JP2004156748A - Method and device for detecting contact position of embedded pipes - Google Patents

Method and device for detecting contact position of embedded pipes Download PDF

Info

Publication number
JP2004156748A
JP2004156748A JP2002324596A JP2002324596A JP2004156748A JP 2004156748 A JP2004156748 A JP 2004156748A JP 2002324596 A JP2002324596 A JP 2002324596A JP 2002324596 A JP2002324596 A JP 2002324596A JP 2004156748 A JP2004156748 A JP 2004156748A
Authority
JP
Japan
Prior art keywords
buried
pipe
measurement
current
contact position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002324596A
Other languages
Japanese (ja)
Inventor
Hideaki Wakabayashi
英明 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Koken Co Ltd
Original Assignee
JFE Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Koken Co Ltd filed Critical JFE Koken Co Ltd
Priority to JP2002324596A priority Critical patent/JP2004156748A/en
Publication of JP2004156748A publication Critical patent/JP2004156748A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pipeline Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for detecting contact position of embedded pipes capable of easily and accurately detecting a metallic contact position of a pair of embedded pipes by eliminating difficulty in measurement of a voltage change when alternating current leaks into the ground from a coating film damaged part of the embedded pipes. <P>SOLUTION: Change of a current value of the pipe current of the embedded pipe is measured with a measuring pig moving inside one or the other embedded pipe by applying direct current between one embedded pipe 10 and the other embedded pipe 20. Change of the current direction of the pipe current is measured with a measuring pig moving in the other embedded pipe 20 by applying direct current between one embedded pipe 10 and the ground. Furthermore, the measuring pig 40 is formed of a pair of wire brushes 41 and 42 and a connection part 43 having flexibility to arrange both the wire brushes with a predetermined interval between them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、並行に埋設された鋼管(以下、埋設管と称す)同士の接触の有無および接触位置を検出する埋設管同士の接触位置の検出方法および検出装置に関するものである。
【0002】
【従来の技術】
図6は従来の埋設塗覆装配管の塗膜損傷位置検出方法を説明する概略断面図である。図6において、塗覆装鋼管1と接地電極4の間に、交流電源2から電力増幅器3を介して電圧を印加し、電流を通じる。この状態で、塗覆装鋼管1内に計測ピグ6を走行させる。計測ピグ6には、倣い機構8を介して車輪電極9が、計測ピグ6の長さ方向に一対設けられている。計測ピグ6の胴体内には、この一対の車輪電極9間の電圧を測定し、記録する装置が設けられている。
したがって、塗膜損傷部5以外の場所では、2つの車輪電極9間の電圧はほとんど無いものの、塗膜損傷部5が2つの車輪電極9の間に来ると、その間に電圧が発生する。よって、塗膜損傷部5の存在とその大きさの安定した測定ができ、塗膜損傷個所を確実に検出することができるものである(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−022695号公報(第4−5頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来技術を埋設管同士の接触位置の検出方法に使用した場合、埋設管自体が導体抵抗(電気抵抗に同じ)が小さいため、埋設管の内面において電圧変化を計測することは容易でなく、特に、交流電流によるため位置検出の精度が悪いという問題点や、埋設管同士の接触が一箇所なのか複数箇所なのかの判断が困難という問題点、車輪電極が埋設管の内面に確実に接触しないという問題点があった。
【0005】
本発明は、このような問題点を解決するためになされたものであり、導体抵抗が小さい埋設管においても、埋設管同士の接触の有無を高い信頼性で判断でき、且つその接触位置の検出が精度良くできる埋設管同士の接触位置の検出方法および検出装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る埋設管同士の接触位置の検出方法は、以下のとおりである。
(1)地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出方法であって、
一方の埋設管と他方の埋設管との間に直流電流を印加する通電工程と、
一方または他方の埋設管内を移動する計測ピグを用いて、当該埋設管の管内電流の電流値の変化を計測する計測工程と、
該計測工程の計測結果に基づいて埋設管同士の接触位置を特定する位置特定工程とを有することを特徴とするものである。
【0007】
(2)地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出方法であって、
一方の埋設管と地中との間に直流電流を印加する通電工程と、
他方の埋設管内を移動する計測ピグを用いて、管内電流の流れ方向の変化を計測する計測工程 他方の埋設管内を移動する計測ピグを用いて、管内電流の流れ方向の変化を計測する計測工程と、
該計測工程の計測結果に基づいて埋設管同士の接触位置を特定する位置特定工程とを有することを特徴とするものである。
【0008】
また、本発明に係る埋設管同士の接触位置の検出装置は、以下のとおりである。
(3)地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出装置であって、
一方の埋設管と他方の埋設管との間に直流電流を印加する通電手段と、
一方または他方の埋設管内を移動して、当該埋設管の管内電流の電流値の変化を計測する計測手段と、
該計測手段の計測結果に基づいて埋設管同士の接触位置を特定する位置特定手段とを有することを特徴とするものである。
【0009】
(4)地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出装置であって、
一方の埋設管と地中との間に直流電流を印加する通電手段と、
他方の埋設管内を移動して、管内電流の流れ方向の変化を計測する計測手段と、
該計測手段の計測結果に基づいて埋設管同士の接触位置を特定する位置特定手段とを有することを特徴とするものである。
【0010】
(5)前記(3)または(4)において、前記計測手段が前記埋設管内を移動する計測ピグと地上に設置される直流電圧計とを有し、
前記計測ピグが一対のワイヤブラシと該ワイヤブラシ同士を所定の間隔を設けて配置する可撓性を有する連結部とから形成され、
前記ワイヤブラシのそれぞれに接続されたケーブルが前記直流電圧計に接続されることを特徴とするものである。
【0011】
【発明の実施の形態】
[実施の形態1]
(管端短絡通電法)
図1は本発明の実施の形態1に係る埋設管同士の接触位置の検出方法1を説明する模式図である。図1において、地中に埋設された一方の埋設管10と、埋設管10に略並行に埋設された他方の埋設管20が、位置Tにおいて金属接触(以下、メタルタッチと称す)している。また、通電手段30に接続された送電用ケーブル31が埋設管10の位置Aに設置され、通電手段30に接続された受電用ケーブル32が他方の埋設管20の位置Bに接続されている。
したがって、通電手段30によって印加された直流電流(以下、調査電流11と称す)は、埋設管20に流れ込み、やがてその大半がメタルタッチしている位置Tから埋設管10に流れ込むことになる。すなわち、埋設管20内を流れる管内電流は位置Bから位置Tに向けて流れるから、図中、矢印で示すように、管内電流21(調査電流11と同じ電流量)は右方向に、管内電流21の内埋設管10に流れ込まなかった残りの管内電流22は右方向に向かうことになる。
【0012】
したがって、埋設管20内で図示しない計測ピグを移動させながら、管内電流の電流値の大きさの変化、すなわち、計測ピグに設置した一対の接触子間の電圧の変化を計測すれば、かかる電位差が急激に変化した位置が位置Tに対応している。
同様に、埋設管10内で図示しない計測ピグを移動させながら、管内電流の電流値の大きさの変化、すなわち、計測ピグに設置した一対の接触子間の電圧の変化を計測すれば、かかる電位差が急激に変化した位置が位置Tに対応している。
よって、本発明においては、直流電流を印加することによって、大電流の短絡電流(ショート電流)を計測するから、その変化が明確に計測されるため信頼性の高い計測が可能になる。
なお、送電用ケーブル31および受電用ケーブル32は便宜上の呼称であって、何れが、プラスまたはマイナスであってもよい。また、印加する直流電流はパルス状であって、計測ピグを略一定速度で移動させながら所定のインターバルで印加してもよいし、計測ピグを間欠的に移動させ、計測ピグが停止したタイミングで印加してもよい。
【0013】
(外電通電法(アース通電))
図2は本発明の実施の形態1に係る埋設管同士の接触位置の検出方法2を説明する模式図である。図2において、地中に埋設された一方の埋設管10と、埋設管10に略並行に埋設された他方の埋設管20が、位置Tにおいて金属接触(以下、メタルタッチと称す)している。また、通電手段30に接続された送電用ケーブル31が埋設管10の位置Aに設置され、通電手段30に接続された受電用ケーブル32が地中に設置された地中導電体33に接続されている。
このとき、通電手段30によって印加された直流電流(以下、調査電流11と称す)の一部は、埋設管20に流れ込み、やがてメタルタッチしている位置Tから埋設管10に流れ込むことになる。すなわち、埋設管20内を流れる管内電流は位置Tに向けて流れるから、図中、矢印で示すように、管内電流21は右方向、管内電流22は左方向に向かうことになる。
【0014】
したがって、埋設管20内で図示しない計測ピグを移動させながら、管内電流の流れ方向(極性)の切り替わり、すなわち、計測ピグに設置した一対の接触子間の電圧の切り替わり(プラス/マイナスの反転)を計測すれば、かかる切り替わり位置が位置Tに対応している。
一方、埋設管10内で図示しない計測ピグを移動させながら、管内電流の電流値の大きさの変化、すなわち、計測ピグに設置した一対の接触子間の電圧の変化を計測すれば、かかる電位差が急激に変化した位置が位置Tに対応している。
なお、本発明においては、直流電流を印加することによって、前記管内電流の流れ方向の切り替わりを明確に計測するから、信頼性の高い計測が可能になっている。また、通電手段30によって印加された調査電流11の極性が反転した場合には、管内電流21、22の流れ方向も当然に反転する。
【0015】
[実施の形態2]
(検出装置)
図3は本発明の実施の形態2に係る埋設管同士の接触位置の検出装置を模式的に示す構成図である。図3において、埋設管同士の接触位置の検出装置100(以下、検出装置100と称す)は、通電装置30と、計測ピグ40と、直流電圧計60を有している。
(通電装置)
通電装置30は、直流のパルス電圧を印加自在であって、送電用ケーブル31および受電用ケーブル32がそれぞれ接続されている。たとえば、計測ピグの移動に同期して、所定の時間間隔でパルスを発したり、計測ピグの間欠的な移動に対応して、計測ピグが停止したタイミングにパルスを発したりする。
【0016】
(計測ピグ)
計測ピグ40は、一対の接触子41、42(放射状に配置されたワイヤによって形成された円盤状のワイヤブラシに同じ)と、該ワイヤブラシのワイヤを固定する円環状の固定用金物43、44と、接触子41と接触子42(固定用金物43と固定用金物に同じ)を所定の間隔で配置する可撓性を具備する連結部45(耐圧ビニールホースに同じ)とによって形成されている。
そして、接触子41、42のそれぞれには計測用ケーブル51、52が設置され、計測用ケーブル51、52は直流電圧計60に接続されている。また、連結部45の一方の端部には牽引用ロープ71が、他方の端部には牽引用ロープ72が設置されている。
【0017】
したがって、計測ピグの接触子41、42がワイヤブラシによって形成されているから、相当数のワイヤの先端が埋設管の内壁に確実に接触するため、接触子として回転ローラを用いた場合と比較して信頼性の高い計測が可能になる。
また、接触子41と接触子42とを可撓性を具備する連結部45によって連結しているから、埋設管が直線状でない場合(複数の埋設管が折れ曲がって接続されていたり、埋設管自体が曲がっていたり、屈曲部(エルボ)を有していたりする場合)であっても、埋設管の内壁に追従自在であるから、両接触子41、42の接触が確実になり、信頼性の高い計測が可能になる。
【0018】
(牽引用ロープ)
さらに、埋設管内に挿入した計測ピグ40を、牽引用ロープ71または牽引用ロープ72によって移動させながら、直流電圧計60の計測値の変化を監視すれば、該計測値に変化が発生した位置においてメタルタッチが発生していることになる。また、牽引用ロープ71によって所定の距離を移動(図中、左方向に)した後、牽引用ロープ72によって該距離を引き戻せば(図中、左方向に)、往路および復路で2回の計測ができるから検出精度が向上し、且つ計測ピグ40を埋設管内に挿入したマンホールと同じマンホールから回収することができる。
なお、計測ピグは略一定速度で連続的に移動する場合と、所定のインターバルで停止する間欠的な移動をする場合とがある。
【0019】
(測長計)
なお、牽引用ロープ71または牽引用ロープ72に距離を測定するためのメジャー80を添付したり、所定の距離毎にマークを付して、計測ピグの計測結果(前記電位差の変化)に対応してメジャー80を読みとればメタルタッチが発生している位置を容易に知ることができる。
また、牽引用ロープ71または牽引用ロープ72を巻き取る巻き取りドラムに回転計を設置したり、牽引用ロープ71または牽引用ロープ72に当接して回転する測長ローラを設置したりして、その回転数と計測ピグの計測結果を対比すれば、メタルタッチが発生している位置を容易に知ることができる。
【0020】
[実施の形態3]
地中に埋設された一方の埋設管Gと、埋設管Gに略並行に埋設された他方の埋設管Nとの間でメタルタッチが発生しているか否かを調査した。
埋設管Gは管径600Aで長さ120mのポリエチレンライニングをした鋼管であり、埋設管Nは管径82mmで長さ120mの鋼管である。なお、埋設管Nは3本が並行に配置されたものであって、該配置のために所定のピッチでアングル(縛着治具)が設けられているから、該アングルと埋設管Gとがメタルタッチするおそれがあった。
また、調査に用いた計測ピグは、ワイヤブラシの外径が130mmでワイヤブラシ間の距離が330mmで、各ワイヤブラシには計測用ケーブルが接続され、該計測用ケーブルは計測用2芯ケーブルとなって直流電圧計60に接続されている。また、計測ピグの両端にはそれぞれ長さ150mの牽引用ロープが設置され、牽引用ロープには距離を測定するための測長ローラが当接されている。したがって、測長ローラの回転数と移動する計測ピグの位置が対応しているため、計測ピグの位置は位置データとして適宜パソコンに入力されている。
【0021】
(調査手順)
図4は本発明の実施の形態3に係る埋設管同士の接触の有無を調査した調査手順の一例を示すフローチャートである。なお、実施の形態1および2(図1〜3)と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
図4において、計測ピグを挿入する埋設管N内に設置されていた通信ケーブル等を一時撤去して(S1)、一方のマンホール(北側)から埋設管N内に牽引ロープ71を挿入し(S2)、埋設管Nの内面を水圧ジェットにより清掃する(S3)。
【0022】
(管端短絡通電法による計測)
まず、埋設管Gの一端部に送電用ケーブル31を設置し、受電用ケーブル32を埋設管Nに接続する(S4)。
そして、計測ピグ40を埋設管Nの一方(たとえば、北側のマンホールの端部)から他方(南側)に向けて牽引し(S5)、管内電流の電位差を計測しながら(S6)、該計測データを計測ピグの位置データと共にパソコンに入力する(S7)。
【0023】
(外電通電法による計測)
次に、埋設管Gの一端部に送電用ケーブル31を設置したまま、受電用ケーブル32が接続された地中導電体33を地中に設置する(S8)。
そして、計測ピグ40を埋設管Nの他方(南側)から一方(北側)に向けて牽引し(S9)、管内電流の電位差を計測しながら(S10)、該計測データを計測ピグの位置データと共にパソコンに入力する(S11)。
さらに、計測データを解析して、計測ピグの位置データと対比してメタルタッチ位置を特定し(S12)、特定結果を出力(表示、印刷等)する(S13)。
【0024】
(調査結果)
図5は本発明の実施の形態3に係る埋設管同士の接触の有無を調査した調査結果を示す電位差−位置の相関図である。図5において、縦軸は計測ピグが計測した電位差(mV)、横軸は埋設管Nの北側端部からの距離(m)、黒丸(●)は管端短絡通電法による計測結果(S4〜S7)、黒点(・)は外電通電法(S8〜S11)による計測結果である。
図5において、管端短絡通電法による測定結果である黒丸は北側では+0.007mVであったものが、北側からの距離53mの位置で0.001mVに急激に減少する現象が認められ、実施の形態1において説明した検出方法が確認されている。
また、外電通電法による計測結果である黒点は、北側からの距離53mで通電方向が逆転している。すなわち、北側では+0.005mVであったものが、南側では−0.002mVに明りょうに変化する電流方向(極性)の逆転現象が認められ、実施の形態1において説明した検出方法が確認されている。
以上より、北側からの距離53mの位置においてメタルタッチが生じていると特定されたため、当該位置を掘削したところ、実際にメタルタッチが起こっていた。
【0025】
なお、上記調査結果は、計測ピグの一回の往路で管端短絡通電法を、引き続き一回の復路で外電通電法を実施したものであるが、外電通電法を往路および復路において複数回実施したり、管端短絡通電法を往路および復路において複数回実施したりしてもよい。また、管端短絡通電法または外電通電法の一方のみを実施してもよい。
さらに、計測ピグの計測データ(電位差の変化)を監視して、電位差の変化が生じた時点で、牽引用ロープ72に添付したメジャー80を読み取ることによってメタルタッチの位置を特定してもよい。
【0026】
【発明の効果】
以上のように本発明によれば、以下の効果が得られる。
1)一対の埋設管の間に直流電流を印加して、他方の埋設管の管内電流の値(電位差に同じ)の急激な変化を測定することによって、当該埋設管同士のメタルタッチの位置を特定するため、簡単な装置によって、高い精度の位置検出が可能になる。
2)一方の埋設管と地中との間に直流電流を印加して、一方の埋設管の管内電流の流れ方向(極性)が逆転する位置を測定することによって、当該埋設管同士のメタルタッチの位置を特定するため、簡単な装置によって、高い精度の位置検出が可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る埋設管同士の接触位置の検出方法1を説明する模式図である。
【図2】本発明の実施の形態1に係る埋設管同士の接触位置の検出方法2を説明する模式図である。
【図3】本発明の実施の形態2に係る埋設管同士の接触位置の検出装置を模式的に示す構成図である。
【図4】本発明の実施の形態3に係る埋設管同士の接触の有無を調査した調査手順の一例を示すフローチャートである。
【図5】本発明の実施の形態3に係る埋設管同士の接触の有無を調査した調査結果を示す電位差−位置の相関図である。
【図6】従来の埋設塗覆装配管の塗膜損傷位置検出方法を説明する概略断面図である。
【符号の説明】
10 埋設管
20 埋設管
11、12、21、22 管内電流
30 通電手段
31 送電用ケーブル
32 受電用ケーブル
33 地中導電体
40 計測ピグ
41、42 接触子
51、52 計測用ケーブル
60 直流電圧計
71、72 牽引用ロープ
80 メジャー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for detecting a contact position between buried pipes for detecting the presence or absence of a contact between steel pipes buried in parallel (hereinafter referred to as buried pipes) and a contact position.
[0002]
[Prior art]
FIG. 6 is a schematic cross-sectional view for explaining a conventional method for detecting a paint film damage position in a buried coating pipe. In FIG. 6, a voltage is applied between the coated steel pipe 1 and the ground electrode 4 from the AC power supply 2 via the power amplifier 3 to pass a current. In this state, the measurement pig 6 is caused to run inside the coated steel pipe 1. A pair of wheel electrodes 9 are provided on the measurement pig 6 via a copying mechanism 8 in the length direction of the measurement pig 6. A device for measuring and recording the voltage between the pair of wheel electrodes 9 is provided in the body of the measuring pig 6.
Therefore, although there is almost no voltage between the two wheel electrodes 9 in a place other than the damaged portion 5, when the damaged portion 5 comes between the two wheel electrodes 9, a voltage is generated therebetween. Therefore, the presence and the size of the damaged portion 5 of the coating film can be measured stably, and the damaged portion of the coating film can be reliably detected (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-022695 (page 4-5, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, when the above-described conventional technique is used in the method for detecting the contact position between buried pipes, since the buried pipe itself has a small conductor resistance (same as electric resistance), it is necessary to measure a voltage change on the inner surface of the buried pipe. Is not easy, in particular, the position detection accuracy is poor due to the alternating current, the problem is that it is difficult to determine whether the contact between the buried pipes is one place or multiple places, There is a problem that the inner surface is not securely contacted.
[0005]
The present invention has been made in order to solve such a problem. Even in a buried pipe having a small conductor resistance, the presence or absence of contact between the buried pipes can be determined with high reliability, and the contact position can be detected. It is an object of the present invention to obtain a method and a device for detecting a contact position between buried pipes, which can be performed accurately.
[0006]
[Means for Solving the Problems]
A method for detecting a contact position between buried pipes according to the present invention is as follows.
(1) A method for detecting a contact position between buried pipes, the method comprising detecting a contact position between a pair of buried pipes buried in the ground,
An energizing step of applying a direct current between one buried pipe and the other buried pipe,
Using a measurement pig moving in one or the other buried pipe, a measurement step of measuring a change in the current value of the pipe current of the buried pipe,
And a position specifying step of specifying a contact position between the buried pipes based on a measurement result of the measuring step.
[0007]
(2) A method of detecting a contact position between buried pipes for detecting a contact position between a pair of buried pipes buried underground,
An energizing step of applying a direct current between one of the buried pipes and the underground,
A measuring step of measuring a change in the flow direction of the current in the pipe using a measurement pig moving in the other buried pipe A measurement step of measuring a change in the flow direction of the current in the pipe using a measurement pig moving in the other buried pipe When,
And a position specifying step of specifying a contact position between the buried pipes based on a measurement result of the measuring step.
[0008]
Further, a device for detecting a contact position between buried pipes according to the present invention is as follows.
(3) a device for detecting a contact position between a pair of buried pipes buried in the ground,
Energizing means for applying a direct current between one buried pipe and the other buried pipe,
Measuring means for moving in one or the other buried pipe and measuring a change in the current value of the pipe current of the buried pipe;
And a position specifying means for specifying a contact position between the buried pipes based on a measurement result of the measuring means.
[0009]
(4) A device for detecting a contact position between buried pipes for detecting a contact position between a pair of buried pipes buried underground,
Energizing means for applying a direct current between one buried pipe and the underground,
Measuring means for moving in the other buried pipe and measuring a change in the flow direction of the pipe current;
And a position specifying means for specifying a contact position between the buried pipes based on a measurement result of the measuring means.
[0010]
(5) In the above (3) or (4), the measuring means has a measuring pig moving in the buried pipe and a DC voltmeter installed on the ground,
The measurement pig is formed from a pair of wire brushes and a flexible connecting portion that arranges the wire brushes at a predetermined interval,
A cable connected to each of the wire brushes is connected to the DC voltmeter.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
(Pipe end short-circuiting method)
FIG. 1 is a schematic diagram illustrating a method 1 for detecting a contact position between buried pipes according to Embodiment 1 of the present invention. In FIG. 1, one buried pipe 10 buried in the ground and another buried pipe 20 buried substantially parallel to the buried pipe 10 are in metal contact (hereinafter, referred to as metal touch) at a position T. . A power transmission cable 31 connected to the power supply means 30 is installed at a position A of the buried pipe 10, and a power reception cable 32 connected to the power supply means 30 is connected to a position B of the other buried pipe 20.
Therefore, the direct current (hereinafter referred to as the investigation current 11) applied by the energizing means 30 flows into the buried pipe 20, and eventually flows into the buried pipe 10 from the position T where most of the metal touch is made. That is, since the pipe current flowing in the buried pipe 20 flows from the position B to the position T, the pipe current 21 (the same amount of current as the investigation current 11) flows rightward as shown by the arrow in the figure. The remaining tube current 22 that has not flowed into the inner buried tube 10 of FIG.
[0012]
Therefore, by moving the measurement pig (not shown) in the buried pipe 20 and measuring the change in the magnitude of the current value in the pipe, that is, the change in the voltage between a pair of contacts mounted on the measurement pig, the potential difference can be measured. Corresponds to the position T.
Similarly, while moving a measurement pig (not shown) in the buried pipe 10, a change in the magnitude of the current value of the pipe current, that is, a change in the voltage between a pair of contacts installed on the measurement pig is measured. The position where the potential difference has changed abruptly corresponds to the position T.
Therefore, in the present invention, a large current short-circuit current (short-circuit current) is measured by applying a direct current, and the change is clearly measured, so that highly reliable measurement is possible.
Note that the power transmission cable 31 and the power reception cable 32 are names for convenience, and either may be plus or minus. Further, the DC current to be applied is in the form of a pulse, and may be applied at predetermined intervals while moving the measurement pig at a substantially constant speed, or the measurement pig may be moved intermittently and at the timing when the measurement pig stops. It may be applied.
[0013]
(External current application method (Earth application))
FIG. 2 is a schematic diagram illustrating a method 2 for detecting a contact position between buried pipes according to Embodiment 1 of the present invention. In FIG. 2, one buried pipe 10 buried in the ground and another buried pipe 20 buried substantially in parallel with the buried pipe 10 are in metal contact (hereinafter, referred to as metal touch) at a position T. . A power transmission cable 31 connected to the power supply means 30 is installed at a position A of the buried pipe 10, and a power reception cable 32 connected to the power supply means 30 is connected to an underground conductor 33 installed underground. ing.
At this time, a part of the DC current (hereinafter referred to as the investigation current 11) applied by the energizing means 30 flows into the buried pipe 20, and eventually flows into the buried pipe 10 from the position T where the metal touch is performed. That is, since the pipe current flowing in the buried pipe 20 flows toward the position T, the pipe current 21 goes to the right and the pipe current 22 goes to the left as shown by the arrow in the figure.
[0014]
Therefore, while moving a measurement pig (not shown) in the buried pipe 20, the flow direction (polarity) of the current in the pipe is switched, that is, the voltage is switched between a pair of contacts installed in the measurement pig (plus / minus inversion). Is measured, the switching position corresponds to the position T.
On the other hand, while moving a measurement pig (not shown) in the buried pipe 10 and measuring a change in the magnitude of the current value in the pipe, that is, a change in the voltage between a pair of contacts installed on the measurement pig, the potential difference can be measured. Corresponds to the position T.
In the present invention, since the switching of the flow direction of the in-tube current is clearly measured by applying a direct current, highly reliable measurement is possible. In addition, when the polarity of the investigation current 11 applied by the energizing means 30 is reversed, the flow directions of the tube currents 21 and 22 are naturally reversed.
[0015]
[Embodiment 2]
(Detection device)
FIG. 3 is a configuration diagram schematically showing a device for detecting a contact position between buried pipes according to Embodiment 2 of the present invention. In FIG. 3, a detection device 100 (hereinafter, referred to as a detection device 100) for detecting a contact position between buried pipes includes an energization device 30, a measurement pig 40, and a DC voltmeter 60.
(Electrification device)
The energizing device 30 can apply a DC pulse voltage freely, and is connected to a power transmission cable 31 and a power reception cable 32, respectively. For example, a pulse is issued at a predetermined time interval in synchronization with the movement of the measurement pig, or a pulse is issued at the timing when the measurement pig stops in response to the intermittent movement of the measurement pig.
[0016]
(Measurement pig)
The measurement pig 40 includes a pair of contacts 41 and 42 (the same as a disk-shaped wire brush formed by radially arranged wires) and annular fixing hardware 43 and 44 for fixing the wires of the wire brush. And a flexible connecting portion 45 (same as a pressure-resistant vinyl hose) for arranging the contacts 41 and 42 (same as the fixing hardware 43 and the fixing hardware) at predetermined intervals. .
Then, measurement cables 51 and 52 are installed on the contacts 41 and 42, respectively, and the measurement cables 51 and 52 are connected to the DC voltmeter 60. Further, a tow rope 71 is provided at one end of the connecting portion 45, and a tow rope 72 is provided at the other end.
[0017]
Therefore, since the contacts 41 and 42 of the measuring pig are formed by the wire brush, the tips of a considerable number of wires surely come into contact with the inner wall of the buried pipe. And highly reliable measurement becomes possible.
Further, since the contact 41 and the contact 42 are connected by the connecting portion 45 having flexibility, when the buried pipe is not straight (a plurality of buried pipes are bent and connected, or the buried pipe itself is not connected). Is bent or has a bent portion (elbow)), it is possible to follow the inner wall of the buried pipe. High measurement becomes possible.
[0018]
(Towing rope)
Further, while monitoring the change of the measurement value of the DC voltmeter 60 while moving the measurement pig 40 inserted in the buried pipe by the tow rope 71 or the tow rope 72, the metal at the position where the change occurs in the measurement value This means that a touch has occurred. Further, after moving a predetermined distance by the tow rope 71 (to the left in the figure) and then pulling back the distance by the tow rope 72 (to the left in the figure), two times of forward and return trips are performed. Since the measurement can be performed, the detection accuracy is improved, and the measurement pig 40 can be collected from the same manhole as the manhole inserted into the buried pipe.
Note that the measurement pig may move continuously at a substantially constant speed, or may move intermittently at predetermined intervals.
[0019]
(Measuring length meter)
It should be noted that a measure 80 for measuring the distance is attached to the tow rope 71 or the tow rope 72, or a mark is attached for each predetermined distance to correspond to the measurement result of the measurement pig (the change in the potential difference). By reading the measure 80, the position where the metal touch occurs can be easily known.
Also, by installing a tachometer on the winding drum that winds the towing rope 71 or the towing rope 72, or by installing a length measuring roller that rotates in contact with the towing rope 71 or the towing rope 72, By comparing the rotation speed with the measurement result of the measurement pig, the position where the metal touch occurs can be easily known.
[0020]
[Embodiment 3]
It was investigated whether or not a metal touch occurred between one buried pipe G buried in the ground and the other buried pipe N buried substantially parallel to the buried pipe G.
The buried pipe G is a steel pipe having a pipe diameter of 600A and a length of 120 m and having a polyethylene lining, and the buried pipe N is a steel pipe having a pipe diameter of 82 mm and a length of 120 m. In addition, since three buried pipes N are arranged in parallel and an angle (a binding jig) is provided at a predetermined pitch for the arrangement, the angle and the buried pipe G are connected. There was a risk of metal touch.
The measuring pig used for the survey had an outer diameter of 130 mm for the wire brush and a distance of 330 mm between the wire brushes. A measuring cable was connected to each wire brush, and the measuring cable was a two-core measuring cable. And connected to the DC voltmeter 60. A tow rope having a length of 150 m is installed at each end of the measuring pig, and a length measuring roller for measuring a distance is in contact with the tow rope. Therefore, since the number of rotations of the length measuring roller corresponds to the position of the moving measurement pig, the position of the measurement pig is appropriately input to the personal computer as position data.
[0021]
(Survey procedure)
FIG. 4 is a flowchart showing an example of an investigation procedure for investigating the presence or absence of contact between buried pipes according to Embodiment 3 of the present invention. The same parts as those in the first and second embodiments (FIGS. 1 to 3) are denoted by the same reference numerals, and a part of the description is omitted.
In FIG. 4, the communication cable and the like installed in the buried pipe N into which the measurement pig is inserted are temporarily removed (S1), and the tow rope 71 is inserted into the buried pipe N from one manhole (north side) (S2). ), The inner surface of the buried pipe N is cleaned with a hydraulic jet (S3).
[0022]
(Measurement by tube end short-circuit conduction method)
First, the power transmission cable 31 is installed at one end of the buried pipe G, and the power receiving cable 32 is connected to the buried pipe N (S4).
Then, the measurement pig 40 is pulled from one side (for example, the end of the north side manhole) of the buried pipe N toward the other side (south side) (S5), and while measuring the potential difference of the current in the pipe (S6), the measurement data is obtained. Is input to the personal computer together with the position data of the measurement pig (S7).
[0023]
(Measurement by external electric current method)
Next, while the power transmission cable 31 is installed at one end of the buried pipe G, the underground conductor 33 to which the power reception cable 32 is connected is installed underground (S8).
Then, the measurement pig 40 is pulled from the other side (south side) of the buried pipe N toward one side (north side) (S9), and while measuring the potential difference of the current in the pipe (S10), the measurement data is combined with the position data of the measurement pig. Input to the personal computer (S11).
Furthermore, the measurement data is analyzed, the metal touch position is specified by comparing with the position data of the measurement pig (S12), and the specified result is output (displayed, printed, etc.) (S13).
[0024]
(Investigation result)
FIG. 5 is a potential difference-position correlation diagram showing the results of an investigation on the presence or absence of contact between buried pipes according to Embodiment 3 of the present invention. In FIG. 5, the vertical axis represents the potential difference (mV) measured by the measurement pig, the horizontal axis represents the distance (m) from the north end of the buried pipe N, and the solid circles (●) represent the measurement results by the pipe end short-circuiting method (S4 to S4). S7), black dots (•) are the measurement results by the external electric conduction method (S8 to S11).
In FIG. 5, the black circle, which is the measurement result by the tube end short-circuiting conduction method, was +0.007 mV on the north side, but a phenomenon was sharply reduced to 0.001 mV at a position 53 m from the north side. The detection method described in the first embodiment has been confirmed.
Further, the energization direction of the black spot, which is the measurement result by the external electric energization method, is reversed at a distance of 53 m from the north side. That is, the reversal phenomenon of the current direction (polarity), which was +0.005 mV on the north side, but clearly changed to -0.002 mV on the south side, was confirmed, and the detection method described in the first embodiment was confirmed. I have.
From the above, it has been specified that a metal touch has occurred at a position at a distance of 53 m from the north side. Therefore, when the position was excavated, a metal touch actually occurred.
[0025]
Note that the above survey results show that the pipe end short-circuit energization method was carried out once for the measurement pig and the external power energization method was subsequently carried out for one return trip. Alternatively, the pipe end short-circuit energization method may be performed a plurality of times in the outward path and the return path. Further, only one of the tube end short-circuit energization method and the external electric energization method may be performed.
Further, the measurement data (change in potential difference) of the measurement pig may be monitored, and when the change in potential difference occurs, the position of the metal touch may be specified by reading the measure 80 attached to the tow rope 72.
[0026]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
1) By applying a direct current between a pair of buried pipes and measuring a sudden change in the current value (same as the potential difference) in the other buried pipe, the position of the metal touch between the buried pipes can be determined. For this purpose, a simple device enables highly accurate position detection.
2) Applying a direct current between one of the buried pipes and the underground and measuring the position where the flow direction (polarity) of the current in the one of the buried pipes is reversed, thereby making a metal touch between the buried pipes. Since the position is specified, the position can be detected with high accuracy by a simple device.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a method 1 for detecting a contact position between buried pipes according to Embodiment 1 of the present invention.
FIG. 2 is a schematic diagram illustrating a method 2 for detecting a contact position between buried pipes according to Embodiment 1 of the present invention.
FIG. 3 is a configuration diagram schematically showing an apparatus for detecting a contact position between buried pipes according to Embodiment 2 of the present invention.
FIG. 4 is a flowchart showing an example of an investigation procedure for investigating the presence or absence of contact between buried pipes according to Embodiment 3 of the present invention.
FIG. 5 is a potential difference-position correlation diagram showing the results of an investigation on the presence or absence of contact between buried pipes according to Embodiment 3 of the present invention.
FIG. 6 is a schematic cross-sectional view for explaining a conventional method of detecting a paint film damage position in a buried coating pipe.
[Explanation of symbols]
Reference Signs List 10 buried pipe 20 buried pipe 11, 12, 21, 22 current in pipe 30 conducting means 31 power transmitting cable 32 power receiving cable 33 underground conductor 40 measuring pig 41, 42 contactor 51, 52 measuring cable 60 DC voltmeter 71, 72 Towing Rope 80 Major

Claims (5)

地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出方法であって、
一方の埋設管と他方の埋設管との間に直流電流を印加する通電工程と、
一方または他方の埋設管内を移動する計測ピグを用いて、当該埋設管の管内電流の電流値の変化を計測する計測工程と、
該計測工程の計測結果に基づいて埋設管同士の接触位置を特定する位置特定工程とを有することを特徴とする埋設管同士の接触位置の検出方法。
A method for detecting a contact position between buried pipes for detecting a contact position between a pair of buried pipes buried in the ground,
An energizing step of applying a direct current between one buried pipe and the other buried pipe,
Using a measurement pig moving in one or the other buried pipe, a measurement step of measuring a change in the current value of the pipe current of the buried pipe,
A position specifying step of specifying a contact position between the buried pipes based on a measurement result of the measuring step.
地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出方法であって、
一方の埋設管と地中との間に直流電流を印加する通電工程と、
他方の埋設管内を移動する計測ピグを用いて、管内電流の流れ方向の変化を計測する計測工程と、
該計測工程の計測結果に基づいて埋設管同士の接触位置を特定する位置特定工程とを有することを特徴とする埋設管同士の接触位置の検出方法。
A method for detecting a contact position between buried pipes for detecting a contact position between a pair of buried pipes buried in the ground,
An energizing step of applying a direct current between one of the buried pipes and the underground,
A measurement step of measuring a change in the flow direction of the current in the pipe using a measurement pig moving in the other buried pipe;
A position specifying step of specifying a contact position between the buried pipes based on a measurement result of the measuring step.
地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出装置であって、
一方の埋設管と他方の埋設管との間に直流電流を印加する通電手段と、
一方または他方の埋設管内を移動して、当該埋設管の管内電流の電流値の変化を計測する計測手段と、
該計測手段の計測結果に基づいて埋設管同士の接触位置を特定する位置特定手段とを有することを特徴とする埋設管同士の接触位置の検出装置。
A device for detecting a contact position between buried pipes for detecting a contact position between a pair of buried pipes buried in the ground,
Energizing means for applying a direct current between one buried pipe and the other buried pipe,
Measuring means for moving in one or the other buried pipe and measuring a change in the current value of the pipe current of the buried pipe;
And a position specifying means for specifying a contact position between the buried pipes based on a measurement result of the measuring means.
地中に埋設された一対の埋設管の接触位置を検出する埋設管同士の接触位置の検出装置であって、
一方の埋設管と地中との間に直流電流を印加する通電手段と、
他方の埋設管内を移動して、管内電流の流れ方向の変化を計測する計測手段と、
該計測手段の計測結果に基づいて埋設管同士の接触位置を特定する位置特定手段とを有することを特徴とする埋設管同士の接触位置の検出装置。
A device for detecting a contact position between buried pipes for detecting a contact position between a pair of buried pipes buried in the ground,
Energizing means for applying a direct current between one buried pipe and the underground,
Measuring means for moving in the other buried pipe and measuring a change in the flow direction of the pipe current;
And a position specifying means for specifying a contact position between the buried pipes based on a measurement result of the measuring means.
前記計測手段が前記埋設管内を移動する計測ピグと地上に設置される直流電圧計とを有し、
前記計測ピグが一対のワイヤブラシと該ワイヤブラシ同士を所定の間隔を設けて配置する可撓性を有する連結部とから形成され、
前記ワイヤブラシのそれぞれに接続されたケーブルが前記直流電圧計に接続されることを特徴とする請求項3または4記載の埋設管同士の接触位置の検出装置。
The measurement means has a measurement pig moving in the buried pipe and a DC voltmeter installed on the ground,
The measurement pig is formed from a pair of wire brushes and a flexible connecting portion that arranges the wire brushes at a predetermined interval,
5. The apparatus according to claim 3, wherein cables connected to the wire brushes are connected to the DC voltmeter.
JP2002324596A 2002-11-08 2002-11-08 Method and device for detecting contact position of embedded pipes Pending JP2004156748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324596A JP2004156748A (en) 2002-11-08 2002-11-08 Method and device for detecting contact position of embedded pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324596A JP2004156748A (en) 2002-11-08 2002-11-08 Method and device for detecting contact position of embedded pipes

Publications (1)

Publication Number Publication Date
JP2004156748A true JP2004156748A (en) 2004-06-03

Family

ID=32804093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324596A Pending JP2004156748A (en) 2002-11-08 2002-11-08 Method and device for detecting contact position of embedded pipes

Country Status (1)

Country Link
JP (1) JP2004156748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406514A (en) * 2014-11-28 2015-03-11 广东欧珀移动通信有限公司 Device and method for measuring bending deformation degree of article
CN106122774A (en) * 2016-08-05 2016-11-16 倪晨钧 A kind of pipeline leakage detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406514A (en) * 2014-11-28 2015-03-11 广东欧珀移动通信有限公司 Device and method for measuring bending deformation degree of article
CN106122774A (en) * 2016-08-05 2016-11-16 倪晨钧 A kind of pipeline leakage detection method

Similar Documents

Publication Publication Date Title
US20200378885A1 (en) Multielectrode Probes For Monitoring Fluctuating Stray Current Effects And Ac Interference On Corrosion Of Burried Pipelines And Metal Structures
US7768270B2 (en) In-pipe coating integrity monitor for very long pipes
KR20130060867A (en) Information acquisition method and device for underground utilities
AU2016297681B2 (en) Apparatus and method for identifying defects in conduits
JP2004156748A (en) Method and device for detecting contact position of embedded pipes
WO2015190414A1 (en) Nondestructive inspection device
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
WO1984004166A1 (en) Method and device for detecting damage to buried object
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
GB2143331A (en) Apparatus for detecting the defective portion of a metallic tube
US6262578B1 (en) Detection and location of current leakage paths and detection of oscillations
JP2002022695A (en) Method for detecting coating film damage position of embedded coated piping
CN110726906B (en) Method and system for detecting cable length
KR101112216B1 (en) Wire assembly for detecting embedded piping and method of detecting embedded piping
JPH10260264A (en) Specific resistance electric searching method
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JP2018109589A (en) Estimation system and estimation method for metal pipe corrosion
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
JP2001004575A (en) Detecting method for damage of paint film on buried painted and covered steel tube
JP6452558B2 (en) Method and apparatus for measuring thinning of outer surface of buried pipe, etc.
JP2019144253A (en) Electrode for high frequency ac electrical exploration
JPH0712950A (en) Method and device for detecting position of buried pipe and corrosion preventing current
CN207998641U (en) Detection device and in-pipeline detection device
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
JPH08320308A (en) Method and apparatus for diagnosis of corrosion-proof coating damaged part in buried pipe