JP2004160402A - High-efficiency membrane filtration apparatus - Google Patents

High-efficiency membrane filtration apparatus Download PDF

Info

Publication number
JP2004160402A
JP2004160402A JP2002331085A JP2002331085A JP2004160402A JP 2004160402 A JP2004160402 A JP 2004160402A JP 2002331085 A JP2002331085 A JP 2002331085A JP 2002331085 A JP2002331085 A JP 2002331085A JP 2004160402 A JP2004160402 A JP 2004160402A
Authority
JP
Japan
Prior art keywords
tank
membrane
sludge
membrane filtration
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002331085A
Other languages
Japanese (ja)
Inventor
Tsukasa Shinada
司 品田
Yasuhisa Hosoda
恭央 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2002331085A priority Critical patent/JP2004160402A/en
Publication of JP2004160402A publication Critical patent/JP2004160402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-efficiency membrane-filtration apparatus, wherein SS concentration in contact with the membrane surface of a membrane filtration apparatus can be reduced, and a high flux operation can be performed, the installation scale after a sludge-dehydration operation can be minimized, and removal of phosphor and nitrogen can also be conducted. <P>SOLUTION: This apparatus includes an aerobic tank 2, and a membrane separation tank 4 provided with membrane separation equipment 5. To-be-treated water is allowed to flow into the aerobic tank 2 for aerobic treatment. In the membrane separation equipment 5, aerobically treated water from the tank 2 is separated into water subjected to the membrane filtration and sludge. The membrane filtration apparatus includes a sludge concentrator 9 for concentration of the sludge. The membrane filtration apparatus includes further a denitrification tank 15 for removing nitrogen, the aerobic tank 2 for aerobic treatment, and the membrane separation tank 4 provided with the membrane separation equipment 5, and further the sludge concentrator 9 for concentration of sludge. Further, a coagulant-addition tank 14 is provided to the aerobic tank 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理等の汚水処理装置として適用するための高効率膜ろ過装置に関するものである。
【0002】
【従来の技術】
図7は浸漬型膜分離法採用による汚水処理装置に適用された第1従来例の膜ろ過装置を示すフロー図である。
図において、1は流入管、2はその流入管1から被処理水(処理対象水)を導入する好気槽、3はその好気槽2内の底部に配置された散気管(曝気手段)、4は前記好気槽2の後段に配置された膜分離専用の膜分離槽であり、この膜分離槽4内には膜分離装置5が設置されている。なお、従来は好気槽に膜分離装置が浸漬されている例が多く見られるが、以後の説明のために図7,図8の例を取り上げた。例えば特許文献1が挙げられる。
【0003】
次に、上記第1従来例の動作について説明する。
流入管1から好気槽2内に導入した被処理水は、その散気管3からの曝気で好気処理されることにより、生物酸化および硝化が促進された後、その好気処理水が次の膜分離槽4内に導入される。膜分離槽4では、膜分離装置5によって膜ろ過水と膜分離汚泥とに固液分離され、その膜ろ過水が系外に排出される。
【0004】
図8は第2従来例の膜ろ過装置を示すフロー図であり、図7と同一部分には同一符号を付して重複説明を省略する。
この第2従来例では、図7に示した好気槽2の前段に脱窒槽6を配置し、この脱窒槽6に流入管1から被処理水を導入することで、まず脱窒処理を行った後、その脱窒処理水を好気槽2に導入して好気処理し、その好気処理水を後段の膜分離槽4に導入して膜ろ過装置5により固液分離し、膜ろ過水を系外に排出するものである。なお、図8において、7は膜分離槽4から脱窒槽6に硝化された混合水を返送する返送管である。例として特許文献2が挙げられる
【0005】
【特許文献1】
特開2001−170674公報
【特許文献2】
特公平6−51199号公報
【0006】
【発明が解決しようとする課題】
従来の膜ろ過装置は以上のように構成されているので、好気槽2で好気処理された混合水よりも膜分離槽4内の膜ろ過装置5による被膜ろ過対象水の方が高い汚泥濃度となり、このため、膜ろ過装置5の膜面に接する汚泥濃度が高くなり、ろ過流束(以下、Fluxという)の高い運転が行えないという課題があった。また、膜分離活性汚泥法では、膜分離槽で固液分離が行われ、固形物を含まない膜ろ過水が排出されるため、膜分離槽内の活性汚泥濃度は他の槽よりも高くなる。例えば、好気槽や無酸素槽の被処理水による希釈率や汚泥返送率により、通常膜分離槽の汚泥濃度の方が高くなるが、汚泥脱水操作以降の設備規模を小さくするには、別途の汚泥濃縮手段を設けなければならないという課題があった。
ここで、さらに詳しく述べると、上述のように膜ろ過装置5の膜面に接する汚泥濃度が高くなることで、下記の課題が生じた。
▲1▼Fluxが上げられないため建設コストが増大する。
▲2▼膜ろ過装置5の膜面洗浄を曝気で行うため、空気量が増大する。
▲3▼膜ろ過装置5の膜孔の閉塞が早まり、膜の洗浄や交換頻度が増加する。
【0007】
この発明は上記のような課題を解決するためになされたもので、膜ろ過装置の膜面に接する汚泥濃度を低濃度にできて高Flux運転が行える高効率膜ろ過装置を提供することを目的とする。
【0008】
また、この発明は、高Flux運転が行えるだけではなく、リン除去をも可能とした高効率膜ろ過装置を提供することを目的とする。
【0009】
さらに、この発明は、高Flux運転が行え、かつ、リン除去が行えるとともに、窒素除去をも行うことができる高効率膜ろ過装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明に係る高効率膜ろ過装置は、被処理水を流入させて好気処理する好気槽と、この好気槽からの好気処理された混合水を膜ろ過水と膜分離汚泥とに分離するための膜分離装置を有する膜分離槽とからなる高効率膜ろ過装置において、汚泥を濃縮する汚泥濃縮機を備えたものである。
【0011】
この発明に係る高効率膜ろ過装置は、好気槽に凝集剤添加槽を備えたものである。
【0012】
この発明に係る高効率膜ろ過装置は、窒素を除去する脱窒槽と、好気処理する好気槽と、膜分離装置を有する膜分離槽とからなる高効率膜ろ過装置において、汚泥を濃縮する汚泥濃縮機を備えたものである。
【0013】
この発明に係る高効率膜ろ過装置は、前記好気槽に凝集剤添加槽を備えたものである。
【0014】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による高効率膜ろ過装置を示すフロー図であり、図7および図8と同一部分には同一符号を付して重複説明を省略する。
図において、9は好気槽2から混合水8を導入する汚泥濃縮機、10はその汚泥濃縮機9による分離液を膜分離槽4内に導入する分離液導入管、11は汚泥濃縮機9による濃縮汚泥の一部を好気槽2内に返送し、かつ残りの濃縮汚泥を系外に排出する濃縮汚泥返送兼排出管である。12は膜分離槽4から好気槽2内に膜分離汚泥を返送する返送管、13は膜ろ過水排出管である。
【0015】
なお、汚泥濃縮機9は、株式会社西原環境衛生研究所製の遠心ろ過濃縮装置CF−100Pや、株式会社荏原製作所,荏原実業株式会社製の回転ドラム方式汚泥濃縮装置CSIなど分離機能を有していれば機種や形状にこだわらない。例えば傾斜板の付いた槽でもよい。
【0016】
実施例1.
次に、上記実施の形態1による高効率膜ろ過装置の動作説明を兼ねた実施例1について説明する。
流入管1から好気槽2内に被処理水を流入させ、この好気槽2で生物処理された混合水を汚泥濃縮機9に供給した。汚泥濃縮機9では、前記混合水を分離液と濃縮汚泥とに分離し、その分離液は膜分離槽4へ、かつ濃縮汚泥は好気槽2へと返送された。膜分離槽4内には膜分離装置5が設置されており、その膜分離装置5により前記分離液が固液分離され、膜分離された膜ろ過水は系外に排出され、膜分離汚泥は好気槽2に返送された。また、濃縮汚泥は余剰汚泥として定期的に系外に搬出した。
【0017】
以上において、図7に示す従来例では、好気槽2の混合水の活性汚泥濃度10000〜15000mg/Lをそのまま膜分離槽4に投入して、日平均のFluxが0.5m/m・日の運転であった。
これに対し、本発明の高効率膜ろ過装置は、汚泥濃縮機9を設けて、好気槽2の活性汚泥濃度10000〜15000mg/Lを汚泥濃縮機9に投入して、その分離液2000mg/Lを膜分離槽4へ投入して日平均のFluxを1m/m・日で運転できた。その結果、膜分離装置5のろ過性能を2倍程度引き上げることができ、膜設備の縮小化が可能となった。
処理水質は、BOD<1.0mg/L、SS<1.0mg/L、T−N14.1mg/L、T−P2.3mg/Lで良好な水質であった。
このような本発明の水量と懸濁物質(SS)濃度の関係を図2に示す。
【0018】
実施の形態2.
図3はこの発明の実施の形態2による高効率膜ろ過装置を示すフロー図であり、図1と同一部分には同一符号を付して重複説明を省略する。
図3において、14は好気槽2内の凝集剤を供給する凝集剤添加槽であり、この実施の形態2による前記凝集剤添加槽14以外の構成は上記実施の形態1と同じである。なお、凝集剤としては、ポリ硫酸第2鉄,硫酸アルミニウム,ポリ塩化アルミニウム,硫酸第1鉄,塩化第2鉄などリンを排除できるものであればよい。また、凝集剤添加槽14は、ポンプなど凝集剤が添加できる設備ならば、どのようなものでもよい。
【0019】
実施例2.
次に、上記実施の形態2による高効率膜ろ過装置の動作説明を兼ねた実施例2について説明する。
この実施例2では、有機物とリンの除去を主目的とし、窒素の除去は目的とせずに、図3に示す本発明の高効率膜ろ過装置と図7に示す従来の膜ろ過装置との比較運転を行った。
上記凝集剤添加槽14から凝集剤を好気槽2に添加し、汚泥濃縮機9による濃縮汚泥は余剰汚泥として定期的に系外に排出した。
【0020】
以上において、図7に示す従来例では、好気槽2の混合水の活性汚泥濃度10000〜15000mg/Lをそのまま膜分離槽4に投入して、日平均のFluxが0.5m/m・日の運転であった。なお、図7に示す装置には凝集剤を添加していない。これに対し、本発明の高効率膜ろ過装置は、汚泥濃縮機9を設けて、好気槽2の活性汚泥濃度10000〜15000mg/Lを汚泥濃縮機9に投入して、その分離液2000mg/Lを膜分離槽4へ投入して日平均のFluxを1.0m/m・日で運転できた。さらに、好気槽2に凝集剤添加槽14から凝集剤としてポリ硫酸第2鉄をFe/Pのmol比が1となるように添加してリン除去を可能とした。
その結果、膜分離装置5のろ過性能を2倍程度引き上げることができ、膜設備の縮小化が可能となり、また、リン除去も可能となった。
処理水質は、BOD<1.0mg/L、SS<1.0mg/L、T−N14.0mg/L、T−P0.11mg/Lとなり良好な水質が得られた。
【0021】
実施の形態3.
図4はこの発明の実施の形態3による高効率膜ろ過装置を示すフロー図であり、図1〜図3と同一部分には同一符号を付して重複説明を省略する。
図4において、15は好気槽2の前段に設置した脱窒槽、16は脱窒槽15から好気槽2への移流水導入管、17は好気槽2から脱窒槽15への循環水導入管である。
【0022】
実施例3.
次に、上記実施の形態3による高効率膜ろ過装置の動作説明を兼ねた実施例3について説明する。
図8に示す従来例では、好気槽2の混合水の活性汚泥濃度10000〜15000mg/Lをそのまま膜分離槽4に投入して、日平均のFluxが0.5m/m・日の運転であった。また、図8に示すように脱窒槽6を設けて脱窒を行った。
これに対し、本発明の高効率膜ろ過装置は、汚泥濃縮機9を設けて、好気槽2の活性汚泥濃度10000〜15000mg/Lを汚泥濃縮機9に投入して、その分離液2000mg/Lを膜分離槽4へ投入して日平均のFluxを1.0m/m・日で運転できた。本発明の装置でも脱窒槽15を設け、この脱窒槽15に好気槽2から混合水を循環することで窒素の除去も可能となっている。
その結果、膜分離装置5のろ過性能を2倍程度引き上げることができ、膜設備の縮小化が可能となり、また、窒素除去が可能となった。
処理水質は、BOD<1.0mg/L、SS<1.0mg/L、T−N4.7mg/L、T−P2.3mg/Lで良好な水質であった。
このような本発明の水量と懸濁物質(SS)濃度の関係を図5に示す。
【0023】
実施の形態4.
図6はこの発明の実施の形態4による高効率膜ろ過装置を示すフロー図であり、図1〜図3と同一部分には同一符号を付して重複説明を省略する。
この実施の形態4では、図3に示した凝集剤添加槽14を備える高効率膜ろ過装置の好気槽2の前段に脱窒槽15を配置したものである。
【0024】
実施例4.
次に、上記実施の形態4による高効率膜ろ過装置の動作説明を兼ねた実施例4について説明する。
図8に示す従来例では、好気槽2の混合水の活性汚泥濃度10000〜15000mg/Lをそのまま膜分離槽4に投入して、日平均のFluxが0.5m/m・日の運転であった。また、図8に示すように脱窒槽6を設けて脱窒を行ったが、リン除去のための凝集剤は添加していない。
これに対し、本発明の高効率膜ろ過装置は、汚泥濃縮機9を設けて、好気槽2の活性汚泥濃度10000〜15000mg/Lを汚泥濃縮機9に投入して、2000mg/Lの分離液を膜分離槽4へ投入して日平均のFluxを1.0m/m・日で運転できた。さらに、本発明では、脱窒槽15を設け、この脱窒槽15に好気槽2から混合水を循環させて窒素を除去し、好気槽2に凝集剤添加槽14から凝集剤としてポリ硫酸第2鉄をFe/Pのmol比が1となるように添加してリン除去も可能とした。
その結果、膜分離装置5のろ過性能を2倍程度引き上げることができ、膜設備の縮小化が可能となり、また、窒素およびリンの除去も可能となった。
処理水質は、BOD<1.0mg/L、SS<1.0mg/L、T−N4.7mg/L、T−P0.12mg/Lとなり良好な水質が得られた。
【0025】
【発明の効果】
以上のように、本発明によれば、生物酸化および硝化を促進する好気槽と、膜分離装置を有する膜分離槽と、汚泥濃縮機とを備えるように構成したので、高Flux運転が可能となった。すなわち、好気槽と膜分離槽を分け、好気槽汚泥を一旦、汚泥濃縮機にかけて、その汚泥濃度の薄い分離液を膜のろ過対象水としたので、膜面と接する汚泥濃度を低くでき、高Flux運転が可能となった。
【0026】
本発明によれば、汚泥濃縮機と膜分離槽とが別になっているので、膜分離槽内に設置した膜分離装置の膜面に接する処理対象水の濃度を低くできる。また、膜分離装置の膜に接する汚泥濃度を調整でき、これにより、膜に接する汚泥濃度を低くできることにより、Fluxを高くできる。このようにFluxを高くできることで、コストの高い膜の設置数を減らすことができて建設費を削減できる。さらに、膜の設置数が減ることにより、省スペース化を図ることができる。
【0027】
また、本発明によれば、膜に接する汚泥濃度を低くできることで、膜の孔が閉塞し難くなって膜の洗浄や交換頻度を減らすことができ、また、膜面洗浄の曝気のための空気量を減らすことができる。このため、膜の長時間使用が可能となり維持管理費や人件費の削減が可能となる。
【0028】
さらに、本発明によれば、生物酸化および硝化を促進する好気槽と、硝化された混合水を返送し生物学的に脱窒反応を起こす脱窒槽と、膜分離装置を有する膜分離槽と、汚泥濃縮機とを備える構成としたので、高Flux運転が行えるだけでなく、効率的な窒素除去も可能になるという効果がある。
【0029】
さらに、本発明によれば、生物酸化および硝化を促進する好気槽と、硝化された混合水を返送し生物学的に脱窒反応を起こす脱窒槽と、凝集剤添加槽と、膜分離装置を有する膜分離槽と汚泥濃縮機とを備える構成としたので、高Flux運転が行えるだけでなく、窒素除去およびリン除去も可能になるという効果がある。
【0030】
以上のように、本発明によれば、膜分離槽の汚泥(SS)濃度を低濃度としてFluxの高い運転を行うことが可能になるという効果がある。また、洗浄空気量が減少し電気代の低減が可能になるという効果がある。また、膜分離槽の汚泥(SS)濃度の低濃度運転により、膜の閉塞状況が緩和され、膜交換頻度および膜の薬品洗浄頻度を少なくできるという効果がある。また、汚泥濃縮機が余剰汚泥の濃縮の代替となる機能をも果たすため、別途に汚泥濃縮手段を設置する必要はなく、さらに、膜の高Flux運転が行えるので、膜設置数を減らすことが可能となり設備費を削減できるという効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による高効率膜ろ過装置を示す概略的なフロー図である。
【図2】図1の水量と懸濁物質濃度の関係を示す図である。
【図3】この発明の実施の形態2による高効率膜ろ過装置を示す概略的なフロー図である。
【図4】この発明の実施の形態3による高効率膜ろ過装置を示す概略的なフロー図である。
【図5】図4の水量と懸濁物質濃度の関係を示す図である。
【図6】この発明の実施の形態4による高効率膜ろ過装置を示す概略的なフロー図である。
【図7】従来の膜ろ過装置を示す概略的なフロー図である。
【図8】従来の他の膜ろ過装置を示す概略なフロー図である。
【符号の説明】
1 流入管
2 好気槽
3 散気管(曝気手段)
4 膜分離槽
5 膜分離装置
6 脱窒槽
7 返送管
8 混合水導入管
9 汚泥濃縮機
10 分離液導入管
11 濃縮汚泥返送兼排出管
12 膜汚泥返送管
13 膜ろ過水排出管
14 凝集剤添加槽
15 脱窒槽
16 移流水導入管
17 循環水導入管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-efficiency membrane filtration device to be applied as a sewage treatment device such as sewage treatment.
[0002]
[Prior art]
FIG. 7 is a flowchart showing a first conventional example of a membrane filtration apparatus applied to a sewage treatment apparatus employing a submerged membrane separation method.
In the figure, 1 is an inflow pipe, 2 is an aerobic tank for introducing water to be treated (water to be treated) from the inflow pipe 1, and 3 is an aeration pipe (aeration means) arranged at the bottom in the aerobic tank 2 Reference numeral 4 denotes a membrane separation tank dedicated to membrane separation, which is disposed at the subsequent stage of the aerobic tank 2. A membrane separation device 5 is installed in the membrane separation tank 4. Conventionally, there are many cases in which a membrane separation device is immersed in an aerobic tank, but the examples of FIGS. 7 and 8 are taken up for the following description. For example, Patent Document 1 is cited.
[0003]
Next, the operation of the first conventional example will be described.
The water to be treated introduced into the aerobic tank 2 from the inflow pipe 1 is aerobically treated by aeration from the aeration pipe 3 to promote biological oxidation and nitrification. Is introduced into the membrane separation tank 4. In the membrane separation tank 4, solid-liquid separation is performed by the membrane separation device 5 into membrane filtration water and membrane separation sludge, and the membrane filtration water is discharged out of the system.
[0004]
FIG. 8 is a flow chart showing a membrane filtration device of a second conventional example, and the same parts as those in FIG.
In the second conventional example, a denitrification tank 6 is disposed in front of the aerobic tank 2 shown in FIG. 7, and water to be treated is introduced into the denitrification tank 6 from the inflow pipe 1 to first perform a denitrification treatment. After that, the denitrification-treated water is introduced into the aerobic tank 2 for aerobic treatment, and the aerobic treated water is introduced into the subsequent membrane separation tank 4 to be subjected to solid-liquid separation by the membrane filtration device 5 and membrane filtration. It discharges water out of the system. In FIG. 8, reference numeral 7 denotes a return pipe for returning the nitrified mixed water from the membrane separation tank 4 to the denitrification tank 6. Patent Document 2 is cited as an example.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-170674 [Patent Document 2]
Japanese Patent Publication No. Hei 6-51199
[Problems to be solved by the invention]
Since the conventional membrane filtration device is configured as described above, sludge in which the water to be subjected to membrane filtration by the membrane filtration device 5 in the membrane separation tank 4 is higher than the mixed water subjected to aerobic treatment in the aerobic tank 2 is sludge. And the concentration of sludge in contact with the membrane surface of the membrane filtration device 5 is increased. Therefore, there is a problem that an operation with a high filtration flux (hereinafter referred to as Flux) cannot be performed. In the membrane separation activated sludge method, solid-liquid separation is performed in a membrane separation tank, and membrane filtration water containing no solid matter is discharged, so that the activated sludge concentration in the membrane separation tank is higher than in other tanks. . For example, the sludge concentration in the membrane separation tank is usually higher due to the dilution ratio of the aerobic tank or the oxygen-free tank with the water to be treated and the sludge return rate. There is a problem that it is necessary to provide a sludge concentration means.
Here, to describe this in more detail, the following problem has occurred due to the increased sludge concentration in contact with the membrane surface of the membrane filtration device 5 as described above.
(1) Construction costs increase because flux cannot be increased.
(2) Since the membrane surface of the membrane filtration device 5 is cleaned by aeration, the amount of air increases.
{Circle around (3)} The closure of the membrane pores of the membrane filtration device 5 is accelerated, and the frequency of washing and replacing the membrane increases.
[0007]
The present invention has been made to solve the above-described problems, and has an object to provide a high-efficiency membrane filtration device capable of performing high flux operation by reducing the concentration of sludge in contact with the membrane surface of the membrane filtration device. And
[0008]
Another object of the present invention is to provide a high-efficiency membrane filtration device capable of not only performing high flux operation but also removing phosphorus.
[0009]
Further, another object of the present invention is to provide a high-efficiency membrane filtration device capable of performing a high flux operation, removing phosphorus, and also removing nitrogen.
[0010]
[Means for Solving the Problems]
The high-efficiency membrane filtration device according to the present invention is an aerobic tank for inflowing the water to be treated and performing aerobic treatment, and aerobically mixed water from this aerobic tank is converted into membrane filtered water and membrane-separated sludge. A high-efficiency membrane filtration device comprising a membrane separation tank having a membrane separation device for separation, provided with a sludge concentrator for condensing sludge.
[0011]
The high-efficiency membrane filtration device according to the present invention includes an aerobic tank and a coagulant addition tank.
[0012]
The high-efficiency membrane filtration device according to the present invention concentrates sludge in a high-efficiency membrane filtration device including a denitrification tank for removing nitrogen, an aerobic tank for aerobic treatment, and a membrane separation tank having a membrane separation device. It is equipped with a sludge concentrator.
[0013]
The high-efficiency membrane filtration device according to the present invention includes the aerobic tank and a coagulant addition tank.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a flowchart showing a high-efficiency membrane filtration device according to Embodiment 1 of the present invention. The same parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and redundant description is omitted.
In the figure, 9 is a sludge concentrator for introducing mixed water 8 from the aerobic tank 2, 10 is a separation liquid introduction pipe for introducing the separation liquid from the sludge concentrator 9 into the membrane separation tank 4, and 11 is a sludge concentrator 9 Is a concentrated sludge return / discharge pipe for returning a part of the concentrated sludge to the aerobic tank 2 and discharging the remaining concentrated sludge to the outside of the system. 12 is a return pipe for returning the membrane separation sludge from the membrane separation tank 4 into the aerobic tank 2, and 13 is a membrane filtration water discharge pipe.
[0015]
The sludge concentrator 9 has a separation function such as a centrifugal filtration concentrator CF-100P manufactured by Nishihara Environmental Sanitation Laboratory Co., Ltd. and a rotary drum type sludge concentrator CSI manufactured by EBARA CORPORATION and EBARA BUSINESS CO., LTD. It doesn't matter what model or shape you have. For example, a tank with an inclined plate may be used.
[0016]
Embodiment 1 FIG.
Next, a description will be given of a first embodiment which also serves as an explanation of the operation of the high-efficiency membrane filtration device according to the first embodiment.
Water to be treated was flowed into the aerobic tank 2 from the inflow pipe 1, and the mixed water biologically treated in the aerobic tank 2 was supplied to the sludge concentrator 9. In the sludge concentrator 9, the mixed water was separated into a separated liquid and a concentrated sludge, and the separated liquid was returned to the membrane separation tank 4 and the concentrated sludge was returned to the aerobic tank 2. A membrane separation device 5 is installed in the membrane separation tank 4, and the separated liquid is solid-liquid separated by the membrane separation device 5, and the membrane filtered water discharged from the membrane is discharged out of the system, and the membrane separation sludge is removed. Returned to aerobic tank 2. The concentrated sludge was periodically carried out of the system as surplus sludge.
[0017]
In the above, in the conventional example shown in FIG. 7, the activated sludge concentration of the mixed water in the aerobic tank 2 of 10000 to 15000 mg / L is directly charged into the membrane separation tank 4 and the daily average flux is 0.5 m 3 / m 2.・ It was day driving.
On the other hand, the high-efficiency membrane filtration device of the present invention is provided with the sludge concentrator 9 and puts the activated sludge concentration of the aerobic tank 2 from 10,000 to 15000 mg / L into the sludge concentrator 9 and the separated liquid 2000 mg / L L was introduced into the membrane separation tank 4 and the average flux was operated at 1 m 3 / m 2 · day. As a result, the filtration performance of the membrane separation device 5 can be increased about twice, and the size of the membrane equipment can be reduced.
The treated water quality was BOD 5 <1.0 mg / L, SS <1.0 mg / L, TN 14.1 mg / L, and TP 2.3 mg / L, which were good water qualities.
FIG. 2 shows such a relationship between the amount of water and the concentration of the suspended solid (SS) according to the present invention.
[0018]
Embodiment 2 FIG.
FIG. 3 is a flowchart showing a high-efficiency membrane filtration device according to Embodiment 2 of the present invention. The same parts as those in FIG.
In FIG. 3, reference numeral 14 denotes a coagulant addition tank for supplying a coagulant in the aerobic tank 2, and the configuration other than the coagulant addition tank 14 according to the second embodiment is the same as that of the first embodiment. The coagulant may be any substance capable of eliminating phosphorus, such as ferric polysulfate, aluminum sulfate, polyaluminum chloride, ferrous sulfate, and ferric chloride. In addition, the coagulant addition tank 14 may be any equipment such as a pump as long as the coagulant can be added.
[0019]
Embodiment 2. FIG.
Next, a description will be given of a second embodiment that also serves as an explanation of the operation of the high-efficiency membrane filtration device according to the second embodiment.
In the second embodiment, the main purpose was to remove organic substances and phosphorus, and not to the purpose of removing nitrogen. Comparison was made between the high-efficiency membrane filtration apparatus of the present invention shown in FIG. 3 and the conventional membrane filtration apparatus shown in FIG. I drove.
The coagulant was added to the aerobic tank 2 from the coagulant addition tank 14, and the concentrated sludge by the sludge concentrator 9 was periodically discharged out of the system as excess sludge.
[0020]
In the above, in the conventional example shown in FIG. 7, the activated sludge concentration of the mixed water in the aerobic tank 2 of 10000 to 15000 mg / L is directly charged into the membrane separation tank 4 and the daily average flux is 0.5 m 3 / m 2.・ It was day driving. Note that no coagulant was added to the apparatus shown in FIG. On the other hand, the high-efficiency membrane filtration device of the present invention is provided with the sludge concentrator 9 and puts the activated sludge concentration of the aerobic tank 2 from 10,000 to 15000 mg / L into the sludge concentrator 9 and the separated liquid 2000 mg / L L was introduced into the membrane separation tank 4, and the average flux was operated at 1.0 m 3 / m 2 · day. Further, ferric polysulfate was added as a coagulant from the coagulant addition tank 14 to the aerobic tank 2 so that the molar ratio of Fe / P became 1 to enable phosphorus removal.
As a result, the filtration performance of the membrane separation device 5 can be increased about twice, the size of the membrane equipment can be reduced, and phosphorus can be removed.
Treated water is, BOD 5 <1.0mg / L, SS <1.0mg / L, T-N14.0mg / L, the T-P0.11mg / L becomes good quality were obtained.
[0021]
Embodiment 3 FIG.
FIG. 4 is a flowchart showing a high-efficiency membrane filtration device according to Embodiment 3 of the present invention. The same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
In FIG. 4, 15 is a denitrification tank installed in front of the aerobic tank 2, 16 is a pipe for introducing advection water from the denitrification tank 15 to the aerobic tank 2, and 17 is a circulating water introduction from the aerobic tank 2 to the denitrification tank 15. Tube.
[0022]
Embodiment 3 FIG.
Next, a description will be given of a third embodiment that also serves as a description of the operation of the high-efficiency membrane filtration device according to the third embodiment.
In the conventional example shown in FIG. 8, the activated sludge concentration of the mixed water in the aerobic tank 2 of 10000 to 15000 mg / L is directly introduced into the membrane separation tank 4 and the average flux is 0.5 m 3 / m 2 · day. It was driving. Further, as shown in FIG. 8, a denitrification tank 6 was provided for denitrification.
On the other hand, the high-efficiency membrane filtration device of the present invention is provided with the sludge concentrator 9 and puts the activated sludge concentration of the aerobic tank 2 from 10,000 to 15000 mg / L into the sludge concentrator 9 and the separated liquid 2000 mg / L L was introduced into the membrane separation tank 4, and the average flux was operated at 1.0 m 3 / m 2 · day. In the apparatus of the present invention, the denitrification tank 15 is also provided, and nitrogen can be removed by circulating mixed water from the aerobic tank 2 into the denitrification tank 15.
As a result, the filtration performance of the membrane separation device 5 can be improved about twice, the size of the membrane equipment can be reduced, and nitrogen can be removed.
The treated water quality was BOD 5 <1.0 mg / L, SS <1.0 mg / L, T-N 4.7 mg / L, and T-P 2.3 mg / L, which were good water qualities.
FIG. 5 shows the relationship between the amount of water and the concentration of the suspended solid (SS) according to the present invention.
[0023]
Embodiment 4 FIG.
FIG. 6 is a flowchart showing a high-efficiency membrane filtration device according to Embodiment 4 of the present invention. The same parts as those in FIGS.
In the fourth embodiment, a denitrification tank 15 is arranged in front of the aerobic tank 2 of the high-efficiency membrane filtration device having the coagulant addition tank 14 shown in FIG.
[0024]
Embodiment 4. FIG.
Next, a description will be given of a fourth embodiment that also serves as a description of the operation of the high-efficiency membrane filtration device according to the fourth embodiment.
In the conventional example shown in FIG. 8, the activated sludge concentration of the mixed water in the aerobic tank 2 of 10000 to 15000 mg / L is directly introduced into the membrane separation tank 4 and the average flux is 0.5 m 3 / m 2 · day. It was driving. Further, as shown in FIG. 8, a denitrification tank 6 was provided for denitrification, but no coagulant for removing phosphorus was added.
On the other hand, the high-efficiency membrane filtration device of the present invention is provided with the sludge concentrator 9 and the activated sludge concentration of the aerobic tank 2 of 10,000 to 15000 mg / L is supplied to the sludge concentrator 9 to separate 2,000 mg / L. The liquid was put into the membrane separation tank 4, and the average flux was operated at 1.0 m 3 / m 2 · day. Further, in the present invention, a denitrification tank 15 is provided, mixed water is circulated from the aerobic tank 2 in this denitrification tank 15 to remove nitrogen, and polysulfuric acid is added to the aerobic tank 2 from the coagulant addition tank 14 as a coagulant. Diiron was added so that the molar ratio of Fe / P became 1 to enable phosphorus removal.
As a result, the filtration performance of the membrane separation device 5 can be improved about twice, the size of the membrane equipment can be reduced, and nitrogen and phosphorus can be removed.
Treated water is, BOD 5 <1.0mg / L, SS <1.0mg / L, T-N4.7mg / L, the T-P0.12mg / L becomes good quality were obtained.
[0025]
【The invention's effect】
As described above, according to the present invention, it is configured to include the aerobic tank that promotes biological oxidation and nitrification, the membrane separation tank having the membrane separation device, and the sludge concentrator, so that high flux operation is possible. It became. In other words, the aerobic tank and the membrane separation tank are separated, and the aerobic tank sludge is once passed through a sludge concentrator, and the separated liquid having a low sludge concentration is used as the filtration target water for the membrane, so that the sludge concentration in contact with the membrane surface can be reduced. , High flux operation became possible.
[0026]
According to the present invention, since the sludge concentrator and the membrane separation tank are separate, the concentration of the water to be treated in contact with the membrane surface of the membrane separation device installed in the membrane separation tank can be reduced. In addition, the concentration of sludge in contact with the membrane of the membrane separation device can be adjusted, whereby the concentration of sludge in contact with the membrane can be reduced, thereby increasing the flux. Since the flux can be increased in this manner, the number of expensive membranes to be installed can be reduced, and the construction cost can be reduced. Furthermore, space saving can be achieved by reducing the number of membranes installed.
[0027]
Further, according to the present invention, since the sludge concentration in contact with the membrane can be reduced, the pores of the membrane are less likely to be clogged, and the frequency of cleaning and replacement of the membrane can be reduced. The amount can be reduced. For this reason, the membrane can be used for a long time, and maintenance and management costs and labor costs can be reduced.
[0028]
Further, according to the present invention, an aerobic tank that promotes biological oxidation and nitrification, a denitrification tank that returns a nitrified mixed water to cause a biological denitrification reaction, and a membrane separation tank having a membrane separation device And a sludge concentrator, so that not only high flux operation can be performed but also effective nitrogen removal can be achieved.
[0029]
Further, according to the present invention, an aerobic tank for promoting biological oxidation and nitrification, a denitrification tank for returning nitrified mixed water to cause a biological denitrification reaction, a flocculant addition tank, and a membrane separation device And a sludge concentrator having the above-described structure, there is an effect that not only high flux operation can be performed but also nitrogen removal and phosphorus removal can be performed.
[0030]
As described above, according to the present invention, the sludge (SS) concentration in the membrane separation tank is set to a low concentration, so that an operation with a high flux can be performed. In addition, there is an effect that the amount of cleaning air is reduced and the electricity cost can be reduced. In addition, the low concentration operation of the sludge (SS) concentration in the membrane separation tank has an effect that the clogging state of the membrane is alleviated, and the frequency of membrane exchange and the frequency of chemical cleaning of the membrane can be reduced. Further, since the sludge concentrator also functions as a substitute for concentrating excess sludge, there is no need to separately install sludge concentrating means. Further, since high flux operation of the membrane can be performed, the number of installed membranes can be reduced. This makes it possible to reduce equipment costs.
[Brief description of the drawings]
FIG. 1 is a schematic flow chart showing a high-efficiency membrane filtration device according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing the relationship between the amount of water and the concentration of suspended substances in FIG.
FIG. 3 is a schematic flow chart showing a high-efficiency membrane filtration device according to Embodiment 2 of the present invention.
FIG. 4 is a schematic flow chart showing a high-efficiency membrane filtration device according to Embodiment 3 of the present invention.
FIG. 5 is a diagram showing the relationship between the amount of water and the concentration of suspended solids in FIG. 4;
FIG. 6 is a schematic flow chart showing a high-efficiency membrane filtration device according to Embodiment 4 of the present invention.
FIG. 7 is a schematic flow chart showing a conventional membrane filtration device.
FIG. 8 is a schematic flow chart showing another conventional membrane filtration device.
[Explanation of symbols]
1 inflow pipe 2 aerobic tank 3 diffuser pipe (aeration means)
4 Membrane separation tank 5 Membrane separation device 6 Denitrification tank 7 Return pipe 8 Mixed water introduction pipe 9 Sludge concentrator 10 Separation liquid introduction pipe 11 Condensed sludge return and discharge pipe 12 Membrane sludge return pipe 13 Membrane filtration water discharge pipe 14 Addition of flocculant Tank 15 Denitrification tank 16 Advection water inlet pipe 17 Circulating water inlet pipe

Claims (4)

被処理水を流入させて好気処理する好気槽と、膜ろ過水と汚泥とに分離する膜分離装置を有する膜分離槽とからなる高効率膜ろ過装置において、汚泥を濃縮する汚泥濃縮機を備えたことを特徴とする高効率膜ろ過装置。A sludge concentrator for condensing sludge in a high-efficiency membrane filtration device comprising an aerobic tank for inflowing water to be treated and performing aerobic treatment, and a membrane separation tank having a membrane separation device for separating membrane filtration water and sludge. A high-efficiency membrane filtration device comprising: 前記好気槽に凝集剤添加槽を備えたことを特徴とする請求項1記載の高効率膜ろ過装置。The high-efficiency membrane filtration device according to claim 1, wherein a coagulant addition tank is provided in the aerobic tank. 窒素を除去する脱窒槽と、好気処理する好気槽と、膜分離装置を有する膜分離槽とからなる高効率膜ろ過装置において、汚泥を濃縮する汚泥濃縮機を備えたことを特徴とする高効率膜ろ過装置。A high-efficiency membrane filtration device comprising a denitrification tank for removing nitrogen, an aerobic tank for aerobic treatment, and a membrane separation tank having a membrane separation device, comprising a sludge concentrator for condensing sludge. High efficiency membrane filtration device. 前記好気槽に凝集剤添加槽を備えたことを特徴とする請求項3記載の高効率膜ろ過装置。The high-efficiency membrane filtration device according to claim 3, wherein a coagulant addition tank is provided in the aerobic tank.
JP2002331085A 2002-11-14 2002-11-14 High-efficiency membrane filtration apparatus Pending JP2004160402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331085A JP2004160402A (en) 2002-11-14 2002-11-14 High-efficiency membrane filtration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331085A JP2004160402A (en) 2002-11-14 2002-11-14 High-efficiency membrane filtration apparatus

Publications (1)

Publication Number Publication Date
JP2004160402A true JP2004160402A (en) 2004-06-10

Family

ID=32808575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331085A Pending JP2004160402A (en) 2002-11-14 2002-11-14 High-efficiency membrane filtration apparatus

Country Status (1)

Country Link
JP (1) JP2004160402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780179A1 (en) * 2004-07-16 2007-05-02 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780179A1 (en) * 2004-07-16 2007-05-02 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JPWO2006009125A1 (en) * 2004-07-16 2008-05-01 株式会社クラレ Wastewater treatment method with little excess sludge extraction
EP1780179A4 (en) * 2004-07-16 2011-06-29 Kuraray Co Method of wastewater treatment with excess sludge withdrawal reduced
JP4958551B2 (en) * 2004-07-16 2012-06-20 株式会社クラレ Wastewater treatment method with little excess sludge extraction
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same

Similar Documents

Publication Publication Date Title
CN103288309B (en) Coal gasification wastewater zero-emission treatment method, and application thereof
WO2010115319A1 (en) Sewage treatment process and system
CN101402509A (en) Treatment system and method for high-salt wastewater
CN106977059A (en) A kind of new and effective sewage disposal system and method
CN105565581B (en) Coal ethylene wastewater integrated conduct method
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
CN109052870A (en) domestic sewage processing system and method
JP3619950B2 (en) Sewage treatment apparatus and sewage treatment method
CN111646649A (en) Excrement wastewater treatment method for modular railway train excrement collector
US7820048B2 (en) Method and system for treating organically contaminated waste water
KR20040075413A (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
JP4368857B2 (en) Wastewater treatment system and toilet device
CN105601045A (en) Domestic sewage treatment system and method
JP2004160402A (en) High-efficiency membrane filtration apparatus
CN104743751A (en) A/O (anaerobic/aerobiotic) sewage treatment process device and technique thereof
KR19980050066A (en) Simultaneous Removal of Organics, Nitrogen and Phosphorus in Wastewater by Using Fixed Biofilm Process and Bypass Flow
CN108328734A (en) A kind of sewerage integrated processing method
JPH04367788A (en) Purification tank
CN204569547U (en) Multi-stage biological reactor
JPH10258285A (en) Waste water treatment equipment
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
KR100402304B1 (en) Biological wastewater treatment system and methods using internal recycling
CN1103324C (en) Process for treating sewage
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
CN207903981U (en) A kind of efficient up-flow biological reaction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811