006】
その骨子は、
(1)質量量%で、
C :0.05%以下
Si :0.01〜1.0%
Mn :0.1〜2%
P :0.03%以下
S :0.01%以下
Cr :2〜7%
Al :0.1〜2%
Ti :0.03〜0.20%
N :0.01%
を含有し、かつ選択的に、
Cu :0.01〜5%
Ni :0.01〜10%
を1種または2種以上を含有する鋼において、次式で示されるTp 値が1150以上でかつ1400以下となる成分を含有し、熱間圧延ままでの製造を特徴とする溶接熱影響部靱性・耐食性に優れた高強度非調質鋼板。
Tp = 1601−(34%Cr + 287%Al)+ (33%Mn + 60%Cu + 107%Ni)
【0007】
(2)質量%で、
Mo :0.005〜1%
V :0.005〜0.1%
Nb :0.005〜0.050%
Ca :0.0005〜0.05%
Mg :0.0005〜0.05%
REM :0.001〜0.1%
の1種または2種以上を含有することを特徴とする(1)記載の熱間圧延ままの製造を特徴とする溶接熱影響部靱性・耐食性に優れた高強度非調質鋼板、
である。
【0008】
【発明の実施の形態】
C: Cは、強度を改善する元素であるが、一定以上の添加は母材および溶接熱影響部の靭性低下を招くので、その添加量の上限を0.05%とした。
【0009】
Si: Siは、Crを2%以上含有する鋼に脱酸剤および強化元素として添加することが有効であるが、含有量が0.01%未満ではその脱酸効果が充分ではなく、1.0%を超えて含有するとその効果は飽和している上に、かえって溶接熱影響部靭性を低下させるので、含有量の範囲を0.01%以上1.0%以下に限定する。
【0010】
Cr: Crは、耐食性を確保するために2%以上を含有させることが必要であるが、7%を超えて含有させると、溶接熱影響部靱性などを阻害するので上限を7%とする。
【0011】
Al: Alは、本発明において耐食性を確保するためにCrと並んで重要な元素であって、Alの含有量は、耐食性を確保する観点から0.1%以上の必要であるが、一方、2%を超えて添加すると良好な溶接熱影響部靱性阻害するフェライト相変態の温度範囲が極めて広くなるので、その含有量は0.1%以上2%以下に限定する。
【0012】
Mn: Mnは本発明においては、主として強度の改善とオーステナイト形成元素として作用し、耐食性の観点から添加されているCrおよびAlにより助長される粗大フェライトの形成を抑制するために添加される。すなわち、CrおよびAlは周知のようにフェライト形成元素であり、これらが多量に添加されると、凝固から室温に至るまで変態を経ずしてフェライト単相組織となり、母材のみならず、溶接熱影響部においても著しく靭性が低下する場合がある。そこで、発明者らは、耐食性を損なわずに母材および靭性の改善を目的として、系統的に実験を行った結果、Mnの添加によりそれが回避できることを見出した。その具体的な制約条件は後に述べるが、それによると、Mn量は0.1%以上添加することが必要であるが、2%を越えた量の添加では、硬化性が上昇するために2%以下の添加とする。
【0013】
N: Nは、鋼板の多量に添加されると母材および溶接熱影響部の靭性を低下させるので、少ない方が望ましく、上限の含有量は、0.02%とする。
【0014】
P: Pは、多量に存在すると靭性を低下させるので少ない方が望ましく、上限の含有量は0.03%とする。不可避的に混入する含有量をできる限り少なくするのがよい。
【0015】
S: Sも多量に存在すると耐孔食性を低下させるので少ない方が望ましく、上限の含有量は0.01%とする。SもPと同様に不可避的な混入量をできる限り少なくするのがよい。
【0016】
Ti: Tiは窒化物の生成を通じて高温での結晶粒径の細粒化に寄与する元素である同時に、耐食性を損なわずに、強度を改善できる元素である。特に強度を得るためには、0.03%以上の添加が必要となるが、0.2%を越えると、粗大な析出物が生成するために、特に靭性の著しい低下を招く。従って、その範囲を両元素ともに0.03%〜0.2%とする。
【0017】
さらに、本発明では以下の元素を選択して添加できる。
Cu、Ni: Cu、Niともに強度を改善するとともに、フェライト生成を抑制する効果があると同様に特に、Niは母材および熱影響部の靭性を改善する効果がある。その効果は、いずれも0.01%以上の添加を必要とするが、いずれも5%を越えて添加されると脆化が生じるために、両者ともに、その限定範囲を0.01〜5%とする。
【0018】
Mo: Moは、CrおよびAlが添加された鋼において、0.01%以上添加されると、母材の靭性を損なうことなく孔食の発生と成長を抑制する効果が認められるが、1.0%を超えて添加しても効果が飽和するばかりか靭性を低下させるので、その範囲を0.005%〜1.0%とする。
【0019】
Nb: Nbは耐食性を損なわずに、強度および靭性を改善する元素であり、その効果は0.005%から認められるが、0.05%を越えると溶接熱影響部の靭性低下が顕著になるためにその範囲を0.005%〜0.05%とする。
【0020】
V: Vは、同じく耐食性を損なわずに、強度を改善する元素であり、0.005%以上で効果が認められるが、多量の添加は周知のように靭性を阻害するので、その上限を0.1%とする。
【0021】
Ca、Mg: CaおよびMgはCrおよびAlを含有する鋼において、 耐食性を改善できる元素である。現在のところその機構には不明点が多いが、両者がそれぞれ5ppm以上で耐食性が一層向上し、その量の増大とともに、耐食性の向上が認められるが、500ppmを越えて添加すると耐食性向上効果が飽和するばかりではなく、靭性が低下する傾向が明らかとなっており、その添加量を5ppm以上500ppm以下に限定する。
【0022】
REM: さらに、本発明では、希土類元素(REM)を適宜添加してもその耐食性を損なわずに、母材および溶接部の特性を改善することが可能である。その添加量は、0.001%以上を必要とするが、多量の添加は靭性などの阻害するので、その上限を0.1%とする。
【0023】
さらに本発明では、本発明の骨子となる溶接部の靭性の向上を図るために、Tp 式を導入した。図1は、0.015%C−0.15%Si−0.0050N%の鋼を基本として、Mn、Cr、Alまた、場合によりCu、Ni添加した素材に溶接サイクルを与え、その時のA変態点と粗大なフェライトの生成挙動を観察した結果である。すなわち、横軸で示すTp 式が、1150以上になると、粗大なフェライト相の生成が抑制されることが分かる。しかしながら、過剰に合金元素を添加していくと、硬化組織が形成されようになるために、おのずと上限があり、実験からそれを1400とした。従って、Tp 式の範囲を1150以上1400以下とした。
【0024】
本発明鋼は、使用するに際して、例えば造塊分塊法あるいは連続鋳造法およびその他の方法で鋼塊として製造した後に、熱間圧延あるいは熱間鍛造によって鋼板として製造された後、そのまま放冷することで、優れた溶接熱影響部靱性と耐食性を有する高強度鋼の製造ができる。
【0025】
【実施例】
表1示す成分系の鋼を溶製後、板厚25mmの鋼板となるように熱間圧延を行い、、下記の試験を実施した。
(1) 母材引張試験
圧延ままの鋼板から、板厚1/2 部−C方向からJIS4号試験片を採取し、試験を実施した。
(2) 溶接熱影響部の靱性評価試験
母材および溶接熱サイクル後[最高加熱温度;1400 ℃ 冷却速度:15℃/s]の衝撃試験を実施し、それぞれ遷移温度を求め、[母材の遷移温度]−[熱サイクル後の遷移温度](△vTrsとする)を求めた。
(3) 腐食試験
試験鋼板から切削により、厚さ5mmの腐食試験を採取し、以下の条件にて試験を実施した。
室内環境:冷暖房設置の室内にて無塗装にて100日間暴露試験を実施
湿潤環境:−20℃に2時間保持後、湿度95%−25℃の環境に4時間保持することを1300回繰返す。
塩害環境:海岸飛沫帯に試験片を17ヶ月間暴露する。
いずれも錆スポットの大きさを評点としてあらわす。
【0026】
表2にその試験の結果を示す。A鋼〜K鋼は、すべて本発明範囲のものであり、溶接熱影響部の靱性は、母材の引張強さもすべて、570MPa以上であり、かつΔvTrsの評価にて±15℃の範囲であり、靱性の低下が少ない。また、耐食性についても、一部に2mm以下の微小の発錆が観察されたのみであり、すべて良好な特性を示している。
【0027】
それに反し、L鋼〜V鋼は、すべて比較鋼である。すなわち、L、M、N鋼は、本発明範囲の中で、それぞれC、Si、Mn量の上限をはずれたものであり、いずれも耐食性はほぼ良好であるが、溶接熱影響部の靱性低下が大きい。O、P鋼はCrの範囲がそれぞれ上限と下限にはずれたものである。すなわち、上限にはずれたO鋼は溶接熱影響部の靱性低下が大きく、また、下限にはずれたP鋼は耐食性の低下が著しい。Q、R鋼は、Al量がそれぞれ上限および下限を超えているものである。上限にはずれたQ鋼では、Tp 値も非常に低い値となっているために、溶接熱影響部の靱性が低下している。さらに、下限にはずれたR鋼は、耐食性の低下が認められる。
【0028】
さらに、S、T鋼は、Ti量がそれぞれ上限および下限をはずれているものである。上限にはずれたS鋼では著しい強度の上昇を招くと同時に、溶接熱影響部の靱性が低下している。下限にはずれたT鋼では、逆に、強度が著しく低下している。
【0029】
U、V鋼は、いずれも各合金元素は本発明範囲ではあるが、Tp 値がそれぞれ本発明範囲を逸脱しているものである。従って、溶接熱影響部の靱性が低下している。
【0030】
【表1】

Figure 2004162121
【0031】
【表2】
Figure 2004162121
【0032】
【発明の効果】
以上述べたように、本発明は室内環境をはじめとして、結露腐食環境をはじめとして、大気腐食環境、海水腐食環境等の種々の腐食環境において耐食性に優れると同時に、溶接構造物において重要な母材部および溶接熱影響部の靭性に優れる高強度鋼をきわめて低コストで提供することを可能としたものであり、 産業の発展に貢献するところ極めて大である。
【図面の簡単な説明】
【図1】A変態点の計算値(Tp値)と実測されたA変態点の関係及びδフェライトの有無を説明する図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-heat-treated high-strength steel excellent in toughness and corrosion resistance of a weld heat-affected zone.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 5-279791 [Patent Document 2] Japanese Patent Application Laid-Open No. Hei 6-179949 [Patent Document 3] Japanese Patent Application Laid-Open No. Hei 6-179950 [Patent Document 4] Japanese Patent Application Laid-Open No. Hei 6-179951 [Patent Document 5] [Patent Document 6] Japanese Patent Application Laid-Open No. 7-3388 [Patent Document 7] Japanese Patent Application Laid-Open No. 11-350082 [0003]
In recent years, the use of stainless steel for various building structures, storage tanks, and the like has been expanding. However, stainless steel, particularly austenitic stainless steel, has excellent corrosion resistance, but is expensive and has the disadvantage of low yield strength. Under these circumstances, in recent years, the above-mentioned JP-A-5-279793, JP-A-6-179949, JP-A-6-179950, JP-A-6-179951, JP-A-6-212256, JP-A-6-212257, JP-A-7-3388, and JP-A-11-3500082 disclose a steel in which Al is added to Cr for the purpose of improving corrosion resistance or improving corrosion resistance and workability. Proposed. These steels are recognized to be effective to some extent in improving corrosion resistance or corrosion resistance and workability.However, due to the formation of coarse ferrite, the toughness of the weld heat affected zone is inferior, and a large amount of Mn or the like may be added. This is a major hindrance to application to structures.
[0004]
[Problems to be solved by the invention]
In view of these circumstances, the present invention has an object to provide a steel sheet that can be manufactured at low cost with high corrosion resistance, excellent weld heat affected zone toughness and good corrosion resistance in indoor environments and atmospheric environments. I have.
[0005]
[Means for Solving the Problems]
The present inventors have developed various steels having excellent corrosion resistance in corrosive environments such as dew condensation corrosion environment, atmospheric corrosion environment, tap water corrosion environment, concrete corrosion environment, and seawater corrosion environment in order to achieve the above object. It was examined from the viewpoint of. First, as a result of studying various means for improving corrosion resistance in the above-mentioned corrosive environment at the same time as excellent weld toughness, a steel containing 2 to 7% of Cr and 0.005 to 2% of Al added was obtained. It has been found that it exhibits very good corrosion resistance in many of the corrosive environments described above. However, such a steel has a wide ferrite phase transformation region. For example, when heated to 1200 ° C. or more during welding, coarse ferrite is generated, and there is a concern that toughness is greatly reduced. The inventors have conducted many experiments and succeeded in quantifying the relationship with the amount of the added alloy element as a means for suppressing the generation of ferrite phase transformation that occurs during welding. It has been found that when the amount of alloy addition satisfies the range of the expression of Tp, the formation of ferrite in a high temperature range is suppressed.
[0006]
The outline is
(1) In mass%,
C: 0.05% or less Si: 0.01 to 1.0%
Mn: 0.1 to 2%
P: 0.03% or less S: 0.01% or less Cr: 2 to 7%
Al: 0.1 to 2%
Ti: 0.03 to 0.20%
N: 0.01%
Containing, and optionally,
Cu: 0.01 to 5%
Ni: 0.01 to 10%
In a steel containing one or two or more kinds, a component having a Tp value represented by the following formula of 1150 or more and 1400 or less is contained, and the welded heat-affected zone toughness is characterized by being manufactured as hot-rolled.・ High strength non-heat treated steel sheet with excellent corrosion resistance.
Tp = 1601- (34% Cr + 287% Al) + (33% Mn + 60% Cu + 107% Ni)
[0007]
(2) In mass%,
Mo: 0.005 to 1%
V: 0.005 to 0.1%
Nb: 0.005 to 0.050%
Ca: 0.0005 to 0.05%
Mg: 0.0005 to 0.05%
REM: 0.001-0.1%
(1) a high-strength non-heat-treated steel sheet excellent in toughness and corrosion resistance of a weld heat-affected zone, characterized by being produced as hot-rolled;
It is.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
C: C is an element that improves the strength, but the addition of a certain amount or more leads to a decrease in the toughness of the base metal and the weld heat affected zone, so the upper limit of the addition amount was made 0.05%.
[0009]
Si: It is effective to add Si as a deoxidizing agent and a strengthening element to steel containing 2% or more of Cr, but if the content is less than 0.01%, the deoxidizing effect is not sufficient, and If the content exceeds 0%, the effect is saturated and, on the contrary, the toughness of the weld heat-affected zone is reduced. Therefore, the content range is limited to 0.01% or more and 1.0% or less.
[0010]
Cr: It is necessary to contain 2% or more of Cr in order to ensure corrosion resistance. However, if the content of Cr exceeds 7%, the toughness of the weld heat affected zone is impaired, so the upper limit is made 7%.
[0011]
Al: Al is an important element in addition to Cr in order to ensure corrosion resistance in the present invention, and the content of Al is required to be 0.1% or more from the viewpoint of ensuring corrosion resistance. If added in excess of 2%, the temperature range of the ferrite phase transformation that inhibits good toughness of the heat affected zone becomes extremely wide, so its content is limited to 0.1% or more and 2% or less.
[0012]
Mn: In the present invention, Mn mainly acts as an element for improving strength and forming austenite, and is added to suppress the formation of coarse ferrite promoted by Cr and Al added from the viewpoint of corrosion resistance. That is, as is well known, Cr and Al are ferrite-forming elements, and when they are added in a large amount, they do not undergo transformation from solidification to room temperature to form a ferrite single-phase structure. Even in the heat-affected zone, the toughness may be significantly reduced. Then, the inventors systematically conducted experiments for the purpose of improving the base metal and the toughness without impairing the corrosion resistance, and as a result, they found that the addition of Mn can avoid this. The specific constraints will be described later. According to this, it is necessary to add Mn in an amount of 0.1% or more. However, if the amount exceeds 2%, the curability increases. % Or less.
[0013]
N: Since N reduces the toughness of the base metal and the heat affected zone when a large amount of steel sheet is added, N is desirably small, and the upper limit content is 0.02%.
[0014]
P: If P is present in a large amount, the toughness is reduced. Therefore, it is desirable that P is small, and the upper limit content is 0.03%. It is preferable to minimize the content that is inevitably mixed.
[0015]
S: Since the presence of a large amount of S lowers the pitting corrosion resistance, a smaller amount is desirable, and the upper limit content is 0.01%. As with P, it is preferable that the inevitable mixing amount of S be as small as possible.
[0016]
Ti: Ti is an element that contributes to the refinement of the crystal grain size at a high temperature through the formation of nitride, and at the same time, is an element that can improve the strength without impairing the corrosion resistance. In particular, in order to obtain strength, it is necessary to add 0.03% or more. However, if it exceeds 0.2%, coarse precipitates are formed, which causes a marked decrease in toughness. Therefore, the range is set to 0.03% to 0.2% for both elements.
[0017]
Further, in the present invention, the following elements can be selectively added.
Cu, Ni: Both Cu and Ni have the effect of improving the toughness of the base material and the heat-affected zone, as well as the effect of improving the strength and suppressing the formation of ferrite. All of these effects require the addition of 0.01% or more, but if any of them exceeds 5%, embrittlement occurs. And
[0018]
Mo: Mo is effective in suppressing the generation and growth of pitting corrosion without impairing the toughness of the base material when added in an amount of 0.01% or more in steel to which Cr and Al are added. Even if added in excess of 0%, not only the effect is saturated but also the toughness is reduced, so the range is made 0.005% to 1.0%.
[0019]
Nb: Nb is an element that improves strength and toughness without impairing corrosion resistance, and its effect is recognized from 0.005%, but when it exceeds 0.05%, the toughness of the weld heat affected zone is significantly reduced. Therefore, the range is set to 0.005% to 0.05%.
[0020]
V: V is an element that improves the strength without impairing the corrosion resistance, and the effect is recognized at 0.005% or more. However, the addition of a large amount impairs the toughness as is well known, so the upper limit is set to 0. .1%.
[0021]
Ca, Mg: Ca and Mg are elements that can improve corrosion resistance in steel containing Cr and Al. At present, there are many unclear points in the mechanism, but the corrosion resistance is further improved at 5 ppm or more for each of them, and the corrosion resistance is improved with the increase of the amount. However, the addition of more than 500 ppm saturates the effect of improving the corrosion resistance. In addition, it is clear that the toughness tends to decrease, and the amount of addition is limited to 5 ppm or more and 500 ppm or less.
[0022]
REM: Further, in the present invention, even if a rare earth element (REM) is appropriately added, the properties of the base metal and the welded portion can be improved without impairing the corrosion resistance. The addition amount needs to be 0.001% or more, but a large amount of addition impairs toughness and the like, so the upper limit is made 0.1%.
[0023]
Further, in the present invention, the Tp formula is introduced in order to improve the toughness of the welded portion which forms the essence of the present invention. FIG. 1 shows that, based on a steel of 0.015% C-0.15% Si-0.0050N%, a welding cycle is given to a material added with Mn, Cr, Al, and optionally Cu and Ni, It is the result of observing the formation behavior of four transformation points and coarse ferrite. That is, it can be seen that when the Tp expression shown on the horizontal axis is 1150 or more, the formation of a coarse ferrite phase is suppressed. However, when an alloy element is excessively added, a hardened structure is likely to be formed. Therefore, there is naturally an upper limit, and the upper limit is set to 1400 from experiments. Therefore, the range of the Tp equation is set to 1150 or more and 1400 or less.
[0024]
When the steel of the present invention is used, after being manufactured as a steel ingot by, for example, ingot ingot lump method or continuous casting method and other methods, after being manufactured as a steel sheet by hot rolling or hot forging, it is allowed to cool as it is. This makes it possible to produce a high-strength steel having excellent weld heat-affected zone toughness and corrosion resistance.
[0025]
【Example】
After smelting the steel of the component system shown in Table 1, hot rolling was performed so as to obtain a steel plate having a thickness of 25 mm, and the following test was performed.
(1) Base material tensile test A JIS No. 4 test piece was sampled from the as-rolled steel sheet in a 板 part thickness-C direction, and a test was performed.
(2) Toughness evaluation test for weld heat-affected zone Impact test of base metal and after welding heat cycle [maximum heating temperature; 1400 ° C cooling rate: 15 ° C / s] was performed, transition temperatures were determined, and [base metal Transition temperature]-[transition temperature after thermal cycle] (] vTrs).
(3) Corrosion test A corrosion test having a thickness of 5 mm was taken from a steel plate by cutting, and the test was performed under the following conditions.
Indoor environment : Conducted an exposure test for 100 days without painting in a room with air conditioning and heating
Humid environment : After holding at -20 ° C for 2 hours, holding in an environment of 95% humidity and -25 ° C for 4 hours is repeated 1300 times.
Salt damage environment : The test piece is exposed to the shore splash zone for 17 months.
In each case, the size of the rust spot is expressed as a score.
[0026]
Table 2 shows the results of the test. The steels A to K are all in the range of the present invention, and the toughness of the weld heat affected zone is such that the tensile strengths of the base metal are all 570 MPa or more and the range of ± 15 ° C. in the evaluation of ΔvTrs. , Less decrease in toughness. In addition, as for the corrosion resistance, only a small rust of 2 mm or less was observed in some parts, and all exhibited good characteristics.
[0027]
On the contrary, L steel to V steel are all comparative steels. That is, the L, M, and N steels deviate from the upper limits of the amounts of C, Si, and Mn, respectively, within the scope of the present invention. Is big. In O and P steels, the range of Cr deviates from the upper limit and the lower limit, respectively. That is, the O steel deviated from the upper limit has a large decrease in toughness of the weld heat affected zone, and the P steel deviated from the lower limit has a remarkable decrease in corrosion resistance. Q and R steels have Al contents exceeding the upper and lower limits, respectively. In the Q steel deviated from the upper limit, the Tp value is also extremely low, so that the toughness of the heat affected zone is reduced. Further, in the R steel falling below the lower limit, a decrease in corrosion resistance is observed.
[0028]
Further, in the S and T steels, the amounts of Ti deviate from the upper and lower limits, respectively. In the case of S steel deviating from the upper limit, a remarkable increase in strength is caused, and at the same time, the toughness of the heat affected zone is reduced. Conversely, the strength of the T steel falling below the lower limit is significantly reduced.
[0029]
The U and V steels each have an alloy element within the scope of the present invention, but each has a Tp value outside the scope of the present invention. Therefore, the toughness of the heat affected zone is reduced.
[0030]
[Table 1]
Figure 2004162121
[0031]
[Table 2]
Figure 2004162121
[0032]
【The invention's effect】
As described above, the present invention has excellent corrosion resistance in various corrosive environments such as indoor environments, dew-corrosion environments, atmospheric corrosive environments, and seawater corrosive environments, and at the same time, is an important base material for welded structures. It has made it possible to provide high-strength steel with excellent toughness in the heat-affected zone and the weld heat-affected zone at an extremely low cost, and it is extremely large to contribute to the development of industry.
[Brief description of the drawings]
1 is a diagram illustrating the presence or absence of a relationship and δ ferrite A 4 Calculated transformation point (Tp value) and actually measured A 4 transformation point.

Claims (2)

質量%で、
C :0.05%以下
Si :0.01〜1.0%
Mn :0.1〜2%
P :0.03%以下
S :0.01%以下
Cr :2〜7%
Al :0.1〜2%
Ti :0.03〜0.20%
N :0.02%
を含有し、かつ選択的に、
Cu :0.01〜5%
Ni :0.01〜5%
を1種または2種以上を含有する鋼において、次式で示されるTp 値が1150以上でかつ1400以下となる成分を含有し、熱間圧延ままの製造を特徴とする溶接熱影響部靱性・耐食性に優れた高強度非調質鋼板。
Tp = 1601−( 34%Cr + 287%Al )+ (33%Mn + 60%Cu + 107%Ni)
In mass%,
C: 0.05% or less Si: 0.01 to 1.0%
Mn: 0.1 to 2%
P: 0.03% or less S: 0.01% or less Cr: 2 to 7%
Al: 0.1 to 2%
Ti: 0.03 to 0.20%
N: 0.02%
Containing, and optionally,
Cu: 0.01 to 5%
Ni: 0.01 to 5%
In a steel containing one or two or more kinds, a component having a Tp value represented by the following formula of 1150 or more and 1400 or less is contained, and the welded heat-affected zone toughness is characterized by production as hot rolled. High strength non-heat treated steel sheet with excellent corrosion resistance.
Tp = 1601- (34% Cr + 287% Al) + (33% Mn + 60% Cu + 107% Ni)
質量%で、
Mo :0.005〜1%
V :0.005〜0.1%
Nb :0.005〜0.050%
Ca :0.0005〜0.05%
Mg :0.0005〜0.05%
REM :0.001〜0.1%
の1種または2種以上を含有することを特徴とする請求項1記載の熱間圧延ままの製造を特徴とする溶接熱影響部靱性・耐食性に優れた高強度非調質鋼板。
In mass%,
Mo: 0.005 to 1%
V: 0.005 to 0.1%
Nb: 0.005 to 0.050%
Ca: 0.0005 to 0.05%
Mg: 0.0005 to 0.05%
REM: 0.001-0.1%
A high-strength non-heat treated steel sheet having excellent toughness and corrosion resistance in a weld heat-affected zone, characterized in that the steel sheet comprises one or more of the following:
JP2002329329A 2002-11-13 2002-11-13 High strength non-heat treated steel sheet with excellent weld heat affected zone toughness/corrosion resistance Withdrawn JP2004162121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329329A JP2004162121A (en) 2002-11-13 2002-11-13 High strength non-heat treated steel sheet with excellent weld heat affected zone toughness/corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329329A JP2004162121A (en) 2002-11-13 2002-11-13 High strength non-heat treated steel sheet with excellent weld heat affected zone toughness/corrosion resistance

Publications (1)

Publication Number Publication Date
JP2004162121A true JP2004162121A (en) 2004-06-10

Family

ID=32807361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329329A Withdrawn JP2004162121A (en) 2002-11-13 2002-11-13 High strength non-heat treated steel sheet with excellent weld heat affected zone toughness/corrosion resistance

Country Status (1)

Country Link
JP (1) JP2004162121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087964A1 (en) * 2004-03-15 2005-09-22 Nippon Steel Corporation Corrosion-resistant steel excellent in toughness of base metal and weld and process for producing the same
KR100810319B1 (en) * 2004-11-19 2008-03-04 가부시키가이샤 고베 세이코쇼 Steel material having a high errosion resistant property
JP2016089245A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
JP2016089246A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087964A1 (en) * 2004-03-15 2005-09-22 Nippon Steel Corporation Corrosion-resistant steel excellent in toughness of base metal and weld and process for producing the same
KR100810319B1 (en) * 2004-11-19 2008-03-04 가부시키가이샤 고베 세이코쇼 Steel material having a high errosion resistant property
JP2016089245A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
JP2016089246A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material

Similar Documents

Publication Publication Date Title
JP4823930B2 (en) Acid corrosion resistant steel
KR20130133079A (en) Ferrite stainless steel with low black spot generation
KR20220099566A (en) Ferritic stainless steel sheet
JP2005023353A (en) Austenitic stainless steel for high temperature water environment
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
JP2010031313A (en) Corrosion resistant austenitic stainless steel
JP4441295B2 (en) Manufacturing method of high strength steel for welding and high strength steel for welding with excellent corrosion resistance and machinability
JP4116867B2 (en) Abrasion resistant steel with excellent weldability and wear resistance and corrosion resistance of welded parts, and method for producing the same
JPH0885820A (en) Heat treatment for stainless steel with high nitrogen content
JP3716372B2 (en) Duplex stainless steel for urea production plant, welding materials, urea production plant and its equipment
WO1993017143A1 (en) High-chromium and high-phosphorus ferritic stainless steel excellent in weatherproofness and rustproofness
JP3845366B2 (en) Corrosion resistant steel with excellent weld heat affected zone toughness
JP2004162121A (en) High strength non-heat treated steel sheet with excellent weld heat affected zone toughness/corrosion resistance
JP4237072B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and workability
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
JP7109333B2 (en) Resource-saving duplex stainless steel with excellent corrosion resistance
JP4207447B2 (en) Stainless steel rebar and manufacturing method thereof
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability
JP2004156126A (en) High corrosion resistant austenitic stainless steel with excellent cold workability
JPH11302795A (en) Stainless steel for building construction
JP3205162B2 (en) Ferritic stainless steel with excellent machinability and corrosion resistance
JP4560994B2 (en) Cr-containing steel sheet for building / civil engineering structure and its manufacturing method
JP3294282B2 (en) Austenitic stainless steel with excellent sulfuric acid corrosion resistance and workability
JP2009280850A (en) Stainless steel sheet for structure having excellent weld zone corrosion resistance, and weld structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207