JP2004158394A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2004158394A
JP2004158394A JP2002325547A JP2002325547A JP2004158394A JP 2004158394 A JP2004158394 A JP 2004158394A JP 2002325547 A JP2002325547 A JP 2002325547A JP 2002325547 A JP2002325547 A JP 2002325547A JP 2004158394 A JP2004158394 A JP 2004158394A
Authority
JP
Japan
Prior art keywords
metal foil
lithium secondary
positive electrode
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325547A
Other languages
Japanese (ja)
Other versions
JP4318905B2 (en
Inventor
Hiroshi Nemoto
宏 根本
Shinji Otsubo
真治 大坪
Masanobu Kito
賢信 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002325547A priority Critical patent/JP4318905B2/en
Publication of JP2004158394A publication Critical patent/JP2004158394A/en
Application granted granted Critical
Publication of JP4318905B2 publication Critical patent/JP4318905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery excellent in productivity and a space-saving property with lowered internal resistance. <P>SOLUTION: The lithium secondary battery is provided with a wound-round inner electrode body or a laminated inner electrode body with a positive electrode plate and a negative electrode plate each composed of at least a sheet of metallic foil body wound round or laminated through a separator, and a positive collector member as well as a negative collective member connected to an end part of either the wound-round inner electrode body or the laminated electrode body for leading out current. The positive collector member and/or the negative collector member are/is connected by welding with a connecting end edge of a tip part of the metallic foil body at a given place, and each connecting end edge is arranged at a position between a top end and a bottom end of a length of the melt-down part (L) with the most protruded connecting end edge most protruded in a length direction of the connecting end edge in a state positioned at the top end of the length of the melt-down part (L) where the given place is burnt through at welding. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明はリチウム二次電池に係り、更に詳しくは、生産性及び省スペース性に優れているとともに、内部抵抗が低減されたリチウム二次電池に関する。
【0002】
【従来の技術】リチウム二次電池は、近年、携帯型の通信機器やノート型パーソナルコンピュータ等の電子機器の電源を担う、小型でエネルギー密度の大きな充放電可能な二次電池として広く用いられている。また、国際的な地球環境の保護を背景として省資源化や省エネルギー化に対する関心が高まる中、リチウム二次電池は、自動車業界において積極的な市場導入が検討されている電気自動車(EV)、ハイブリッド電気自動車(HEV)用のモータ駆動用バッテリー、又は夜間電力の保存による電力の有効利用手段としても期待されており、これらの用途に適する大容量リチウム二次電池の実用化が急がれている。
【0003】リチウム二次電池には、一般的にリチウム遷移金属複合酸化物等が正極活物質として、またハードカーボンや黒鉛といった炭素質材料が負極活物質としてそれぞれ用いられる。リチウム二次電池の反応電位は約4.1Vと高いために、電解液として従来のような水系電解液を用いることができず、このため電解質であるリチウム化合物を有機溶媒に溶解した非水電解液が用いられる。そして、充電反応は正極活物質中のLiが、非水電解液中を通って負極活物質へ移動して捕捉されることで起こり、放電時には逆の電池反応が起こる。
【0004】これらの中で、EV、HEV等に好適に用いられる比較的容量の大きいリチウム二次電池においては、内部電極体として図6に示すような、リード線として機能する集電タブ(正極集電タブ5、負極集電タブ6)が取り付けられた電極板(正極板2、負極板3)を、互いに接触しないように、間にセパレータ7を介しつつ、巻芯13の外周に捲回してなる捲回型内部電極体1が好適に用いられている。なお、正極板2及び負極板3は、金属箔体等の集電基板の両表面に電極活物質(正極活物質と負極活物質の両方を指す)層を形成したものであり、正極集電タブ5及び負極集電タブ6は、正極板2及び負極板3の端部の金属箔体が露出した部分に所定間隔で取り付けられている(例えば、特許文献1参照)。
【0005】しかしながら、これらの集電タブは、電極体を捲回又は積層するときに、一つずつ電極板にスポット溶接等して取り付ける必要があるために、その工程は煩雑であるという問題があった。また、集電タブの、電極板と接続された反対側の端部は、それら複数の集電タブを揃えて束ね、内部端子にリベット等を用いて打ち込み接続等して取り付ける必要があるために、その工程も同様に煩雑であり、また低抵抗に接続することは容易ではないという問題があった。更に、複数枚の集電タブを用いて内部電極体と内部端子とを接続するには、その分の、より大きなスペースが必要となり、電池自体が大型化してしまうといった問題があった。
【0006】
【特許文献1】
特開2001−85042号公報
【0007】
【発明が解決しようとする課題】本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、生産性及び省スペース性に優れているとともに内部抵抗が低減されたリチウム二次電池を提供することにある。
【0008】
【課題を解決するための手段】即ち、本発明によれば、各々少なくとも1枚の金属箔体から構成された正極板及び負極板がセパレータを介して捲回又は積層されてなる捲回型内部電極体又は積層型内部電極体と、前記捲回型内部電極体又は前記積層型内部電極体の端部に、その端部から電流を導出するために接続された正極集電部材及び負極集電部材とを備えたリチウム二次電池であって、前記正極集電部材及び/又は前記負極集電部材が、その所定箇所で、前記金属箔体の先端部のうちの接続端縁に溶接によって接続されてなり、その溶接の際における前記正極集電部材及び/又は前記負極集電部材の前記所定箇所が溶け落ちる溶け落ち長さ(L)の上端に、前記接続端縁の、長手方向に最突出した最突出接続端縁を位置させた状態で、それぞれの前記接続端縁が、前記溶け落ち長さ(L)の上端及び下端の間に位置するように配設されてなることを特徴とするリチウム二次電池が提供される。
【0009】本発明においては、正極板を構成する金属箔体及び正極集電部材が、アルミニウム又はアルミニウム合金からなるとともに、正極板を構成する金属箔体の先端部のうちの、最突出接続端縁と、長手方向に最も引込んだ最引込接続端縁の、長手方向における位置の差(W)が1.0mm以下であることが好ましい。また、本発明においては、負極板を構成する金属箔体及び負極集電部材が、銅又は銅合金からなるとともに、負極板を構成する金属箔体の先端部のうちの、最突出接続端縁と、長手方向に最も引込んだ最引込接続端縁の、長手方向における位置の差(W)が0.5mm以下であることが好ましい。
【0010】本発明においては、正極板を構成する金属箔体及び正極集電部材が、アルミニウム又はアルミニウム合金からなるとともに、金属箔体の接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、3σが1.0mm以下であることが好ましく、5σが1.0mm以下であることが好ましい。
【0011】本発明においては、負極板を構成する金属箔体及び負極集電部材が、銅又は銅合金からなるとともに、金属箔体の接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、3σが0.5mm以下であることが好ましく、5σが0.5mm以下であることが好ましい。
【0012】本発明においては、正極集電部材及び/又は負極集電部材が、所定箇所で、金属箔体の先端部がその長手方向への弾性変形を維持し得る最大弾性変位長さ以下に変位するように、先端部をその長手方向に押圧した状態で、接続端縁に溶接によって接続されてなることが好ましい。本発明においては、最大弾性変位長さが、0.5mm以上であることが好ましく、0.7mm以上であることが更に好ましい。
【0013】本発明においては、内部電極体が、捲回型内部電極体である場合に、捲回型内部電極体の径方向に圧縮荷重を加えた場合における初期弾性歪みが2%以下であることが好ましい。
【0014】本発明のリチウム二次電池は、電池容量が2Ah以上の大型電池に好適に採用され、また、大電流の放電が頻繁に行われる電気自動車又はハイブリッド電気自動車のモータ駆動用電源等として好適に用いられる。
【0015】
【発明の実施の形態】以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜、設計の変更、改良等が加えられることが理解されるべきである。
【0016】本発明は、各々少なくとも1枚の金属箔体から構成された正極板及び負極板がセパレータを介して捲回又は積層されてなる捲回型内部電極体又は積層型内部電極体と、捲回型内部電極体又は積層型内部電極体の端部に、その端部から電流を導出するために接続された正極集電部材及び負極集電部材とを備えたリチウム二次電池であり、正極集電部材及び/又は負極集電部材が、その所定箇所で、金属箔体の先端部のうちの接続端縁に溶接によって接続されてなり、その溶接の際における正極集電部材及び/又は負極集電部材の所定箇所が溶け落ちる溶け落ち長さ(L)の上端に、接続端縁の、長手方向に最突出した最突出接続端縁を位置させた状態で、それぞれの前記接続端縁が、前記溶け落ち長さ(L)の上端及び下端の間に位置するように配設されてなることを特徴とするものである。以下、図1に示す、本発明のリチウム二次電池の電流導出部における、集電部材と金属箔体の接続端縁との溶接状態を説明する模式図を例に挙げ、本発明の実施の形態について具体的に説明する。
【0017】図1に示すように、本実施形態のリチウム二次電池の電流導出部においては、正極集電部材4A(負極集電部材4B)が、その所定箇所(正極集電部材4A(負極集電部材4B)の下部)で、金属箔体20の先端部24のうちの接続端縁21に溶接によって接続されている。溶接部(溶け落ち部)25は、例えば正極集電部材4A(負極集電部材4B)の上方から所定のエネルギー線が照射され、正極集電部材4A(負極集電部材4B)の所定箇所が溶け落ちて接続端縁21を包み込むように形成されており、溶け落ち長さ(L)の上端に、金属箔体20の接続端縁21の、長手方向に最突出した最突出接続端縁22を位置させた状態で、金属箔体20のそれぞれの接続端縁21が溶け落ち長さ(L)の上端及び下端の間に位置するように配設されている。
【0018】上述の如く、本実施形態のリチウム二次電池は、その電流導出部が、正極集電部材4A(負極集電部材4B)と電極板を形成する金属箔体20とを溶接することにより直接的に接続して電流を導出するという構成であるため、従来の電流導出手段である集電タブが不要である。従って、煩雑な集電タブの取り付け工程が不要となるために、生産性の向上が図られてなるものである。更に、正極集電部材4A(負極集電部材4B)と金属箔体20との間に設けられていた集電タブを収容するためのスペースを省くことができるために、電池全体がコンパクトである。なお、本発明における金属箔体の「長手方向」、及び金属箔体の先端部の「長手方向」とは、具体的には、図1に示す金属箔体20の上下方向(集電部材の所定箇所が溶け落ちる溶け落ち長さ(L)と同方向)を意味する。
【0019】また、本実施形態のリチウム二次電池は、その電流導出部において、それぞれの接続端縁21が、溶け落ち長さ(L)の上端(図1中、正極集電部材4A(負極集電部材4B)の下部)に、接続端縁21のうちの最突出接続端縁22を位置させた状態で、溶け落ち長さ(L)の上端及び下端の間に位置するように配設されている。即ち、全ての接続端縁21が溶接部(溶け落ち部)25内に包まれており、集電部材と電極板(金属箔体20)とが良好な状態で接続されているために内部抵抗の低減がなされている。
【0020】更に、溶接される集電部材と接触端縁との間隔が狭く、溶接に際して照射されるエネルギー線により発生した熱が照射部である集電部材のみに留まることがないために、熱が金属箔体側へと伝導し易く、集電部材や金属箔体に穴が開いてしまう等の製品欠陥が生じ難い。従って、本実施形態のリチウム二次電池は、内部抵抗が低減されているとともに、その構成部材に穴等の製品欠陥が生じておらず、信頼性に優れた電池である。
【0021】また、本実施形態のリチウム二次電池においては、正極板を構成する金属箔体20及び正極集電部材4Aが、アルミニウム又はアルミニウム合金からなるとともに、この金属箔体20の先端部24のうちの、最突出接続端縁22と、長手方向に最も引込んだ最引込接続端縁23の、長手方向における位置の差(W)が1.0mm以下であることが好ましく、0.8mm以下であることが更に好ましく、0.5mm以下であることが特に好ましい(図1)。即ち、接続端縁21の位置のバラツキが小さいために、形成される溶接部(溶け落ち部)25内に全ての接続端縁21が包まれ、より良好な状態で正極集電部材4Aと金属箔体20(正極板)とが接続されている。なお、本発明においては、Wの値の下限値については特に限定されないが、0mm(即ち、接続端縁の位置にバラツキなし)であることが最も好ましい。
【0022】また、本実施形態のリチウム二次電池においては、負極板を構成する金属箔体20及び負極集電部材4Bが、銅又は銅合金からなるとともに、この金属箔体20の先端部24のうちの、最突出接続端縁22と、長手方向に最も引込んだ最引込接続端縁23の、長手方向における位置の差(W)が0.5mm以下であることが好ましく、0.3mm以下であることが更に好ましい(図1)。即ち、接続端縁21の位置のバラツキが小さいために、形成される溶接部(溶け落ち部)25内に全ての接続端縁21が包まれ、より良好な状態で負極集電部材4Bと金属箔体20(負極板)とが接続されている。なお、本発明においては、Wの値の下限値については特に限定されないが、0mm(即ち、接続端縁の位置にバラツキなし)であることが最も好ましい。
【0023】本発明においては、正極板を構成する金属箔体及び正極集電部材が、アルミニウム又はアルミニウム合金からなるとともに、金属箔体の接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、3σが1.0mm以下であることが好ましく、5σが1.0mm以下であることが更に好ましい。即ち、接続端縁の位置のバラツキが小さいために、形成される溶接部(溶け落ち部)内に全ての接続端縁が包まれ、より良好な状態で正極集電部材と金属箔体(正極板)とが接続されている。なお、本発明においては、3σ及び5σの下限値については特に限定されないが、0mm(即ち、接続端縁の位置にバラツキなし)であることが最も好ましい。
【0024】また、本発明においては、負極板を構成する金属箔体及び負極集電部材が、銅又は銅合金からなるとともに、金属箔体の接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、3σが0.5mm以下であることが好ましく、5σが0.5mm以下であることが更に好ましい。即ち、接続端縁の位置のバラツキが小さいために、形成される溶接部(溶け落ち部)内に全ての接続端縁が包まれ、より良好な状態で正極集電部材と金属箔体(正極板)とが接続されている。なお、本発明においては、3σ及び5σの下限値については特に限定されないが、0mm(即ち、接続端縁の位置にバラツキなし)であることが最も好ましい。
【0025】本実施形態においては、図3に示すように、正極集電部材4A(負極集電部材4B)が、その所定箇所(正極集電部材4A(負極集電部材4B)の下部)で、金属箔体20の先端部24がその長手方向への弾性変形を維持し得る最大弾性変位長さ以下に変位するように、先端部24をその長手方向に押圧した状態で、溶接によって接続されてなることが好ましい。即ち、押圧することにより、金属箔体の先端部をその長手方向に変位させても、押圧を解放した際にはその変位が復元され弾性を維持している状態であるため、集電部材の所定箇所と金属箔体の接続端縁との接触を確実に維持することができる。
【0026】なお、本発明にいう「最大弾性変位長さ」は、例えば図8に示すような、捲回した金属(銅)箔体(試料1、2)の先端部の長手方向への変位長さ(mm)に対して、オートグラフを用いて測定した金属箔体の先端部の長手方向への荷重(kg)をプロットして得られる「変位/荷重曲線」から求めることができる。図8においては、Bで示す箇所に対応する変位長さ(約0.4mm)に、「変位/荷重曲線」の傾きの値が最初に小さくなる(変化する)が、これは先端部のうちの(最)突出した部分の変位が原因と考えられる。従って、本発明においては、「変位/荷重曲線」の傾きの値が急激に小さくなる(変化する)Aで示す箇所に対応する変位長さ(約0.7mm)を、金属箔体の先端部が弾性域から塑性域へと切り替わる際の変位長さ、即ち、「最大弾性変位長さ」と定義する。
【0027】また、本発明においては、金属箔体の先端部の最大弾性変位長さが、0.5mm以上であることが好ましく、0.7mm以上であることが更に好ましい。なお、本発明においては最大弾性変位長さの上限値については特に限定されないが、電極箔の厚みの制約という観点から1.5mm以下であればよい。
【0028】本発明においては、内部電極体が、捲回型内部電極体である場合に、捲回型内部電極体の径方向に圧縮荷重を加えた場合における初期弾性歪みが2%以下であることが好ましく、1.8%以下であることが更に好ましく、1.6%以下であることが特に好ましい。図4は、捲回型内部電極体1に圧縮荷重Fをかける場合の捲回型内部電極体1の変形の様子を示す説明図である。捲回型内部電極体1の通常の状態における直径をR(mm)とし、その上部から捲回型内部電極体1の上側面に接するように板状体10を当てて圧縮荷重Fをかけると、捲回型内部電極体1はその短径がR−Dとなるように略楕円状に変形する。ここでDは変形量を示す。そこで、捲回型内部電極体1の圧縮歪みをD/Rで定義すると、このときの圧縮荷重の大きさと圧縮歪みとの関係は、一般的に図5のように示される。
【0029】図5中の曲線A〜Cは、それぞれ異なる捲回型内部電極体A〜Cについての圧縮荷重の大きさと圧縮歪みとの関係を示したものであり、曲線A〜Cにおいて、共通して圧縮荷重が小さい場合には、圧縮荷重の範囲は異なるものの、圧縮荷重の増加に伴う圧縮歪みの変化割合、即ち勾配が大きくなっている。このような圧縮歪み(以下、「初期弾性歪み」という)の変化は、主に捲回型内部電極体の内部における電極板やセパレータといった各部材間の微小な隙間や、厚みの不均一性によって生じた微小空間が潰されることにより起こる弾性変形であり、主に捲回作業時のテンションや加圧の大きさに依存して発生するものである。従って、初期弾性変形は、捲回型内部電極体を構成する各部材の材料に違いによる影響は殆どないと考えることができる。
【0030】その後、圧縮荷重を徐々に大きくしていくと、曲線A〜Cは、それぞれが異なった圧縮荷重値Fa〜Fcにおいて勾配が小さくなるように屈曲し、その後は一定の小さい勾配で、圧縮荷重の増加とともに圧縮歪みが増加するように変化する。この場合における圧縮歪み(以下、「物性弾性歪み」という)の変化は、捲回型内部電極体を構成する部材間の隙間が既に潰されて各部材が密着した状態からの圧縮による弾性変形であり、主に電極活物質層やセパレータが有する弾性、即ち、捲回型内部電極体1の構成部材自体が有する物性に起因している。従って、曲線A〜Cのそれぞれの圧縮荷重値Fa〜Fc以上での勾配はほぼ等しくなっている。
【0031】なお、図5においては、屈曲点(変曲点)Fa〜Fc近傍は緩やかな曲線を描いており、その前後では略直線的な変化を示している。従って、屈曲点Fa〜Fcの値が不明瞭である場合には、初期弾性歪みを示す直線と物性弾性歪みを示す直線との交点が示す圧縮荷重の値で、屈曲点の値を定めることができる。
【0032】上述の通り、本発明における「初期弾性歪み」とは、「圧縮荷重を加え始めてから、圧縮荷重/圧縮歪み曲線が屈曲点に達するまでの圧縮歪み」をいい、従って、初期弾性歪みの値、つまり屈曲点における圧縮歪みが2%以下のときには、捲回型内部電極体はその内部抵抗は小さくなるように作製されていることとなる。また、前述したように、圧縮荷重/圧縮歪み曲線が屈曲点に達するまでの初期弾性歪みは、捲回型内部電極体を構成する材料の物性には殆ど依存しないことから、本発明は捲回型内部電極体を構成する材料は特に限定されるものではない。
【0033】図5においては、屈曲点Fa,Fbは圧縮歪みが2%以下の範囲にあるので、このような屈曲点Fa,Fbを有する捲回型内部電極体A,Bは、圧縮歪みが2%超の範囲にある、屈曲点Fcを有する捲回型内部電極体Cに比して、その内部抵抗が小さいものであるために好ましい。
【0034】一方、圧縮荷重が0N(ゼロ ニュートン)のときが圧縮荷重/圧縮歪み曲線の屈曲点となる捲回型電極体は、理想的に電極板やセパレータが隙間なく捲回された状態であるが、現実の問題として、そのような特性を有する捲回型電極体の作製は困難である。また、捲回型電極体の内部抵抗を小さく抑える観点からは、そのような理想的な捲回型電極体を作製する必要もない。実際には、初期弾性歪みが0.3%以上2%以下であれば、十分に小さい内部抵抗特性が得られる。
【0035】なお、上述した初期弾性歪みが2%以下であるという条件を満足する捲回型電極体は、集電基板表面に電極活物質層を形成した後、ロールプレス等によるプレス処理を行って、電極活物質層の嵩密度を高め、続いて、電極板、及びセパレータを巻き取って捲回型電極体を作製する際には、所定の圧力が掛かるようにテンションをかけるのみならず、必要に応じて、電極板とセパレータが巻芯と加圧ローラによって挟み込まれるように、強制的により大きな圧力を印加することで、作製することができる。電極板のロールプレス等のプレス処理に当たっては、電極活物質層の嵩密度を上げるとともに、非水電解液が十分に電極活物質層内に含浸する程度の気孔率を確保することが必要である。
【0036】次に、本発明のリチウム二次電池を構成する主要部材及び構造、並びに製造方法について、主として内部電極体が捲回型内部電極体である場合を例に挙げて説明する。
【0037】正極板は、集電基板となる金属箔体の両面に正極活物質を塗工することによって作製される。金属箔体を構成する金属としては、アルミニウムやチタン等の正極電気化学反応に対する耐蝕性が良好な金属が用いられる。正極活物質としては、マンガン酸リチウム(LiMn)やコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)等のリチウム遷移金属複合酸化物が好適に用いられるが、立方晶スピネル構造を有するマンガン酸リチウムを用いると、他のリチウム遷移金属複合酸化物を用いた場合と比較して、内部電極体の抵抗を小さくすることができるために好ましい。なお、正極活物質には、アセチレンブラック等の炭素微粉末を導電助剤として加えることが好ましく、2〜10質量%の範囲で任意に添加すればよい。
【0038】マンガン酸リチウムの化学量論組成はLiMnで表されるが、このような化学量論組成のものに限られず、遷移元素Mnの一部を、Tiを含み、その他に、Li、Fe、Ni、Mg、Zn、B、Al、Co、Cr、Si、Sn、P、V、Sb、Nb、Ta、Mo及びWからなる群より選択される1種類または、2種類以上の元素で置換してなるLiMMn2−X(但し、Mは置換元素で、Xは置換量を示す。)も好適に用いられる。
【0039】上述のような元素置換を行った場合には、そのリチウム(Li)/マンガン(Mn)比(モル比)は、マンガンをリチウムで置換したリチウム過剰の場合には(1+X)/(2−X)となる。一方、リチウム以外の置換元素Mで置換した場合には1/(2−X)となる。従って、いずれの場合であっても常にリチウム(Li)/マンガン(Mn)比>0.5となるが、本発明においてはこのようなマンガン酸リチウムを用いることが好ましく、化学量論組成(LiMn)のものを用いた場合と比較して結晶構造が更に安定化されているため、電池に優れたサイクル特性を付与することができる。
【0040】なお、置換元素Mにあっては、理論上、Liは+1価、Fe、Mn、Ni、Mg、Znは+2価、B、Al、Co、Crは+3価、Si、Ti、Snは+4価、P、V、Sb、Nb、Taは+5価、Mo、Wは+6価のイオンとなり、LiMn中に固溶する元素であるが、Co、Snについては+2価の場合、Fe、Sb及びTiについては+3価の場合、Mnについては+3価、+4価の場合、Crについては+4価、+6価の場合もあり得る。従って、各種の置換元素Mは混合原子価を有する状態で存在する場合があり、また、酸素の量については、必ずしも理論化学組成で表されるように4であることを必要とせず、結晶構造を維持するための範囲内で欠損して、又は過剰に存在していても構わない。
【0041】正極活物質の塗工は、正極活物質粉末に溶剤や結着剤等を添加して作製したスラリー又はペーストを、ロールコータ法等を用いて、集電基板に塗布・乾燥することで行われ、その後に必要に応じてプレス処理等が施される。
【0042】負極板は、正極板と同様にして作製することができる。負極板を構成する集電基板としては、銅箔又はニッケル箔等の負極電気化学反応に対する耐蝕性が良好な金属箔体が好適に用いられる。負極活物質としては、ソフトカーボンやハードカーボンといったアモルファス系炭素質材料や人造黒鉛や天然黒鉛等の高黒鉛化炭素材料が、更には、前記高黒鉛化炭素材料としては繊維状のものが好適に用いられる。
【0043】セパレータとしては、マイクロポアを有するリチウムイオン透過性のポリエチレンフィルム(PEフィルム)を、多孔性のリチウムイオン透過性のポリプロピレンフィルム(PPフィルム)で挟んだ三層構造としたものが好適に用いられる。これは、電極体の温度が上昇した場合に、PEフィルムが約130℃で軟化してマイクロポアが潰れ、リチウムイオンの移動、即ち電池反応を抑制する安全機構を兼ねたものである。そして、このPEフィルムをより軟化温度の高いPPフィルムで挟持することによって、PEフィルムが軟化した場合においても、PPフィルムが形状を保持して正極板と負極板の接触・短絡を防止し、電池反応の確実な抑制と安全性の確保が可能となる。
【0044】捲回型内部電極体を作製する場合には、セパレータを介して正極板と負極板とを巻芯の外周に捲回する。なお、積層型内部電極体を作製する場合には、巻芯を使用せず、セパレータを介して、正極板と負極板とを積層する。ここで、本発明においては、捲回又は積層に際して、作製される内部電極体の部分のうちの、集電部材の所定箇所に溶接する部分、即ち、金属箔体の接続端縁の位置のバラツキが所定の範囲内であることが必要となる。セパレータを介しての正極板と負極板との捲回又は積層後、得られた捲回体又は積層体の接続端縁の位置のバラツキを測定し、所定のバラツキ具合を満足する捲回体又は積層体を、本発明のリチウム二次電池用の捲回型内部電極体又は積層型内部電極体を構成する材料として選択する。
【0045】積層体の接続端縁の位置のバラツキを測定するには、金属箔体の積層方向と直行する方向から、実体写真を用いて観察することの他、必要に応じてX線透過写真を用いて観察することが好ましい。一方、捲回体の接続端縁の位置のバラツキを測定するに際して、捲回体の横方向から実体写真を用いて観察すると、突出した接続端縁の位置は測定可能であるが、引込んだ接続端縁等の位置は測定困難である。従って、X線透過写真を用いて観察することが好ましい。
【0046】但し、X線透過写真を用いて観察する場合であっても、多少の測定誤差が生ずる場合もある。従って、捲回するに際して、図7に示すように、エッジセンサにより捲回直前における金属箔体20(正極板2、負極板3)の端縁8の位置(相対位置)を、複数の測定点9において測定し、これを接続端縁の位置と等価であると仮定する方法を採用することが、正確な接続端縁の位置のバラツキを測定することができるために好ましい。具体的には、積層体の場合には金属箔体20(正極板2、負極板3)の積層枚数分のデータ、捲回体の場合には捲回回数分のデータを収集してこれを基礎とすることが、より正確な接続端縁の位置のバラツキを測定することができるために好ましく、実質的な労力と測定精度との関係を考慮すると、10箇所以上の測定点9についてのデータを収集してこれを基礎とすることが好ましい。
【0047】次に、非水電解液について説明する。非水電解液を構成する溶媒(有機溶媒)としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)といった炭酸エステル系のものや、γ−ブチロラクトン、テトラヒドロフラン、アセトニトリル等の単独溶媒又は混合溶媒が好適に用いられる。
【0048】電解質としては、六フッ化リン酸リチウム(LiPF)やホウフッ化リチウム(LiBF)等のリチウム錯体フッ素化合物、又は過塩素酸リチウム(LiClO)といったリチウムハロゲン化物を挙げることができ、これらのうちの1種類、又は2種類以上を上述した有機溶媒(混合溶媒)に溶解して用いることができる。なお、酸化分解が起こり難く非水電解液の導電性の高い六フッ化リン酸リチウム(LiPF)を用いることが好ましい。
【0049】次に、集電部材の所定箇所と、電極板を構成する金属箔体との溶接方法(捲回型内部電極体の製造方法)について説明する。図1に示すように、集電部材(正極集電部材4A、負極集電部材4B)と、上述した捲回型内部電極体を用意し、集電部材(正極集電部材4A、負極集電部材4B)の所定箇所(正極集電部材4A(負極集電部材4B)の下面)に、捲回型内部電極体を構成する金属箔体20の先端部24の接続端縁21のうちの最突出接続端縁22を配置する。溶接の際には、集電部材(正極集電部材4A、負極集電部材4B)の所定箇所が溶融して溶け落ちることとなるが、このときの溶け落ち長さ(L)の上端と下端の間に全ての先端部24の接続端縁21を配置する。なお、既に述べたように、所定条件下、集電部材(正極集電部材4A、負極集電部材4B)の所定箇所で金属箔体20の先端部24をその長手方向に押圧してもよい(図3参照)。その後、上方より集電部材(正極集電部材4A、負極集電部材4B)に対してエネルギー線を照射し、所定箇所を溶解して、集電部材(正極集電部材4A、負極集電部材4B)と接続端縁21とを溶接することができ、捲回型内部電極体を製造することができる。なお、エネルギー線としては、エネルギー密度が高く、発熱量も小さい、YAGレーザー又は電子ビームを使用することが好ましい。
【0050】上述の溶接に際しては、ろう材等の接合材料は特に必要ではないが、もちろん使用しても構わない。この場合には、集電部材と金属箔体との接合を補助する接合材料を、金属箔体及び/若しくは集電部材の所定箇所に塗布し、又は金属箔体と集電部材の所定箇所との間に挟持し、集電部材の所定箇所及び接合材料にエネルギー線を照射することによりこれらを溶解させ、溶解した集電部材の所定箇所及び接合材料を金属箔体の接続端縁に溶接すればよい。
【0051】次いで、図2に示すように、得られた捲回型内部電極体61を電池ケース73に挿入し、電極リード部材72と集電部材(正極集電部材4A、負極集電部材4B)、及び電極内部端子(正極内部端子69A、負極内部端子69B)を接合して安定な位置にホールドする。その後、電池蓋(正極電池蓋71A、負極電池蓋71B)により電池ケース73を封ずるとともに前述の非水電解液を含浸することにより、本実施形態のリチウム二次電池(タブレス構造型のリチウム二次電池)を得ることができる。
【0052】電極リード部材72は、接続される正極集電部材4A、正極内部端子69A、及び負極集電部材4B、負極内部端子69Bと、同種金属又はその合金により構成されていることが好ましい。具体的には、正極内部端子69A及び正極集電部材4Aにアルミニウム又はアルミニウム合金を用いた場合には、正極の電極リード部材72にアルミニウム又はアルミニウム合金を採用し、負極内部端子69B及び負極集電部材4Bに銅又は銅合金を用いた場合には、負極の電極リード部材72に銅又は銅合金を採用することが好ましい。
【0053】電極リード部材72を用いなくとも、正極集電部材4Aと正極内部端子69A、負極集電部材4Bと負極内部端子69Bとを直接的に接合し、通電させてもよい。また、これまで述べてきたタブレス構造を有する部分を正極及び負極に用いてもよいし、正極又は負極のいずれかに用いてもよい。なお、図2中、符号70Aは正極外部端子、符号70Bは負極外部端子、符号74はくびれ加工部、及び符号75は放圧孔を示す。
【0054】以上、本発明に係るリチウム二次電池について、その実施形態を示しながら説明してきたが、本発明が上記の実施形態に限定されるものでないことはいうまでもない。また、本発明に係るリチウム二次電池は、特に、電池容量が2Ah以上である大型の電池に好適に採用されるが、このような容量以下の電池に適用することを妨げるものではない。また、本発明のリチウム二次電池は、大容量でありながらも小型化されているため、特に省スペース性が要求される車載用電池として、更には、電気自動車又はハイブリッド電気自動車のモータ駆動用電源に用いることが好ましいとともに、高電圧を必要とされるエンジン起動用としても好適に用いることができる。
【0055】
【実施例】以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0056】
(捲回体の作製)
Li/Mn>0.5であるLi1.05Mn1.95スピネルを正極活物質とし、これに導電助剤としてアセチレンブラックを外比で2〜10質量%の範囲で添加したものに、更に溶剤、バインダを加えて調製した正極剤スラリーを、厚さ20μmのアルミニウム箔の両面にそれぞれ約100μmの厚みとなるように塗工して作製した正極板と、繊維状高黒鉛化炭素粉末を負極活物質として、厚さ10μmの銅箔の両面にそれぞれ約80μmの厚みとなるように塗工して作製した負極板を作製した。
【0057】次いで、セパレータを介して正極板と負極板を捲回することにより捲回体を作製した。なお、図7に示すように、捲回するに際しては、エッジセンサを用いて捲回直前における正極板2(アルミニウム箔)及び負極板3(銅箔)の端縁8の位置(相対位置(mm))を等間隔に41点測定した。使用した両電極板の捲回方向の長さは4m、得られた捲回体の直径は50mmφであった。参考例として測定した端縁の相対位置(mm)を表1に示す。また、表1より、最突出接続端縁と最引込接続端縁の長手方向における位置の差(W)は0.27mm、3σは0.23mm、5σは0.39mmであった。
【0058】
【表1】

Figure 2004158394
【0059】
(非水電解液の調製)
EC、DMC、及びEMCの各種有機溶媒を、EC:DMC:EMC=1:1:1(体積比)で混合して混合溶媒を調製し、それぞれに1mol/lの濃度となるように電解質であるLiPFを溶解して非水電解液を調製した。
【0060】
(実施例1〜3、比較例1)
図1に示すように、アルミニウムからなる正極集電部材4Aと、捲回体のアルミニウム箔体(金属箔体20)の接続端縁21とを、接続端縁21に対して正極集電部材4Aを押圧しない状態で配置し、YAGレーザーを用いて溶接することにより、捲回型内部電極体を作製した。最突出接続端縁22と最引込接続端縁23の、長手方向における位置の差(W(mm))、及び溶接状態の評価結果を表2に示す。
【0061】
[溶接状態の評価基準]:
集電部材に穴が開かず、溶接不良箇所がほとんどなかった場合を◎、集電部材に穴が開かなかったが、一部に溶接不良箇所があった場合を○、集電部材に穴が開くとともに、溶接不良箇所が多数存在した場合を×と評価した。集電部材における穴開き有無の確認は、目視観察することにより行った。また、溶接不良箇所の有無の確認は、溶接後、集電部材を強制的に金属箔体の先端部から引き裂いた場合に、金属箔体がちぎれ、集電部材側に先端部が残った箇所をカウントすることにより行った。
【0062】
【表2】
Figure 2004158394
【0063】捲回型内部電極体を電池ケースに収納後、所定の電解液注入孔を通じて電池ケース内部の減圧(1Pa)処理をしながら加熱(100℃、24時間)後、非水電解液を含浸(真空含浸)した。次いで電解液注入孔を封止することにより、リチウム二次電池を作製した(実施例1〜3、比較例1)。なお、その他の部材、試験環境は全ての試料について同じとし、電池の封止不良等による電池外部からの水分の浸入等の影響も排除した。また、各電池の初回充電後の電池容量は、全て約10Ahであった。
【0064】
(実施例4、5、比較例2)
図3に示すように、銅からなる負極集電部材4Bと、捲回体の銅箔(金属箔体20)の先端部24とを、負極集電部材4Bにより金属箔体20の先端部24を、その長手方向に対して0.5mm押圧した状態で配置すること以外は、前記「実施例1〜3、比較例1」に記載した方法と同様の方法により、捲回型内部電極体を作製した。なお、銅箔(金属箔体20)の先端部24の最大弾性変位長さは、全て0.7mmであった。最突出接続端縁22と最引込接続端縁23の、長手方向における位置の差(W(mm))、及び溶接状態の評価結果を表3に示す。また、前記「実施例1〜3、比較例1」に記載した方法と同様の方法により、リチウム二次電池を作製した(実施例4、5、比較例2)。
【0065】
【表3】
Figure 2004158394
【0066】
(実施例6、7、比較例3)
前記「実施例1〜3、比較例1」に記載した方法と同様の方法により、捲回型内部電極体を作製した。金属箔体の接続端縁の、長手方向における位置の分布(正規分布)のバラツキを示す3σ及び5σ、並びに溶接状態の評価結果を表3に示す。また、前記「実施例1〜3、比較例1」に記載した方法と同様の方法により、リチウム二次電池を作製した(実施例6、7、比較例3)。
【0067】
【表4】
Figure 2004158394
【0068】
(実施例8、9、比較例4)
前記「実施例4、5、比較例2」に記載した方法と同様の方法により、捲回型内部電極体を作製した。金属箔体の接続端縁の、長手方向における位置の分布(正規分布)のバラツキを示す3σ及び5σ、並びに溶接状態の評価結果を表5に示す。また、前記「実施例1〜3、比較例1」に記載した方法と同様の方法により、リチウム二次電池を作製した(実施例8、9、比較例4)。
【0069】
【表5】
Figure 2004158394
【0070】
(結果)
表2、3に示す結果から明らかなように、Wが1.0mm以下、Wが0.5mm以下であると、集電部材と集電基板を構成するアルミニウム箔や銅箔との溶接状態(接続状態)が良好であること、即ち、確実な接続がなされていることが判明した。また、表4に示す結果から明らかなように、アルミニウム箔の接続端縁の、長手方向における位置の分布が正規分布である場合に、その3σが1.0mm以下、好ましくは5σが1.0mm以下であると、集電部材とアルミニウム箔との接続が確実になされていることが判明した。
【0071】更に、表5に示す結果から明らかなように、銅箔の接続端縁の、長手方向における位置の分布が正規分布である場合に、その3σが0.5mm以下、好ましくは5σが0.5mm以下であると、集電部材と銅箔との接続が確実になされていることが判明した。また、実施例4、5から明らかなように、銅箔の先端部が、その最大弾性変位長さ以下に変位するように長手方向に押圧された状態で溶接されていると、集電部材と銅箔との接続が確実になされていることが判明した。
【0072】
【発明の効果】以上説明したように、本発明のリチウム二次電池は、集電部材が、その所定箇所で、金属箔体の先端部のうちの接続端縁に溶接によって接続されてなり、集電部材の所定箇所が溶け落ちる溶け落ち長さ(L)の上端に、最突出接続端縁を位置させた状態で、それぞれの接続端縁が、溶け落ち長さ(L)の上端及び下端の間に位置するように配設されてなるものであるため、集電部材と集電基板を構成する金属箔体との接続状態が良好であり、生産性及び省スペース性に優れているとともに内部抵抗の低減がなされたものである。
【図面の簡単な説明】
【図1】本発明のリチウム二次電池の電流導出部における、集電部材と金属箔体の接続端縁との溶接状態を説明する模式図である。
【図2】本発明のリチウム二次電池の一実施形態を示す断面図である。
【図3】集電部材により金属箔体の接続端縁を押圧する状態を説明する模式図である。
【図4】捲回型内部電極体の圧縮荷重の印加による変形の様子を示した説明図である。
【図5】捲回型内部電極体の圧縮荷重/圧縮歪み曲線を示したグラフである。
【図6】従来の捲回型内部電極体の一例を示す斜視図である。
【図7】接続端縁の位置のバラツキを測定する方法を説明する模式図である。
【図8】捲回した金属(銅)箔体の先端部の長手方向への変位長さ(mm)に対して、オートグラフを用いて測定した金属箔体の先端部の長手方向への荷重(kg)をプロットしたグラフである。
【符号の説明】
1…捲回型内部電極体、2…正極板、3…負極板、4A…正極集電部材、4B…負極集電部材、5…正極集電タブ、6…負極集電タブ、7…セパレータ、8…端縁、9…測定点、10…板状体、13…巻芯、20…金属箔体、21…接続端縁、22…最突出接続端縁、23…最引込接続端縁、24…先端部、25…溶接部(溶け落ち部)、61…捲回型内部電極体、67…巻芯、68…電池、69A…正極内部端子、69B…負極内部端子、70A…正極外部端子、70B…負極外部端子、71A…正極電池蓋、71B…負極電池蓋、72…電極リード部材、73…電池ケース、74…くびれ加工部、75…放圧孔。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery excellent in productivity and space saving and having a reduced internal resistance.
[0002]
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as small, chargeable / dischargeable secondary batteries having a large energy density and serving as power supplies for electronic devices such as portable communication devices and notebook personal computers. I have. Also, amid increasing interest in resource saving and energy saving against the background of international protection of the global environment, lithium secondary batteries are being considered for active market introduction in the automotive industry, such as electric vehicles (EV) and hybrid vehicles. It is also expected to be used as a motor driving battery for an electric vehicle (HEV) or as a means for effectively using electric power by storing electric power at night, and there is an urgent need to commercialize a large-capacity lithium secondary battery suitable for these uses. .
In a lithium secondary battery, a lithium transition metal composite oxide or the like is generally used as a positive electrode active material, and a carbonaceous material such as hard carbon or graphite is used as a negative electrode active material. Since the reaction potential of a lithium secondary battery is as high as about 4.1 V, a conventional aqueous electrolyte cannot be used as an electrolyte. Therefore, a non-aqueous electrolyte in which a lithium compound as an electrolyte is dissolved in an organic solvent is used. Liquid is used. Then, the charging reaction is performed by Li in the positive electrode active material. + This is caused by the movement through the non-aqueous electrolyte to the negative electrode active material and being trapped, and the opposite battery reaction occurs at the time of discharge.
Among these, in a lithium secondary battery having a relatively large capacity suitably used for an EV, an HEV, etc., a current collecting tab (a positive electrode) functioning as a lead wire as shown in FIG. The electrode plates (the positive electrode plate 2 and the negative electrode plate 3) to which the current collecting tabs 5 and the negative electrode current collecting tabs 6 are attached are wound around the outer periphery of the core 13 with the separator 7 interposed therebetween so as not to contact each other. The wound internal electrode body 1 is preferably used. The positive electrode plate 2 and the negative electrode plate 3 are each formed by forming an electrode active material (refers to both a positive electrode active material and a negative electrode active material) layers on both surfaces of a current collecting substrate such as a metal foil body. The tab 5 and the negative electrode current collecting tab 6 are attached at predetermined intervals to portions where the metal foil body at the ends of the positive electrode plate 2 and the negative electrode plate 3 are exposed (for example, see Patent Document 1).
However, these current collecting tabs need to be attached to the electrode plate by spot welding or the like at the time of winding or laminating the electrode body, so that the process is complicated. there were. In addition, the end of the current collecting tab on the opposite side connected to the electrode plate needs to be bundled by aligning the plurality of current collecting tabs, and to be attached to the internal terminals by driving connection using rivets or the like. However, there is a problem that the process is similarly complicated, and it is not easy to connect to a low resistance. Further, connecting the internal electrode body and the internal terminal using a plurality of current collecting tabs requires a larger space for the connection, and there is a problem that the battery itself becomes large.
[0006]
[Patent Document 1]
JP 2001-85042 A
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. An object of the present invention is to provide a lithium secondary battery with reduced resistance.
[0008]
That is, according to the present invention, a positive electrode plate and a negative electrode plate each composed of at least one metal foil are wound or laminated with a separator interposed therebetween. An electrode body or a laminated internal electrode body, and a positive electrode current collector and a negative electrode current collector connected to an end of the wound internal electrode body or the laminated internal electrode body to derive a current from the end. A positive electrode current collecting member and / or the negative electrode current collecting member are connected by welding to a connection edge of a tip portion of the metal foil body at a predetermined location thereof. In the welding, the predetermined length of the positive electrode current collecting member and / or the negative electrode current collecting member is melted off at the upper end of the burn-through length (L). With the projecting most protruding connection edge positioned, The connecting edge of, respectively is, an upper end and a lithium secondary battery characterized by comprising is disposed so as to be positioned between the lower end of the melting drop length (L) is provided.
In the present invention, the metal foil and the positive electrode current collector constituting the positive electrode plate are made of aluminum or an aluminum alloy, and the most protruding connection end of the tip of the metal foil constituting the positive electrode plate is provided. The difference in the position in the longitudinal direction between the edge and the most retracted connection edge that is most retracted in the longitudinal direction (W 1 ) Is preferably 1.0 mm or less. Further, in the present invention, the metal foil body and the negative electrode current collector constituting the negative electrode plate are made of copper or a copper alloy, and the most protruding connection edge of the tip end of the metal foil body constituting the negative electrode plate. And the difference in the position in the longitudinal direction (W 2 ) Is preferably 0.5 mm or less.
In the present invention, the metal foil and the positive electrode current collector constituting the positive electrode plate are made of aluminum or an aluminum alloy, and the distribution of the connection edge of the metal foil in the longitudinal direction has a standard deviation σ. In the case of the normal distribution, 3σ is preferably 1.0 mm or less, and 5σ is preferably 1.0 mm or less.
In the present invention, the metal foil and the negative electrode current collector constituting the negative electrode plate are made of copper or a copper alloy, and the distribution of the positions of the connection edges of the metal foil in the longitudinal direction has a standard deviation σ. In the case of the normal distribution, 3σ is preferably 0.5 mm or less, and 5σ is preferably 0.5 mm or less.
In the present invention, the positive electrode current collecting member and / or the negative electrode current collecting member may be arranged such that, at a predetermined position, the distal end of the metal foil body has a length equal to or less than a maximum elastic displacement length capable of maintaining elastic deformation in its longitudinal direction. It is preferable that the distal end portion is connected to the connection end edge by welding while being pressed in the longitudinal direction so as to be displaced. In the present invention, the maximum elastic displacement length is preferably 0.5 mm or more, and more preferably 0.7 mm or more.
In the present invention, when the internal electrode is a wound internal electrode, the initial elastic strain when a compressive load is applied in the radial direction of the wound internal electrode is 2% or less. Is preferred.
The lithium secondary battery of the present invention is suitably used for a large battery having a battery capacity of 2 Ah or more, and is used as a power source for driving a motor of an electric vehicle or a hybrid electric vehicle in which a large current is frequently discharged. It is preferably used.
[0015]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and is within the scope of the present invention. It should be understood that design changes, improvements, etc. may be made as appropriate based on the knowledge of.
The present invention provides a wound internal electrode body or a laminated internal electrode body in which a positive electrode plate and a negative electrode plate each composed of at least one metal foil are wound or laminated with a separator interposed therebetween. An end portion of the wound internal electrode body or the stacked internal electrode body, a lithium secondary battery including a positive electrode current collector and a negative electrode current collector connected to derive a current from the end, The positive electrode current collecting member and / or the negative electrode current collecting member are connected by welding to a connection edge of a tip portion of the metal foil body at a predetermined position, and the positive electrode current collecting member and / or With the most protruding connection edge protruding in the longitudinal direction of the connection edge positioned at the upper end of the burn-through length (L) at which a predetermined portion of the negative electrode current collector melts, each of the connection edges is But between the upper and lower ends of the burn through length (L) And it is characterized in that formed by arranged to location. Hereinafter, an example of a schematic diagram illustrating a welding state of a current collecting member and a connection edge of a metal foil body in a current deriving portion of a lithium secondary battery of the present invention shown in FIG. The form will be specifically described.
As shown in FIG. 1, in the current deriving section of the lithium secondary battery of this embodiment, the positive current collector 4A (negative current collector 4B) is positioned at a predetermined position (positive current collector 4A (negative current collector)). At the lower part of the current collecting member 4B), the metal foil body 20 is connected to the connection edge 21 of the front end 24 by welding. The welded portion (burn-through portion) 25 is irradiated with a predetermined energy ray from above, for example, the positive electrode current collecting member 4A (negative electrode current collecting member 4B), and a predetermined portion of the positive electrode current collecting member 4A (negative electrode current collecting member 4B) is irradiated. The most protruding connection edge 22 of the connection edge 21 of the metal foil body 20 which is most protruded in the longitudinal direction is formed at the upper end of the burn-through length (L) so as to wrap around the connection edge 21. Are disposed such that the connection edges 21 of the metal foil body 20 are located between the upper end and the lower end of the burn-through length (L).
As described above, in the lithium secondary battery according to the present embodiment, the current deriving section welds the positive current collecting member 4A (negative current collecting member 4B) and the metal foil body 20 forming the electrode plate. Therefore, a current collecting tab, which is a conventional current deriving means, is not required. Therefore, since a complicated current collecting tab mounting step is not required, productivity is improved. Further, since the space for accommodating the current collecting tab provided between the positive electrode current collecting member 4A (negative electrode current collecting member 4B) and the metal foil body 20 can be omitted, the whole battery is compact. . Note that the “longitudinal direction” of the metal foil body and the “longitudinal direction” of the tip of the metal foil body in the present invention are specifically defined as the vertical direction of the metal foil body 20 shown in FIG. (In the same direction as the burn-through length (L) at which the predetermined portion burns).
Further, in the lithium secondary battery of the present embodiment, in the current lead-out portion, each connection edge 21 has an upper end of the burn-through length (L) (in FIG. 1, the positive current collector 4A (negative electrode)). The lowermost part of the current collecting member 4B) is disposed so as to be located between the upper end and the lower end of the burn-through length (L) with the most protruding connection edge 22 of the connection edges 21 positioned. Have been. That is, all the connection edges 21 are wrapped in the welded part (burned-out part) 25, and the internal resistance is improved because the current collecting member and the electrode plate (metal foil body 20) are connected in a good state. Has been reduced.
Further, since the distance between the current collecting member to be welded and the contact edge is small and the heat generated by the energy beam irradiated during welding does not stay only in the current collecting member which is the irradiated portion, the heat Are easily conducted to the metal foil side, and a product defect such as a hole in the current collecting member or the metal foil body is hardly generated. Therefore, the lithium secondary battery of the present embodiment is a highly reliable battery having a reduced internal resistance and no product defects such as holes in its constituent members.
Further, in the lithium secondary battery of the present embodiment, the metal foil 20 and the positive electrode current collecting member 4A constituting the positive electrode plate are made of aluminum or an aluminum alloy. Of the most protruding connection edge 22 and the most retracted connection edge 23 that is most retracted in the longitudinal direction. 1 ) Is preferably 1.0 mm or less, more preferably 0.8 mm or less, particularly preferably 0.5 mm or less (FIG. 1). That is, since the variation in the positions of the connection edges 21 is small, all the connection edges 21 are wrapped in the welded portion (burn-through portion) 25 to be formed, and the positive electrode current collector 4A and the metal Foil body 20 (positive electrode plate) is connected. In the present invention, W 1 Is not particularly limited, but is most preferably 0 mm (ie, there is no variation in the position of the connection edge).
In the lithium secondary battery of the present embodiment, the metal foil 20 and the negative electrode current collecting member 4B constituting the negative electrode plate are made of copper or a copper alloy. Of the most protruding connection edge 22 and the most retracted connection edge 23 that is most retracted in the longitudinal direction. 2 ) Is preferably 0.5 mm or less, more preferably 0.3 mm or less (FIG. 1). That is, since the variation in the position of the connection edge 21 is small, all the connection edges 21 are wrapped in the welded portion (burn-through portion) 25 to be formed, and the negative electrode current collecting member 4B and the metal Foil body 20 (negative electrode plate) is connected. In the present invention, W 2 Is not particularly limited, but is most preferably 0 mm (ie, there is no variation in the position of the connection edge).
In the present invention, the metal foil and the positive electrode current collector constituting the positive electrode plate are made of aluminum or an aluminum alloy, and the distribution of the connection edges of the metal foil in the longitudinal direction has a standard deviation σ. In the case of the normal distribution, 3σ is preferably 1.0 mm or less, more preferably 5σ is 1.0 mm or less. That is, since the variation in the position of the connection edge is small, all the connection edges are wrapped in the welded portion (burn-through portion) to be formed, and the positive electrode current collector and the metal foil (positive Plate) are connected. In the present invention, the lower limits of 3σ and 5σ are not particularly limited, but are most preferably 0 mm (ie, there is no variation in the position of the connection edge).
In the present invention, the metal foil and the negative electrode current collector constituting the negative electrode plate are made of copper or a copper alloy, and the distribution of the positions of the connection edges of the metal foil in the longitudinal direction is standard. In the case of a normal distribution of the deviation σ, 3σ is preferably 0.5 mm or less, more preferably 5σ is 0.5 mm or less. That is, since the variation in the position of the connection edge is small, all the connection edges are wrapped in the welded portion (burn-through portion) to be formed, and the positive electrode current collector and the metal foil (positive Plate) are connected. In the present invention, the lower limits of 3σ and 5σ are not particularly limited, but are most preferably 0 mm (ie, there is no variation in the position of the connection edge).
In this embodiment, as shown in FIG. 3, the positive electrode current collector 4A (negative electrode current collector 4B) is positioned at a predetermined position (below the positive electrode current collector 4A (negative electrode current collector 4B)). The distal end portion 24 of the metal foil body 20 is connected by welding in a state where the distal end portion 24 is pressed in the longitudinal direction such that the distal end portion 24 is displaced below the maximum elastic displacement length capable of maintaining elastic deformation in the longitudinal direction. Preferably. That is, even if the tip of the metal foil body is displaced in the longitudinal direction by pressing, when the pressing is released, the displacement is restored and the elasticity is maintained. The contact between the predetermined location and the connection edge of the metal foil body can be reliably maintained.
The "maximum elastic displacement length" referred to in the present invention refers to, for example, the displacement in the longitudinal direction of the tip of a wound metal (copper) foil (samples 1 and 2) as shown in FIG. The length (mm) can be determined from a “displacement / load curve” obtained by plotting the load (kg) in the longitudinal direction of the tip of the metal foil body measured using an autograph with respect to the length (mm). In FIG. 8, the value of the slope of the “displacement / load curve” first decreases (changes) at the displacement length (approximately 0.4 mm) corresponding to the location indicated by B, This is considered to be caused by the displacement of the (most) protruding portion. Therefore, in the present invention, the displacement length (approximately 0.7 mm) corresponding to the portion indicated by A where the value of the slope of the “displacement / load curve” sharply decreases (changes) is determined by the tip of the metal foil body. Is defined as the displacement length when switching from the elastic range to the plastic range, that is, the “maximum elastic displacement length”.
Further, in the present invention, the maximum elastic displacement length of the tip portion of the metal foil is preferably 0.5 mm or more, more preferably 0.7 mm or more. In the present invention, the upper limit value of the maximum elastic displacement length is not particularly limited, but may be 1.5 mm or less from the viewpoint of the thickness of the electrode foil.
In the present invention, when the internal electrode body is a wound internal electrode body, the initial elastic strain when a compressive load is applied in the radial direction of the wound internal electrode body is 2% or less. Is preferably 1.8% or less, more preferably 1.6% or less. FIG. 4 is an explanatory view showing a state of deformation of the wound internal electrode body 1 when a compressive load F is applied to the wound internal electrode body 1. When the diameter of the wound internal electrode body 1 in a normal state is R (mm), a compressive load F is applied by applying the plate-shaped body 10 from above to contact the upper side surface of the wound internal electrode body 1. The wound internal electrode body 1 is deformed into a substantially elliptical shape so that its minor axis becomes RD. Here, D indicates the amount of deformation. Therefore, if the compression strain of the wound internal electrode body 1 is defined by D / R, the relationship between the magnitude of the compression load and the compression strain at this time is generally shown in FIG.
Curves A to C in FIG. 5 show the relationship between the magnitude of the compressive load and the compressive strain for the different wound internal electrode bodies A to C, respectively. When the compression load is small, the range of the compression load is different, but the rate of change of the compression strain with the increase in the compression load, that is, the gradient is large. Such changes in compressive strain (hereinafter referred to as “initial elastic strain”) are mainly caused by minute gaps between members such as electrode plates and separators inside the wound internal electrode body and uneven thickness. This is elastic deformation caused by the crushing of the generated minute space, and occurs mainly depending on the magnitude of tension and pressure during the winding operation. Therefore, it can be considered that the initial elastic deformation is hardly affected by the difference between the materials of the members constituting the wound internal electrode body.
Thereafter, when the compressive load is gradually increased, the curves A to C are bent so that the gradients become smaller at different compressive load values Fa to Fc, and thereafter, the curves A to C have a constant small gradient. It changes so that the compression strain increases with an increase in the compression load. The change in the compressive strain (hereinafter referred to as “physical elastic strain”) in this case is caused by elastic deformation due to compression from the state in which the gaps between the members constituting the wound internal electrode body are already crushed and the members are in close contact with each other. This is mainly due to the elasticity of the electrode active material layer and the separator, that is, the physical properties of the components of the wound internal electrode body 1. Therefore, the slopes of the curves A to C at the compression load values Fa to Fc or more are almost equal.
In FIG. 5, a gentle curve is drawn in the vicinity of the inflection points (inflection points) Fa to Fc, and shows a substantially linear change before and after that. Therefore, when the values of the bending points Fa to Fc are unclear, it is possible to determine the value of the bending point by the value of the compression load indicated by the intersection of the straight line indicating the initial elastic strain and the straight line indicating the physical elastic strain. it can.
As described above, the term "initial elastic strain" in the present invention means "compressive strain from the start of applying a compressive load to the point at which the compressive load / compressive strain curve reaches the bending point". That is, when the compression strain at the inflection point is 2% or less, the wound internal electrode body is manufactured so that the internal resistance becomes small. Further, as described above, the initial elastic strain until the compression load / compression strain curve reaches the bending point hardly depends on the physical properties of the material constituting the wound internal electrode body. The material constituting the mold internal electrode body is not particularly limited.
In FIG. 5, since the bending points Fa and Fb have a compressive strain in the range of 2% or less, the wound internal electrode bodies A and B having such bending points Fa and Fb have a compressive strain. This is preferable because the internal resistance thereof is smaller than that of the wound internal electrode body C having the bending point Fc in the range of more than 2%.
On the other hand, a wound electrode body having a bending point of the compression load / compression strain curve when the compression load is 0 N (zero Newton) is ideally a state where the electrode plate and the separator are wound without gaps. However, as a practical problem, it is difficult to produce a wound electrode body having such characteristics. Further, from the viewpoint of suppressing the internal resistance of the wound electrode body, it is not necessary to manufacture such an ideal wound electrode body. Actually, if the initial elastic strain is 0.3% or more and 2% or less, sufficiently small internal resistance characteristics can be obtained.
The wound electrode body satisfying the condition that the initial elastic strain is 2% or less is formed by forming an electrode active material layer on the surface of a current collecting substrate and then performing a press treatment by a roll press or the like. Therefore, to increase the bulk density of the electrode active material layer, subsequently, when winding the electrode plate, and separator to produce a wound electrode body, not only to apply a tension so that a predetermined pressure is applied, If necessary, it can be manufactured by forcibly applying a larger pressure so that the electrode plate and the separator are sandwiched between the winding core and the pressure roller. In performing a pressing process such as a roll press of the electrode plate, it is necessary to increase the bulk density of the electrode active material layer and to secure a porosity enough for the nonaqueous electrolyte to sufficiently impregnate the electrode active material layer. .
Next, the main members and structure of the lithium secondary battery of the present invention and the manufacturing method thereof will be described mainly by taking an example in which the internal electrode body is a wound internal electrode body.
The positive electrode plate is manufactured by applying a positive electrode active material to both sides of a metal foil body serving as a current collecting substrate. As the metal constituting the metal foil, a metal having good corrosion resistance to a positive electrode electrochemical reaction, such as aluminum or titanium, is used. As the positive electrode active material, lithium manganate (LiMn 2 O 4 ) Or lithium cobaltate (LiCoO) 2 ), Lithium nickelate (LiNiO) 2 ) Is preferably used. However, when lithium manganate having a cubic spinel structure is used, the use of a lithium transition metal composite oxide as compared with the case where other lithium transition metal composite oxides are used is preferred. This is preferable because the resistance can be reduced. In addition, it is preferable to add carbon fine powder such as acetylene black to the positive electrode active material as a conductive auxiliary agent, and it may be arbitrarily added in the range of 2 to 10% by mass.
The stoichiometric composition of lithium manganate is LiMn 2 O 4 Is not limited to such a stoichiometric composition, a part of the transition element Mn contains Ti, and in addition, Li, Fe, Ni, Mg, Zn, B, Al, Co, LiM substituted with one or more elements selected from the group consisting of Cr, Si, Sn, P, V, Sb, Nb, Ta, Mo and W X Mn 2-X O 4 (However, M is a substitution element and X shows a substitution amount.).
When the above-mentioned element substitution is performed, the lithium (Li) / manganese (Mn) ratio (molar ratio) is (1 + X) / ( 2-X). On the other hand, when it is substituted with a substitution element M other than lithium, it becomes 1 / (2-X). Therefore, in any case, the ratio of lithium (Li) / manganese (Mn) is always> 0.5. However, in the present invention, it is preferable to use such lithium manganate, and the stoichiometric composition (LiMn) 2 O 4 Since the crystal structure is further stabilized as compared with the case of using (1), excellent cycle characteristics can be imparted to the battery.
In the substitution element M, Li is +1 valent, Li, Mn, Ni, Mg and Zn are +2 valence, B, Al, Co and Cr are +3 valence, Si, Ti and Sn in theory. Is +4, P, V, Sb, Nb and Ta are +5, Mo and W are +6, and LiMn 2 O 4 It is an element that forms a solid solution therein, but Co and Sn have +2 valence, Fe, Sb and Ti have +3 valence, Mn has +3 valence and +4 valence, and Cr has +4 valence and +6. It can be valuable. Accordingly, the various substitution elements M may exist in a state having a mixed valence, and the amount of oxygen does not necessarily need to be 4 as represented by the theoretical chemical composition, and the crystal structure May be deficient or excessive in the range for maintaining the above.
The coating of the positive electrode active material is performed by applying a slurry or paste prepared by adding a solvent, a binder and the like to the positive electrode active material powder to a current collecting substrate using a roll coater method or the like and drying the slurry or paste. Then, a pressing process or the like is performed as necessary.
The negative electrode plate can be manufactured in the same manner as the positive electrode plate. As the current collecting substrate constituting the negative electrode plate, a metal foil having good corrosion resistance to a negative electrode electrochemical reaction, such as a copper foil or a nickel foil, is preferably used. As the negative electrode active material, amorphous carbonaceous materials such as soft carbon and hard carbon, and highly graphitized carbon materials such as artificial graphite and natural graphite, and more preferably, the highly graphitized carbon material is preferably a fibrous material. Used.
The separator preferably has a three-layer structure in which a lithium ion permeable polyethylene film having micropores (PE film) is sandwiched between porous lithium ion permeable polypropylene films (PP film). Used. When the temperature of the electrode body rises, the PE film softens at about 130 ° C. and the micropores are crushed, which also serves as a safety mechanism for suppressing the movement of lithium ions, that is, the battery reaction. By sandwiching the PE film with a PP film having a higher softening temperature, even when the PE film is softened, the PP film retains its shape to prevent contact and short circuit between the positive electrode plate and the negative electrode plate, It is possible to reliably suppress the reaction and ensure safety.
In the case of manufacturing a wound type internal electrode body, a positive electrode plate and a negative electrode plate are wound around the outer periphery of a core through a separator. When a laminated internal electrode body is manufactured, a positive electrode plate and a negative electrode plate are laminated via a separator without using a core. Here, in the present invention, at the time of winding or laminating, of the portion of the internal electrode body to be manufactured, a portion to be welded to a predetermined portion of the current collecting member, that is, a variation in the position of the connection edge of the metal foil body. Must be within a predetermined range. After winding or laminating the positive electrode plate and the negative electrode plate via a separator, measure the variation in the position of the connection edge of the obtained wound body or the laminate, or a wound body satisfying a predetermined variation degree or The laminate is selected as a material constituting the wound internal electrode body or the laminated internal electrode body for a lithium secondary battery of the present invention.
In order to measure the variation in the position of the connection edge of the laminated body, it is necessary to observe using a stereoscopic photograph from a direction perpendicular to the laminating direction of the metal foil body and, if necessary, to conduct an X-ray transmission photograph. It is preferable to observe using. On the other hand, when measuring the variation in the position of the connection edge of the wound body, when observing using a stereoscopic photograph from the lateral direction of the wound body, the position of the protruding connection edge can be measured, but it was retracted. It is difficult to measure the position of the connection edge or the like. Therefore, observation using an X-ray transmission photograph is preferable.
However, even when observation is made using an X-ray transmission photograph, some measurement errors may occur. Therefore, at the time of winding, as shown in FIG. 7, the position (relative position) of the edge 8 of the metal foil body 20 (the positive electrode plate 2 and the negative electrode plate 3) immediately before the winding is determined by the edge sensor as shown in FIG. It is preferable to adopt a method of measuring at 9 and assuming that this is equivalent to the position of the connection edge because it is possible to accurately measure the variation of the position of the connection edge. Specifically, in the case of a laminated body, data for the number of laminated metal foil bodies 20 (the positive electrode plate 2 and the negative electrode plate 3) is collected, and in the case of a wound body, data for the number of windings is collected and collected. It is preferable to use the base as it is possible to more accurately measure the variation in the position of the connection edge. Considering the relationship between the substantial labor and the measurement accuracy, data on ten or more measurement points 9 is preferable. Is preferably collected and based on this.
Next, the non-aqueous electrolyte will be described. Solvents (organic solvents) constituting the non-aqueous electrolyte include carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) and propylene carbonate (PC), and γ-butyrolactone. A single solvent such as tetrahydrofuran and acetonitrile or a mixed solvent is suitably used.
As the electrolyte, lithium hexafluorophosphate (LiPF) 6 ) And lithium borofluoride (LiBF) 4 ) Or lithium perchlorate (LiClO) 4 ), And one or more of them can be used by dissolving them in the above-mentioned organic solvent (mixed solvent). It should be noted that lithium hexafluorophosphate (LiPF), which is unlikely to undergo oxidative decomposition and has high conductivity in the nonaqueous electrolyte, 6 ) Is preferably used.
Next, a method of welding a predetermined portion of the current collecting member to a metal foil constituting the electrode plate (a method of manufacturing a wound type internal electrode) will be described. As shown in FIG. 1, a current collecting member (a positive electrode current collecting member 4A, a negative electrode current collecting member 4B) and the above-described wound internal electrode body are prepared, and a current collecting member (a positive electrode current collecting member 4A, a negative electrode current collecting member 4A) is prepared. At a predetermined position (the lower surface of the positive electrode current collecting member 4A (negative electrode current collecting member 4B)) of the member 4B), the connection end edge 21 of the distal end portion 24 of the metal foil body 20 constituting the wound internal electrode body is formed. A protruding connection edge 22 is arranged. At the time of welding, predetermined portions of the current collecting members (the positive electrode current collecting member 4A and the negative electrode current collecting member 4B) are melted and melted down. However, the upper and lower ends of the melt-through length (L) at this time. The connection edges 21 of all the distal end portions 24 are arranged therebetween. As described above, the tip 24 of the metal foil body 20 may be pressed in a longitudinal direction at a predetermined location of the current collecting member (the positive current collecting member 4A, the negative current collecting member 4B) under a predetermined condition. (See FIG. 3). Thereafter, the current collecting members (the positive current collecting member 4A and the negative current collecting member 4B) are irradiated with energy rays from above to dissolve predetermined portions, and the current collecting members (the positive current collecting member 4A and the negative current collecting member 4A). 4B) and the connection edge 21 can be welded, and a wound internal electrode body can be manufactured. Note that as the energy ray, it is preferable to use a YAG laser or an electron beam having a high energy density and a small calorific value.
At the time of the above-mentioned welding, a joining material such as a brazing material is not particularly necessary, but may be used. In this case, a joining material for assisting the joining between the current collecting member and the metal foil body is applied to a predetermined portion of the metal foil body and / or the current collecting member, or a predetermined material of the metal foil body and the current collecting member is applied. By irradiating energy rays to predetermined portions of the current collecting member and the joining material to dissolve them, the melted predetermined portions of the current collecting member and the joining material are welded to the connection edges of the metal foil body. Just fine.
Next, as shown in FIG. 2, the obtained wound internal electrode body 61 is inserted into the battery case 73, and the electrode lead member 72 and the current collecting members (the positive electrode current collecting member 4A and the negative electrode current collecting member 4B). ) And the electrode internal terminals (positive electrode internal terminal 69A, negative electrode internal terminal 69B) and hold them in a stable position. Thereafter, the battery case 73 is sealed with a battery cover (a positive battery cover 71A, a negative battery cover 71B) and impregnated with the above-described non-aqueous electrolytic solution, whereby the lithium secondary battery (tabless structure type lithium Battery).
The electrode lead member 72 is preferably made of the same metal or an alloy thereof as the positive electrode current collector 4A, the positive electrode internal terminal 69A, the negative electrode current collector 4B, and the negative electrode internal terminal 69B to be connected. Specifically, when aluminum or an aluminum alloy is used for the positive electrode internal terminal 69A and the positive electrode current collecting member 4A, aluminum or an aluminum alloy is used for the positive electrode lead member 72, and the negative electrode internal terminal 69B and the negative electrode current collecting member are used. When copper or a copper alloy is used for the member 4B, it is preferable to use copper or a copper alloy for the electrode lead member 72 of the negative electrode.
Instead of using the electrode lead member 72, the positive electrode current collector 4A and the positive electrode internal terminal 69A, and the negative electrode current collector 4B and the negative electrode internal terminal 69B may be directly joined and energized. Further, the portion having the tabless structure described above may be used for the positive electrode and the negative electrode, or may be used for either the positive electrode or the negative electrode. In FIG. 2, reference numeral 70A denotes a positive electrode external terminal, reference numeral 70B denotes a negative electrode external terminal, reference numeral 74 denotes a constricted portion, and reference numeral 75 denotes a pressure release hole.
Although the lithium secondary battery according to the present invention has been described with reference to the embodiments, it goes without saying that the present invention is not limited to the above embodiments. In addition, the lithium secondary battery according to the present invention is particularly preferably used for a large battery having a battery capacity of 2 Ah or more, but does not prevent application to a battery having such a capacity or less. In addition, the lithium secondary battery of the present invention has a large capacity but is miniaturized, so that it is particularly used as an on-vehicle battery that requires space saving, and further for driving a motor of an electric vehicle or a hybrid electric vehicle. It is preferably used for a power supply, and can also be suitably used for starting an engine that requires a high voltage.
[0055]
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[0056]
(Preparation of wound body)
Li with Li / Mn> 0.5 1.05 Mn 1.95 O 4 A positive electrode slurry prepared by adding a solvent and a binder to a material obtained by adding spinel as a positive electrode active material and acetylene black as a conductive additive in an external ratio in a range of 2 to 10% by mass to a thickness of 20 μm is added. A positive electrode plate prepared by coating both sides of an aluminum foil so as to have a thickness of about 100 μm, respectively, and a fibrous highly graphitized carbon powder as a negative electrode active material, and about 80 μm of a copper foil having a thickness of 10 μm on both sides. A negative electrode plate was prepared by coating so as to have a thickness.
Next, a positive electrode plate and a negative electrode plate were wound via a separator to produce a wound body. As shown in FIG. 7, when winding, the position (relative position (mm) of the edge 8 of the positive electrode plate 2 (aluminum foil) and the negative electrode plate 3 (copper foil) immediately before winding using an edge sensor. )) Were measured at equal intervals at 41 points. The length of both electrode plates used in the winding direction was 4 m, and the diameter of the obtained wound body was 50 mmφ. Table 1 shows the relative position (mm) of the edge measured as a reference example. Further, from Table 1, the difference (W) between the positions of the most protruding connection edge and the most retreat connection edge in the longitudinal direction is shown. 2 ) Was 0.27 mm, 3σ was 0.23 mm, and 5σ was 0.39 mm.
[0058]
[Table 1]
Figure 2004158394
[0059]
(Preparation of non-aqueous electrolyte)
Various organic solvents of EC, DMC, and EMC are mixed at EC: DMC: EMC = 1: 1: 1 (volume ratio) to prepare a mixed solvent, and the mixed solvent is adjusted so that each has a concentration of 1 mol / l. A certain LiPF 6 Was dissolved to prepare a non-aqueous electrolyte.
[0060]
(Examples 1 to 3, Comparative Example 1)
As shown in FIG. 1, a positive electrode current collector 4A made of aluminum and a connection edge 21 of a rolled aluminum foil body (metal foil body 20) are connected to the positive electrode current collector 4A with respect to the connection edge 21. Were placed in a state where they were not pressed, and were welded with a YAG laser to produce a wound internal electrode body. The difference between the positions of the most protruding connection edge 22 and the most retreat connection edge 23 in the longitudinal direction (W 1 (Mm)) and the evaluation results of the welding state are shown in Table 2.
[0061]
[Welding condition evaluation criteria]:
The hole was not opened in the current collecting member and there were almost no welding failures. ◎ The hole was not opened in the current collecting member, but the welding was poor in some parts. When it was opened and there were many welding failures, it was evaluated as x. The presence or absence of a hole in the current collecting member was confirmed by visual observation. In addition, the presence or absence of a defective welding point is determined by, when the current collector is forcibly torn from the tip of the metal foil after welding, the metal foil is torn off and the tip remains on the current collector. Was carried out.
[0062]
[Table 2]
Figure 2004158394
After the wound internal electrode body is housed in the battery case, the battery case is heated (100 ° C., 24 hours) while reducing the pressure (1 Pa) inside the battery case through a predetermined electrolyte solution injection hole. Impregnation (vacuum impregnation). Next, a lithium secondary battery was manufactured by sealing the electrolyte injection hole (Examples 1 to 3, Comparative Example 1). The other components and the test environment were the same for all the samples, and the influence of intrusion of moisture from the outside of the battery due to poor sealing of the battery and the like was eliminated. The battery capacity of each battery after the first charge was about 10 Ah.
[0064]
(Examples 4 and 5, Comparative Example 2)
As shown in FIG. 3, the negative electrode current collecting member 4B made of copper and the distal end portion 24 of the wound copper foil (metal foil body 20) are connected to the distal end portion 24 of the metal foil body 20 by the negative electrode current collecting member 4B. Is placed in a state pressed by 0.5 mm with respect to the longitudinal direction, by the same method as described in the above "Examples 1-3, Comparative Example 1", the wound internal electrode body Produced. The maximum elastic displacement length of the tip portion 24 of the copper foil (metal foil body 20) was all 0.7 mm. The difference between the positions of the most protruding connection edge 22 and the most retreat connection edge 23 in the longitudinal direction (W 2 (Mm)) and the evaluation results of the welding state are shown in Table 3. In addition, lithium secondary batteries were manufactured by the same method as described in “Examples 1 to 3 and Comparative Example 1” (Examples 4 and 5 and Comparative Example 2).
[0065]
[Table 3]
Figure 2004158394
[0066]
(Examples 6 and 7, Comparative Example 3)
A wound internal electrode body was manufactured by the same method as that described in the above “Examples 1 to 3, Comparative Example 1”. Table 3 shows the evaluation results of 3σ and 5σ, which indicate variations in the distribution (normal distribution) of the position of the connection edge of the metal foil body in the longitudinal direction (normal distribution), and the welding state. In addition, lithium secondary batteries were manufactured by the same method as described in the above “Examples 1 to 3 and Comparative Example 1” (Examples 6 and 7 and Comparative Example 3).
[0067]
[Table 4]
Figure 2004158394
[0068]
(Examples 8, 9 and Comparative Example 4)
A wound internal electrode body was manufactured by the same method as that described in “Examples 4, 5 and Comparative Example 2”. Table 5 shows the evaluation results of 3σ and 5σ indicating the variation of the distribution (normal distribution) of the position of the connection edge of the metal foil body in the longitudinal direction (normal distribution), and the welding state. In addition, lithium secondary batteries were manufactured by the same method as described in “Examples 1 to 3 and Comparative Example 1” (Examples 8 and 9 and Comparative Example 4).
[0069]
[Table 5]
Figure 2004158394
[0070]
(result)
As is clear from the results shown in Tables 2 and 3, W 1 Is 1.0 mm or less, W 2 Is 0.5 mm or less, it is found that the welding state (connection state) between the current collecting member and the aluminum foil or copper foil constituting the current collecting board is good, that is, a reliable connection is made. did. Further, as is clear from the results shown in Table 4, when the distribution of the positions of the connection edges of the aluminum foil in the longitudinal direction is a normal distribution, 3σ is 1.0 mm or less, preferably 5σ is 1.0 mm. In the following cases, it was found that the connection between the current collecting member and the aluminum foil was made securely.
Further, as is apparent from the results shown in Table 5, when the distribution of the positions of the connection edges of the copper foil in the longitudinal direction is a normal distribution, 3σ is 0.5 mm or less, preferably 5σ is less than 0.5 mm. When it was 0.5 mm or less, it was found that the connection between the current collecting member and the copper foil was surely made. Further, as is apparent from Examples 4 and 5, when the tip portion of the copper foil is welded in a state where it is pressed in the longitudinal direction so as to be displaced below its maximum elastic displacement length, the current collecting member and It was found that the connection with the copper foil was made securely.
[0072]
As described above, in the lithium secondary battery of the present invention, the current collecting member is connected to the connecting edge of the distal end of the metal foil body at a predetermined position by welding. With the most protruding connection edge positioned at the upper end of the burn-through length (L) at which a predetermined portion of the current collecting member melts down, the respective connection edges are formed at the upper and lower ends of the burn-through length (L). Between the current collecting member and the metal foil body forming the current collecting substrate, so that the connection state between the current collecting member and the metal foil body constituting the current collecting substrate is good, and the productivity and the space saving are excellent. The internal resistance has been reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a welding state between a current collecting member and a connection edge of a metal foil body in a current lead-out portion of a lithium secondary battery of the present invention.
FIG. 2 is a sectional view showing an embodiment of the lithium secondary battery of the present invention.
FIG. 3 is a schematic diagram illustrating a state in which a connection edge of a metal foil body is pressed by a current collecting member.
FIG. 4 is an explanatory diagram showing a state of deformation of a wound internal electrode body due to application of a compressive load.
FIG. 5 is a graph showing a compression load / compression strain curve of a wound internal electrode body.
FIG. 6 is a perspective view showing an example of a conventional wound internal electrode body.
FIG. 7 is a schematic diagram illustrating a method for measuring a variation in the position of a connection edge.
FIG. 8 shows the load in the longitudinal direction of the distal end of the metal foil body measured using an autograph with respect to the displacement length (mm) in the longitudinal direction of the distal end of the wound metal (copper) foil body. It is a graph which plotted (kg).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wound type internal electrode body, 2 ... Positive electrode plate, 3 ... Negative electrode plate, 4A ... Positive electrode current collecting member, 4B ... Negative electrode current collecting member, 5 ... Positive electrode current collecting tab, 6 ... Negative electrode current collecting tab, 7 ... Separator , 8 ... edge, 9 ... measurement point, 10 ... plate, 13 ... core, 20 ... metal foil, 21 ... connection edge, 22 ... most protruding connection edge, 23 ... most retraction connection edge, Reference numeral 24: tip part, 25: welded part (burn-through part), 61: wound type internal electrode body, 67: winding core, 68: battery, 69A: positive electrode internal terminal, 69B: negative electrode internal terminal, 70A: positive electrode external terminal , 70B: negative electrode external terminal, 71A: positive electrode battery cover, 71B: negative electrode battery cover, 72: electrode lead member, 73: battery case, 74: constricted portion, 75: pressure release hole.

Claims (15)

各々少なくとも1枚の金属箔体から構成された正極板及び負極板がセパレータを介して捲回又は積層されてなる捲回型内部電極体又は積層型内部電極体と、前記捲回型内部電極体又は前記積層型内部電極体の端部に、その端部から電流を導出するために接続された正極集電部材及び負極集電部材とを備えたリチウム二次電池であって、
前記正極集電部材及び/又は前記負極集電部材が、その所定箇所で、前記金属箔体の先端部のうちの接続端縁に溶接によって接続されてなり、
その溶接の際における前記正極集電部材及び/又は前記負極集電部材の前記所定箇所が溶け落ちる溶け落ち長さ(L)の上端に、前記接続端縁の、長手方向に最突出した最突出接続端縁を位置させた状態で、それぞれの前記接続端縁が、前記溶け落ち長さ(L)の上端及び下端の間に位置するように配設されてなることを特徴とするリチウム二次電池。
A wound internal electrode body or a laminated internal electrode body in which a positive electrode plate and a negative electrode plate each composed of at least one metal foil body are wound or laminated via a separator, and the wound internal electrode body Or, at the end of the stacked internal electrode body, a lithium secondary battery including a positive electrode current collector and a negative electrode current collector connected to derive a current from the end,
The positive electrode current collecting member and / or the negative electrode current collecting member are connected by welding to a connection edge of a front end portion of the metal foil body at a predetermined position,
At the upper end of the burn-through length (L) at which the predetermined portion of the positive electrode current collector and / or the negative electrode current collector melts during welding, the connection edge is the most protruded in the longitudinal direction. Lithium secondary, characterized in that each connection edge is disposed between an upper end and a lower end of the burn-through length (L) with the connection edge positioned. battery.
前記正極板を構成する前記金属箔体及び前記正極集電部材が、アルミニウム又はアルミニウム合金からなるとともに、
前記正極板を構成する前記金属箔体の前記先端部のうちの、前記最突出接続端縁と、長手方向に最も引込んだ最引込接続端縁の、長手方向における位置の差(W)が1.0mm以下である請求項1に記載のリチウム二次電池。
The metal foil body and the positive electrode current collector constituting the positive electrode plate are made of aluminum or an aluminum alloy,
A difference (W 1 ) in the longitudinal direction between the most protruding connection edge and the most retracted connection edge that is most retracted in the longitudinal direction of the distal end portion of the metal foil body constituting the positive electrode plate. The lithium secondary battery according to claim 1, wherein is not more than 1.0 mm.
前記負極板を構成する前記金属箔体及び前記負極集電部材が、銅又は銅合金からなるとともに、
前記負極板を構成する前記金属箔体の前記先端部のうちの、前記最突出接続端縁と、長手方向に最も引込んだ最引込接続端縁の、長手方向における位置の差(W)が0.5mm以下である請求項1又は2に記載のリチウム二次電池。
The metal foil body and the negative electrode current collector constituting the negative electrode plate are made of copper or a copper alloy,
Difference (W 2 ) in the longitudinal direction between the most protruding connection edge and the most retracted connection edge that is most retracted in the longitudinal direction, of the distal end portion of the metal foil body constituting the negative electrode plate. 3 is 0.5 mm or less.
前記正極板を構成する前記金属箔体及び前記正極集電部材が、アルミニウム又はアルミニウム合金からなるとともに、
前記金属箔体の前記接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、3σが1.0mm以下である請求項1〜3のいずれか一項に記載のリチウム二次電池。
The metal foil body and the positive electrode current collector constituting the positive electrode plate are made of aluminum or an aluminum alloy,
4. The method according to claim 1, wherein 3σ is 1.0 mm or less when a distribution of positions in the longitudinal direction of the connection edge of the metal foil body is a normal distribution with a standard deviation σ. 5. Lithium secondary battery.
前記正極板を構成する前記金属箔体及び前記正極集電部材が、アルミニウム又はアルミニウム合金からなるとともに、
前記金属箔体の前記接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、5σが1.0mm以下である請求項1〜3のいずれか一項に記載のリチウム二次電池。
The metal foil body and the positive electrode current collector constituting the positive electrode plate are made of aluminum or an aluminum alloy,
4. The method according to claim 1, wherein 5σ is 1.0 mm or less when a distribution of positions in the longitudinal direction of the connection edge of the metal foil body is a normal distribution with a standard deviation σ. 5. Lithium secondary battery.
前記負極板を構成する前記金属箔体及び前記負極集電部材が、銅又は銅合金からなるとともに、
前記金属箔体の前記接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、3σが0.5mm以下である請求項1〜5のいずれか一項に記載のリチウム二次電池。
The metal foil body and the negative electrode current collector constituting the negative electrode plate are made of copper or a copper alloy,
6. The method according to claim 1, wherein 3σ is 0.5 mm or less when a distribution of positions in the longitudinal direction of the connection edge of the metal foil body is a normal distribution with a standard deviation σ. Lithium secondary battery.
前記負極板を構成する前記金属箔体及び前記負極集電部材が、銅又は銅合金からなるとともに、
前記金属箔体の前記接続端縁の、長手方向における位置の分布が標準偏差σの正規分布である場合に、5σが0.5mm以下である請求項1〜5のいずれか一項に記載のリチウム二次電池。
The metal foil body and the negative electrode current collector constituting the negative electrode plate are made of copper or a copper alloy,
6. The method according to claim 1, wherein 5σ is 0.5 mm or less when a distribution of positions in the longitudinal direction of the connection edge of the metal foil body is a normal distribution with a standard deviation σ. 7. Lithium secondary battery.
前記正極集電部材及び/又は前記負極集電部材が、前記所定箇所で、前記金属箔体の前記先端部がその長手方向への弾性変形を維持し得る最大弾性変位長さ以下に変位するように、前記先端部をその長手方向に押圧した状態で、前記接続端縁に溶接によって接続されてなる請求項1〜7のいずれか一項に記載のリチウム二次電池。The positive electrode current collecting member and / or the negative electrode current collecting member may be displaced at the predetermined location to a length equal to or less than a maximum elastic displacement length at which the distal end of the metal foil body can maintain elastic deformation in its longitudinal direction. The rechargeable lithium battery according to any one of claims 1 to 7, wherein the rechargeable battery is connected to the connection edge by welding while the tip is pressed in the longitudinal direction. 前記最大弾性変位長さが、0.5mm以上である請求項8に記載のリチウム二次電池。The lithium secondary battery according to claim 8, wherein the maximum elastic displacement length is 0.5 mm or more. 前記最大弾性変位長さが、0.7mm以上である請求項8に記載のリチウム二次電池。The lithium secondary battery according to claim 8, wherein the maximum elastic displacement length is 0.7 mm or more. 内部電極体が、捲回型内部電極体である場合に、
捲回型内部電極体の径方向に圧縮荷重を加えた場合における初期弾性歪みが2%以下である請求項1〜10のいずれか一項に記載のリチウム二次電池。
When the internal electrode body is a wound type internal electrode body,
The lithium secondary battery according to any one of claims 1 to 10, wherein an initial elastic strain when a compressive load is applied in a radial direction of the wound internal electrode body is 2% or less.
電池容量が2Ah以上である請求項1〜11のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 11, wherein the battery capacity is 2 Ah or more. 車載用電池である請求項1〜12のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 12, which is a vehicle battery. 電気自動車用又はハイブリッド電気自動車用である請求項13に記載のリチウム二次電池。The lithium secondary battery according to claim 13, which is for an electric vehicle or a hybrid electric vehicle. エンジン起動用である請求項13又は14に記載のリチウム二次電池。The lithium secondary battery according to claim 13, which is for starting an engine.
JP2002325547A 2002-11-08 2002-11-08 Lithium secondary battery Expired - Fee Related JP4318905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325547A JP4318905B2 (en) 2002-11-08 2002-11-08 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325547A JP4318905B2 (en) 2002-11-08 2002-11-08 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004158394A true JP2004158394A (en) 2004-06-03
JP4318905B2 JP4318905B2 (en) 2009-08-26

Family

ID=32804731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325547A Expired - Fee Related JP4318905B2 (en) 2002-11-08 2002-11-08 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4318905B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953860A2 (en) 2007-01-31 2008-08-06 Hitachi Vehicle Energy, Ltd. Secondary battery and secondary battery manufacturing method
JP2008293681A (en) * 2007-05-22 2008-12-04 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2009153962A1 (en) * 2008-06-17 2009-12-23 パナソニック株式会社 Secondary cell manufacturing method and secondary cell
WO2011125151A1 (en) * 2010-04-02 2011-10-13 トヨタ自動車株式会社 Laminated electrode-type battery, manufacturing method therefor, vehicle, and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135100A (en) * 1997-08-29 1999-05-21 Denso Corp Wound electrode battery and manufacture thereof
JP2000294222A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Secondary battery
JP2001102030A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Electric energy accumulation device
JP2002100342A (en) * 2000-09-26 2002-04-05 Sanyo Electric Co Ltd Cylindrical secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135100A (en) * 1997-08-29 1999-05-21 Denso Corp Wound electrode battery and manufacture thereof
JP2000294222A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Secondary battery
JP2001102030A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Electric energy accumulation device
JP2002100342A (en) * 2000-09-26 2002-04-05 Sanyo Electric Co Ltd Cylindrical secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953860A2 (en) 2007-01-31 2008-08-06 Hitachi Vehicle Energy, Ltd. Secondary battery and secondary battery manufacturing method
EP2264823A2 (en) 2007-01-31 2010-12-22 Hitachi Vehicle Energy, Ltd. Secondary battery and secondary battery manufacturing method
US7867644B2 (en) 2007-01-31 2011-01-11 Hitachi Vehicle Energy, Ltd. Secondary battery and secondary battery manufacturing method
JP2008293681A (en) * 2007-05-22 2008-12-04 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2009153962A1 (en) * 2008-06-17 2009-12-23 パナソニック株式会社 Secondary cell manufacturing method and secondary cell
WO2011125151A1 (en) * 2010-04-02 2011-10-13 トヨタ自動車株式会社 Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
CN102893428A (en) * 2010-04-02 2013-01-23 丰田自动车株式会社 Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
JPWO2011125151A1 (en) * 2010-04-02 2013-07-08 トヨタ自動車株式会社 Multilayer electrode body type battery, method for manufacturing the same, vehicle and equipment
CN102893428B (en) * 2010-04-02 2015-03-25 丰田自动车株式会社 Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
US9034500B2 (en) 2010-04-02 2015-05-19 Toyota Jidosha Kabushiki Kaisha Laminated electrode-type battery, manufacturing method therefor, vehicle, and device

Also Published As

Publication number Publication date
JP4318905B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP6696692B2 (en) Electrodes, non-aqueous electrolyte batteries, battery packs and vehicles
JP4927064B2 (en) Secondary battery
JP5257700B2 (en) Lithium secondary battery
JP5100082B2 (en) Flat battery
JP2010244930A (en) Method for manufacturing laminated battery
JP3403678B2 (en) Method for producing lithium secondary battery and wound electrode body
JP2008243672A (en) Winding electrode for secondary battery, lithium-ion secondary battery, and secondary battery pack
JP2003208924A (en) Lithium secondary battery
JP2002170567A (en) Nonaqueous electrolyte cell
JP2009054480A (en) Nonaqueous electrolyte battery and battery pack
JP4532066B2 (en) Lithium secondary battery
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP4318905B2 (en) Lithium secondary battery
JP4805545B2 (en) Lithium secondary battery
JP4326818B2 (en) Lithium secondary battery and manufacturing method thereof
JP2000243427A (en) Solid electrolyte cell and its manufacture
JP2004247192A (en) Lithium secondary battery
JP2011108538A (en) Laminate battery
JP3394484B2 (en) Lithium secondary battery and design method thereof
JP2004288405A (en) Lithium secondary battery
KR101744382B1 (en) Electrode lead for secondary battery and secondary battery comprising the same
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery
JP2004253252A (en) Lithium secondary battery
JP2000294202A (en) Thin battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees