JP2004156957A - Temperature sensor device and turning device with the same - Google Patents

Temperature sensor device and turning device with the same Download PDF

Info

Publication number
JP2004156957A
JP2004156957A JP2002321302A JP2002321302A JP2004156957A JP 2004156957 A JP2004156957 A JP 2004156957A JP 2002321302 A JP2002321302 A JP 2002321302A JP 2002321302 A JP2002321302 A JP 2002321302A JP 2004156957 A JP2004156957 A JP 2004156957A
Authority
JP
Japan
Prior art keywords
temperature
detection element
temperature measurement
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002321302A
Other languages
Japanese (ja)
Inventor
Koichi Morita
耕一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002321302A priority Critical patent/JP2004156957A/en
Publication of JP2004156957A publication Critical patent/JP2004156957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature sensor device which enables an accurate temperature measurement by reducing self heat generation of a temperature detecting element so as to enable suitable abnormality diagnostic operation for a bearing part, and can realize the highly precise abnormality monitoring for the bearing part, and provide a turning device with the temperature sensor device. <P>SOLUTION: In order that a current for temperature measurement may flow in a temperature detecting element (101) for a short period, a control part (123) controls a switch part (122) in such a manner that short time switching from a standby voltage to a voltage for temperature measurement and switching from the voltage for temperature measurement to the standby voltage are performed in a short period, thereby executing the temperature measurement while restraining the self heat generation of the temperature detecting element (101). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、転がり軸受装置、直動装置、等の転動装置の運転状態を検知できる温度センサ装置および該温度センサ装置付き転動装置に関し、より詳細には、転動装置における転動体を有する軸受部の温度を検出して当該検出された温度を基に軸受部の焼き付きや剥離等の異常を判定でき、これにより、例えば、航空機、鉄道車両、自動車、搬送車、等の移動体における車軸用転動装置や、重要機械設備における転動装置、等といった高い信頼性が要求される転動装置の予防保全をも実現できる温度センサ装置および該温度センサ装置付き転動装置に関する。
【0002】
【従来の技術】
例えば、転がり軸受装置の軸受部は、回転軸とハウジングとの間、即ち、一方の構成要素が他方の構成要素に対して回転するような当該構成要素間の摩擦を減少させるために軌道輪上の軌道に沿って転動する転動体を有する。また、転動体および軌道を埃、水、等から保護するため、一般的に、シールが軸受部の端部に嵌合されている。それ故、転がり軸受装置の重要な箇所の表面は露出されておらず、軸受部を据え付け先から外して分解しないと直接検査することができない。
【0003】
ハウジング内または回転軸上で転動体が軌道輪をスリップするとき、通常、軸受部の中の温度はスリップが生じた箇所での高い摩擦によって上昇する。例えば転動体がその回転を軌道輪の間でくさび等により止められたときのスリップは極端な焼き付きや剥離などを生じさせる。よって、軸受部からの熱の検出は当該軸受部の異常を検知する上で有用な異常診断手段(即ち、異常診断方法)である。
そのような軸受部の異常を検出できる温度センサ装置付き転動装置は既に知られている(例えば、特許文献1および特許文献2参照)。
【0004】
【特許文献1】
特表2001−500597号公報(第7〜12頁、図3)
【特許文献2】
特開2000−43723号公報(第3〜4頁、図3)
【0005】
図8は、特許文献1で開示されている温度センサ装置付き転動装置300を示す断面図であり、温度センサ等のセンサ群を内蔵したセンサモジュール301が直接転動装置300内部の温度、振動、等を検出できるように軸受部近傍に取付けられていることが示されている。図9は、特許文献2で開示されている温度センサ装置付き転動装置400を示す断面図であり、温度センサ417等を内蔵したセンサハウジング416が直接転動装置400内部の状態を検知できるようにシールケース410を介して転動体436の近傍に配置されていることが示されている。
【0006】
前述のような従来の温度センサ装置付き転動装置においては、一般的に、温度センサとして例えば、サーミスタ、シリコンサーミスタ、測温抵抗体、金属箔抵抗器、等といった、温度に応じて電気抵抗値の変化する温度検出素子が用いられ、そして当該温度センサが組み込まれた例えば図10に示されるような異常診断回路を有する温度センサ装置を用いて軸受部の温度が検出される。
【0007】
図10に示される転動装置Xは、転がり軸受装置であり、軸5を回転自在に支持する軸受部1と、該軸受部1が固定されるハウジング6と、を備える。軸受部1は、軸5に外嵌する内輪2と、ハウジング6に内嵌し、径方向に内輪2と対向するように配置される外輪3と、保持器(不図示)により内輪2と外輪3との間に転動可能に配置された転動体(玉またはころ)4と、を有している。温度センサ装置105は、前述のような温度検出素子101を内蔵したセンサユニット100と、制御ユニット103と、を備える。センサユニット100は、その温度検出素子101が転動装置Xの軸受部1上または近傍に配置されるように、転動装置Xのハウジング6に取付けられている。
【0008】
温度センサ装置105では、センサユニット100がケーブル102により制御ユニット103に電気的に接続されており、制御ユニット103から入力側ケーブル102aを介してセンサユニット100の温度検出素子101に供給電圧Vsが印加され、そして出力側ケーブル102bとグランド(アース)Gとの間に電気的に接続された抵抗器104(抵抗値=R1)の両端に生じる出力電圧Vtが制御ユニット103により測定されるようになっている。この出力電圧Vtの測定によって、制御ユニット103は、温度検出素子101による検出温度が所定の閾値を越えると、軸受部1の焼き付きや剥離などの異常が生じたものと判定できるように構成されている。
【0009】
図11は、温度センサ装置105の電源投入(即ち、電源ON)により供給電圧Vsが温度検出素子101に印加された際に制御ユニット103により検出される出力電圧Vtと時間tとの関係(但し、供給電圧Vsを一定、そして軸受部1から検出される温度を一定としたときの関係)を示す特性図である。電源ON後、温度検出素子101自体の温度は、自己発熱により所定の期間徐々に上昇し続け、該所定の期間経過後は一定となる。図11に示されるように、出力電圧Vtは、電源ON後、所定の期間(この特性例では3分間)徐々に高くなり、該所定の期間経過後は一定となっている。
【0010】
即ち、温度検出素子101は、その抵抗値Rtが温度上昇によって小さくなる温度特性を有している。一方、温度上昇により抵抗値Rtが大きくなる温度検出素子を用いた場合、出力電圧Vtが小さくなることは言うまでもない。制御ユニット103は、出力電圧Vtの値が、所定の温度閾値に対応させて予め設定された出力電圧閾値よりも高いか若しくは低いかを判定して、軸受部1の異常を判定できる。尚、温度検出素子101の自己発熱を0(ゼロ)と仮定したときの出力電圧Vtが図11に一点鎖線で示されている。
【0011】
ところで、前述のVt、Rt、R1およびVsには、Vt=(R1/(Rt+R1))×Vsといった関係式が成り立つ。それ故、出力電圧Vtに対する制御ユニット103の感度を高める(換言すれば、1℃当たりの出力電圧Vtの変化を大きくする)には、供給電圧Vsを大きくして、温度検出素子101に流れる電流を大きくする必要がある。
【0012】
【発明が解決しようとする課題】
しかしながら、流れる電流が増大すると温度検出素子101の自己発熱が大きくなり、温度センサ装置105による正確な温度測定ができなくなる。よって、温度センサ装置105は、適確な異常診断動作を行なえず、軸受部1のための異常監視動作を低い精度で行なうこととなる。
【0013】
本発明は、前述した課題に鑑みてなされたものであり、その目的は、軸受部のための適確な異常診断動作が行なえるように温度検出素子の自己発熱を小さく抑えることによって正確な温度測定を可能にし、軸受部のための高精度な異常監視を実現できる温度センサ装置および該温度センサ装置付き転動装置を提供することにある。
【0014】
【課題を解決するための手段】
前述した目的を達成するために、本発明の温度センサ装置は、請求項1に記載したように、
温度に応じて電気抵抗値が変化する温度検出素子または当該温度検出素子を含む回路に定電圧または定電流を印加して、温度変化に応じて出力される電流または電圧を検出することによって温度測定を行なう温度センサ装置であって、
温度測定を行なう時のみの短時間だけに定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加し、それ以外の時は当該定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加しないか又は当該定電圧または定電流よりも小さい値の電圧または電流を前記温度検出素子または前記温度検出素子を含む回路に印加して、前記温度検出素子の発熱を抑制することによって、当該温度検出素子自体の温度上昇を防ぎ、それにより温度測定の誤差を小さくしたことを特徴としている。
【0015】
また、前述した目的を達成するために、本発明の温度センサ装置付き転動装置は、請求項2に記載したように、
軸受部、および当該軸受部の温度に応じて電気抵抗値が変化する温度検出素子または当該温度検出素子を含む回路に定電圧または定電流を印加して、温度変化に応じて出力される電流または電圧を検出することによって温度測定を行なう温度センサ装置を有する転動装置であって、
温度測定を行なう時のみの短時間だけに定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加し、それ以外の時は当該定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加しないか又は当該定電圧または定電流よりも小さい値の電圧または電流を前記温度検出素子または前記温度検出素子を含む回路に印加して、前記温度検出素子の発熱を抑制することによって、当該温度検出素子自体の温度上昇を防ぎ、それにより温度測定の誤差を小さくしたことを特徴としている。
【0016】
請求項1および請求項2に記載の発明においては、温度測定を行なう時のみの短時間だけに定電圧または定電流を温度検出素子または当該温度検出素子を含む回路に印加し、それ以外の時は当該定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加しないか又は当該定電圧または定電流よりも小さい値の電圧または電流を前記温度検出素子または前記温度検出素子を含む回路に印加して、前記温度検出素子の発熱を抑制することによって、当該温度検出素子自体の温度上昇を防ぎ、それにより温度測定の誤差を小さくする。即ち、温度検出素子に短時間だけ電流を流してその間に温度測定が行なわれるので、例え温度検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、これにより高精度な異常監視を実現できる。
【0017】
また、前述した目的を達成するために、本発明の温度センサ装置は、請求項3に記載したように、
温度に応じて電気抵抗値が変化する温度検出素子と、
定電圧電源と、
前記定電圧電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電圧の温度測定用電圧を、そして非温度測定時には前記温度測定用電圧よりも低い電圧値から0(ゼロ)ボルトの範囲における値の待機用電圧を印可するスイッチ部と、
前記温度検出素子に印加される電圧を前記温度測定用電圧または前記待機用電圧に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電圧を印加させている際に当該温度検出素子に流れる温度測定用電流を基に温度を判定する制御部と、
を備える温度センサ装置であって、
前記温度検出素子に前記温度測定用電流が短時間だけ流れるように、前記制御部が、前記待機用電圧から前記温度測定用電圧そして当該温度測定用電圧から前記待機用電圧へと短時間に切換わるように前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴としている。
【0018】
請求項3に記載の発明によれば、温度検出素子に温度測定用電流が短時間だけ流れるように、制御部が、待機用電圧から温度測定用電圧そして当該温度測定用電圧から待機用電圧へと温度検出素子に印加される電圧を短時間に切換わるように制御して、当該温度測定用電圧が温度検出素子に印加されている短時間の間に当該温度検出素子に流れる温度測定用電流を基に温度を判定する。即ち、温度検出素子に短時間だけ電流を流してその間に温度測定が行なわれるので、例え制御部の電流(または電圧)検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、これにより高精度な異常監視を実現できる。
【0019】
また、前述した目的を達成するために、本発明の温度センサ装置は、請求項4に記載したように、
温度に応じて電気抵抗値が変化する温度検出素子と、
定電流電源と、
前記定電流電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電流の温度測定用電流を、そして非温度測定時には前記温度測定用電流よりも低い電流値から0(ゼロ)アンペアの範囲における値の待機用電流を流すスイッチ部と、
前記温度検出素子に流される電流を前記温度測定用電流または前記待機用電流に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電流を流させている際に当該温度検出素子に印加される温度測定用電圧を基に温度を判定する制御部と、
を備える温度センサ装置であって、
温度測定時に前記温度検出素子に流れる電流が前記待機用電流から前記温度測定用電流そして当該温度測定用電流から前記待機用電流へと短時間に切換わるように前記制御部が前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴としている。
【0020】
請求項4に記載の発明によれば、温度測定時に温度検出素子に流れる電流が待機用電流から温度測定用電流そして温度測定用電流から待機用電流へと短時間に切換わるように制御部が制御して、当該温度測定用電流が温度検出素子に流れている短時間の間に当該温度検出素子に印加される温度測定用電圧を基に制御部が温度を判定する。即ち、温度検出素子に短時間だけ電流を流してその間に温度測定が行なわれるので、例え制御部の電圧検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、これにより高精度な異常監視を実現できる。
【0021】
また、前述した目的を達成するために、本発明の温度センサ装置付き転動装置は、請求項5に記載したように、軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置され、温度に応じて電気抵抗値が変化する温度検出素子と、
定電圧電源と、
前記定電圧電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電圧の温度測定用電圧を、そして非温度測定時には前記温度測定用電圧よりも低い電圧値から0(ゼロ)ボルトの範囲における値の待機用電圧を印可するスイッチ部と、
前記温度検出素子に印加される電圧を前記温度測定用電圧または前記待機用電圧に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電圧を印加させている際に当該温度検出素子に流れる温度測定用電流を基に温度を判定する制御部と、
を備え、
前記温度検出素子に前記温度測定用電流が短時間だけ流れるように、前記制御部が、前記待機用電圧から前記温度測定用電圧そして当該温度測定用電圧から前記待機用電圧へと短時間に切換わるように前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴としている。
【0022】
請求項5に記載の発明によれば、温度検出素子に温度測定用電流が短時間だけ流れるように、制御部が、待機用電圧から温度測定用電圧そして当該温度測定用電圧から待機用電圧へと温度検出素子に印加される電圧が短時間に切換わるように制御して、当該温度測定用電圧が温度検出素子に印加されている短時間の間に当該温度検出素子に流れる温度測定用電流を基に温度を判定する。即ち、温度検出素子に短時間だけ電流を流してその間に軸受部の温度測定が行なわれるので、例え制御部の電流(または電圧)検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な軸受部の温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、軸受部のための高精度な異常監視を実現できる。
【0023】
また、本発明の温度センサ装置付き転動装置は、請求項6に記載したように、請求項5に記載の前記温度センサ装置が、前記軸受部の回転速度を検出するための回転検出素子および前記軸受部の振動の大きさを検出するための振動検出素子の少なくとも一方を更に備えており、
前記制御部が、前記回転検出素子の回転速度検出によって得られた電気信号および/または前記振動検出素子の振動検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴としている。
【0024】
請求項6に記載の発明によれば、温度センサ装置が、軸受部の回転速度を検出するための回転検出素子および軸受部の振動の大きさを検出するための振動検出素子の少なくとも一方を更に備えており、制御部が、回転検出素子の回転速度検出によって得られた電気信号および/または振動検出素子の振動検出によって得られた電気信号を基に軸受部の動作状況を判定し、当該判定した軸受部の動作状況に応じて温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させる。よって、軸受部の回転速度の変化が小さいときや軸受部の振動の変化が小さいときは、異常診断において重要度が低いため、温度センサ装置によって温度測定動作が適当に長い周期(例えば、10分間隔)で行なわれるようにし、そして軸受部の回転速度の変化が大きいときや軸受部の振動の変化が大きいときは、異常診断において重要度が高いため、温度センサ装置によって温度測定動作が適当に短い周期(例えば、10秒間隔)で行なわれるようにすることができる。このように、回転検出素子を用いた軸受部動作状況判定動作および/または振動検出素子を用いた軸受部動作状況判定動作と、温度検出素子を用いた温度測定動作と、を連動させることで、温度センサ装置による軸受部のための高精度な異常監視動作を実現できる。
【0025】
また、本発明の温度センサ装置付き転動装置は、請求項7に記載したように、請求項5または請求項6に記載の前記転動装置が、軸を回転自在に支持する前記軸受部を備えた転がり軸受装置であることを特徴としている。
【0026】
請求項7に記載の発明によれば、前記転動装置が転がり軸受装置であるので、当該転がり軸受装置の軸受部のための高精度な異常監視を実現できる。
【0027】
また、本発明の温度センサ装置付き転動装置は、請求項8に記載したように、請求項5または請求項6に記載の前記転動装置が、直動運動する軸を支持する前記軸受部を備えた直動装置であることを特徴としている。
【0028】
請求項8に記載の発明によれば、前記転動装置が直動装置であるので、当該直動装置の軸受部のための高精度な異常監視を実現できる。
【0029】
また、前述した目的を達成するために、本発明の温度センサ装置付き転動装置は、請求項9に記載したように、軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置され、温度に応じて電気抵抗値が変化する温度検出素子と、
定電流電源と、
前記定電流電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電流の温度測定用電流を、そして非温度測定時には前記温度測定用電流よりも低い電流値から0(ゼロ)アンペアの範囲における値の待機用電流を流すスイッチ部と、
前記温度検出素子に流される電流を前記温度測定用電流または前記待機用電流に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電流を流させている際に当該温度検出素子に印加される温度測定用電圧を基に温度を判定する制御部と、
を備え、
温度測定時に前記温度検出素子に流れる電流が前記待機用電流から前記温度測定用電流そして当該温度測定用電流から前記待機用電流へと短時間に切換わるように前記制御部が前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴としている。
【0030】
請求項9に記載の発明によれば、温度測定時に温度検出素子に流れる電流が待機用電流から温度測定用電流そして温度測定用電流から待機用電流へと短時間に切換わるように制御部が制御して、当該温度測定用電流が温度検出素子に流れている短時間の間に当該温度検出素子に印加される温度測定用電圧を基に制御部が温度を判定する。即ち、温度検出素子に短時間だけ電流を流してその間に軸受部の温度測定が行なわれるので、例え制御部の電圧検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な軸受部の温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、軸受部のための高精度な異常監視を実現できる。
【0031】
また、本発明の温度センサ装置付き転動装置は、請求項10に記載したように、請求項9に記載の前記温度センサ装置が、前記軸受部の回転速度を検出するための回転検出素子および前記軸受部の振動の大きさを検出するための振動検出素子の少なくとも一方を更に備えており、
前記制御部が、前記回転検出素子の回転速度検出によって得られた電気信号および/または前記振動検出素子の振動検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴としている。
【0032】
請求項10に記載の発明によれば、温度センサ装置が、軸受部の回転速度を検出するための回転検出素子および軸受部の振動の大きさを検出するための振動検出素子の少なくとも一方を更に備えており、制御部が、回転検出素子の回転速度検出によって得られた電気信号および/または振動検出素子の振動検出によって得られた電気信号を基に軸受部の動作状況を判定し、当該判定した軸受部の動作状況に応じて温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させる。よって、軸受部の回転速度の変化が小さいときや軸受部の振動の変化が小さいときは、異常診断において重要度が低いため、温度センサ装置によって温度測定動作が適当に長い周期(例えば、10分間隔)で行なわれるようにし、そして軸受部の回転速度の変化が大きいときや軸受部の振動の変化が大きいときは、異常診断において重要度が高いため、温度センサ装置によって温度測定動作が適当に短い周期(例えば、10秒間隔)で行なわれるようにすることができる。このように、回転検出素子を用いた軸受部動作状況判定動作および/または振動検出素子を用いた軸受部動作状況判定動作と、温度検出素子を用いた温度測定動作と、を連動させることで、温度センサ装置による軸受部のための高精度な異常監視動作を実現できる。
【0033】
また、本発明の温度センサ装置付き転動装置は、請求項11に記載したように、請求項9または請求項10に記載の前記転動装置が、軸を回転自在に支持する前記軸受部を備えた転がり軸受装置であることを特徴としている。
【0034】
請求項11に記載の発明によれば、前記転動装置が転がり軸受装置であるので、当該転がり軸受装置の軸受部のための高精度な異常監視を実現できる。
【0035】
また、本発明の温度センサ装置付き転動装置は、請求項12に記載したように、請求項9または請求項10に記載の前記転動装置が、直動運動する軸を支持する前記軸受部を備えた直動装置であることを特徴としている。
【0036】
請求項12に記載の発明によれば、前記転動装置が直動装置であるので、当該直動装置の軸受部のための高精度な異常監視を実現できる。
【0037】
また、前述した目的を達成するために、本発明の温度センサ装置付き転動装置は、請求項13に記載したように、軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置された温度検出素子と、
前記温度検出素子に温度測定用電流が短時間だけ流れるように制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行する制御部と、
前記軸受部の回転速度を検出するために配置された回転検出素子と、を備え、
前記制御部が、前記回転検出素子の回転速度検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴としている。
【0038】
請求項13に記載の発明によれば、制御部が、温度検出素子に温度測定用電流が短時間だけ流れるように制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行する。即ち、温度検出素子に短時間だけ電流を流してその間に軸受部の温度測定が行なわれるので、例え制御部の電流(または電圧)検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な軸受部の温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、軸受部のための高精度な異常監視を実現できる。また、温度センサ装置は、軸受部の回転速度を検出するための回転検出素子を備えており、制御部が、回転検出素子の回転速度検出によって得られた電気信号を基に軸受部の動作状況を判定し、当該判定した軸受部の動作状況に応じて温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させる。よって、軸受部の回転速度の変化が小さいときは、異常診断において重要度が低いため、温度センサ装置によって温度測定動作が適当に長い周期(例えば、10分間隔)で行なわれるようにし、そして軸受部の回転速度の変化が大きいときは、異常診断において重要度が高いため、温度センサ装置によって温度測定動作が適当に短い周期(例えば、10秒間隔)で行なわれるようにすることができる。このように、回転検出素子を用いた軸受部動作状況判定動作と、温度検出素子を用いた温度測定動作と、を連動させることで、温度センサ装置による軸受部のための高精度な異常監視動作を実現できる。
【0039】
また、前述した目的を達成するために、本発明の温度センサ装置付き転動装置は、請求項14に記載したように、軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置された温度検出素子と、
前記温度検出素子に温度測定用電流が短時間だけ流れるように制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行する制御部と、
前記軸受部の振動の大きさを検出するために配置された振動検出素子と、
を備え、
前記制御部が、前記振動検出素子の振動検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴としている。
【0040】
請求項14に記載の発明によれば、制御部が、温度検出素子に温度測定用電流が短時間だけ流れるように制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行する。即ち、温度検出素子に短時間だけ電流を流してその間に軸受部の温度測定が行なわれるので、例え制御部の電流(または電圧)検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な軸受部の温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、軸受部のための高精度な異常監視を実現できる。また、温度センサ装置は、軸受部の振動の大きさを検出するための振動検出素子を備えており、制御部が、振動検出素子の振動検出によって得られた電気信号を基に軸受部の動作状況を判定し、当該判定した軸受部の動作状況に応じて温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させる。よって、軸受部の振動の変化が小さいときは、異常診断において重要度が低いため、温度センサ装置によって温度測定動作が適当に長い周期(例えば、10分間隔)で行なわれるようにし、そして軸受部の振動の変化が大きいときは、異常診断において重要度が高いため、温度センサ装置によって温度測定動作が適当に短い周期(例えば、10秒間隔)で行なわれるようにすることができる。このように、振動検出素子を用いた軸受部動作状況判定動作と、温度検出素子を用いた温度測定動作と、を連動させることで、温度センサ装置による軸受部のための高精度な異常監視動作を実現できる。
【0041】
尚、温度検出素子に流れる電流をI、温度検出素子の抵抗値をRt、そして温度検出素子に電流を流す時間(換言すれば、温度検出素子に電圧を印加する時間)をΔtとしたとき、温度検出素子自体の発熱量(即ち、自己発熱量)Qは、
Q=I×Rt×Δtという関係式で導くことができる。
【0042】
この関係式から短時間だけ温度検出素子に電流を流すことにより、温度検出素子自体の発熱量Qを低下させることが可能であることが分かる。従って、温度検出素子の自己発熱による温度測定誤差を小さくできる。また、この関係式から、発熱量Qを一定にして通電時間Δtを短くすることにより、電流Iを大きくすることが可能なことも理解される。よって、電流Iを大きくすることにより、温度センサ装置の温度検出感度(即ち、電流検出感度または電圧検出感度)が向上するので、検出精度の向上および当該検出における耐ノイズ性の向上を図ることができる。
【0043】
以上、本発明について簡潔に説明した。更に、以下に説明される発明の実施の形態を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。
【0044】
【発明の実施の形態】
以下、本発明に係る複数の好適な実施形態を図面に基づき詳細に説明する。尚、本発明の各実施形態において、既に図10を参照して説明された構成要素と同様なものについては同一符号を付して説明を簡略化または省略する。
【0045】
(第1実施形態)
図1は、本発明に係る温度センサ装置付き転動装置の第1実施形態のシステムブロック図である。図1に示されるように、温度センサ装置130は、温度検出素子101を内蔵したセンサユニット100と、制御ユニット120と、を備える。センサユニット100は、その温度検出素子101が転動装置Xの軸受部1上または近傍に配置されるように、転動装置Xのハウジング6に取付けられている。温度センサ装置130では、センサユニット100がケーブル102により制御ユニット120と電気的に接続されている。
【0046】
制御ユニット120は、供給電圧Vsを出力する定電圧電源121と、温度検出素子101への電圧の印可を制御するために設けられたスイッチ部122と、該スイッチ部122を制御し且つ、温度測定時に温度検出素子101に流れる温度測定用電流を基に温度を判定する制御部123と、表示器126と、警報器127と、を備えている。
【0047】
定電圧電源121は負荷変動に関わらず定電圧(即ち、電圧値一定)の供給電圧Vsを出力する能力を持つ。スイッチ部122は、この定電圧電源121から電源供給を受けて、温度測定時には定電圧の温度測定用電圧を、そして非温度測定時には該温度測定用電圧よりも低い電圧値から0(ゼロ)ボルトの範囲における値の待機用電圧を温度検出素子101に印可するように、制御部123によって切換え制御される。
【0048】
スイッチ部122の例としては、トランジスタ、FET、アナログスイッチ、フォトMOSリレー、等の半導体スイッチや、その他接点式、水銀スイッチ式、等のメカニカル・リレー、等が挙げられる。本実施形態では、温度測定時にスイッチ部122は温度測定用電圧として供給電圧Vsを入力側ケーブル102aを介してセンサユニット100の温度検出素子101に印可する。
【0049】
制御部123は、抵抗器104と、A/D変換器124と、マイコン(即ち、マイクロコンピュータ)125と、を備えている。抵抗器104は、出力側ケーブル102bとグランド(アース)Gとの間に電気的に接続され、温度検出素子101に流れる電流を出力電圧Vtに変換する。A/D変換器124は、該出力電圧Vtをデジタル信号に変換する。マイコン125は、A/D変換器124からのデジタル信号を基に温度を判定する。尚、図1に示されるように、温度検出素子101に流れる電流を検出する電流検出器104aを温度検出素子101と抵抗器104との間に設けて、出力電圧Vtの代わりに電流検出器104aの出力をA/D変換器124を介してマイコン125に入力して当該マイコン125に温度を判定させるようにしてもよい。
【0050】
マイコン125は、制御信号CS1によって温度検出素子101に印加される電圧を温度測定用電圧または待機用電圧に切換える。制御部123(マイコン125)は、スイッチ部122から温度検出素子101に温度測定用電圧を印加させている際に当該温度検出素子101に流れる温度測定用電流を基に温度を判定する(即ち、温度検出素子101に流れる温度測定用電流を抵抗器104によって出力電圧Vtに変換して温度を判定する)。また、マイコン125は、温度検出素子101による検出温度が所定の閾値を越えると軸受部1の焼き付きや剥離などの異常が生じたものと判定できるように構成されており、検出温度等、軸受部1の動作状況を表示器126で表示したり、軸受部1の異常を警報器127から警報したりすることができる。
【0051】
そしてマイコン125は、温度検出素子101に温度測定用電流が短時間だけ流れるように、待機用電圧から温度測定用電圧そして当該温度測定用電圧から待機用電圧へと短時間に切換わるようにスイッチ部122を制御して、温度検出素子101の自己発熱を抑制しながら温度測定を実行する。従って、マイコン125による適確な異常診断動作を実現でき、これにより軸受部1のための高精度な異常監視が実現できる。
【0052】
図2は、温度測定用電流が温度検出素子101に短時間だけ流れるように、マイコン125の制御によってスイッチ部122が待機用電圧(OFF)から温度測定用電圧(ON)そして当該温度測定用電圧(ON)から待機用電圧(OFF)へと短時間に電圧を切換えた例を示すタイミングチャートである。図2に示される例では、温度測定時にスイッチ部122を例えば10ミリ秒といった短時間だけON動作させて電源電圧Vsの供給を行なっている。そして、この期間内で出力電圧Vtが安定した後に、当該出力電圧VtをA/D変換器124でデジタル信号に変換し、当該デジタル信号をマイコン125に入力して、温度の測定が実行される。
【0053】
図3は、図2の例と同条件のときの出力電圧Vtと時間tとの関係(但し、軸受部1から検出される温度を一定としたときの関係)を示す特性図である。尚、図3に示されるように、出力電圧Vtの特性に遅れがあり、オーバシュートが生ずる場合もあるので、例えば最初の1ミリ秒程度の立上がり期間経過後の安定した期間で出力電圧Vtの検出を行なうことが望ましい。このように、短時間の通電であるため、温度検出素子101の発熱量が小さく、図11に示される従来の連続通電の場合と比較すると、出力電圧Vtの特性は平坦であり、温度検出素子101の発熱による影響は回避されている。尚、出力電圧Vtが安定するまでの立上がり期間は、ケーブル102の長さ(即ち、電気抵抗、インダクタンスおよび静電容量)、温度検出素子101の電気抵抗、ならびに温度測定用電流により異なる。この期間経過後、出力電圧Vtが安定してから、出力電圧Vt若しくは出力電流を検出するとよい。
【0054】
この温度測定動作は、定期的に10秒間隔や10分間隔等に設定して行なっても良いし、必要なときのみ、随時行なってもよい。また、温度検出素子101の放熱環境(温度検出素子101の使用状況、取り付け対象物の熱容量、取り付け状態、センサユニット100の外気温や風の当たり具合、等)によっては、例えスイッチ部122を1秒間以上ONする場合であっても、10分間隔等の長い測定周期で温度測定動作を行なえば、温度検出素子101自体の温度上昇を小さくでき、精度良く測定することができる。その他、スイッチ部122を例えば1秒間ONしている間に複数回検出を行ない、検出結果を平均化する等の方法で、測定の精度と信頼性を向上させてもよい。即ち、温度検出素子101の通電時間とその周期は放熱環境に応じて適当な値に設定すればよい。
【0055】
尚、供給電圧Vsを大きくすること等で温度検出素子101に(短時間で)流す温度測定用電流を大きくすることにより温度検出の感度を向上させ、検出精度の向上、耐ノイズ性の向上を図ることができる。よって、A/D変換器124の分解能も低くてよくなり、ノイズ対策部品等も少なくできてコストダウン効果も得られる。また、本実施形態では、温度検出素子101への電圧の印可を制御するためにスイッチ部122を設けているが、電源電圧Vsの大きさを制御できる回路であればよく、温度測定を行なわない時(即ち、非温度測定時)には、Vsを0(ゼロ)ボルトではなく、例えば、2ボルトと低くしても同様の効果が得られる。
【0056】
(第2実施形態)
図4は、本発明に係る温度センサ装置付き転動装置の第2実施形態のシステムブロック図である。尚、第2実施形態において、第1実施形態の構成要素と同様なものについては同一符号を付して説明を簡略化または省略する。図4に示されるように、温度センサ装置150は、センサユニット100と、制御ユニット140と、を備える。制御ユニット140は、スイッチ部122を前述のマイコン125と同様に制御するタイマー145と、前述のマイコン125と同様な動作・処理を行なうアナログまたはデジタル回路144と、を制御部143に備えている。その他構成要素は第1実施形態と同一である。
【0057】
このような第2実施形態によれば、第1実施形態と比較して、高価なA/D変換器124やマイコン125を用いずに済むので、コストを低減できる。
【0058】
(第3実施形態)
図5は、本発明に係る温度センサ装置付き転動装置の第3実施形態のシステムブロック図である。尚、第3実施形態において、第1実施形態の構成要素と同様なものについては同一符号を付して説明を簡略化または省略する。図5に示されるように、温度センサ装置170は、センサユニット100と、制御ユニット160と、を備える。
【0059】
制御ユニット160は、負荷変動に関わらず定電流(即ち、電流値一定の電流)を出力する能力を持つ定電流電源161と、温度検出素子101に流される電流を制御するために設けられたスイッチ部122と、該スイッチ部122を制御し且つ、温度測定時に温度検出素子101に印加される温度測定用電圧を基に温度を判定する制御部163と、を備えている。
【0060】
スイッチ部122は、定電流電源161から電源供給を受けて、温度測定時には定電流の温度測定用電流を、そして非温度測定時には該温度測定用電流よりも低い電流値から0(ゼロ)アンペアの範囲における値の待機用電流を温度検出素子101に流すように、制御部163によって切換え制御される。
【0061】
制御部163は、A/D変換器124と、マイコン125と、を備えているが、本実施形態では定電流電源161を用いているため、第1および第2実施形態のように出力電圧Vtを生じさせるための抵抗器104を備える必要がない。本実施形態では出力電圧Vtが、図5に示されるように、温度検出素子101への電流供給側、即ち、入力側ケーブル102aとスイッチ部122との間で検出される。A/D変換器124は、該出力電圧Vtをデジタル信号に変換する。マイコン125は、A/D変換器124からのデジタル信号を基に温度を判定する。
【0062】
マイコン125は、制御信号CS1によって温度検出素子101に流される電流を温度測定用電流または待機用電流に切換える。制御部163(マイコン125)は、スイッチ部122から温度検出素子101に温度測定用電流を流させている際に当該温度検出素子101に印加される温度測定用電圧(即ち、出力電圧Vt)を基に温度を判定する。また、マイコン125は、温度検出素子101による検出温度が所定の閾値を越えると軸受部1の焼き付きや剥離などの異常が生じたものと判定できるように構成されており、検出温度等、軸受部1の動作状況を表示器126で表示したり、軸受部1の異常を警報器127から警報したりすることができる。
【0063】
そしてマイコン125は、温度測定時に温度検出素子101に流れる電流が待機用電流から温度測定用電流そして当該温度測定用電流から待機用電流へと短時間に切換わるようにスイッチ部122を制御して、温度検出素子101の自己発熱を抑制しながら温度測定を実行する。従って、マイコン125による適確な異常診断動作を実現でき、これにより軸受部1のための高精度な異常監視が実現できる。
【0064】
尚、本実施形態で用いる温度検出素子101としては、既に例示したサーミスタ、シリコンサーミスタ、測温抵抗体、金属箔抵抗器、等の中でも特に、シリコンサーミスタ、測温抵抗体および金属箔抵抗器のように温度に対する抵抗値の変化率が一定でリニアな特性を持つものが望ましい。
【0065】
温度測定時には、マイコン125の制御によりスイッチ部122が例えば10ミリ秒といった短時間だけON動作させられて温度検出素子101への電流供給が行なわれる。そして、この期間内で出力電圧Vtが安定した後に、当該出力電圧VtをA/D変換器124でデジタル信号に変換し、当該デジタル信号をマイコン125に入力して、温度の測定が実行される。前述のように温度検出素子101が温度に対する抵抗値の変化率が一定でリニアな特性を持つものである場合、定電流電源161により定電流Iを流すと、この時の温度検出素子101の出力電圧VtはI×Rtとなるため、出力電圧Vtも変化率が一定でリニアな特性を持つ。このため、出力電圧Vtのリニアリティを改善するためにマイコン125がソフトウェアで処理を行なったり、或いは変換回路により補正する必要がないため、回路を簡単化でき、コストダウンが図れる。
【0066】
尚、第1実施形態から第3実施形態では、温度検出素子101を単体ではなく複数にして直列または並列に接続した形態でも同様な動作が得られる。また、温度検出素子101に単一または複数の固定抵抗を直列または並列に接続した形態でも同様な動作が得られる。尚、第1実施形態から第3実施形態(図1、図4および図5参照)において、スイッチ部122、定電圧電源121または定電流電源161、および制御部123,143,または163は、制御ユニット120,140,または160に設けられているが、センサユニット100内に設けることも可能である。
【0067】
(第4実施形態)
次に、本発明に係る温度センサ装置付き転動装置の第4実施形態について説明する。図6は本発明の第4実施形態である温度センサ装置付き転動装置200の構成を示す図である。本発明は、ボールねじ、リニアガイド、等のように直動運動する軸を支持する軸受部を備えた直動装置にも適用できる。図6は、CNC工作機械等の軸受部であるボールねじのナット部201に前述のセンサユニット100を取付けた構造を例示している。
【0068】
この場合もボールねじのナット部201にセンサユニット100を取付けて、当該センサユニット100を前述した第1実施形態〜第3実施形態のうちのいずれか一つの制御ユニットとケーブル102を介して接続する構成を採れば、ボールねじのナット部201の剥離等の異常を検知することが可能となる。尚、センサユニット100の取付部位はボールねじのナット部201に限らず、雄ねじを単純支持側でサポートしているサポートユニット部210や固定側でサポートしているサポートユニット部220の軸受部等に取付けても有効である。
【0069】
また、図示はしていないが、リニアガイドの場合も、リニアガイドの可動部やレールにセンサユニット100を取付けて、当該センサユニット100を前述した第1実施形態〜第3実施形態のうちのいずれか一つの制御ユニットとケーブル102を介して接続する構成を採れば、同様に剥離等の異常を検知することが可能となる。尚、図6において、符号230はロックナット、符号240はカップリング、符号250は駆動モータ、そして符号260はモータ取付け金具である。
【0070】
また、センサユニット100に回転検出素子および/または振動検出素子を内蔵させて使用してもよい。例えばセンサユニット100に回転検出素子を設けた場合、回転速度に応じ軸受部の異常判定のための温度の閾値を変更したりする等の方法を用いれば、更に高い精度で軸受部の異常判定を行なうことができる。また、例えばセンサユニット100に振動検出素子を設けた場合、振動の大きさと温度変化状況の両方を判断材料として軸受部の異常を判断する等の方法を用いれば、更に高い精度で軸受部の異常判定を行なうことができる。
【0071】
また、例えば回転検出素子と振動検出素子の両方をセンサユニット100に設けた場合には、回転速度と振動の大きさの両方を判断材料として軸受部の異常を判断することができるので、更に望ましい。更に、以下の変形例で述べるような方法を用いれば、回転検出素子を用いた軸受部動作状況判定動作および/または振動検出素子を用いた軸受部動作状況判定動作と、温度検出素子を用いた温度測定動作と、を連動させることで、温度センサ装置による軸受部のための高精度な異常監視動作を実現できる。
【0072】
(変形例)
図7は、本発明に係る温度センサ装置付き転動装置の変形例を示す図である。
この変形例は、第1実施形態〜第4実施形態各々の変形例であり、より詳細には、各実施形態におけるセンサユニット100に回転検出素子180および/または振動検出素子190を更に設けたものである。
【0073】
即ち、この変形例では、温度センサ装置が、軸受部の回転速度を検出するための回転検出素子180および軸受部の振動の大きさを検出するための振動検出素子190の少なくとも一方を更に備えている。制御部は、回転検出素子180の回転速度検出によって得られた電気信号および/または振動検出素子190の振動検出によって得られた電気信号を基に軸受部の動作状況を判定し、当該判定した軸受部の動作状況に応じて温度検出素子101による温度測定タイミングおよび温度測定周期を動的に変化させる。よって、軸受部の回転速度の変化が小さいときや軸受部の振動の変化が小さいときは、異常診断において重要度が低いため、温度センサ装置によって温度測定動作が適当に長い周期(例えば、10分間隔)で行なわれるようにし、そして軸受部の回転速度の変化が大きいときや軸受部の振動の変化が大きいときは、異常診断において重要度が高いため、温度センサ装置によって温度測定動作が適当に短い周期(例えば、10秒間隔)で行なわれるようにすることができる。このように、回転検出素子180を用いた軸受部動作状況判定動作および/または振動検出素子190を用いた軸受部動作状況判定動作と、温度検出素子101を用いた温度測定動作と、を連動させることで、温度センサ装置による軸受部のための高精度な異常監視動作を実現できる。
【0074】
例えば、鉄道車両の車軸用軸受装置、工作機械のスピンドル用軸受装置、直動装置、等の転動装置では、その軸受部の回転速度や作動速度を測定して、それらの測定値を軸受部からの検出温度と関連付けることによって、当該検出温度を基に軸受部が異常か正常かの判断をすることも可能である。また、回転速度を基に稼働装置の起動時および停止時は軸受部の温度を短い周期で測定し、定常運転に入った段階で長い周期の温度測定を行なうように設定してもよい。これは、例えば、鉄道車両の車軸用軸受装置に例をとると、発進時(起動時)および停止時に占める時間の割合が定常運転時に比較すれば僅かであるからである。定常運転時のトラブルは経時変化的なものが支配的なのに対して、起動時や停止時のように回転状態が大きく変化する場合には経時変化以外の要因でトラブルになる可能性が大きい。このことは、航空機が離着陸時に最もトラブルを起こし易いことからも裏付けられる。また、定常運転時の軸受部温度の変化が比較的小さいのに対して、起動時と停止時は回転速度の変化に伴って軸受部の温度が大きく変化する。
それ故、定格運転時は長い周期で温度を測定してもかなりの確率で異常検知が可能であるのに対して、起動時や停止時には瞬間的な変動が発生しやすいため、短い周期で温度測定を実施した方が安全である。長い周期で温度測定すべきか若しくは短い周期で温度測定すべきかについては軸受部の回転速度から判断することができる。尚、回転速度と振動とは略比例するので、振動検出素子を用いて測定した振動値を回転速度値の代わりに用いることもできる。また、回転角速度は振動に略比例するので、振動検出素子を用いて測定した振動の変化(振動値そのものでは無い)が小さい時は長い周期の温度測定を行ない、振動の変化が大きい時は短い周期の温度測定を行なうように動的な設定をするとよい。
【0075】
尚、本発明は、前述した各実施形態および変形例に限定されるものではなく、適宜、変形,改良,等が可能である。その他、前述した各実施形態および変形例における各構成要素の材質,形状,寸法,形態,数,配置個所,等は本発明を達成できるものであれば任意であり、限定されない。
【0076】
例えば、前述した第1実施形態から第3実施形態に係る軸受部1では、内輪2を回転軌道輪とし、外輪3を固定軌道輪としているが、外輪3を回転軌道輪とし、内輪2を固定軌道輪としてもよい。また、前述した第1実施形態から第3実施形態に係る軸受部1は複数の転動体4が内輪2と外輪3との間で周方向に転動自在に配設されたものであり、転動体4として玉ではなくころが用いられる場合は、保持器(不図示)を省略してもよい。
【0077】
【発明の効果】
以上、説明したように、本発明によれば、温度検出素子に温度測定用電流が短時間だけ流れるように、制御部が、待機用電圧から温度測定用電圧そして当該温度測定用電圧から待機用電圧へと温度検出素子に印加される電圧を短時間に切換わるように制御して、当該温度測定用電圧が温度検出素子に印加されている短時間の間に当該温度検出素子に流れる温度測定用電流を基に温度を判定する(即ち、例えば、温度検出素子に流れる温度測定用電流を抵抗器によって出力電圧に変換したり、直接、温度測定用電流を測定したりして、温度を判定する)。即ち、温度検出素子に短時間だけ電流を流してその間に温度測定が行なわれるので、例え制御部の電流(または電圧)検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、これにより高精度な異常監視を実現できる。
【0078】
また、本発明によれば、温度測定時に温度検出素子に流れる電流が待機用電流から温度測定用電流そして温度測定用電流から待機用電流へと短時間に切換わるように制御部が制御して、当該温度測定用電流が温度検出素子に流れている短時間の間に当該温度検出素子に印加される温度測定用電圧を基に制御部が温度を判定する。即ち、温度検出素子に短時間だけ電流を流してその間に温度測定が行なわれるので、例え制御部の電圧検出感度を高めるために温度検出素子に流す電流を大きくしたとしても当該温度検出素子自体の発熱量を低下させることができ、温度検出素子自体の温度上昇を小さく抑えて正確な温度測定が可能となる。従って、適確な異常診断動作を行なうことができ、これにより高精度な異常監視を実現できる。
【0079】
また、本発明によれば、温度センサ装置が、軸受部の回転速度を検出するための回転検出素子および軸受部の振動の大きさを検出するための振動検出素子の少なくとも一方を更に備えており、制御部が、回転検出素子の回転速度検出によって得られた電気信号および/または振動検出素子の振動検出によって得られた電気信号を基に軸受部の動作状況を判定し、当該判定した軸受部の動作状況に応じて温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させる。よって、軸受部の回転速度の変化が小さいときや軸受部の振動の変化が小さいときは、異常診断において重要度が低いため、温度センサ装置によって温度測定動作が適当に長い周期(例えば、10分間隔)で行なわれるようにし、そして軸受部の回転速度の変化が大きいときや軸受部の振動の変化が大きいときは、異常診断において重要度が高いため、温度センサ装置によって温度測定動作が適当に短い周期(例えば、10秒間隔)で行なわれるようにすることができる。このように、回転検出素子を用いた軸受部動作状況判定動作および/または振動検出素子を用いた軸受部動作状況判定動作と、温度検出素子を用いた温度測定動作と、を連動させることで、温度センサ装置による軸受部のための高精度な異常監視動作を実現できる。
【0080】
また、本発明によれば、前記転動装置が転がり軸受装置である場合は、当該転がり軸受装置の軸受部のための高精度な異常監視を実現できる。
【0081】
また、本発明によれば、前記転動装置が直動装置である場合は、当該直動装置の軸受部のための高精度な異常監視を実現できる。
【図面の簡単な説明】
【図1】本発明に係る温度センサ装置付き転動装置の第1実施形態のシステムブロック図である。
【図2】温度測定用電流が温度検出素子に短時間だけ流れるように、マイコンの制御によってスイッチ部が待機用電圧(OFF)から温度測定用電圧(ON)そして当該温度測定用電圧(ON)から待機用電圧(OFF)へと短時間に電圧を切換えた例を示すタイミングチャートである。
【図3】出力電圧Vtと時間tとの関係を示す特性図である。
【図4】本発明に係る温度センサ装置付き転動装置の第2実施形態のシステムブロック図である。
【図5】本発明に係る温度センサ装置付き転動装置の第3実施形態のシステムブロック図である。
【図6】本発明の第4実施形態である温度センサ装置付き転動装置の構成を示す図である。
【図7】本発明に係る温度センサ装置付き転動装置の変形例を示す図である。
【図8】特許文献1で開示されている温度センサ装置付き転動装置を示す断面図である。
【図9】特許文献2で開示されている温度センサ装置付き転動装置を示す断面図である。
【図10】温度検出素子を用いて軸受部の温度を検出する温度センサ装置付き転動装置を示す図である。
【図11】図10の温度センサ装置における出力電圧Vtと時間tとの関係を示す特性図である。
【符号の説明】
1 軸受部
101 温度検出素子
121 定電圧電源
122 スイッチ部
123,143,163 制御部
130,150,170 温度センサ装置
161 定電流電源
180 回転検出素子
190 振動検出素子
X 転動装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature sensor device that can detect the operating state of a rolling device such as a rolling bearing device and a linear motion device, and a rolling device with the temperature sensor device, and more particularly to a rolling device having a rolling element. An abnormality such as seizure or peeling of the bearing portion can be determined based on the detected temperature by detecting the temperature of the bearing portion, and thereby, for example, an axle in a moving body such as an aircraft, a railway vehicle, an automobile, a transport vehicle, etc. The present invention relates to a temperature sensor device capable of performing preventive maintenance of a rolling device requiring high reliability, such as a rolling device for use, a rolling device in important mechanical equipment, and the like, and a rolling device with the temperature sensor device.
[0002]
[Prior art]
For example, a bearing portion of a rolling bearing device is provided on a bearing ring to reduce friction between a rotating shaft and a housing, that is, one component rotates with respect to the other component. Rolling elements rolling along the orbit. Further, in order to protect the rolling elements and the track from dust, water, etc., a seal is generally fitted to the end of the bearing. Therefore, the surface of the important portion of the rolling bearing device is not exposed, and cannot be directly inspected unless the bearing portion is removed from the installation location and disassembled.
[0003]
When the rolling elements slip on the race in the housing or on the rotating shaft, the temperature in the bearing part usually rises due to the high friction at the point where the slip has occurred. For example, a slip when the rolling element is stopped from rotating by a wedge or the like between the races causes extreme seizure or peeling. Therefore, detection of heat from the bearing portion is an abnormality diagnosis means (that is, an abnormality diagnosis method) useful for detecting an abnormality of the bearing portion.
A rolling device with a temperature sensor device capable of detecting such an abnormality of a bearing portion is already known (for example, see Patent Documents 1 and 2).
[0004]
[Patent Document 1]
JP-T-2001-500977 (pages 7 to 12, FIG. 3)
[Patent Document 2]
JP 2000-43723 A (pages 3 and 4, FIG. 3)
[0005]
FIG. 8 is a cross-sectional view showing a rolling device 300 with a temperature sensor device disclosed in Patent Literature 1, in which a sensor module 301 having a built-in sensor group such as a temperature sensor directly controls temperature and vibration inside the rolling device 300. , Etc. are shown mounted near the bearing so that they can be detected. FIG. 9 is a cross-sectional view showing a rolling device 400 with a temperature sensor device disclosed in Patent Document 2. A sensor housing 416 having a built-in temperature sensor 417 and the like can directly detect a state inside the rolling device 400. 3 shows that it is disposed in the vicinity of the rolling element 436 via the seal case 410.
[0006]
In the conventional rolling device with a temperature sensor device as described above, generally, as a temperature sensor, for example, a thermistor, a silicon thermistor, a resistance temperature detector, a metal foil resistor, etc. The temperature of the bearing part is detected by using a temperature sensor device having an abnormality diagnosis circuit as shown in FIG. 10 in which the temperature sensor is incorporated, for example.
[0007]
The rolling device X shown in FIG. 10 is a rolling bearing device, and includes a bearing 1 that rotatably supports a shaft 5 and a housing 6 to which the bearing 1 is fixed. The bearing unit 1 includes an inner ring 2 fitted to the shaft 5, an outer ring 3 fitted to the housing 6 and arranged to face the inner ring 2 in the radial direction, and a inner ring 2 and an outer ring by a retainer (not shown). 3 and a rolling element (ball or roller) 4 that is arranged to be able to roll. The temperature sensor device 105 includes a sensor unit 100 including the above-described temperature detecting element 101 and a control unit 103. The sensor unit 100 is attached to the housing 6 of the rolling device X such that the temperature detecting element 101 is disposed on or near the bearing 1 of the rolling device X.
[0008]
In the temperature sensor device 105, the sensor unit 100 is electrically connected to the control unit 103 by the cable 102, and the supply voltage Vs is applied from the control unit 103 to the temperature detecting element 101 of the sensor unit 100 via the input side cable 102a. The control unit 103 measures an output voltage Vt generated at both ends of a resistor 104 (resistance = R1) electrically connected between the output side cable 102b and the ground (earth) G. ing. By measuring the output voltage Vt, the control unit 103 is configured so that when the temperature detected by the temperature detecting element 101 exceeds a predetermined threshold value, it can be determined that an abnormality such as burn-in or peeling of the bearing unit 1 has occurred. I have.
[0009]
FIG. 11 shows the relationship between the output voltage Vt detected by the control unit 103 and the time t when the supply voltage Vs is applied to the temperature detecting element 101 by turning on the power of the temperature sensor device 105 (that is, turning on the power). FIG. 4 is a characteristic diagram showing the relationship when the supply voltage Vs is constant and the temperature detected from the bearing unit 1 is constant. After the power is turned on, the temperature of the temperature detecting element 101 itself keeps gradually rising for a predetermined period due to self-heating, and becomes constant after the predetermined period elapses. As shown in FIG. 11, the output voltage Vt gradually increases for a predetermined period (3 minutes in this characteristic example) after the power is turned on, and is constant after the predetermined period has elapsed.
[0010]
That is, the temperature detecting element 101 has a temperature characteristic in which the resistance value Rt decreases as the temperature increases. On the other hand, when a temperature detecting element whose resistance value Rt increases due to a temperature rise is used, it goes without saying that the output voltage Vt decreases. The control unit 103 can determine whether the value of the output voltage Vt is higher or lower than a preset output voltage threshold corresponding to a predetermined temperature threshold, and thereby determine an abnormality of the bearing unit 1. Note that the output voltage Vt when the self-heating of the temperature detecting element 101 is assumed to be 0 (zero) is shown by a chain line in FIG.
[0011]
By the way, a relational expression of Vt = (R1 / (Rt + R1)) × Vs holds for the aforementioned Vt, Rt, R1 and Vs. Therefore, in order to increase the sensitivity of the control unit 103 to the output voltage Vt (in other words, to increase the change in the output voltage Vt per 1 ° C.), the supply voltage Vs is increased and the current flowing through the temperature detection element 101 is increased. Need to be larger.
[0012]
[Problems to be solved by the invention]
However, when the flowing current increases, self-heating of the temperature detecting element 101 increases, and accurate temperature measurement by the temperature sensor device 105 cannot be performed. Therefore, the temperature sensor device 105 cannot perform a proper abnormality diagnosis operation, and performs an abnormality monitoring operation for the bearing unit 1 with low accuracy.
[0013]
The present invention has been made in view of the above-described problem, and an object of the present invention is to provide an accurate temperature control by minimizing self-heating of a temperature detecting element so that a proper abnormality diagnosis operation for a bearing portion can be performed. It is an object of the present invention to provide a temperature sensor device that enables measurement and realizes highly accurate abnormality monitoring for a bearing portion, and a rolling device with the temperature sensor device.
[0014]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a temperature sensor device according to the present invention has the following features.
Temperature measurement by applying a constant voltage or constant current to a temperature detection element whose electrical resistance changes according to temperature or a circuit including the temperature detection element, and detecting a current or voltage output according to the temperature change A temperature sensor device for performing
Applying a constant voltage or constant current to the temperature detection element or a circuit including the temperature detection element only for a short time only when performing temperature measurement, and otherwise apply the constant voltage or constant current to the temperature detection element or By not applying to the circuit including the temperature detecting element or applying a voltage or current having a value smaller than the constant voltage or the constant current to the temperature detecting element or the circuit including the temperature detecting element, heat generation of the temperature detecting element is performed. , The temperature of the temperature detecting element itself is prevented from rising, thereby reducing an error in temperature measurement.
[0015]
Further, in order to achieve the above-described object, a rolling device with a temperature sensor device according to the present invention is configured as follows.
A constant voltage or constant current is applied to the bearing portion, and a temperature detecting element or a circuit including the temperature detecting element whose electric resistance value changes according to the temperature of the bearing portion, and a current or a current output according to the temperature change. A rolling device having a temperature sensor device that performs temperature measurement by detecting a voltage,
Applying a constant voltage or constant current to the temperature detection element or a circuit including the temperature detection element only for a short time only when performing temperature measurement, and otherwise apply the constant voltage or constant current to the temperature detection element or By not applying to the circuit including the temperature detecting element or applying a voltage or current having a value smaller than the constant voltage or the constant current to the temperature detecting element or the circuit including the temperature detecting element, heat generation of the temperature detecting element is performed. , The temperature of the temperature detecting element itself is prevented from rising, thereby reducing an error in temperature measurement.
[0016]
According to the first and second aspects of the present invention, a constant voltage or a constant current is applied to the temperature detecting element or the circuit including the temperature detecting element only for a short time only when the temperature is measured, and at other times, Do not apply the constant voltage or constant current to the temperature detection element or a circuit including the temperature detection element, or apply a voltage or current of a value smaller than the constant voltage or constant current to the temperature detection element or the temperature detection element. By applying heat to a circuit including the temperature detecting element, heat generation of the temperature detecting element is suppressed, thereby preventing a temperature rise of the temperature detecting element itself, thereby reducing an error in temperature measurement. That is, a current is passed through the temperature detecting element for a short time, and the temperature is measured during that time. Therefore, even if the current flowing through the temperature detecting element is increased to increase the temperature detection sensitivity, the amount of heat generated by the temperature detecting element itself is reduced. The temperature can be reduced, and the temperature rise of the temperature detecting element itself can be suppressed to a small value, and accurate temperature measurement can be performed. Therefore, it is possible to perform an appropriate abnormality diagnosis operation, thereby realizing highly accurate abnormality monitoring.
[0017]
In addition, in order to achieve the above-mentioned object, a temperature sensor device according to the present invention, as described in claim 3,
A temperature detecting element whose electric resistance changes according to the temperature,
A constant voltage power supply,
Upon receiving power supply from the constant voltage power supply, the temperature detecting element is supplied with a constant voltage for temperature measurement during temperature measurement, and 0 (zero) volts from a voltage value lower than the temperature measurement voltage during non-temperature measurement. A switch unit for applying a standby voltage having a value in the range of
A control signal for switching the voltage applied to the temperature detection element to the temperature measurement voltage or the standby voltage is output to the switch section, and the switch section applies the temperature measurement voltage to the temperature detection element. A control unit that determines a temperature based on a temperature measurement current flowing through the temperature detection element when
A temperature sensor device comprising:
The control unit switches the standby voltage from the standby voltage to the temperature measurement voltage and from the temperature measurement voltage to the standby voltage in a short time so that the temperature measurement current flows through the temperature detection element for a short time. The method is characterized in that the switch section is controlled so that the temperature measurement is executed while suppressing the self-heating of the temperature detecting element.
[0018]
According to the third aspect of the present invention, the control unit changes the voltage from the standby voltage to the voltage for temperature measurement and from the voltage for temperature measurement to the voltage for standby so that the current for temperature measurement flows through the temperature detecting element for a short time. And the voltage applied to the temperature detecting element is controlled to be switched in a short time, and the temperature measuring current flowing through the temperature detecting element during the short time when the temperature measuring voltage is applied to the temperature detecting element. The temperature is determined based on That is, since a current is passed through the temperature detecting element for a short time and the temperature is measured during that time, even if the current flowing through the temperature detecting element is increased in order to increase the current (or voltage) detecting sensitivity of the control unit, the temperature is measured. The amount of heat generated by the detecting element itself can be reduced, and the temperature rise of the temperature detecting element itself can be suppressed to a small value, thereby enabling accurate temperature measurement. Therefore, it is possible to perform an appropriate abnormality diagnosis operation, thereby realizing highly accurate abnormality monitoring.
[0019]
Further, in order to achieve the above-mentioned object, a temperature sensor device according to the present invention, as described in claim 4,
A temperature detecting element whose electric resistance changes according to the temperature,
A constant current power supply,
Upon receiving power supply from the constant current power supply, the temperature detecting element is supplied with a constant current for temperature measurement during temperature measurement, and 0 (zero) amperage from a current value lower than the temperature measurement current during non-temperature measurement. A switch section for flowing a standby current having a value in the range of
A control signal for switching the current flowing through the temperature detection element to the temperature measurement current or the standby current is output to the switch section, and the temperature measurement current is caused to flow from the switch section to the temperature detection element. A control unit that determines the temperature based on the temperature measurement voltage applied to the temperature detection element when
A temperature sensor device comprising:
The control unit controls the switch unit such that a current flowing through the temperature detection element at the time of temperature measurement is switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. Then, the temperature measurement is performed while suppressing the self-heating of the temperature detecting element.
[0020]
According to the invention described in claim 4, the control unit is configured such that the current flowing through the temperature detecting element at the time of temperature measurement is switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. Under control, the control unit determines the temperature based on the temperature measurement voltage applied to the temperature detection element during a short time when the temperature measurement current flows through the temperature detection element. That is, since a current is passed through the temperature detecting element for a short time and the temperature is measured during that time, even if the current flowing through the temperature detecting element is increased to increase the voltage detection sensitivity of the control unit, the temperature of the temperature detecting element itself is reduced. The calorific value can be reduced, and the temperature rise of the temperature detecting element itself can be suppressed to a small value, thereby enabling accurate temperature measurement. Therefore, it is possible to perform an appropriate abnormality diagnosis operation, thereby realizing highly accurate abnormality monitoring.
[0021]
In order to achieve the above-mentioned object, a rolling device with a temperature sensor device according to the present invention has a bearing portion and a temperature sensor device for measuring the temperature of the bearing portion, as described in claim 5. A rolling device,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion, and an electric resistance value changes according to the temperature,
A constant voltage power supply,
Upon receiving power supply from the constant voltage power supply, the temperature detecting element is supplied with a constant voltage for temperature measurement during temperature measurement, and 0 (zero) volts from a voltage value lower than the temperature measurement voltage during non-temperature measurement. A switch unit for applying a standby voltage having a value in the range of
A control signal for switching the voltage applied to the temperature detection element to the temperature measurement voltage or the standby voltage is output to the switch section, and the switch section applies the temperature measurement voltage to the temperature detection element. A control unit that determines a temperature based on a temperature measurement current flowing through the temperature detection element when
With
The control unit switches the standby voltage from the standby voltage to the temperature measurement voltage and from the temperature measurement voltage to the standby voltage in a short time so that the temperature measurement current flows through the temperature detection element for a short time. The method is characterized in that the switch section is controlled so that the temperature measurement is executed while suppressing the self-heating of the temperature detecting element.
[0022]
According to the invention as set forth in claim 5, the control unit changes the standby voltage to the temperature measurement voltage and the temperature measurement voltage to the standby voltage so that the temperature measurement current flows through the temperature detection element for a short time. And the voltage applied to the temperature detecting element is controlled to be switched in a short time, and the temperature measuring current flowing through the temperature detecting element during the short time when the temperature measuring voltage is applied to the temperature detecting element. The temperature is determined based on That is, since a current is passed through the temperature detecting element for a short time and the temperature of the bearing is measured during that time, even if the current flowing through the temperature detecting element is increased to increase the current (or voltage) detecting sensitivity of the control section. This can also reduce the amount of heat generated by the temperature detecting element itself, thereby making it possible to accurately measure the temperature of the bearing portion while suppressing the temperature rise of the temperature detecting element itself. Accordingly, a proper abnormality diagnosis operation can be performed, and highly accurate abnormality monitoring for the bearing unit can be realized.
[0023]
Further, according to the rolling device with the temperature sensor device of the present invention, as described in claim 6, the temperature sensor device according to claim 5 includes a rotation detection element for detecting a rotation speed of the bearing portion; It further comprises at least one of a vibration detection element for detecting the magnitude of vibration of the bearing portion,
The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detecting element and / or an electric signal obtained by detecting vibration of the vibration detecting element, and the determination is performed. The temperature measurement timing and the temperature measurement cycle by the temperature detecting element are dynamically changed according to the operating state of the bearing unit.
[0024]
According to the invention described in claim 6, the temperature sensor device further includes at least one of a rotation detection element for detecting a rotation speed of the bearing portion and a vibration detection element for detecting the magnitude of vibration of the bearing portion. The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detection element and / or an electric signal obtained by detecting vibration of the vibration detection element, and the determination is performed. The temperature measurement timing and the temperature measurement cycle by the temperature detecting element are dynamically changed in accordance with the operating state of the bearing unit. Therefore, when the change in the rotation speed of the bearing portion is small or the change in the vibration of the bearing portion is small, the degree of importance in the abnormality diagnosis is low. Interval), and when the change in the rotation speed of the bearing part or the change in the vibration of the bearing part is large, the degree of importance in the abnormality diagnosis is high. It can be performed at a short period (for example, at intervals of 10 seconds). As described above, by linking the operation of determining the operation state of the bearing using the rotation detection element and / or the operation of determining the operation of the bearing using the vibration detection element and the temperature measurement operation using the temperature detection element, A highly accurate abnormality monitoring operation for the bearing by the temperature sensor device can be realized.
[0025]
Further, in the rolling device with the temperature sensor device according to the present invention, as described in claim 7, the rolling device according to claim 5 or 6 includes the bearing portion that rotatably supports a shaft. It is a rolling bearing device provided with.
[0026]
According to the invention described in claim 7, since the rolling device is a rolling bearing device, it is possible to realize highly accurate abnormality monitoring for the bearing portion of the rolling bearing device.
[0027]
In the rolling device with a temperature sensor device according to the present invention, as described in claim 8, the bearing device according to claim 5 or 6, wherein the rolling device according to claim 5 or 6 supports a shaft that linearly moves. It is a linear motion device provided with.
[0028]
According to the invention described in claim 8, since the rolling device is a linear motion device, it is possible to realize highly accurate abnormality monitoring for a bearing portion of the linear motion device.
[0029]
In order to achieve the above-mentioned object, a rolling device with a temperature sensor device according to the present invention has a bearing portion and a temperature sensor device for measuring the temperature of the bearing portion, as described in claim 9. A rolling device,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion, and an electric resistance value changes according to the temperature,
A constant current power supply,
Upon receiving power supply from the constant current power supply, the temperature detecting element is supplied with a constant current for temperature measurement during temperature measurement, and 0 (zero) amperage from a current value lower than the temperature measurement current during non-temperature measurement. A switch section for flowing a standby current having a value in the range of
A control signal for switching the current flowing through the temperature detection element to the temperature measurement current or the standby current is output to the switch section, and the temperature measurement current is caused to flow from the switch section to the temperature detection element. A control unit that determines the temperature based on the temperature measurement voltage applied to the temperature detection element when
With
The control unit controls the switch unit so that the current flowing to the temperature detecting element at the time of temperature measurement is switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. Then, the temperature measurement is performed while suppressing the self-heating of the temperature detecting element.
[0030]
According to the ninth aspect of the present invention, the control unit is configured such that the current flowing to the temperature detecting element at the time of temperature measurement is switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. Under control, the control unit determines the temperature based on the temperature measurement voltage applied to the temperature detection element during a short time when the temperature measurement current flows through the temperature detection element. That is, a current is passed through the temperature detecting element for a short time, and the temperature of the bearing is measured during that time. Therefore, even if the current flowing through the temperature detecting element is increased in order to increase the voltage detection sensitivity of the control section, the temperature detection The calorific value of the element itself can be reduced, and the temperature rise of the temperature detecting element itself can be suppressed to a small value, and the temperature of the bearing can be measured accurately. Accordingly, a proper abnormality diagnosis operation can be performed, and highly accurate abnormality monitoring for the bearing unit can be realized.
[0031]
Further, in the rolling device with the temperature sensor device according to the present invention, as described in claim 10, the temperature sensor device according to claim 9 includes a rotation detection element for detecting a rotation speed of the bearing portion; It further comprises at least one of a vibration detection element for detecting the magnitude of vibration of the bearing portion,
The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detecting element and / or an electric signal obtained by detecting vibration of the vibration detecting element, and the determination is performed. The temperature measurement timing and the temperature measurement cycle by the temperature detecting element are dynamically changed according to the operating state of the bearing unit.
[0032]
According to the tenth aspect, the temperature sensor device further includes at least one of a rotation detection element for detecting a rotation speed of the bearing portion and a vibration detection element for detecting the magnitude of vibration of the bearing portion. The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detection element and / or an electric signal obtained by detecting vibration of the vibration detection element, and the determination is performed. The temperature measurement timing and the temperature measurement cycle by the temperature detecting element are dynamically changed in accordance with the operating state of the bearing unit. Therefore, when the change in the rotational speed of the bearing portion is small or the change in the vibration of the bearing portion is small, the degree of importance in the abnormality diagnosis is low. Interval), and when the change in the rotation speed of the bearing part is large or the change in the vibration of the bearing part is large, the degree of importance in abnormality diagnosis is high. It can be performed at a short period (for example, at intervals of 10 seconds). As described above, by linking the operation of determining the operation state of the bearing using the rotation detection element and / or the operation of determining the operation of the bearing using the vibration detection element and the temperature measurement operation using the temperature detection element, A highly accurate abnormality monitoring operation for the bearing by the temperature sensor device can be realized.
[0033]
Further, in the rolling device with the temperature sensor device according to the present invention, as described in claim 11, the rolling device according to claim 9 or 10 includes the bearing portion that rotatably supports a shaft. It is a rolling bearing device provided with.
[0034]
According to the invention described in claim 11, since the rolling device is a rolling bearing device, it is possible to realize highly accurate abnormality monitoring for the bearing portion of the rolling bearing device.
[0035]
In the rolling device with a temperature sensor device according to the present invention, as described in claim 12, the rolling device according to claim 9 or 10 is configured such that the bearing portion supports a shaft that linearly moves. It is a linear motion device provided with.
[0036]
According to the twelfth aspect of the present invention, since the rolling device is a linear motion device, it is possible to realize highly accurate abnormality monitoring for a bearing of the linear motion device.
[0037]
In order to achieve the above-mentioned object, a rolling device with a temperature sensor device according to the present invention has a bearing portion and a temperature sensor device for measuring the temperature of the bearing portion, as described in claim 13. A rolling device,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion,
A control unit that controls the temperature measurement current to flow through the temperature detection element only for a short time, and performs temperature measurement while suppressing self-heating of the temperature detection element.
A rotation detection element arranged to detect the rotation speed of the bearing portion,
The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detection element, and determines a temperature by the temperature detection element according to the determined operation state of the bearing unit. It is characterized in that the measurement timing and the temperature measurement cycle are dynamically changed.
[0038]
According to the thirteenth aspect, the control unit controls the temperature measurement current to flow through the temperature detection element for a short time, and executes the temperature measurement while suppressing self-heating of the temperature detection element. . That is, since a current is passed through the temperature detecting element for a short time and the temperature of the bearing is measured during that time, even if the current flowing through the temperature detecting element is increased in order to increase the current (or voltage) detecting sensitivity of the control section. This can also reduce the amount of heat generated by the temperature detecting element itself, thereby making it possible to accurately measure the temperature of the bearing portion while suppressing the temperature rise of the temperature detecting element itself. Accordingly, a proper abnormality diagnosis operation can be performed, and highly accurate abnormality monitoring for the bearing unit can be realized. Further, the temperature sensor device includes a rotation detection element for detecting a rotation speed of the bearing unit, and the control unit operates the bearing unit based on an electric signal obtained by detecting the rotation speed of the rotation detection element. Is determined, and the temperature measurement timing and the temperature measurement cycle by the temperature detection element are dynamically changed in accordance with the determined operation state of the bearing unit. Therefore, when the change in the rotation speed of the bearing portion is small, the degree of importance in the abnormality diagnosis is low. Therefore, the temperature measurement operation is performed by the temperature sensor device at an appropriately long cycle (for example, every 10 minutes). When the change in the rotation speed of the unit is large, the degree of importance in the abnormality diagnosis is high, so that the temperature sensor device can perform the temperature measurement operation at an appropriately short cycle (for example, every 10 seconds). As described above, by linking the operation of determining the operation state of the bearing using the rotation detecting element and the operation of measuring the temperature using the temperature detecting element, a highly accurate abnormality monitoring operation for the bearing using the temperature sensor device is performed. Can be realized.
[0039]
In order to achieve the above-mentioned object, a rolling device with a temperature sensor device according to the present invention has a bearing portion and a temperature sensor device for measuring the temperature of the bearing portion, as described in claim 14. A rolling device,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion,
A control unit that controls the temperature measurement current to flow through the temperature detection element only for a short time, and performs temperature measurement while suppressing self-heating of the temperature detection element.
A vibration detection element arranged to detect the magnitude of vibration of the bearing portion;
With
The control unit determines an operation state of the bearing unit based on an electric signal obtained by vibration detection of the vibration detection element, and measures a temperature by the temperature detection element according to the determined operation state of the bearing unit. It is characterized in that the timing and the temperature measurement cycle are dynamically changed.
[0040]
According to the invention described in claim 14, the control unit controls the temperature measurement current to flow through the temperature detection element for a short time, and executes the temperature measurement while suppressing self-heating of the temperature detection element. . That is, since a current is passed through the temperature detecting element for a short time and the temperature of the bearing is measured during that time, even if the current flowing through the temperature detecting element is increased in order to increase the current (or voltage) detecting sensitivity of the control section. This can also reduce the amount of heat generated by the temperature detecting element itself, thereby making it possible to accurately measure the temperature of the bearing portion while suppressing the temperature rise of the temperature detecting element itself. Accordingly, a proper abnormality diagnosis operation can be performed, and highly accurate abnormality monitoring for the bearing unit can be realized. Further, the temperature sensor device includes a vibration detecting element for detecting the magnitude of vibration of the bearing unit, and the control unit operates the bearing unit based on an electric signal obtained by detecting the vibration of the vibration detecting element. The situation is determined, and the temperature measurement timing and the temperature measurement cycle by the temperature detection element are dynamically changed according to the determined operation state of the bearing unit. Therefore, when the change in the vibration of the bearing portion is small, the degree of importance in the abnormality diagnosis is low, so that the temperature sensor device performs the temperature measurement operation at an appropriately long cycle (for example, every 10 minutes). When the change in vibration is large, the degree of importance in the abnormality diagnosis is high. Therefore, the temperature measurement operation can be performed by the temperature sensor device at an appropriately short cycle (for example, every 10 seconds). In this way, the operation of determining the operation state of the bearing unit using the vibration detecting element and the temperature measuring operation using the temperature detecting element are linked with each other, so that a high-precision abnormality monitoring operation for the bearing unit using the temperature sensor device is performed. Can be realized.
[0041]
When the current flowing through the temperature detecting element is I, the resistance value of the temperature detecting element is Rt, and the time during which the current flows through the temperature detecting element (in other words, the time during which a voltage is applied to the temperature detecting element) is Δt. The calorific value (that is, self-calorific value) Q of the temperature detecting element itself is
Q = I 2 It can be derived by a relational expression of × Rt × Δt.
[0042]
From this relational expression, it can be seen that it is possible to reduce the calorific value Q of the temperature detecting element itself by passing a current through the temperature detecting element for a short time. Therefore, a temperature measurement error due to self-heating of the temperature detecting element can be reduced. It is also understood from this relational expression that the current I can be increased by keeping the heat generation amount Q constant and shortening the energization time Δt. Therefore, by increasing the current I, the temperature detection sensitivity (that is, the current detection sensitivity or the voltage detection sensitivity) of the temperature sensor device is improved, so that the detection accuracy can be improved and the noise resistance in the detection can be improved. it can.
[0043]
The present invention has been briefly described above. Further, details of the present invention will be further clarified by reading the embodiments of the invention described below with reference to the accompanying drawings.
[0044]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a plurality of preferred embodiments according to the present invention will be described in detail with reference to the drawings. In each embodiment of the present invention, the same components as those already described with reference to FIG. 10 are denoted by the same reference numerals, and the description will be simplified or omitted.
[0045]
(1st Embodiment)
FIG. 1 is a system block diagram of a first embodiment of a rolling device with a temperature sensor device according to the present invention. As shown in FIG. 1, the temperature sensor device 130 includes a sensor unit 100 including the temperature detecting element 101 and a control unit 120. The sensor unit 100 is attached to the housing 6 of the rolling device X such that the temperature detecting element 101 is disposed on or near the bearing 1 of the rolling device X. In the temperature sensor device 130, the sensor unit 100 is electrically connected to the control unit 120 by the cable 102.
[0046]
The control unit 120 includes a constant-voltage power supply 121 that outputs a supply voltage Vs, a switch unit 122 provided to control application of a voltage to the temperature detection element 101, and controls the switch unit 122 to measure the temperature. The control unit 123 includes a control unit 123 that determines a temperature based on a temperature measurement current that sometimes flows through the temperature detection element 101, a display unit 126, and an alarm unit 127.
[0047]
The constant voltage power supply 121 has a capability of outputting a supply voltage Vs of a constant voltage (that is, a constant voltage value) regardless of a load change. The switch unit 122 receives a power supply from the constant voltage power supply 121, and supplies a constant voltage for temperature measurement during temperature measurement, and a voltage lower than the voltage for temperature measurement to 0 (zero) volts during non-temperature measurement. The switching is controlled by the control unit 123 so as to apply the standby voltage having the value in the range to the temperature detecting element 101.
[0048]
Examples of the switch unit 122 include a semiconductor switch such as a transistor, an FET, an analog switch, and a photo MOS relay, and a mechanical relay such as a contact type or a mercury switch type. In this embodiment, at the time of temperature measurement, the switch unit 122 applies the supply voltage Vs as a temperature measurement voltage to the temperature detection element 101 of the sensor unit 100 via the input side cable 102a.
[0049]
The control unit 123 includes a resistor 104, an A / D converter 124, and a microcomputer (that is, a microcomputer) 125. The resistor 104 is electrically connected between the output side cable 102b and the ground (earth) G, and converts a current flowing through the temperature detecting element 101 into an output voltage Vt. The A / D converter 124 converts the output voltage Vt into a digital signal. The microcomputer 125 determines the temperature based on the digital signal from the A / D converter 124. As shown in FIG. 1, a current detector 104a for detecting a current flowing through the temperature detecting element 101 is provided between the temperature detecting element 101 and the resistor 104, and the current detector 104a is used instead of the output voltage Vt. May be input to the microcomputer 125 via the A / D converter 124 to cause the microcomputer 125 to determine the temperature.
[0050]
The microcomputer 125 switches the voltage applied to the temperature detecting element 101 according to the control signal CS1 to a temperature measuring voltage or a standby voltage. The control unit 123 (microcomputer 125) determines the temperature based on the temperature measurement current flowing through the temperature detection element 101 when the switch section 122 applies the temperature measurement voltage to the temperature detection element 101 (that is, the temperature is determined). The temperature is measured by converting the temperature measuring current flowing through the temperature detecting element 101 into the output voltage Vt by the resistor 104). Further, the microcomputer 125 is configured so that when the temperature detected by the temperature detecting element 101 exceeds a predetermined threshold value, it can be determined that an abnormality such as burn-in or peeling of the bearing unit 1 has occurred. 1 can be displayed on the display unit 126, and an alarm of the abnormality of the bearing unit 1 can be issued from the alarm unit 127.
[0051]
The microcomputer 125 switches so as to switch from the standby voltage to the temperature measurement voltage and from the temperature measurement voltage to the standby voltage in a short time so that the temperature measurement current flows through the temperature detection element 101 for a short time. By controlling the unit 122, the temperature measurement is executed while suppressing the self-heating of the temperature detecting element 101. Therefore, a proper abnormality diagnosis operation by the microcomputer 125 can be realized, and thereby a highly accurate abnormality monitoring for the bearing unit 1 can be realized.
[0052]
FIG. 2 shows that the switch unit 122 is controlled from the standby voltage (OFF) to the temperature measurement voltage (ON) by the control of the microcomputer 125 so that the temperature measurement current flows through the temperature detection element 101 for a short time. 6 is a timing chart showing an example in which the voltage is switched from (ON) to a standby voltage (OFF) in a short time. In the example shown in FIG. 2, the power supply voltage Vs is supplied by turning on the switch unit 122 for a short time of, for example, 10 milliseconds at the time of temperature measurement. Then, after the output voltage Vt is stabilized during this period, the output voltage Vt is converted into a digital signal by the A / D converter 124, and the digital signal is input to the microcomputer 125, and the temperature is measured. .
[0053]
FIG. 3 is a characteristic diagram showing the relationship between the output voltage Vt and the time t under the same conditions as in the example of FIG. 2 (however, the relationship when the temperature detected from the bearing unit 1 is constant). As shown in FIG. 3, there is a case where the output voltage Vt has a delay in characteristics and an overshoot may occur. Therefore, for example, the output voltage Vt is not stable during a stable period after the first rising period of about 1 millisecond. It is desirable to perform the detection. As described above, since the current is supplied for a short time, the calorific value of the temperature detecting element 101 is small, and the characteristics of the output voltage Vt are flat as compared with the case of the conventional continuous power supply shown in FIG. The influence of heat generation of 101 is avoided. Note that the rising period until the output voltage Vt stabilizes depends on the length of the cable 102 (that is, electric resistance, inductance, and capacitance), the electric resistance of the temperature detecting element 101, and the current for temperature measurement. After the elapse of this period, the output voltage Vt or the output current may be detected after the output voltage Vt is stabilized.
[0054]
This temperature measurement operation may be periodically performed at intervals of 10 seconds or 10 minutes, or may be performed at any time only when necessary. Further, depending on the heat radiation environment of the temperature detecting element 101 (the use state of the temperature detecting element 101, the heat capacity of the mounting object, the mounting state, the outside temperature of the sensor unit 100, the degree of contact with the wind, etc.), even if the switch unit 122 is set to 1 Even when the temperature is ON for more than one second, if the temperature measurement operation is performed in a long measurement cycle such as an interval of 10 minutes, the temperature rise of the temperature detecting element 101 itself can be reduced, and the measurement can be performed with high accuracy. Alternatively, the accuracy and reliability of the measurement may be improved by a method of performing detection a plurality of times while the switch unit 122 is ON for one second, for example, and averaging the detection results. That is, the energizing time and the cycle of the temperature detecting element 101 may be set to appropriate values according to the heat radiation environment.
[0055]
Note that, by increasing the supply voltage Vs or the like and increasing the temperature measuring current flowing through the temperature detecting element 101 (in a short time), the sensitivity of temperature detection is improved, and the detection accuracy and noise resistance are improved. Can be planned. Therefore, the resolution of the A / D converter 124 can be reduced, the number of components for noise suppression can be reduced, and a cost reduction effect can be obtained. In the present embodiment, the switch unit 122 is provided to control the application of the voltage to the temperature detection element 101. However, any circuit that can control the magnitude of the power supply voltage Vs may be used, and the temperature is not measured. At the time (that is, at the time of non-temperature measurement), the same effect can be obtained even if Vs is lowered to, for example, 2 volts instead of 0 (zero) volts.
[0056]
(2nd Embodiment)
FIG. 4 is a system block diagram of a second embodiment of the rolling device with a temperature sensor device according to the present invention. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted. As shown in FIG. 4, the temperature sensor device 150 includes a sensor unit 100 and a control unit 140. The control unit 140 includes a timer 145 that controls the switch unit 122 in the same manner as the microcomputer 125 described above, and an analog or digital circuit 144 that performs the same operation and processing as the microcomputer 125 in the control unit 143. Other components are the same as those of the first embodiment.
[0057]
According to the second embodiment, as compared with the first embodiment, it is not necessary to use the expensive A / D converter 124 and the microcomputer 125, so that the cost can be reduced.
[0058]
(Third embodiment)
FIG. 5 is a system block diagram of a third embodiment of the rolling device with a temperature sensor device according to the present invention. In the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted. As shown in FIG. 5, the temperature sensor device 170 includes the sensor unit 100 and a control unit 160.
[0059]
The control unit 160 includes a constant current power supply 161 capable of outputting a constant current (ie, a constant current value) irrespective of a load change, and a switch provided to control the current flowing to the temperature detection element 101. And a control unit 163 that controls the switch unit 122 and determines the temperature based on the temperature measurement voltage applied to the temperature detection element 101 at the time of temperature measurement.
[0060]
The switch unit 122 receives a power supply from the constant current power supply 161 and supplies a constant current for temperature measurement during temperature measurement, and 0 (zero) amperes from a current value lower than the current for temperature measurement during non-temperature measurement. The switching is controlled by the control unit 163 so that the standby current having a value in the range flows to the temperature detecting element 101.
[0061]
The control unit 163 includes the A / D converter 124 and the microcomputer 125. In this embodiment, since the constant current power supply 161 is used in the present embodiment, the output voltage Vt is different from that of the first and second embodiments. Need not be provided with a resistor 104 to effect In the present embodiment, the output voltage Vt is detected on the current supply side to the temperature detecting element 101, that is, between the input side cable 102a and the switch unit 122, as shown in FIG. The A / D converter 124 converts the output voltage Vt into a digital signal. The microcomputer 125 determines the temperature based on the digital signal from the A / D converter 124.
[0062]
The microcomputer 125 switches the current supplied to the temperature detecting element 101 according to the control signal CS1 to a temperature measuring current or a standby current. The control unit 163 (microcomputer 125) converts the temperature measurement voltage (that is, the output voltage Vt) applied to the temperature detection element 101 when the temperature measurement current is passed from the switch unit 122 to the temperature detection element 101. Determine the temperature based on this. Further, the microcomputer 125 is configured so that when the temperature detected by the temperature detecting element 101 exceeds a predetermined threshold value, it can be determined that an abnormality such as burn-in or peeling of the bearing unit 1 has occurred. 1 can be displayed on the display unit 126, and an alarm of the abnormality of the bearing unit 1 can be issued from the alarm unit 127.
[0063]
The microcomputer 125 controls the switch unit 122 so that the current flowing to the temperature detecting element 101 at the time of temperature measurement is switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. Then, the temperature measurement is executed while suppressing the self-heating of the temperature detecting element 101. Therefore, a proper abnormality diagnosis operation by the microcomputer 125 can be realized, and thereby a highly accurate abnormality monitoring for the bearing unit 1 can be realized.
[0064]
As the temperature detecting element 101 used in the present embodiment, among the thermistors, silicon thermistors, temperature-measuring resistors, metal foil resistors, etc. already exemplified, among others, silicon thermistors, temperature-measuring resistors and metal foil resistors are used. As described above, it is desirable that the change rate of the resistance value with respect to the temperature is constant and has a linear characteristic.
[0065]
At the time of temperature measurement, the switch unit 122 is turned on for a short period of time, for example, 10 milliseconds, under the control of the microcomputer 125, and current is supplied to the temperature detection element 101. Then, after the output voltage Vt is stabilized during this period, the output voltage Vt is converted into a digital signal by the A / D converter 124, and the digital signal is input to the microcomputer 125, and the temperature is measured. . As described above, when the temperature detecting element 101 has a constant rate of change in resistance value with respect to temperature and has a linear characteristic, the constant current I 0 , The output voltage Vt of the temperature detecting element 101 at this time becomes I 0 × Rt, the output voltage Vt also has a constant rate of change and linear characteristics. For this reason, the microcomputer 125 does not need to perform processing by software or to correct the output voltage Vt using a conversion circuit in order to improve the linearity of the output voltage Vt, so that the circuit can be simplified and the cost can be reduced.
[0066]
In the first to third embodiments, the same operation can be obtained even when the temperature detecting element 101 is not a single unit but is connected in series or in parallel. Further, the same operation can be obtained even when a single or a plurality of fixed resistors are connected to the temperature detecting element 101 in series or in parallel. In the first to third embodiments (see FIGS. 1, 4 and 5), the switch unit 122, the constant voltage power supply 121 or the constant current power supply 161, and the control units 123, 143, or 163 are controlled. Although provided in the unit 120, 140, or 160, it may be provided in the sensor unit 100.
[0067]
(Fourth embodiment)
Next, a fourth embodiment of the rolling device with a temperature sensor device according to the present invention will be described. FIG. 6 is a diagram showing a configuration of a rolling device 200 with a temperature sensor device according to a fourth embodiment of the present invention. The present invention can also be applied to a linear motion device provided with a bearing portion that supports a shaft that linearly moves, such as a ball screw and a linear guide. FIG. 6 illustrates a structure in which the above-described sensor unit 100 is attached to a nut portion 201 of a ball screw which is a bearing portion of a CNC machine tool or the like.
[0068]
Also in this case, the sensor unit 100 is attached to the nut portion 201 of the ball screw, and the sensor unit 100 is connected to any one of the control units of the first to third embodiments via the cable 102. With this configuration, it is possible to detect an abnormality such as peeling of the nut portion 201 of the ball screw. In addition, the mounting part of the sensor unit 100 is not limited to the nut part 201 of the ball screw, but may be a support unit part 210 that supports a male screw on the simple support side or a bearing part of the support unit part 220 that supports the male screw on the fixed side. It is effective even if attached.
[0069]
Although not shown, also in the case of a linear guide, the sensor unit 100 is attached to a movable portion or a rail of the linear guide, and the sensor unit 100 is attached to any of the first to third embodiments described above. If a configuration in which the control unit is connected to one control unit via the cable 102 is employed, an abnormality such as peeling can be similarly detected. In FIG. 6, reference numeral 230 denotes a lock nut, reference numeral 240 denotes a coupling, reference numeral 250 denotes a drive motor, and reference numeral 260 denotes a motor mounting bracket.
[0070]
Further, the rotation detection element and / or the vibration detection element may be incorporated in the sensor unit 100 and used. For example, when a rotation detecting element is provided in the sensor unit 100, if a method such as changing a temperature threshold for determining abnormality of the bearing portion according to the rotation speed is used, the abnormality determination of the bearing portion can be performed with higher accuracy. Can do it. Further, for example, when a vibration detecting element is provided in the sensor unit 100, if a method of judging an abnormality of the bearing portion by using both the magnitude of the vibration and the temperature change state as a judgment material is used, the abnormality of the bearing portion can be more accurately detected. A determination can be made.
[0071]
Further, for example, when both the rotation detecting element and the vibration detecting element are provided in the sensor unit 100, it is possible to determine the abnormality of the bearing portion by using both the rotation speed and the magnitude of the vibration as a determination material. . Furthermore, if a method as described in the following modified example is used, a bearing operation state determination operation using a rotation detection element and / or a bearing operation state determination operation using a vibration detection element, and a temperature detection element is used. By linking the temperature measurement operation with the temperature measurement operation, a highly accurate abnormality monitoring operation for the bearing unit by the temperature sensor device can be realized.
[0072]
(Modification)
FIG. 7 is a view showing a modification of the rolling device with the temperature sensor device according to the present invention.
This modification is a modification of each of the first to fourth embodiments. More specifically, the sensor unit 100 in each embodiment further includes a rotation detecting element 180 and / or a vibration detecting element 190. It is.
[0073]
That is, in this modification, the temperature sensor device further includes at least one of a rotation detection element 180 for detecting the rotation speed of the bearing portion and a vibration detection element 190 for detecting the magnitude of vibration of the bearing portion. I have. The control unit determines the operating state of the bearing unit based on the electric signal obtained by detecting the rotation speed of the rotation detecting element 180 and / or the electric signal obtained by detecting the vibration of the vibration detecting element 190, and determines the determined bearing. The temperature measurement timing and the temperature measurement cycle by the temperature detection element 101 are dynamically changed according to the operation status of the unit. Therefore, when the change in the rotational speed of the bearing portion is small or the change in the vibration of the bearing portion is small, the degree of importance in the abnormality diagnosis is low. Interval), and when the change in the rotation speed of the bearing part is large or the change in the vibration of the bearing part is large, the degree of importance in abnormality diagnosis is high. It can be performed at a short period (for example, at intervals of 10 seconds). As described above, the operation of determining the operation state of the bearing unit using the rotation detection element 180 and / or the operation of determining the operation state of the bearing unit using the vibration detection element 190 and the temperature measurement operation using the temperature detection element 101 are linked. Thus, a highly accurate abnormality monitoring operation for the bearing unit by the temperature sensor device can be realized.
[0074]
For example, in rolling devices such as axle bearing devices for railroad vehicles, bearing devices for spindles of machine tools, linear motion devices, etc., the rotational speed and operating speed of the bearing portions are measured, and the measured values are used as the bearing portions. It is also possible to determine whether the bearing is abnormal or normal based on the detected temperature by associating the detected temperature with the detected temperature. Further, the temperature of the bearing unit may be measured in a short cycle when the operating device is started and stopped based on the rotation speed, and the temperature may be set to be measured in a long cycle when the steady operation is started. This is because, for example, in the case of a bearing device for an axle of a railway vehicle, the ratio of the time occupied at the time of start (at the time of start) and at the time of stop is small compared with the time of steady operation. While the trouble during the steady-state operation is dominant over time, the trouble is likely to be caused by a factor other than the change over time when the rotation state changes greatly, such as when starting or stopping. This is supported by the fact that aircraft are most likely to have trouble taking off and landing. Further, while the change in the temperature of the bearing portion during the steady operation is relatively small, the temperature of the bearing portion greatly changes with the change in the rotation speed at the time of starting and at the time of stopping.
Therefore, even if the temperature is measured in a long cycle during rated operation, it is possible to detect anomalies with a considerable probability.On the other hand, instantaneous fluctuations are likely to occur at the time of startup and shutdown. It is safer to take measurements. Whether the temperature should be measured in a long cycle or in a short cycle can be determined from the rotation speed of the bearing. Since the rotation speed and the vibration are substantially proportional, the vibration value measured using the vibration detection element can be used instead of the rotation speed value. In addition, since the rotational angular velocity is substantially proportional to the vibration, a long-period temperature measurement is performed when the change in vibration (not the vibration value itself) measured using the vibration detection element is small, and short when the change in vibration is large. It is preferable to make dynamic settings so as to perform periodic temperature measurement.
[0075]
It should be noted that the present invention is not limited to the above-described embodiments and modified examples, but can be appropriately modified, improved, and the like. In addition, the materials, shapes, dimensions, forms, numbers, arrangement locations, and the like of the components in each of the above-described embodiments and modifications are arbitrary and are not limited as long as the present invention can be achieved.
[0076]
For example, in the bearing 1 according to the first to third embodiments described above, the inner ring 2 is a rotating race and the outer race 3 is a fixed race, but the outer race 3 is a rotating race and the inner race 2 is fixed. It may be a bearing ring. The bearing 1 according to the above-described first to third embodiments has a plurality of rolling elements 4 arranged so as to freely roll in the circumferential direction between the inner ring 2 and the outer ring 3. When a roller is used as the moving body 4 instead of a ball, the retainer (not shown) may be omitted.
[0077]
【The invention's effect】
As described above, according to the present invention, the control unit changes the standby voltage to the temperature measurement voltage and the temperature measurement voltage to the standby voltage so that the temperature measurement current flows through the temperature detection element for a short time. The voltage applied to the temperature detecting element is controlled to be switched to a voltage in a short time, and the temperature measurement flowing to the temperature detecting element during a short time when the temperature measuring voltage is applied to the temperature detecting element. The temperature is determined on the basis of the current for measurement (ie, for example, the temperature measurement current flowing through the temperature detection element is converted into an output voltage by a resistor, or the temperature is directly measured to determine the temperature. Do). That is, since a current is passed through the temperature detecting element for a short time and the temperature is measured during that time, even if the current flowing through the temperature detecting element is increased in order to increase the current (or voltage) detecting sensitivity of the control unit, the temperature is measured. The amount of heat generated by the detecting element itself can be reduced, and the temperature rise of the temperature detecting element itself can be suppressed to a small value, thereby enabling accurate temperature measurement. Therefore, it is possible to perform an appropriate abnormality diagnosis operation, thereby realizing highly accurate abnormality monitoring.
[0078]
Further, according to the present invention, the control unit controls the current flowing through the temperature detecting element at the time of temperature measurement to be switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. The control unit determines the temperature based on the temperature measurement voltage applied to the temperature detection element during a short time when the temperature measurement current flows through the temperature detection element. That is, since a current is passed through the temperature detecting element for a short time and the temperature is measured during that time, even if the current flowing through the temperature detecting element is increased to increase the voltage detection sensitivity of the control unit, the temperature of the temperature detecting element itself is reduced. The calorific value can be reduced, and the temperature rise of the temperature detecting element itself can be suppressed to a small value, thereby enabling accurate temperature measurement. Therefore, it is possible to perform an appropriate abnormality diagnosis operation, thereby realizing highly accurate abnormality monitoring.
[0079]
According to the invention, the temperature sensor device further includes at least one of a rotation detection element for detecting a rotation speed of the bearing portion and a vibration detection element for detecting the magnitude of vibration of the bearing portion. The control unit determines the operation state of the bearing unit based on the electric signal obtained by detecting the rotation speed of the rotation detection element and / or the electric signal obtained by detecting the vibration of the vibration detection element, and determines the determined bearing unit. The temperature measurement timing and the temperature measurement cycle by the temperature detection element are dynamically changed in accordance with the operation state of the temperature detection device. Therefore, when the change in the rotational speed of the bearing portion is small or the change in the vibration of the bearing portion is small, the degree of importance in the abnormality diagnosis is low. Interval), and when the change in the rotation speed of the bearing part is large or the change in the vibration of the bearing part is large, the degree of importance in abnormality diagnosis is high. It can be performed at a short period (for example, at intervals of 10 seconds). As described above, by linking the operation of determining the operation state of the bearing using the rotation detection element and / or the operation of determining the operation of the bearing using the vibration detection element and the temperature measurement operation using the temperature detection element, A highly accurate abnormality monitoring operation for the bearing by the temperature sensor device can be realized.
[0080]
Further, according to the present invention, when the rolling device is a rolling bearing device, high-precision abnormality monitoring for a bearing portion of the rolling bearing device can be realized.
[0081]
Further, according to the present invention, when the rolling device is a linear motion device, highly accurate abnormality monitoring for a bearing portion of the linear motion device can be realized.
[Brief description of the drawings]
FIG. 1 is a system block diagram of a first embodiment of a rolling device with a temperature sensor device according to the present invention.
FIG. 2 is a diagram showing a switch unit that is controlled by a microcomputer to change a standby voltage (OFF) from a standby voltage (OFF) to a temperature measurement voltage (ON) so that a temperature measurement current flows through the temperature detection element for a short time; 7 is a timing chart showing an example in which the voltage is switched in a short time from a standby voltage (OFF) to a standby voltage (OFF).
FIG. 3 is a characteristic diagram showing a relationship between output voltage Vt and time t.
FIG. 4 is a system block diagram of a second embodiment of a rolling device with a temperature sensor device according to the present invention.
FIG. 5 is a system block diagram of a third embodiment of a rolling device with a temperature sensor device according to the present invention.
FIG. 6 is a diagram showing a configuration of a rolling device with a temperature sensor device according to a fourth embodiment of the present invention.
FIG. 7 is a view showing a modified example of the rolling device with the temperature sensor device according to the present invention.
FIG. 8 is a cross-sectional view showing a rolling device with a temperature sensor device disclosed in Patent Document 1.
FIG. 9 is a cross-sectional view showing a rolling device with a temperature sensor device disclosed in Patent Document 2.
FIG. 10 is a diagram showing a rolling device with a temperature sensor device that detects the temperature of a bearing portion using a temperature detecting element.
11 is a characteristic diagram showing a relationship between output voltage Vt and time t in the temperature sensor device of FIG.
[Explanation of symbols]
1 Bearing
101 Temperature detection element
121 constant voltage power supply
122 Switch section
123, 143, 163 control unit
130,150,170 Temperature sensor device
161 constant current power supply
180 rotation detection element
190 Vibration detection element
X rolling device

Claims (14)

温度に応じて電気抵抗値が変化する温度検出素子または当該温度検出素子を含む回路に定電圧または定電流を印加して、温度変化に応じて出力される電流または電圧を検出することによって温度測定を行なう温度センサ装置であって、
温度測定を行なう時のみの短時間だけに定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加し、それ以外の時は当該定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加しないか又は当該定電圧または定電流よりも小さい値の電圧または電流を前記温度検出素子または前記温度検出素子を含む回路に印加して、前記温度検出素子の発熱を抑制することによって、当該温度検出素子自体の温度上昇を防ぎ、それにより温度測定の誤差を小さくしたことを特徴とする温度センサ装置。
Temperature measurement by applying a constant voltage or constant current to a temperature detection element whose electrical resistance changes according to temperature or a circuit including the temperature detection element, and detecting a current or voltage output according to the temperature change A temperature sensor device for performing
Applying a constant voltage or constant current to the temperature detection element or a circuit including the temperature detection element only for a short time only when performing temperature measurement, and otherwise apply the constant voltage or constant current to the temperature detection element or By not applying to the circuit including the temperature detecting element or applying a voltage or current having a value smaller than the constant voltage or the constant current to the temperature detecting element or the circuit including the temperature detecting element, heat generation of the temperature detecting element is performed. The temperature sensor device according to claim 1, wherein the temperature of the temperature detecting element itself is prevented from rising, thereby reducing an error in temperature measurement.
軸受部、および当該軸受部の温度に応じて電気抵抗値が変化する温度検出素子または当該温度検出素子を含む回路に定電圧または定電流を印加して、温度変化に応じて出力される電流または電圧を検出することによって温度測定を行なう温度センサ装置を有する転動装置であって、
温度測定を行なう時のみの短時間だけに定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加し、それ以外の時は当該定電圧または定電流を前記温度検出素子または前記温度検出素子を含む回路に印加しないか又は当該定電圧または定電流よりも小さい値の電圧または電流を前記温度検出素子または前記温度検出素子を含む回路に印加して、前記温度検出素子の発熱を抑制することによって、当該温度検出素子自体の温度上昇を防ぎ、それにより温度測定の誤差を小さくしたことを特徴とする温度センサ装置付き転動装置。
A constant voltage or constant current is applied to the bearing portion, and a temperature detecting element or a circuit including the temperature detecting element whose electric resistance value changes according to the temperature of the bearing portion, and a current or a current output according to the temperature change. A rolling device having a temperature sensor device that performs temperature measurement by detecting a voltage,
Applying a constant voltage or constant current to the temperature detection element or a circuit including the temperature detection element only for a short time only when performing temperature measurement, and otherwise apply the constant voltage or constant current to the temperature detection element or By not applying to the circuit including the temperature detecting element or applying a voltage or current having a value smaller than the constant voltage or the constant current to the temperature detecting element or the circuit including the temperature detecting element, heat generation of the temperature detecting element is performed. A rolling device with a temperature sensor device, characterized in that the temperature of the temperature detecting element itself is prevented from rising, thereby reducing the error in temperature measurement.
温度に応じて電気抵抗値が変化する温度検出素子と、
定電圧電源と、
前記定電圧電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電圧の温度測定用電圧を、そして非温度測定時には前記温度測定用電圧よりも低い電圧値から0(ゼロ)ボルトの範囲における値の待機用電圧を印可するスイッチ部と、
前記温度検出素子に印加される電圧を前記温度測定用電圧または前記待機用電圧に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電圧を印加させている際に当該温度検出素子に流れる温度測定用電流を基に温度を判定する制御部と、
を備える温度センサ装置であって、
前記温度検出素子に前記温度測定用電流が短時間だけ流れるように、前記制御部が、前記待機用電圧から前記温度測定用電圧そして当該温度測定用電圧から前記待機用電圧へと短時間に切換わるように前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴とする温度センサ装置。
A temperature detecting element whose electric resistance changes according to the temperature,
A constant voltage power supply,
Upon receiving power supply from the constant voltage power supply, the temperature detecting element is supplied with a constant voltage for temperature measurement during temperature measurement, and 0 (zero) volts from a voltage value lower than the temperature measurement voltage during non-temperature measurement. A switch unit for applying a standby voltage having a value in the range of
A control signal for switching the voltage applied to the temperature detection element to the temperature measurement voltage or the standby voltage is output to the switch section, and the switch section applies the temperature measurement voltage to the temperature detection element. A control unit that determines a temperature based on a temperature measurement current flowing through the temperature detection element when
A temperature sensor device comprising:
The control unit switches the standby voltage from the standby voltage to the temperature measurement voltage and from the temperature measurement voltage to the standby voltage in a short time so that the temperature measurement current flows through the temperature detection element for a short time. A temperature sensor device that controls the switch unit so as to perform temperature measurement while suppressing self-heating of the temperature detection element.
温度に応じて電気抵抗値が変化する温度検出素子と、
定電流電源と、
前記定電流電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電流の温度測定用電流を、そして非温度測定時には前記温度測定用電流よりも低い電流値から0(ゼロ)アンペアの範囲における値の待機用電流を流すスイッチ部と、
前記温度検出素子に流される電流を前記温度測定用電流または前記待機用電流に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電流を流させている際に当該温度検出素子に印加される温度測定用電圧を基に温度を判定する制御部と、
を備える温度センサ装置であって、
温度測定時に前記温度検出素子に流れる電流が前記待機用電流から前記温度測定用電流そして当該温度測定用電流から前記待機用電流へと短時間に切換わるように前記制御部が前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴とする温度センサ装置。
A temperature detecting element whose electric resistance changes according to the temperature,
A constant current power supply,
Upon receiving power supply from the constant current power supply, the temperature detecting element is supplied with a constant current for temperature measurement during temperature measurement, and 0 (zero) amperage from a current value lower than the temperature measurement current during non-temperature measurement. A switch section for flowing a standby current having a value in the range of
A control signal for switching the current flowing through the temperature detection element to the temperature measurement current or the standby current is output to the switch section, and the temperature measurement current is caused to flow from the switch section to the temperature detection element. A control unit that determines the temperature based on the temperature measurement voltage applied to the temperature detection element when
A temperature sensor device comprising:
The control unit controls the switch unit such that a current flowing through the temperature detection element at the time of temperature measurement is switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. And performing temperature measurement while suppressing self-heating of the temperature detection element.
軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置され、温度に応じて電気抵抗値が変化する温度検出素子と、
定電圧電源と、
前記定電圧電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電圧の温度測定用電圧を、そして非温度測定時には前記温度測定用電圧よりも低い電圧値から0(ゼロ)ボルトの範囲における値の待機用電圧を印可するスイッチ部と、
前記温度検出素子に印加される電圧を前記温度測定用電圧または前記待機用電圧に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電圧を印加させている際に当該温度検出素子に流れる温度測定用電流を基に温度を判定する制御部と、
を備え、
前記温度検出素子に前記温度測定用電流が短時間だけ流れるように、前記制御部が、前記待機用電圧から前記温度測定用電圧そして当該温度測定用電圧から前記待機用電圧へと短時間に切換わるように前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴とする温度センサ装置付き転動装置。
A rolling device having a bearing and a temperature sensor device for measuring the temperature of the bearing,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion, and an electric resistance value changes according to the temperature,
A constant voltage power supply,
Upon receiving power supply from the constant voltage power supply, the temperature detecting element is supplied with a constant voltage for temperature measurement during temperature measurement, and 0 (zero) volts from a voltage value lower than the temperature measurement voltage during non-temperature measurement. A switch unit for applying a standby voltage having a value in the range of
A control signal for switching the voltage applied to the temperature detection element to the temperature measurement voltage or the standby voltage is output to the switch section, and the switch section applies the temperature measurement voltage to the temperature detection element. A control unit that determines a temperature based on a temperature measurement current flowing through the temperature detection element when
With
The control unit switches the standby voltage from the standby voltage to the temperature measurement voltage and from the temperature measurement voltage to the standby voltage in a short time so that the temperature measurement current flows through the temperature detection element for a short time. A rolling device with a temperature sensor device, characterized in that the switching unit is controlled so as to perform temperature measurement while suppressing self-heating of the temperature detecting element.
前記温度センサ装置が、前記軸受部の回転速度を検出するための回転検出素子および前記軸受部の振動の大きさを検出するための振動検出素子の少なくとも一方を更に備えており、
前記制御部が、前記回転検出素子の回転速度検出によって得られた電気信号および/または前記振動検出素子の振動検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴とする請求項5に記載した温度センサ装置付き転動装置。
The temperature sensor device further includes at least one of a rotation detection element for detecting the rotation speed of the bearing portion and a vibration detection element for detecting the magnitude of vibration of the bearing portion,
The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detecting element and / or an electric signal obtained by detecting vibration of the vibration detecting element, and the determination is performed. The rolling device with a temperature sensor device according to claim 5, wherein a temperature measurement timing and a temperature measurement cycle by the temperature detecting element are dynamically changed according to the operating state of the bearing unit.
前記転動装置が、軸を回転自在に支持する前記軸受部を備えた転がり軸受装置であることを特徴とする請求項5または請求項6に記載した温度センサ装置付き転動装置。The rolling device with a temperature sensor device according to claim 5 or 6, wherein the rolling device is a rolling bearing device including the bearing portion that rotatably supports a shaft. 前記転動装置が、直動運動する軸を支持する前記軸受部を備えた直動装置であることを特徴とする請求項5または請求項6に記載した温度センサ装置付き転動装置。The rolling device with a temperature sensor device according to claim 5, wherein the rolling device is a linear motion device including the bearing portion that supports a shaft that linearly moves. 軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置され、温度に応じて電気抵抗値が変化する温度検出素子と、
定電流電源と、
前記定電流電源から電源供給を受けて、前記温度検出素子に、温度測定時には定電流の温度測定用電流を、そして非温度測定時には前記温度測定用電流よりも低い電流値から0(ゼロ)アンペアの範囲における値の待機用電流を流すスイッチ部と、
前記温度検出素子に流される電流を前記温度測定用電流または前記待機用電流に切換えさせる制御信号を前記スイッチ部に出力し、前記スイッチ部から前記温度検出素子に前記温度測定用電流を流させている際に当該温度検出素子に印加される温度測定用電圧を基に温度を判定する制御部と、
を備え、
温度測定時に前記温度検出素子に流れる電流が前記待機用電流から前記温度測定用電流そして当該温度測定用電流から前記待機用電流へと短時間に切換わるように前記制御部が前記スイッチ部を制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行することを特徴とする温度センサ装置付き転動装置。
A rolling device having a bearing and a temperature sensor device for measuring the temperature of the bearing,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion, and an electric resistance value changes according to the temperature,
A constant current power supply,
Upon receiving power supply from the constant current power supply, the temperature detecting element is supplied with a constant current for temperature measurement during temperature measurement, and 0 (zero) amperage from a current value lower than the temperature measurement current during non-temperature measurement. A switch section for flowing a standby current having a value in the range of
A control signal for switching the current flowing through the temperature detection element to the temperature measurement current or the standby current is output to the switch section, and the temperature measurement current is caused to flow from the switch section to the temperature detection element. A control unit that determines the temperature based on the temperature measurement voltage applied to the temperature detection element when
With
The control unit controls the switch unit such that a current flowing through the temperature detection element at the time of temperature measurement is switched from the standby current to the temperature measurement current and from the temperature measurement current to the standby current in a short time. A rolling device with a temperature sensor device, which performs temperature measurement while suppressing self-heating of the temperature detecting element.
前記温度センサ装置が、前記軸受部の回転速度を検出するための回転検出素子および前記軸受部の振動の大きさを検出するための振動検出素子の少なくとも一方を更に備えており、
前記制御部が、前記回転検出素子の回転速度検出によって得られた電気信号および/または前記振動検出素子の振動検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴とする請求項9に記載した温度センサ装置付き転動装置。
The temperature sensor device further includes at least one of a rotation detection element for detecting the rotation speed of the bearing portion and a vibration detection element for detecting the magnitude of vibration of the bearing portion,
The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detecting element and / or an electric signal obtained by detecting vibration of the vibration detecting element, and the determination is performed. The rolling device with a temperature sensor device according to claim 9, wherein the temperature measurement timing and the temperature measurement cycle by the temperature detection element are dynamically changed according to the operating state of the bearing unit.
前記転動装置が、軸を回転自在に支持する前記軸受部を備えた転がり軸受装置であることを特徴とする請求項9または請求項10に記載した温度センサ装置付き転動装置。The rolling device with a temperature sensor device according to claim 9, wherein the rolling device is a rolling bearing device including the bearing portion that rotatably supports a shaft. 前記転動装置が、直動運動する軸を支持する前記軸受部を備えた直動装置であることを特徴とする請求項9または請求項10に記載した温度センサ装置付き転動装置。The rolling device with a temperature sensor device according to claim 9 or 10, wherein the rolling device is a linear motion device including the bearing portion that supports a shaft that linearly moves. 軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置された温度検出素子と、
前記温度検出素子に温度測定用電流が短時間だけ流れるように制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行する制御部と、
前記軸受部の回転速度を検出するために配置された回転検出素子と、
を備え、
前記制御部が、前記回転検出素子の回転速度検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴とする温度センサ装置付き転動装置。
A rolling device having a bearing and a temperature sensor device for measuring the temperature of the bearing,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion,
A control unit that controls the temperature measurement current to flow through the temperature detection element only for a short time, and performs temperature measurement while suppressing self-heating of the temperature detection element.
A rotation detection element arranged to detect the rotation speed of the bearing portion,
With
The control unit determines an operation state of the bearing unit based on an electric signal obtained by detecting a rotation speed of the rotation detection element, and determines a temperature by the temperature detection element according to the determined operation state of the bearing unit. A rolling device with a temperature sensor device, wherein a measurement timing and a temperature measurement period are dynamically changed.
軸受部および当該軸受部の温度を測定するための温度センサ装置を有する転動装置であって、
前記温度センサ装置が、
前記軸受部の温度を検出するために配置された温度検出素子と、
前記温度検出素子に温度測定用電流が短時間だけ流れるように制御して、当該温度検出素子の自己発熱を抑制しながら温度測定を実行する制御部と、
前記軸受部の振動の大きさを検出するために配置された振動検出素子と、
を備え、
前記制御部が、前記振動検出素子の振動検出によって得られた電気信号を基に前記軸受部の動作状況を判定し、当該判定した前記軸受部の動作状況に応じて前記温度検出素子による温度測定タイミングおよび温度測定周期を動的に変化させることを特徴とする温度センサ装置付き転動装置。
A rolling device having a bearing and a temperature sensor device for measuring the temperature of the bearing,
The temperature sensor device,
A temperature detection element arranged to detect the temperature of the bearing portion,
A control unit that controls the temperature measurement current to flow through the temperature detection element only for a short time, and performs temperature measurement while suppressing self-heating of the temperature detection element.
A vibration detection element arranged to detect the magnitude of vibration of the bearing portion;
With
The control unit determines an operation state of the bearing unit based on an electric signal obtained by vibration detection of the vibration detection element, and measures a temperature by the temperature detection element according to the determined operation state of the bearing unit. A rolling device with a temperature sensor device, wherein a timing and a temperature measurement cycle are dynamically changed.
JP2002321302A 2002-11-05 2002-11-05 Temperature sensor device and turning device with the same Pending JP2004156957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321302A JP2004156957A (en) 2002-11-05 2002-11-05 Temperature sensor device and turning device with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321302A JP2004156957A (en) 2002-11-05 2002-11-05 Temperature sensor device and turning device with the same

Publications (1)

Publication Number Publication Date
JP2004156957A true JP2004156957A (en) 2004-06-03

Family

ID=32801900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321302A Pending JP2004156957A (en) 2002-11-05 2002-11-05 Temperature sensor device and turning device with the same

Country Status (1)

Country Link
JP (1) JP2004156957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071564A (en) * 2004-09-06 2006-03-16 Nec Corp Thin film semiconductor element, its drive circuit, and device using them
JP2011242142A (en) * 2010-05-14 2011-12-01 Yokogawa Electric Corp Temperature distribution measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071564A (en) * 2004-09-06 2006-03-16 Nec Corp Thin film semiconductor element, its drive circuit, and device using them
US8009162B2 (en) 2004-09-06 2011-08-30 Nec Corporation Thin-film semiconductor device, display device including the same, and method of driving display device
US8399951B2 (en) 2004-09-06 2013-03-19 Nec Corporation Thin-film semiconductor device
JP2011242142A (en) * 2010-05-14 2011-12-01 Yokogawa Electric Corp Temperature distribution measuring instrument

Similar Documents

Publication Publication Date Title
US9347801B2 (en) Motor driving system for electric vehicle
US10845256B2 (en) Diagnosis apparatus of assembly state
CN100557102C (en) Be used to operate the method and the motor driver of motor driver
JP2011133101A (en) Wheel bearing device with built-in in-wheel motor sensor
US20140111218A1 (en) Failure prediction in a rotating device
US10066665B2 (en) Wheel bearing with sensor
JP2009068533A (en) Bearing device
JP2004191181A (en) Temperature sensor device and rolling device with the same
JP2004156957A (en) Temperature sensor device and turning device with the same
JPH03269269A (en) Inverter device
JP2007315994A (en) Method for detecting changes in temperature of a rotary electrical machine, and a device thereof
JP2004169756A (en) Bearing device with sensor
JP2003156038A (en) Operating condition monitor for rolling bearing
JP2007202296A (en) Power converter
JP2003206925A (en) Pre-load measuring method for bearing, pre-load measuring device, and spindle device
CN110869711B (en) Encoder and driving device
JP2020037963A (en) Bearing device
JP2007322441A (en) Abnormality detector
JPH10122182A (en) Power supply unit for turbo-molecular pump
JP2008203175A (en) Rotary encoder
US10897221B2 (en) Motor control circuit and motor controller
JP2021050814A (en) Bearing device and spacer
JP4269562B2 (en) Bearing device with sensor
JPH11237314A (en) Estimation method for life of low-speed rotating bearing
JPH09210861A (en) Abnormality detector for bearing of power train tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217