JP2004162112A - Method for producing grain-oriented magnetic steel sheet excellent in magnetic and coating characteristics and annealing separating agent used for the method - Google Patents

Method for producing grain-oriented magnetic steel sheet excellent in magnetic and coating characteristics and annealing separating agent used for the method Download PDF

Info

Publication number
JP2004162112A
JP2004162112A JP2002328639A JP2002328639A JP2004162112A JP 2004162112 A JP2004162112 A JP 2004162112A JP 2002328639 A JP2002328639 A JP 2002328639A JP 2002328639 A JP2002328639 A JP 2002328639A JP 2004162112 A JP2004162112 A JP 2004162112A
Authority
JP
Japan
Prior art keywords
magnesia
annealing
steel sheet
weight
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002328639A
Other languages
Japanese (ja)
Other versions
JP4310996B2 (en
Inventor
Makoto Watanabe
誠 渡辺
Toshito Takamiya
俊人 高宮
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002328639A priority Critical patent/JP4310996B2/en
Publication of JP2004162112A publication Critical patent/JP2004162112A/en
Application granted granted Critical
Publication of JP4310996B2 publication Critical patent/JP4310996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably improving magnetic and coating characteristics of a grain-oriented magnetic steel sheet by improving magnesia used for an annealing separating agent as a main component. <P>SOLUTION: The annealing separating agent used to the method for producing the grain-oriented magnetic steel sheet, is constituted of the magnesia as the main component, and is obtained by performing the last burning after containing ammonia or ammonium compound at 0.005-0.060 parts of weight to 100 parts of weight of magnesia in terms of NH<SB>3</SB>at any stage before the final burning in the production of the magnesia. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、変圧器その他の電気機器の鉄心等に用いられる方向性電磁鋼板の製造方法および、それに用いる焼鈍分離剤に関し、特に一次再結晶焼鈍後に塗布する焼鈍分離剤の主成分であるマグネシアに改良を加えることにより、これを用いて製造した方向性電磁鋼板における、磁気特性および被膜特性を向上しようとするものである。
【0002】
【従来の技術】
方向性電磁鋼板の製造工程は、所定の成分組成に調整した鋼スラブを熱間圧延後に冷間圧延を施し、次いで一次再結晶焼鈍を施したのち、二次再結晶のための最終仕上焼鈍を行うのが、一般的である。この工程のうち、最終仕上焼鈍の際に二次再結晶が起こり、鋼中のインヒビターの作用により圧延方向に磁化容易軸の揃った粗大な結晶粒が生成する。この最終仕上焼鈍は長時間行う必要があるため、鋼板の焼付き防止を目的として、この焼鈍前にマグネシアを主体とする焼鈍分離剤を水と懸濁させてスラリーとして塗布するのが、一般的である。
【0003】
このマグネシアは、かような焼鈍分離剤としての役割のほかに、最終仕上焼鈍に先んじて行われる一次再結晶焼鈍により鋼板表面に生成するSiOを主体とする酸化層と反応することによって、フォルステライト(MgSiO)被膜を形成させるという働きもある。ここで、形成されたフォルステライト被膜は、上塗りされるリン酸塩系絶縁コーティングと地鉄部分とを密着させる一種のバインダーとしての働きのほか、それ自体絶縁被膜として働き、また鋼板に張力を付与することにより磁気特性を改善する働き、等がある。従って、フォルステライト被膜は、均一な厚みを持ち、鋼板との密着性のよいことが必要であり、それ故に焼鈍分離剤の役割は大である。
【0004】
また、焼鈍分離剤には、上に述べた以外に、鋼板の析出物の生成、成長挙動や結晶粒の成長挙動を変化させて磁気特性に影響を及ぼす作用もある。例えば、マグネシアをスラリー化した際に持ち来される水分量が多すぎると、鋼板が酸化されて磁気特性が劣化したり、被膜に点状欠陥が生成したりする。また、マグネシアに含まれる不純物が焼鈍中に鋼板に侵入することにより二次再結晶挙動が変化すること、なども知られている。したがって、焼鈍分離剤の成分や配合割合、マグネシアの粉体特性の良否は、方向性電磁鋼板の磁気特性や被膜特性を左右する重要な要因といえる。
【0005】
このため、焼鈍分離剤の品質改良のための様々な方法が提案されている。例えば、特許文献1には、塩化アンモニウムを焼鈍分離剤スラリーに含有させることにより、被膜反応性を向上させるという技術が開示されている。また、特許文献2には、ホウ素化合物と塩素化合物を特定の割合になるようマグネシアの製造工程途中で添加して、反応性を改善する方法が開示されている。
【0006】
これらの方法によりある程度、被膜を安定化させることができるようになったものの、特許文献1に記載された方法では、最終仕上焼鈍中にアンモニアガスが発生することにより窒素が鋼中に侵入しすぎて磁気特性を却って劣化させたり、最終仕上焼鈍中に塩化アンモニウムが一部分解して塩化水素ガスを発生させ、これが被膜を劣化させたりする現象が生じ、被膜による十分な効果が得られなかった。また、特許文献2に記載された方法では、添加する金属塩化物の金属イオンがマグネシア中に混入して、これが被膜のない部分が点状に発生する、いわゆるベアスポットの原因となることがあり、やはり被膜による十分な効果は得られなかった。
【0007】
【特許文献1】
特表2001−422942号公報
【特許文献2】
特許第2690841号公報
【0008】
【発明が解決しようとする課題】
この発明は、上記の事情に鑑みてなされたものであり、焼鈍分離剤の主成分として用いるマグネシアを改良することにより、方向性電磁鋼板の磁気特性および被膜特性を安定して向上するための方法について、提案することを目的とする。
【0009】
【課題を解決するための手段】
すなわち、この発明の要旨構成は、次のとおりである。
(1) Si:2.0〜4.0mass%を含有する鋼スラブを加熱して熱間圧延を施した後、1回又は中間焼鈍を挟む複数回の冷間圧延を施して最終板厚に仕上げ、次いで一次再結晶焼鈍を施し、その後鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布してから最終仕上焼鈍を行う、一連の工程よりなる方向性電磁鋼板の製造方法において、マグネシアの製造における最終焼成前のいずれかの段階でアンモニアもしくはアンモニウム化合物をNH換算でマグネシア100重量部に対して0.005〜0.060重量部含有させてから最終焼成を行って得たマグネシアを主成分とする、焼鈍分離剤を使用することを特徴とする、磁気特性及び被膜特性に優れた方向性電磁鋼板の製造方法。
【0010】
(2) マグネシウムイオンを含有する溶液を水酸化物と反応させて水酸化マグネシウムとし、必要に応じて焼成後一旦水で水和させて再度水酸化マグネシウムとしたのち、最終焼成する、マグネシアの製造工程において、その最終焼成前のいずれかの段階で、アンモニアもしくはアンモニウム化合物をNH換算でマグネシア100重量部に対して0.005〜0.060重量部含有させてから最終焼成を行って得た、マグネシアを主成分とする焼鈍分離剤。
【0011】
【発明の実施の形態】
発明者らは、磁気特性および被膜特性を安定して向上することのできる方法を開発するべく、最終仕上焼鈍後の磁気特性および表面状態に及ぼす焼鈍分離剤の影響、特にその主成分であるマグネシアについて種々の検討を行った結果、マグネシアの製造工程途中、つまり最終焼成前にアンモニアもしくはアンモニウム化合物を添加させることにより、マグネシアの被膜反応性が大きく向上し、磁気特性や被膜に良好な結果がもたらされることを、新たに知見した。
【0012】
以下に、この知見を得るに至った実験について述べる。
C:0.045mass%、Si:3.25mass%、Mn:0.07mass%、Se:0.02mass%およびSb:0.02mass%を含み、残部は実質的にFeおよび不可避的不純物よりなる鋼スラブを、1380℃で30分加熱後、熱間圧延を施して2.2mmの板厚にしたのち、1050℃で1分間の中間焼鈍を挟んで2回の冷間圧延により最終板厚0.23mmに仕上げた。この鋼板に800℃で2分間の一次再結晶焼鈍を行ってから、焼鈍分離剤を塗布、乾燥させた。
【0013】
ここで、焼鈍分離剤は、主成分にマグネシアを用いた。このマグネシアは、原料に苦汁を用い、これを水酸化カルシウムと反応させて水酸化マグネシウムスラリーとした後、アンモニア水を、マグネシア100重量部に対しNH換算で0〜0.2重量部となるように添加した。その後、このスラリーを圧搾脱水し、焼成してマグネシアとした後、粉砕し、焼鈍分離剤用マグネシアとして供した。なお、このマグネシアは、粉体特性として、マグネシアに対して不純物のCaO濃度が0.2〜0.9mass%、SO濃度が0.02〜0.75mass%、Cl濃度が0.005〜0.06mass%、F濃度が0.005〜0.06mass%、B濃度が0.03〜0.20mass%、となるように調整し、またBET比表面積は10〜40m/g,レーザー回折式粒度分布計で測定した平均粒子径が0.5μm〜4.5μm、更に後述する30℃での40%クエン酸活性度(CAA40%)が35〜100sの範囲で一定となるように調整した。ちなみに、以下の実験も同様の粉体条件とした。
【0014】
このマグネシアに、添加剤としてTiOを2重量部添加し、水和を20℃で60分行い、鋼板に目付量を両面で12g/mとして塗布した。その後、仕上焼鈍として、830℃で50時間保定したのちに、該温度から1150℃までを30℃/hの昇温速度で加熱し、引き続き1200℃で10時間の純化焼鈍を行った。
【0015】
このようにして得られた鋼板の被膜密着性および磁気特性について調査した結果を、図1に示す。この図で、横軸は添加したアンモニウム量、縦軸は被膜密着性および磁気特性の評価結果を示す。ここで、被膜密着性は、鋼板を径の異なる丸棒に巻きつけたときに被膜が剥離しなかった最小の曲げ径を示す(以下同じ)。
【0016】
図1から明らかなように、アンモニアを適度に添加したマグネシアを主成分とする焼鈍分離剤を用いて得た鋼板は、被膜密着性も磁気特性も顕著に改善している。ただし、アンモニアの添加量が多すぎると、磁気特性は逆に低下している。これは、磁束密度および鉄損ともに同様の傾向である。
【0017】
このようにマグネシアにアンモニアもしくはアンモニウム化合物を添加したマグネシアを主成分とする焼鈍分離剤を用いて得た鋼板において、磁気特性及び被膜特性が変化する理由については、明らかでないが、発明者らは次のように考えている。
すなわち、水酸化マグネシウムのスラリー中にアンモニウムイオンが導入されると、水酸化マグネシウム粒子表面の水酸基にアンモニアが吸着する。この状態で乾燥後、焼成すると水酸基に吸着したアンモニアが水酸化マグネシウムの脱水反応を阻害する。その結果、脱水反応が通常よりも高温側にシフトし、これによりマグネシア粒子が多数の安定した細孔を持つようになる。このような細孔は、電磁鋼板に塗布されて最終仕上焼鈍に供されたときに、マグネシアが粒成長する際のピン止め効果を有し、粒径が微細なまま保たれる。その結果、最終仕上焼鈍の被膜反応中に粗大化したマグネシア粒子が固結して鋼板表面に焼きつくことはなくなり、全てのマグネシア粒子が反応に寄与できるため、均一な被膜を形成できる。
【0018】
なお、上掲の特許文献1には、塩化アンモニウムを焼鈍分離剤スラリーに含有させるという技術が開示されているが、この方法では、すでに焼成されて粉体特性が特定された後のマグネシアに塩化アンモニウムを含有させるために、マグネシアの粒子形態を改善する効果を持たない。これに対して、この発明では焼成前の水酸化マグネシウムにアンモニウムを吸着させて焼結反応を調整することにより、マグネシアの粒子形態を改善して高い反応性を持たせることができるのである。
【0019】
以下、この発明に従う方向性電磁鋼板の製造方法をより具体的に説明する。
この発明の出発材である含珪素鋼スラブとしては、まず、Cは出鋼段階で低下させて脱炭焼鈍を行わない方法と、ある程度の量を確保して組織の改善を図り、その後脱炭焼鈍により除去するという方法とがある。前者ではCの悪影響を避けるためには、その含有量を0.01mass%未満とし、後者では組織改善の好適範囲は0.01mass%以上0.10mass%未満である。
【0020】
Siは、鋼板の比抵抗を高め、鉄損を低減するのに必須の成分であるが、2.0mass%に満たないと鉄損の低減効果が弱まり、一方4.0mass%を超えると冷間圧延性が損なわれる。
【0021】
これらの成分の他に、磁化容易軸が高度に揃った二次再結晶粒を形成させるためのインヒビターを構成する成分を含有させる。このインヒビターとしては、AlN,MnSeおよびMnS等がよく知られていて、これらインヒビターを単独使用又は併用することができる。その際、インヒビターにMnSおよび/又はMnSeを用いる場合には、Mnを0.03〜0.10mass%、SおよびSeの1種または2種を合計で0.01〜0.03mass%の範囲で含有させる。また、AlNをインヒビターとして用いる場合は、Al:0.01〜0.04mass%を含有させる。窒素は、製造工程途中で窒化させることもできるが、製鋼時にあらかじめ窒素を含有させる場合には40〜120ppmとする。これらの範囲よりも低いとインヒビター成分としての効果が発揮できず、高いと二次再結晶が不安定になる。
【0022】
また、これらの主インヒビターの他に、B,Cu,Sn,Cr,Sb,Ge,Mo,Te,Bi,P,Vなども補助インヒビターとして用いることができる。これらの有効な含有量は、総量で0.01mass%以上0.2mass%以下である。これらの各インヒビターは単独使用、併用のいずれもが可能である。なお、最近インヒビターを含有させずに集合組織を適正化して二次再結晶を行わせる方法が検討されているが、この方法をこの発明に適用することも可能である。
【0023】
このようなスラブを、加熱してから公知の方法で熱間圧延を施した後、1回又は中間焼鈍を挟む複数回の冷間圧延を行って最終板厚にする。また、必要に応じて熱延板焼鈍を行うことも可能である。最終冷延板は、次いで一次再結晶焼鈍を行い、焼鈍分離剤を塗布したのち、最終仕上焼鈍を行う。
【0024】
この焼鈍分離剤には、マグネシアを主成分として用いる。このマグネシアの製造工程に工夫を加えて高い反応性を持たせることが、この発明の重要な構成要件である。すなわち、マグネシアの製造工程の開始から最終の焼成を行う前のいずれかの段階において、アンモニアもしくはアンモニウム化合物をNH換算でマグネシア100重量部に対して0.005〜0.060重量部添加する。この添加を経て製造されたマグネシアを主成分とした焼鈍分離剤を用いると、被膜形成反応が促進される結果、良好な被膜が得られる。
【0025】
ここで、アンモニアもしくはアンモニウム化合物の添加が、NH換算でマグネシア100重量部に対して0.005重量部未満では、被膜形成反応を促進する効果がなく、一方同0.060重量部を超えるとアンモニアの窒素が一部マグネシアに残留し、これが最終仕上焼鈍中に鋼板に過度に侵入することにより磁気特性が劣化する。発明者らの実験では、0.060重量部以下では、焼成後にはアンモニア添加に起因する窒素の残留は認められなかった。
【0026】
なお、マグネシアにアンモニアを導入するための化合物としては、アンモニアの他に、弗化アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、硝酸アンモニウム、亜硝酸アンモニウム、硫酸アンモニウムおよび亜硫酸アンモニウム等のいずれもが適合するが、これらの化合物に特に限定されるものではない。
【0027】
また、アンモニアもしくはアンモニウム化合物の添加は、最終焼成の前までに行うことが肝要である。これは、焼成時にマグネシアにアンモニア吸着させ、この吸着させたアンモニアの効果で粒子形態を改善するためであり、焼成後の添加では効果が得られない。
【0028】
さらに、マグネシアの製法としては、マグネシウムイオン含有水溶液と水酸化物とを反応させて水酸化マグネシウムを製造し、これを焼成する方法が一般的であるが、粉体特性の調整のために、この後さらに水和して水酸化マグネシウムにしたのち、再焼成してマグネシアを製造する方法を採用することも可能である。このときも、最後の焼成の前までに、アンモニアもしくはアンモニウム化合物の添加を行うことが肝要である。
【0029】
なお、上記以外のマグネシアの粉体特性について述べると、まず、クエン酸活性度は35s〜100sである。このクエン酸活性度は、特公昭57−45472号公報に記載の、下記の方法を用いて測定することができる。

1)2mlの1%フェノールフタレイン指示薬を含む100mlの0.400規定(N)クエン酸水溶液を200ccビーカーにとり、30℃に保つ。ビーカーの中には磁気回転子を入れておく。
2)秤量したMgOをビーカー内に投入する。MgOの投入量は所望の最終反応率によって変化させ、20%反応の場合は4.00g、40%反応の場合は2.00g、60%反応の場合は1.14gとした。
3)MgOをビーカー内に投入した時から正確に10秒後にスターラーのスイッチを入れ回転子を回す。その間液温は30±1℃に保つ。
4)スラリーの温度が白からピンクに変わったら反応終了とし、MgOを投入した時からの時間をはかり、その秒数をクエン酸活性度とする。
【0030】
次に、マグネシアに含まれるCaO量は、0.20〜0.90mass%の範囲であることが好ましい。これは、被膜の形態を調節するためであり、0.20mass%に満たないと、被膜の凹凸がなくなって剥離しやすくなり、一方0.90mass%を超えると被膜形成量が不足し、いずれも良好な被膜が得られない場合がある。
【0031】
また、SOは0.02〜0.75mass%およびBは300〜2000ppmの範囲が好ましく、いずれの成分も適度に存在することにより、マグネシアの反応性を調節する働きがある。それぞれ下限値に満たないと反応性が低くなりすぎ、一方上限値を超えると点状の欠陥が発生して良好な被膜は得られない場合がある。
【0032】
さらに、Cl含有量は0.005〜0.06mass%およびF含有量は0.005〜0.06mass%とすることが好ましい。いずれの元素も、この範囲よりも低すぎると被膜形成が不充分となり、この範囲を超えると被膜模様が発生したり、場合によってはベアとなったりするおそれがある。
【0033】
平均粒径は、0.5〜4.50μmの範囲とすることが好ましい。この範囲より小さいと、粒子が凝集しやすくなって作業性が低下し、一方大きすぎると、焼鈍分離剤を塗布、乾燥した後に被膜が剥離しやすくなるおそれがある。なお、粒径は、ヘキサメタリン酸ナトリウム3%水溶液で300Wおよび3分間の超音波分散を行った後、レーザー回折式粒度分布計を用いることにより測定することができる。
【0034】
なお、焼鈍分離剤には、主成分として上記のマグネシアを用いる他、添加剤を用いて更に特性を改善することもできる。この添加剤としては、Li,Na,Mn,Mg,Sn, Ti, Cu,Nb, Tl, Sr,Bi,Fe等の酸化物、水酸化物または硫酸塩等を用いることができる。これらの添加量は、マグネシア100重量部に対し、各々0.2〜12重量部とする。すなわち、0.2重量部未満では効果がなく、12重量部を超えると却って被膜や磁気特性を低下させる。これらの添加剤は、単独使用および複数使用の、いずれも可能である。
【0035】
このように、マグネシアを主成分として、さらに必要に応じて添加剤を追加した焼鈍分離剤は、水で懸濁・スラリー化して用いられ、このスラリーを所定目付量にて鋼板に塗布、乾燥させる。目付量は、鋼板両面で4g/m〜18g/mとすることが望ましい。これより低すぎると、被膜形成に必要なマグネシアの量が足りなくなり、多すぎるとコストがかかる上に、水和水分が多くなりすぎて磁性が劣化する。また、水和は通常10℃〜50℃の範囲で10〜100分程度で行われるが、この発明でもこの範囲内で行って差し支えない。
【0036】
その後、最終仕上焼鈍を施すが、これは公知の方法でよい。これら一連の処理後、絶縁張力コートを施し、平坦化焼鈍を行って製品に仕上げる。
【0037】
【実施例】
実施例1
C:0.06mass%、Si:3.3 mass%、Mn:0.070 mass%、Al:0.023 mass%、Se:0.019 mass%、Sb:0.025 mass%、Bi:0.014 mass%、N:0.008 mass%およびCr:0.031 mass%を含み、残部は実質的にFeおよび不可避的不純物よりなるスラブを、1350℃で40分加熱後、熱間圧延して2.0mmの板厚にしたのち、900℃、60sでの熱延板焼鈍を施してから、60sの中間焼鈍を挟み、タンデム圧延機により0.23mm厚に圧延し、最終板厚に仕上げた。これを、800℃、2分間の脱炭焼鈍後、表1に示すNo.1〜9の粉体特性を持つ種々のマグネシア100重量部に酸化チタン8重量部を添加した、焼鈍分離剤を鋼板両面で塗布量13g/mにて、水和温度20℃、水和時間40分で水和して塗布し、乾燥させた。なお、ここでのマグネシアは、水酸化物とマグネシウムイオン含有水溶液とを反応させて水酸化マグネシウムとし、その後焼成、再水和、最終焼成を行うという、工程を経て製造した。
【0038】
その後、鋼板をコイル状に巻取り、最終仕上焼鈍として、800℃から1100℃までを10℃/hで昇温した後、引き続き1200℃で10時間保持する純化焼鈍を施した。次いで、絶縁コーティングを塗布し、ヒートフラットニングを兼ねて900℃、60sで焼き付け、その後プラズマ照射により磁区細分化処理を行った。
【0039】
かくして得られた製品板における、被膜特性について表2に示すように、この発明に従うマグネシアを主成分とした焼鈍分離剤を適用して得た鋼板は、優れた磁気特性および被膜特性が得られていることがわかる。一方、アンモニアを添加していないマグネシアを用いた焼鈍分離剤を適用して得た鋼板は、磁性不良となり、被膜も著しく劣化した。また、アンモニアを最終焼成後のマグネシアに添加したり、焼成前であっても添加量を多くさせすぎたりした、マグネシアを用いた焼鈍分離剤を適用して得た鋼板は、磁気特性が劣化し、被膜特性も改善されないものがあった。
【0040】
【表1】

Figure 2004162112
【0041】
【表2】
Figure 2004162112
【0042】
実施例2
C:0.06mass%,Si:3.25mass%,Mn:0.07mass%,Al:0.021mass%,N:90ppm,Se:0.02mass%およびSn:0.08mass%を含み、残部は実質的にFeおよび不可避的不純物よりなるスラブを、1400℃で40分加熱し、熱間圧延により板厚2.2mmにしてから、2回の冷間圧延を1000℃で2分の中間焼鈍を挟んで行い、最終板厚0.23mmに仕上げた。この冷延板を850℃、2分の脱炭焼鈍後、焼鈍分離剤として表1のNo.1、2のマグネシアを主成分として、このマグネシア100重量部に対して6重量部のTiOと1重量部のSnOとを添加した、焼鈍分離剤を鋼板両面に塗布量13g/mで、水和温度20℃、水和時間40分で水和して塗布し、乾燥させた。
【0043】
その後、鋼板をコイル状に巻き取り、最終仕上焼鈍として800℃から1100℃までを10℃/hで昇温した後、引き続き1200℃で10時間保持する純化焼鈍を施した。次いで、絶縁コーティングを塗布し、ヒートフラットニングを兼ねて900℃で60秒で焼き付け、その後プラズマ照射により磁区細分化処理を行った。
【0044】
かくして得られた製品板における被膜特性について、表3に示すように、マグネシアの製造工程中にアンモニアを添加したNo.2の粉体を主成分とした焼鈍分離剤を適用して得た鋼板は、著しい磁気特性および被膜特性の改善がもたらされる。
【0045】
【表3】
Figure 2004162112
【0046】
実施例3
C:0.055mass%,Si:3.03mass%,Mn:0.07mass%,Al:0.005mass%,N:0.004mass%,Sb:0.023mass%,Cu:0.05mass%を含み、残部は実質的にFeおよび不可避的不純物よりなるスラブを、1200℃で60分加熱し、熱間圧延により板厚2.0mmにしてから、200℃の温間圧延により最終板厚0.30mmに仕上げた。この冷延板を850℃、2分の脱炭焼鈍後に、焼鈍分離剤として表1のNo.1、2のマグネシアを主成分として、このマグネシア100重量部に対して6重量部のTiOと3重量部のSnOとを添加した焼鈍分離剤を、鋼板両面に塗布量13g/mで、水和温度20℃、水和時間40分で水和して塗布し、乾燥させた。
【0047】
その後、鋼板をコイル状に巻き取り、最終仕上焼鈍として、800℃から1100℃までを10℃/hで昇温した後、引き続き1200℃で10時間保持する純化焼鈍を施した。次いで、絶縁コーティングを塗布し、ヒートフラットニングを兼ねて900℃で60秒で焼き付け、その後プラズマ照射により磁区細分化処理を行った。
【0048】
かくして得られた製品板における被膜特性について表4に示すように、先の実施例2と同様に、素材成分や製造工程の大きく異なる製法を用いても、この発明に従うことにより、著しい磁気特性および被膜特性の改善がもたらされる。
【0049】
【表4】
Figure 2004162112
【0050】
【発明の効果】
この発明によれば、焼鈍分離剤の主成分として用いるマグネシアの改良を有利に実現したことから、このマグネシアを主成分とする焼鈍分離剤を方向性電磁鋼板の製造に適用することによって、方向性電磁鋼板の磁気特性および被膜特性を安定して向上することができる。
【図面の簡単な説明】
【図1】アンモニアの添加量と磁気特性および被膜特性との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used for iron cores of transformers and other electric equipment and the like, and an annealing separator used therefor, and particularly to magnesia which is a main component of the annealing separator applied after primary recrystallization annealing. By making improvements, it is intended to improve the magnetic properties and coating properties of a grain-oriented electrical steel sheet manufactured using the same.
[0002]
[Prior art]
The manufacturing process of grain-oriented electrical steel sheet is to perform cold rolling after hot rolling a steel slab adjusted to a predetermined component composition, and then perform primary recrystallization annealing, and then perform final finish annealing for secondary recrystallization. It is common to do. In this step, secondary recrystallization occurs during the final finish annealing, and the action of an inhibitor in the steel generates coarse crystal grains having a uniform axis of easy magnetization in the rolling direction. Since this final finish annealing needs to be performed for a long time, it is common practice to suspend an annealing separator mainly composed of magnesia with water and apply it as a slurry before this annealing in order to prevent seizing of the steel sheet. It is.
[0003]
This magnesia, in addition to its role as an annealing separator, reacts with an oxide layer mainly composed of SiO 2 formed on the steel sheet surface by primary recrystallization annealing performed prior to final finish annealing, thereby forming a forma. It also has the function of forming a stellite (Mg 2 SiO 4 ) coating. Here, the formed forsterite film acts not only as a kind of binder that adheres the phosphate-based insulating coating to be overcoated and the base iron part, but also acts as an insulating film itself, and also applies tension to the steel sheet. By doing so, there is a function of improving magnetic characteristics, and the like. Therefore, it is necessary that the forsterite film has a uniform thickness and good adhesion to the steel sheet, and therefore, the role of the annealing separator is great.
[0004]
In addition to the above, the annealing separating agent also has an effect of changing precipitate formation, growth behavior and crystal grain growth behavior of a steel sheet to affect magnetic properties. For example, if the amount of water brought in when magnesia is slurried is too large, the steel sheet is oxidized, the magnetic properties are degraded, and point defects are generated in the coating. It is also known that secondary recrystallization behavior changes due to impurities contained in magnesia entering a steel sheet during annealing. Therefore, it can be said that the quality of the components and the mixing ratio of the annealing separator and the powder properties of magnesia are important factors that influence the magnetic properties and the coating properties of the grain-oriented electrical steel sheet.
[0005]
For this reason, various methods for improving the quality of the annealing separator have been proposed. For example, Patent Document 1 discloses a technique in which ammonium chloride is contained in an annealing separator slurry to improve coating reactivity. Further, Patent Literature 2 discloses a method of improving reactivity by adding a boron compound and a chlorine compound at a specific ratio during the magnesia production process.
[0006]
Although these methods have made it possible to stabilize the coating to some extent, the method described in Patent Document 1 generates too much nitrogen into steel due to generation of ammonia gas during final finish annealing. However, the magnetic properties are rather deteriorated, and ammonium chloride is partially decomposed during the final finish annealing to generate hydrogen chloride gas, which deteriorates the coating, thereby failing to obtain a sufficient effect of the coating. In addition, in the method described in Patent Document 2, metal ions of a metal chloride to be added are mixed into magnesia, and this may cause a so-called bare spot, in which a portion without a film is generated in a dot-like manner. However, a sufficient effect of the coating was not obtained.
[0007]
[Patent Document 1]
Japanese Patent Application Publication No. 2001-422942 [Patent Document 2]
Japanese Patent No. 2690841
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and a method for stably improving magnetic properties and coating properties of grain-oriented electrical steel sheets by improving magnesia used as a main component of an annealing separator. The purpose is to propose.
[0009]
[Means for Solving the Problems]
That is, the gist configuration of the present invention is as follows.
(1) A steel slab containing Si: 2.0 to 4.0 mass% is heated and hot-rolled, and then cold-rolled once or a plurality of times with intermediate annealing to a final thickness. Finishing, then subjected to primary recrystallization annealing, then apply the annealing separator containing magnesia as a main component on the steel sheet surface and then perform the final finish annealing, in a method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps, At any stage before the final firing in the production, magnesia obtained by adding the ammonia or ammonium compound in an amount of 0.005 to 0.060 parts by weight based on 100 parts by weight of magnesia in terms of NH 3 and then performing the final firing is mainly used. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, characterized by using an annealing separator as a component.
[0010]
(2) Production of magnesia by reacting a solution containing magnesium ions with a hydroxide to form magnesium hydroxide, firing and, if necessary, hydrating with water to obtain magnesium hydroxide again, followed by final firing. In the process, at any stage before the final baking, the final baking was carried out after containing 0.005 to 0.060 parts by weight of ammonia or an ammonium compound with respect to 100 parts by weight of magnesia in terms of NH 3 . , An annealing separator mainly composed of magnesia.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to develop a method capable of stably improving the magnetic properties and coating properties, the inventors have studied the effect of the annealing separator on the magnetic properties and surface state after the final finish annealing, and in particular, the main component of magnesia As a result of various investigations, the addition of ammonia or an ammonium compound during the magnesia manufacturing process, that is, before the final baking, greatly improved the reactivity of the magnesia film and provided good results in magnetic properties and film. Was newly found.
[0012]
Hereinafter, an experiment which led to this finding will be described.
Steel containing C: 0.045% by mass, Si: 3.25% by mass, Mn: 0.07% by mass, Se: 0.02% by mass, and Sb: 0.02% by mass, with the balance substantially consisting of Fe and unavoidable impurities The slab was heated at 1380 ° C. for 30 minutes, hot-rolled to a thickness of 2.2 mm, and then cold-rolled twice at 1050 ° C. for 1 minute with intermediate annealing to obtain a final thickness of 0.1 mm. Finished to 23 mm. This steel sheet was subjected to primary recrystallization annealing at 800 ° C. for 2 minutes, and then an annealing separator was applied and dried.
[0013]
Here, magnesia was used as the main component of the annealing separator. This magnesia uses bitterness as a raw material, reacts it with calcium hydroxide to form a magnesium hydroxide slurry, and then converts ammonia water to 0 to 0.2 parts by weight in terms of NH 3 with respect to 100 parts by weight of magnesia. Was added as follows. Thereafter, the slurry was pressed and dewatered, fired to obtain magnesia, and then pulverized, and provided as magnesia for an annealing separator. This magnesia has powder characteristics such that the CaO concentration of impurities is 0.2 to 0.9 mass%, the SO 3 concentration is 0.02 to 0.75 mass%, and the Cl concentration is 0.005 to 0 0.06 mass%, F concentration is adjusted to be 0.005 to 0.06 mass%, B concentration is adjusted to be 0.03 to 0.20 mass%, and BET specific surface area is 10 to 40 m 2 / g, laser diffraction type The average particle diameter measured by a particle size distribution meter was adjusted to 0.5 μm to 4.5 μm, and the 40% citric acid activity (CAA 40%) at 30 ° C., which will be described later, was constant in the range of 35 to 100 s. Incidentally, the following experiments were performed under the same powder conditions.
[0014]
To this magnesia, 2 parts by weight of TiO 2 as an additive was added, hydration was performed at 20 ° C. for 60 minutes, and the steel sheet was coated on both sides with a basis weight of 12 g / m 2 . Thereafter, as finish annealing, the temperature was maintained at 830 ° C. for 50 hours, and then the temperature was increased from the temperature to 1150 ° C. at a rate of 30 ° C./h, followed by purification annealing at 1200 ° C. for 10 hours.
[0015]
FIG. 1 shows the results of an investigation on the coating adhesion and magnetic properties of the steel sheet thus obtained. In this figure, the abscissa indicates the amount of added ammonium, and the ordinate indicates the evaluation results of coating adhesion and magnetic properties. Here, the coating adhesion indicates the minimum bending diameter at which the coating did not peel when the steel sheet was wound around a round bar having a different diameter (the same applies hereinafter).
[0016]
As is clear from FIG. 1, the steel sheet obtained by using the annealing separator containing magnesia as a main component to which ammonia is appropriately added has remarkably improved film adhesion and magnetic properties. However, if the amount of added ammonia is too large, the magnetic properties are conversely degraded. This is the same tendency for both magnetic flux density and iron loss.
[0017]
Although it is not clear why the magnetic properties and coating properties of the steel sheet obtained using the annealing separator containing magnesia as a main component obtained by adding ammonia or an ammonium compound to magnesia change as described above, the inventors have described the following. Think like.
That is, when ammonium ions are introduced into the slurry of magnesium hydroxide, ammonia is adsorbed on the hydroxyl groups on the surface of the magnesium hydroxide particles. When dried and calcined in this state, the ammonia adsorbed on the hydroxyl groups inhibits the dehydration reaction of magnesium hydroxide. As a result, the dehydration reaction shifts to a higher temperature side than usual, whereby the magnesia particles have many stable pores. Such pores have a pinning effect when magnesia grows grains when applied to an electromagnetic steel sheet and subjected to final finish annealing, and the grain size is kept fine. As a result, the magnesia particles coarsened during the coating reaction of the final finish annealing do not solidify and burn on the steel sheet surface, and all the magnesia particles can contribute to the reaction, so that a uniform coating can be formed.
[0018]
The above-mentioned Patent Document 1 discloses a technique in which ammonium chloride is contained in an annealing separator slurry. However, in this method, chloride is added to magnesia after it has been calcined and powder characteristics have been specified. Since it contains ammonium, it has no effect of improving the magnesia particle morphology. On the other hand, in the present invention, by adjusting the sintering reaction by adsorbing ammonium on magnesium hydroxide before calcination, the magnesia particle morphology can be improved and high reactivity can be imparted.
[0019]
Hereinafter, the method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described more specifically.
As the silicon-containing steel slab which is the starting material of the present invention, first, C is reduced in the tapping stage to avoid decarburizing annealing, and a certain amount is secured to improve the structure, and then decarburized. There is a method of removing by annealing. In the former, the content of C is set to less than 0.01 mass% in order to avoid the adverse effect of C, and in the latter, the preferable range of the structure improvement is 0.01 mass% or more and less than 0.10 mass%.
[0020]
Si is an essential component for increasing the specific resistance of the steel sheet and reducing iron loss. However, if it is less than 2.0 mass%, the effect of reducing iron loss is weakened. Rollability is impaired.
[0021]
In addition to these components, a component constituting an inhibitor for forming secondary recrystallized grains having a highly uniform axis of easy magnetization is contained. As such inhibitors, AlN, MnSe, MnS and the like are well known, and these inhibitors can be used alone or in combination. In this case, when MnS and / or MnSe is used as the inhibitor, Mn is contained in a range of 0.03 to 0.10 mass%, and one or two of S and Se are added in a total range of 0.01 to 0.03 mass%. To be included. When AlN is used as an inhibitor, Al: 0.01 to 0.04 mass% is contained. Nitrogen can be nitrided in the course of the production process. However, when nitrogen is contained in advance during steelmaking, the content is set to 40 to 120 ppm. If it is lower than these ranges, the effect as an inhibitor component cannot be exhibited, and if it is higher, secondary recrystallization becomes unstable.
[0022]
In addition to these main inhibitors, B, Cu, Sn, Cr, Sb, Ge, Mo, Te, Bi, P, V, and the like can also be used as auxiliary inhibitors. These effective contents are 0.01 mass% or more and 0.2 mass% or less in total. Each of these inhibitors can be used alone or in combination. Recently, a method of performing secondary recrystallization by optimizing the texture without containing an inhibitor has been studied, but this method can also be applied to the present invention.
[0023]
After such a slab is heated and then subjected to hot rolling by a known method, it is subjected to one or a plurality of cold rollings including intermediate annealing to a final thickness. Moreover, it is also possible to perform hot-rolled sheet annealing as needed. Next, the final cold-rolled sheet is subjected to primary recrystallization annealing, and after applying an annealing separating agent, final finishing annealing is performed.
[0024]
Magnesia is used as a main component in the annealing separator. It is an important component of the present invention that the magnesia production process be devised so as to have high reactivity. That is, at any stage from the start of the magnesia production process to the final baking, 0.005 to 0.060 parts by weight of ammonia or ammonium compound is added to 100 parts by weight of magnesia in terms of NH 3 . When an annealing separator containing magnesia as a main component produced through this addition is used, a film-forming reaction is promoted, so that a good film is obtained.
[0025]
Here, if the addition of ammonia or an ammonium compound is less than 0.005 parts by weight with respect to 100 parts by weight of magnesia in terms of NH 3 , there is no effect of accelerating the film formation reaction, while if it exceeds 0.060 parts by weight. Part of the nitrogen of ammonia remains in magnesia, and excessively penetrates the steel sheet during the final finish annealing, thereby deteriorating the magnetic properties. In experiments conducted by the inventors, when the content was 0.060 parts by weight or less, no residual nitrogen due to the addition of ammonia was observed after firing.
[0026]
In addition, as a compound for introducing ammonia into magnesia, in addition to ammonia, any of ammonium fluoride, ammonium chloride, ammonium bromide, ammonium iodide, ammonium nitrate, ammonium nitrite, ammonium sulfate, and ammonium sulfite are suitable. Is not particularly limited to these compounds.
[0027]
It is important to add the ammonia or ammonium compound before the final baking. This is because ammonia is adsorbed on magnesia during firing and the particle morphology is improved by the effect of the adsorbed ammonia, and the effect cannot be obtained by addition after firing.
[0028]
Further, as a method for producing magnesia, a method of producing magnesium hydroxide by reacting a magnesium ion-containing aqueous solution with a hydroxide and calcining the same is generally used. It is also possible to adopt a method of producing magnesia by further hydrating to magnesium hydroxide and then re-calcining. Also at this time, it is important to add ammonia or an ammonium compound before the final baking.
[0029]
In addition, regarding the powder characteristics of magnesia other than the above, first, the citric acid activity is 35 s to 100 s. This citric acid activity can be measured by the following method described in Japanese Patent Publication No. 57-45472.
Description 1) 100 ml of 0.400N (N) citric acid aqueous solution containing 2 ml of 1% phenolphthalein indicator is placed in a 200 cc beaker and kept at 30 ° C. The magnetic rotor is put in the beaker.
2) Put the weighed MgO into the beaker. The input amount of MgO was changed depending on the desired final reaction rate, and was 4.00 g for a 20% reaction, 2.00 g for a 40% reaction, and 1.14 g for a 60% reaction.
3) Exactly 10 seconds after the MgO was put into the beaker, switch on the stirrer and turn the rotor. Meanwhile, the liquid temperature is kept at 30 ± 1 ° C.
4) When the temperature of the slurry changes from white to pink, the reaction is terminated. The time from when MgO is charged is measured, and the number of seconds is defined as citric acid activity.
[0030]
Next, the amount of CaO contained in magnesia is preferably in the range of 0.20 to 0.90 mass%. This is for adjusting the morphology of the coating. If it is less than 0.20 mass%, the unevenness of the coating is eliminated and the film is easily peeled off, while if it exceeds 0.90 mass%, the amount of the coating formed is insufficient. A good film may not be obtained.
[0031]
The content of SO 3 is preferably in the range of 0.02 to 0.75 mass% and the content of B is preferably in the range of 300 to 2,000 ppm, and the presence of each component in an appropriate amount serves to regulate the reactivity of magnesia. If the respective lower limit values are not satisfied, the reactivity becomes too low, while if the upper limit values are exceeded, point-like defects may occur and a good coating may not be obtained.
[0032]
Furthermore, it is preferable that the Cl content is 0.005 to 0.06 mass% and the F content is 0.005 to 0.06 mass%. If any of the elements is too low, the film formation will be insufficient if it is lower than this range, and if it exceeds this range, there is a possibility that a coating pattern will be generated or, in some cases, bare.
[0033]
The average particle size is preferably in the range of 0.5 to 4.50 μm. If it is smaller than this range, the particles tend to agglomerate and workability decreases, while if it is too large, the coating may be easily peeled off after applying and drying the annealing separator. The particle size can be measured by using a 3% aqueous solution of sodium hexametaphosphate at 300 W for 3 minutes and then using a laser diffraction particle size distribution analyzer.
[0034]
The properties of the annealing separator can be further improved by using an additive in addition to the above magnesia as a main component. Examples of the additive include oxides, hydroxides, sulfates, and the like of Li, Na, Mn, Mg, Sn, Ti, Cu, Nb, Tl, Sr, Bi, and Fe. These addition amounts are each 0.2 to 12 parts by weight with respect to 100 parts by weight of magnesia. That is, if the amount is less than 0.2 part by weight, there is no effect, and if it exceeds 12 parts by weight, the coating and the magnetic properties are rather deteriorated. These additives can be used alone or in combination.
[0035]
As described above, the annealing separator containing magnesia as a main component and further adding an additive as necessary is used by suspending and slurrying with water, and this slurry is applied to a steel sheet at a predetermined basis weight and dried. . Basis weight is desirably in the 4g / m 2 ~18g / m 2 in a steel sheet both sides. If it is lower than this, the amount of magnesia required for forming the film is insufficient, and if it is too high, the cost is increased and the hydrated water becomes too large to deteriorate the magnetism. In addition, hydration is usually performed in a range of 10 ° C. to 50 ° C. for about 10 to 100 minutes, but in the present invention, hydration may be performed within this range.
[0036]
Thereafter, final finish annealing is performed, which may be performed by a known method. After these series of treatments, an insulating tension coat is applied, and flattening annealing is performed to finish the product.
[0037]
【Example】
Example 1
C: 0.06 mass%, Si: 3.3 mass%, Mn: 0.070 mass%, Al: 0.023 mass%, Se: 0.019 mass%, Sb: 0.025 mass%, Bi: 0 A slab containing 0.014 mass%, N: 0.008 mass% and Cr: 0.031 mass%, and the remainder substantially consisting of Fe and unavoidable impurities was heated at 1350 ° C. for 40 minutes, and then hot-rolled. After hot strip annealing at 900 ° C for 60 s, intermediate annealing for 60 s is sandwiched, and then rolled to a final thickness of 0.23 mm using a tandem rolling mill. Was. After decarburizing annealing at 800 ° C. for 2 minutes, A hydration temperature of 20 ° C. and a hydration time of 100 parts by weight of various magnesia having powder characteristics of 1 to 9 and 8 parts by weight of titanium oxide were added at an application amount of 13 g / m 2 on both sides of the steel sheet. Hydrated in 40 minutes, applied and dried. Here, magnesia was produced through a process of reacting a hydroxide with an aqueous solution containing magnesium ions to obtain magnesium hydroxide, and then performing firing, rehydration, and final firing.
[0038]
Thereafter, the steel sheet was wound into a coil, and as final finish annealing, the temperature was raised from 800 ° C. to 1100 ° C. at a rate of 10 ° C./h, followed by purifying annealing at 1200 ° C. for 10 hours. Next, an insulating coating was applied and baked at 900 ° C. for 60 s, also serving as heat flattening, and then a magnetic domain refinement treatment was performed by plasma irradiation.
[0039]
As shown in Table 2 for the coating properties of the product sheet thus obtained, the steel sheet obtained by applying the magnesia-based annealing separator according to the present invention has excellent magnetic properties and coating properties. You can see that there is. On the other hand, the steel sheet obtained by applying the annealing separator using magnesia to which ammonia was not added had poor magnetic properties and the coating was significantly deteriorated. Also, steel sheets obtained by applying an annealing separator using magnesia, in which ammonia was added to magnesia after final firing or the amount of addition was too large even before firing, magnetic properties deteriorated. In some cases, the film properties were not improved.
[0040]
[Table 1]
Figure 2004162112
[0041]
[Table 2]
Figure 2004162112
[0042]
Example 2
C: 0.06% by mass, Si: 3.25% by mass, Mn: 0.07% by mass, Al: 0.021% by mass, N: 90 ppm, Se: 0.02% by mass and Sn: 0.08% by mass. A slab consisting essentially of Fe and unavoidable impurities is heated at 1400 ° C. for 40 minutes, hot-rolled to a plate thickness of 2.2 mm, and then twice cold-rolled at 1000 ° C. for 2 minutes intermediate annealing. It was carried out by sandwiching and finished to a final plate thickness of 0.23 mm. After decarburizing annealing the cold-rolled sheet at 850 ° C. for 2 minutes, No. 1 in Table 1 was used as an annealing separator. 1 and 2 magnesia as main components, and 100 parts by weight of the magnesia, 6 parts by weight of TiO 2 and 1 part by weight of SnO 2 were added, and an annealing separator was applied on both surfaces of the steel sheet at an application amount of 13 g / m 2 . The hydrate was applied at a hydration temperature of 20 ° C. and a hydration time of 40 minutes, applied, and dried.
[0043]
Thereafter, the steel sheet was wound into a coil shape, and the temperature was raised from 800 ° C. to 1100 ° C. at a rate of 10 ° C./h as final finish annealing, followed by purifying annealing at 1200 ° C. for 10 hours. Next, an insulating coating was applied and baked at 900 ° C. for 60 seconds also serving as heat flattening, and thereafter, a magnetic domain refinement treatment was performed by plasma irradiation.
[0044]
As shown in Table 3, the coating properties of the product plate obtained in this manner were as shown in Table 3 with the addition of ammonia during the magnesia production process. The steel sheet obtained by applying the annealing separator containing powder 2 as a main component has remarkable improvements in magnetic properties and coating properties.
[0045]
[Table 3]
Figure 2004162112
[0046]
Example 3
C: 0.055% by mass, Si: 3.03% by mass, Mn: 0.07% by mass, Al: 0.005% by mass, N: 0.004% by mass, Sb: 0.023% by mass, Cu: 0.05% by mass. A slab consisting essentially of Fe and unavoidable impurities is heated at 1200 ° C. for 60 minutes, hot-rolled to a thickness of 2.0 mm, and hot-rolled at 200 ° C. to a final thickness of 0.30 mm. Finished. After decarburizing annealing this cold-rolled sheet at 850 ° C. for 2 minutes, No. 1 in Table 1 was used as an annealing separator. An annealing separator containing magnesia of 1 and 2 as a main component and 6 parts by weight of TiO 2 and 3 parts by weight of SnO 2 added to 100 parts by weight of the magnesia was coated on both surfaces of the steel sheet at an application amount of 13 g / m 2 . The hydrate was applied at a hydration temperature of 20 ° C. and a hydration time of 40 minutes, applied, and dried.
[0047]
Thereafter, the steel sheet was wound into a coil shape, and as final finish annealing, the temperature was raised from 800 ° C. to 1100 ° C. at a rate of 10 ° C./h, followed by purifying annealing at 1200 ° C. for 10 hours. Next, an insulating coating was applied and baked at 900 ° C. for 60 seconds also serving as heat flattening, and thereafter, a magnetic domain refinement treatment was performed by plasma irradiation.
[0048]
As shown in Table 4 for the coating properties of the product sheet thus obtained, as in Example 2, even when a manufacturing method having greatly different material components and manufacturing steps was used, remarkable magnetic properties and This results in improved coating properties.
[0049]
[Table 4]
Figure 2004162112
[0050]
【The invention's effect】
According to the present invention, since the improvement of magnesia used as a main component of the annealing separator has been advantageously realized, by applying the annealing separator containing magnesia as a main component to the production of grain-oriented electrical steel sheets, The magnetic properties and coating properties of the magnetic steel sheet can be stably improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the amount of added ammonia and magnetic properties and film properties.

Claims (2)

Si:2.0〜4.0mass%を含有する鋼スラブを加熱して熱間圧延を施した後、1回又は中間焼鈍を挟む複数回の冷間圧延を施して最終板厚に仕上げ、次いで一次再結晶焼鈍を施し、その後鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布してから最終仕上焼鈍を行う、一連の工程よりなる方向性電磁鋼板の製造方法において、マグネシアの製造における最終焼成前のいずれかの段階でアンモニアもしくはアンモニウム化合物をNH換算でマグネシア100重量部に対して0.005〜0.060重量部含有させてから最終焼成を行って得たマグネシアを主成分とする、焼鈍分離剤を使用することを特徴とする、磁気特性及び被膜特性に優れた方向性電磁鋼板の製造方法。After heating a steel slab containing Si: 2.0 to 4.0 mass% and performing hot rolling, the steel slab is subjected to cold rolling once or multiple times with intermediate annealing to finish to a final sheet thickness, and then In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps, a primary recrystallization annealing is performed, and then a final finishing annealing is performed after applying an annealing separator mainly composed of magnesia to the steel sheet surface. At any stage before firing, magnesia obtained by adding ammonia or ammonium compound in an amount of 0.005 to 0.060 parts by weight with respect to 100 parts by weight of magnesia in terms of NH 3 and then performing final firing is used as a main component. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, comprising using an annealing separator. マグネシウムイオンを含有する溶液を水酸化物と反応させて水酸化マグネシウムとし、必要に応じて焼成後一旦水で水和させて再度水酸化マグネシウムとしたのち、最終焼成する、マグネシアの製造工程において、その最終焼成前のいずれかの段階で、アンモニアもしくはアンモニウム化合物をNH換算でマグネシア100重量部に対して0.005〜0.060重量部含有させてから最終焼成を行って得た、マグネシアを主成分とする焼鈍分離剤。In the magnesia production process, the solution containing magnesium ions is reacted with hydroxide to form magnesium hydroxide, and if necessary, after calcination, once hydrated with water to obtain magnesium hydroxide again, and finally baked, At any stage before the final baking, magnesia obtained by containing the ammonia or ammonium compound in an amount of 0.005 to 0.060 parts by weight based on 100 parts by weight of magnesia in terms of NH 3 and then performing the final baking is used. Annealing separator as a main component.
JP2002328639A 2002-11-12 2002-11-12 Method for producing grain-oriented electrical steel sheet and annealing separator used in this method Expired - Fee Related JP4310996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328639A JP4310996B2 (en) 2002-11-12 2002-11-12 Method for producing grain-oriented electrical steel sheet and annealing separator used in this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328639A JP4310996B2 (en) 2002-11-12 2002-11-12 Method for producing grain-oriented electrical steel sheet and annealing separator used in this method

Publications (2)

Publication Number Publication Date
JP2004162112A true JP2004162112A (en) 2004-06-10
JP4310996B2 JP4310996B2 (en) 2009-08-12

Family

ID=32806891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328639A Expired - Fee Related JP4310996B2 (en) 2002-11-12 2002-11-12 Method for producing grain-oriented electrical steel sheet and annealing separator used in this method

Country Status (1)

Country Link
JP (1) JP4310996B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158325A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Insulating-coated oriented magnetic steel sheet and method for manufacturing same
WO2016158322A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Insulation-coated oriented magnetic steel sheet and method for manufacturing same
WO2019065645A1 (en) * 2017-09-28 2019-04-04 Jfeスチール株式会社 Grain-oriented electrical steel sheet
EP3438292A4 (en) * 2016-03-30 2019-09-18 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142933A (en) * 2016-06-20 2017-12-28 포항공과대학교 산학협력단 Production method for {110}〈001〉 oriented electrical steels with high magnetic properties

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920323B2 (en) 2015-03-27 2021-02-16 Jfe Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
EP3276043A4 (en) * 2015-03-27 2018-04-04 JFE Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
US10982329B2 (en) 2015-03-27 2021-04-20 Jfe Steel Corporation Insulation-coated oriented magnetic steel sheet and method for manufacturing same
CN107429402A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 The orientation electromagnetic steel plate and its manufacture method of tape insulation envelope
WO2016158325A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Insulating-coated oriented magnetic steel sheet and method for manufacturing same
RU2675887C1 (en) * 2015-03-27 2018-12-25 ДжФЕ СТИЛ КОРПОРЕЙШН Textured sheet magnetic steel with insulating coating and its manufacturing method
RU2676379C1 (en) * 2015-03-27 2018-12-28 ДжФЕ СТИЛ КОРПОРЕЙШН Textured sheet magnetic steel with insulating coating and its manufacturing method
WO2016158322A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Insulation-coated oriented magnetic steel sheet and method for manufacturing same
CN107429401A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 The orientation electromagnetic steel plate and its manufacture method of tape insulation envelope
EP3438292A4 (en) * 2016-03-30 2019-09-18 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
US11591232B2 (en) 2016-03-30 2023-02-28 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
KR20200043440A (en) * 2017-09-28 2020-04-27 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet
WO2019065645A1 (en) * 2017-09-28 2019-04-04 Jfeスチール株式会社 Grain-oriented electrical steel sheet
CN111133118A (en) * 2017-09-28 2020-05-08 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet
JPWO2019065645A1 (en) * 2017-09-28 2019-11-14 Jfeスチール株式会社 Oriented electrical steel sheet
US11198916B2 (en) 2017-09-28 2021-12-14 Jfe Steel Corporation Grain-oriented electrical steel sheet
KR102407899B1 (en) 2017-09-28 2022-06-10 제이에프이 스틸 가부시키가이샤 grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4310996B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP5786950B2 (en) Annealing separator for grain-oriented electrical steel sheet
JP6220891B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5245277B2 (en) Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
KR0157539B1 (en) Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
JP7010305B2 (en) Directional electrical steel sheet
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPWO2020149321A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
JP2008127635A (en) Method for coating annealing-separation agent for grain-oriented magnetic steel sheets, and method for manufacturing grain-oriented magnetic steel sheet
JP2650817B2 (en) Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties
JP5418844B2 (en) Method for producing grain-oriented electrical steel sheet
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JP4484710B2 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JP5857983B2 (en) Manufacturing method of grain-oriented electrical steel sheet and MgO for annealing separator
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JPH06192743A (en) Production of grain-oriented silicon steel sheet excellent in film property and magnetic property
JP2007262519A (en) Method for producing double oriented silicon steel sheet
JP3707144B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating properties
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JPH0949028A (en) Production of grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JPH08165525A (en) Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic
JP7107454B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4259338B2 (en) Method for producing grain-oriented electrical steel sheet and method for preparing annealing separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4310996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees