JP2004153932A - Exciting rush current reduction circuit for transformer - Google Patents

Exciting rush current reduction circuit for transformer Download PDF

Info

Publication number
JP2004153932A
JP2004153932A JP2002316612A JP2002316612A JP2004153932A JP 2004153932 A JP2004153932 A JP 2004153932A JP 2002316612 A JP2002316612 A JP 2002316612A JP 2002316612 A JP2002316612 A JP 2002316612A JP 2004153932 A JP2004153932 A JP 2004153932A
Authority
JP
Japan
Prior art keywords
phase
voltage
transformer
low
disconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316612A
Other languages
Japanese (ja)
Other versions
JP2004153932A5 (en
Inventor
Masaichi Matsumoto
正市 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002316612A priority Critical patent/JP2004153932A/en
Publication of JP2004153932A publication Critical patent/JP2004153932A/en
Publication of JP2004153932A5 publication Critical patent/JP2004153932A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Transformers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an exciting rush current generated at inputting power to a transformer without taking particular measures for a standard transformer and an existing transformer. <P>SOLUTION: A single-phase high-voltage disconnector 10 is arranged between the high-voltage side of a three-phase transformer 8 and low-voltage side three-phase wiring 14 by which a single-phase voltage lower than a rated voltage of the high-voltage side is obtained. The single-phase high-voltage disconnector 10 is opened and closed so as to temporarily apply a single-phase low voltage of the low-voltage side three-phase wiring 14 to the high-voltage side of the three-phase transformer 8 during the stop of the operation of the single-phase high-voltage disconnector in a state that the three-phase transformer 8 is separated from a circuit by opening a three-phase high-voltage disconnector 4. Since the three-phase transformer 8 is reduction-excited at a single-phase constant voltage, the exciting rushed current generated at the opening of the operation by closing the three-phase high-voltage disconnector 4 is largely reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、三相変圧器やスコット結線変圧器、単相変圧器などの変圧器に電源を投入するときに発生する励磁突入電流を低減する変圧器の励磁突入電流低減回路に関するものである。
【0002】
【従来の技術】
従来、変圧器を含む電力供給回路においては、開閉器により変圧器を電源に投入するとき、投入位相によって異なるが、定格電流の数十倍の励磁突入電流が流れ、その後時間と共に減衰して定常状態になるという過渡現象の生じることが知られている。励磁突入電流の大きさは、投入位相以外にも変圧器が電源から遮断されたときに変圧器鉄心に残る残留磁束によっても大きく影響される。この励磁突入電流は、保護装置の誤動作を誘発したり、周辺電力系統の電圧変動に大きな影響を与える。このようなことから、励磁突入電流を低減する種々の対策が講じられている。
【0003】
また、励磁突入電流は、変圧器自身にも励磁突入電流による電磁機械力によってダメージを与える。励磁突入電流は、常規の使用状態の下で発生するものであるので、頻繁に励磁突入電流の発生が繰り返された場合、変圧器にはダメージが蓄積され破壊することがある。したがって、省エネルギーを目的として、毎日、負荷の大きくなる就業時間前に変圧器を課電し、負荷の無くなる夜間には変圧器を切り離すような頻繁に励磁突入電流の発生が繰り返される場合は、励磁突入電流低減変圧器を適用するか、特別な励磁突入電流低減対策が要求される。一方、一般の電力供給回路では、変圧器に与えるダメージを少なくするために、負荷が無くても変圧器を課電しなければならないので、無駄な無負荷損を浪費せざるを得ないのが実状である。
【0004】
変圧器の励磁突入電流は、電源電圧の瞬時値がゼロのときに投入されるが、鉄心内の残留磁束と電圧投入直後の磁束の方向とが一致した場合に最大となる。その場合、励磁突入電流が最大となる第一サイクルでの最大値Imaxは、次式(1)で表される。
【0005】
Imax=K・(2・Bm+Br−2)・・・・・・・・・・・・・・・・・・(1)
但し、式(1)において、Kは比例定数、Bmは常規磁束密度、Brは残留磁束密度である。
【0006】
変圧器自身で励磁突入電流の最大値Imaxを低減させる方法としては、式(1)から明らかなように、常規磁束密度Bmを低減する方法と、鉄心の接合部にバットギャップを設けることにより残留磁束密度Brを低減する方法とがある。
【0007】
これらの他に、励磁突入電流抑制用の抵抗器を介して変圧器を電源に投入したり、特許文献1に開示されているように、運転とその停止とが行われる三相変圧器の運転停止中に、この三相変圧器の一次側をその一次電圧よりも低い三相電圧で励磁し、その後この三相変圧器の運転を再開する方法も考えられている。
【0008】
また、特許文献2に開示されているように、運転とその停止とが行われる三相変圧器の運転停止中に、この三相変圧器の一つの巻線の端子間に単相交流電源を接続し、この電圧を時間とともに低減させながらゼロになるまで励磁することにより残留磁束を低減させ、その後この三変圧器の運転を再開する方法も考えられている。
【0009】
【特許文献1】
特開昭64−89915号公報:3頁〜4頁:第1図
【特許文献2】
特開平07−73526号公報:0011〜0018:図1
【0010】
【発明が解決しようとする課題】
しかしながら、常規磁束密度Bmを低減する方法では、鉄心断面積が常規磁束密度Bmの低減度合いに比例して大きくなるので、鉄心寸法の他に巻線寸法やこれらを収納しているタンクなども大型化し、変圧器全体の寸法・重量の大型化を招き、コストアップ等の問題や、所定の変圧器特性が得難いなどの問題がある。
【0011】
一方、鉄心の接合部にバットギャップを設けて残留磁束密度を低減する方法では、鉄心の残留磁束密度の大幅な減少を達成できるが、バットギャップに大きな磁気力による振動性の力が作用し、バットギャップが騒音源になるという問題や、バットギャップを振動力に耐える構造とするために一般の変圧器に比べて磁束密度を落としたり、非常に強固な鉄心締め付け構造とする対策等を講じなければならないという問題がある。
【0012】
また、特許文献1に記載の方法では、三相変圧器の運転再開までに変圧器鉄心の残留磁束を減少させることができ、これによって三相変圧器の運転を再開するときに発生する励磁突入電流を減少させることはできるが、三相の低電圧電源と三相開閉器とが必要という問題がある。
【0013】
特許文献2に記載の方法でも、三相変圧器の運転再開までに変圧器鉄心の残留磁束を減少させることができ、これによって三相変圧器の運転を再開するときに発生する励磁突入電流を減少させることはできるが、電圧を時間とともに低減させゼロにできる特別な装置が必要という問題がある。
【0014】
この発明は、上記に鑑みてなされたもので、鉄心断面積を増大することなく、また、接合部にバットギャップを設けることなく、一般の変圧器の鉄心と同一の構造で、いわゆる標準変圧器を適用しても、あるいは既設の変圧器に適用しても、残留磁束密度を低減でき、励磁突入電流の大幅な減少を図ることができる変圧器の励磁突入電流低減回路を得ることを目的としている。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、この発明にかかる変圧器の励磁突入電流低減回路は、三相高圧電源から単相低圧電圧を変換生成する変圧器を含む電力供給回路において、前記変圧器の2端子と前記2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記変圧器の運転停止中に前記変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器を備えたことを特徴とする。
【0016】
この発明によれば、変圧器は、運転を停止した後に、開閉器が開閉操作され、他の回路から変圧器の定格電圧よりも低い単相電圧が一時的に印加される。鉄心の残留磁束密度は、印加電圧に比例するので、変圧器は、定格電圧よりも低い単相電圧によって低減励磁されることになる。したがって、開閉器を開操作した後で運転再開前における無励磁状態での残留磁束密度は、定格電圧による残留磁束密度よりも小さいものになるので、運転が再開されたときに発生する励磁突入電流が大幅に低減される。
【0017】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかる変圧器の励磁突入電流低減回路の好適な実施の形態を詳細に説明する。
【0018】
実施の形態1.
図1は、この発明の実施の形態1である変圧器の励磁突入電流低減回路を説明するための単線図である。なお、図1では、この発明に関係のない機器類は図示省略されている。
【0019】
図1において、6600Vの三相高圧電源1には、三相遮断器2の一方の端子が接続され、三相遮断器2の他方の端子側には、高圧側三相配線3が敷設されている。高圧側三相配線3には、三相高圧断路器4,5,6の一方の端子がそれぞれ接続されている。三相高圧断路器4の他方の端子には、高圧側三相配線7を介してΔ/Y結線の三相変圧器8の一次側(高圧側)が接続され、また高圧側単相配線9を介して単相高圧断路器10の一方の端子が接続されている。三相変圧器8の二次側(低圧側)には、低圧側三相配線11が敷設されている。
【0020】
三相高圧断路器5の他方の端子には、高圧側三相配線12を介してΔ/Δ結線の三相変圧器13の一次側(高圧側)が接続され、三相変圧器13の二次側(低圧側)には、低圧側三相配線14が敷設されている。三相高圧断路器6の他方の端子には、高圧側三相配線15を介してY/Δ結線の三相変圧器16の一次側(高圧側)と三相高圧断路器17の一方の端子とが接続されている。三相変圧器16の二次側(低圧側)には、低圧側三相配線18が敷設されている。そして、単相高圧断路器10の他方の端子は、低圧側単相配線19を介して低圧側三相配線14に接続され、また三相高圧断路器17の他方の端子は、低圧側単相配線20を介して低圧側三相配線14に接続されている。
【0021】
以上の構成において、6600Vの三相高圧電源1から供給された高圧電力は、三相遮断器2、高圧側三相配線3、三相高圧断路器4,5,6を通った後に、三相変圧器8,13,16によってそれぞれ単相低圧電圧210V、420V、210Vに変圧され、低圧側三相配線11,14,18を通って負荷に供給されている。
【0022】
ここで、夜間においても運転する負荷は、主として三相高圧断路器5に接続され、夜間に運転停止する負荷は、三相高圧断路器4,6に接続されている。つまり、三相変圧器8,16は、頻繁に励磁突入電流の発生が繰り返される。そこで、単相高圧断路器10は、三相変圧器8の励磁突入電流を低減するために設けてあり、三相高圧断路器17は、三相変圧器16の励磁突入電流を低減するために設けてある。
【0023】
以下、図1〜図3を参照して励磁突入電流を低減する動作を説明する。なお、図2は、図1に示すΔ/Y結線の三相変圧器8と単相高圧断路器10との接続関係および励磁突入電流を低減する動作を説明する図である。図3は、図1に示すY/Δ結線の三相変圧器16と三相高圧断路器17との接続関係および励磁突入電流を低減する動作を説明する図である。
【0024】
図2では、単相高圧断路器10の一方の端子とΔ/Y結線の三相変圧器8の一次側とを接続する高圧側単相配線9は、Δ/Y結線の三相変圧器8の一次側と三相高圧断路器4の他方の端子とを接続する高圧側三相配線7のU相,V相,W相のうち、例えばV相,W相から引き出されている。単相高圧断路器10の他方の端子は、低圧側単相配線19を介して、常時課電される低圧側三相配線14のV相,W相に接続されることが示されている。
【0025】
図1、図2を参照して、三相変圧器8の負荷が無くなり三相変圧器8を高圧回路から切り離し、再課電するまでの操作手順を説明する。三相変圧器8の負荷が無くなったので、まず、三相高圧断路器4を開にする。次に、三相高圧断路器4が開であることを確認して単相高圧断路器10を一定期間閉にし、高圧側単相配線9と低圧側三相配線19とを接続する。その結果、低圧側三相配線14の低圧210Vの単相電圧が三相変圧器8の一次側のV相,W相の2端子間に印加される。次に、単相高圧断路器10を開にして三相変圧器8を無励磁状態とする。その後、三相変圧器8の負荷に電力を供給する必要時に三相高圧断路器4を投入して三相変圧器8に高圧電圧6600Vを印加する。
【0026】
なお、三相高圧断路器4と単相高圧断路器10との間には、三相高圧断路器4が開のときにのみ単相高圧断路器10を閉にすることができ、三相高圧断路器4が閉の場合は単相高圧断路器10は閉にできないように、インターロックが組まれている。
【0027】
以上の操作手順において、三相高圧断路器4を開にして三相変圧器8を三相高圧電源1から切り離したとき、三相変圧器8の鉄心には、通常では三相高圧6600Vによる常規磁束密度に比例した残留磁束が残っている。しかし、今の例では、三相変圧器8は、三相高圧電源1から切り離した後に、V相,W相の2端子が三相高圧断路器10を介して単相励磁電源である低圧側三相配線14に接続される。つまり、三相変圧器8は、単相低圧電圧で低減励磁されることになる。
【0028】
すなわち、三相変圧器8の高圧側は、△結線であるので、V相,W相の2端子間に単相低圧電圧210Vが課電されると、他のU相,V相の2端子間およびU相,W相の2端子間にはそれぞれ単相低圧電圧105Vが課電される。その結果、全鉄心脚が低圧電圧で低減励磁される。つまり、単相高圧断路器10を開にして無励磁状態になった三相変圧器8の鉄心には、最後に励磁された低減励磁時の残留磁束が残っている。
【0029】
しかし、単相励磁電源である低圧側三相配線14の電圧は、210Vであり、定格電圧6600Vに比べて十分に小さいので、この低減励磁後の残留磁束密度は、十分に小さい。したがって、三相変圧器8の運転とその停止を繰り返したときの励磁突入電流は十分に小さいものとなる。
【0030】
具体的に説明する。鉄心の残留磁束密度は、印加電圧に比例する。いま、常規磁束密度Bmを一般的に適用されている1.7テスラとし、残留磁束密度Brを一般的に言われている0.9×Bmとすれば、図2に示すこの実施の形態1による突入電流低減回路を適用した場合の最大励磁突流と従来の電力供給回路における三相変圧器の最大励磁突流との比は、前記式(1)から
(2×1.7+0.9×1.7×(210/6600)−2)÷(2×1.7+0.9×1.7−2)=0.49 ・・・(2)
となり、従来方法に対して約半分に低減できることが解る。また、変圧器巻線に働く電磁機械力は、電流の二乗に比例するので、約1/4に低減できることも解る。
【0031】
次に、図3では、三相高圧断路器17の一方の端子は、高圧側三相配線15を介して、Y/Δ結線の三相変圧器16の一次側と三相高圧断路器6の他方の端子とを接続するU相,V相,W相の各相にそれぞれ接続されている。三相高圧断路器17の他方の端子は、例えばU端子とW端子とが短絡線23によって接続され、V端子と短絡された2端子の一方であるW端子とが低圧側三相配線20を介して、常時課電される低圧側三相配線14のV相,W相に接続されることが示されている。
【0032】
図1、図3を参照して、三相変圧器16の負荷が無くなり三相変圧器16を高圧回路から切り離し、再課電するまでの操作手順を説明する。三相変圧器16の負荷が無くなったので、まず、三相高圧断路器6を開にする。次に、三相高圧断路器6が開であることを確認して三相高圧断路器17を一定期間閉にし、三相高圧断路器17を介して高圧側単相配線15と低圧側三相配線20とを接続する。その結果、低圧側三相配線14の低圧210Vの単相電圧が三相変圧器16の一次側のV相,W相の2端子間に印加される。次に、三相高圧断路器17を開にして三相変圧器16を無励磁状態とする。その後、三相変圧器16の負荷に電力を供給する必要時に三相高圧断路器6を投入して三相変圧器16に高圧電圧6600Vを印加する。
【0033】
なお、三相高圧断路器6と三相高圧断路器17との間には、三相高圧断路器6が開のときにのみ三相高圧断路器17を閉にすることができ、三相高圧断路器6が閉の場合は三相高圧断路器17は閉にできないように、インターロックが組まれている。
【0034】
以上の操作手順において、三相高圧断路器6を開にして三相変圧器16を三相高圧電源1から切り離したとき、三相変圧器16の鉄心には、通常では三相高圧6600Vによる常規磁束密度に比例した残留磁束が残っている。しかし、今の例では、三相変圧器16は、三相高圧電源1から切り離した後に、U相,W相の2端子が短絡された三相高圧断路器17を介して単相低圧電源である低圧側三相配線14に接続される。つまり、三相変圧器16は、単相低圧電圧で低減励磁されることになる。
【0035】
すなわち、三相変圧器16の一次側(高圧側)は、Y結線でありその電源側のU相,W相の2端子間が三相高圧断路器17によって短絡されているので、V相,W相の2端子間には単相低電圧210が課電され、V相,U相の2端子間にも単相低電圧210Vが課電される。その結果、U相,V相,W相の全鉄心脚が低圧電圧で励磁される。つまり、三相高圧断路器17を開にして無励磁状態になった三相変圧器16の鉄心には、最後に励磁された低減励磁時の残留磁束が残っている。
【0036】
しかし、単相励磁電源である低圧側三相配線14の電圧は、210Vであり、定格電圧6600Vに比べて十分に小さいので、この低減励磁後の残留磁束密度は、十分に小さい。したがって、三相変圧器16の運転とその停止を繰り返したときの励磁突入電流は十分に小さいものとなる。
【0037】
具体的に説明する。上記式(2)を求めたのと同じ条件で、図3に示すこの実施の形態1による突入電流低減回路を適用した場合の最大励磁突流と従来の電力供給回路における三相変圧器の最大励磁突流との比を前記式(1)式から求めると、
(2×1.7+0.9×1.7×(210/(6600÷√3)−2)÷(2×1.7+0.9×1.7−2)=0.49 ・・・(3)
となり、従来方法に対して約半分に低減できることが解る。また、変圧器巻線に働く電磁機械力は、電流の二乗に比例するので、約1/4に低減できることも解る。
【0038】
なお、図1、図3では、三相高圧断路器17を三相変圧器16の一次側(高圧側)に接続する例を示したが、三相変圧器16がΔ/Y結線(6600/420V)の場合で、単相低圧電圧として105Vが選択できる場合には、三相高圧断路器17をそのΔ/Y結線(6600/420V)の三相変圧器の低圧側に接続して低減励磁する構成を採用してもよい。この場合の比は、次式(4)に示すようになるので、同程度の励磁突入電流低減効果が得られることが解る。
【0039】
(2×1.7+0.9×1.7×(105÷2)/(420÷√3)−2)÷(2×1.7+0.9×1.7−2)=0.57 ・・・(4)
この場合には、三相高圧断路器17は低圧用で良く、またΔ/Y結線(6600/420V)の三相変圧器への配線も低圧電線で済むので、価格的により安価に構成できる利点がある。
【0040】
このように、実施の形態1によれば、三相高圧電源の電圧を単相低圧電圧に変換し単相負荷に課電する第1配電回路と第2配電回路のうち、第1配電回路が単相負荷に常時課電し、第2配電回路が単相負荷への課電を休止することがある場合に、前記第2配電回路に含まれる三相変圧器と前記第1配電回路の単相低圧電圧出力側との間に開閉器を設け、前記三相変圧器の運転停止中に、前記三相変圧器にその定格電圧よりも低い単相電圧を前記第1配電回路から供給して低減励磁を行うようにしたので、前記三相変圧器の運転再開時に発生する励磁突入電流を大幅に低減することができる。
【0041】
したがって、標準変圧器や既設の変圧器に対して、特別の措置を講ずること無く、また特別の励磁用電源を用意すること無く、標準的に用いる開閉器を追加するだけで済むので、経済的な電力供給回路を構成することができる。
【0042】
また、三相変圧器に与えるダメージを大幅に減らすことができるので、励磁突入電流低減変圧器を設けるなど特別の措置を講ずることなく当該三相変圧器を無負荷になるときは回路から切り離すことができる。その結果、三相変圧器から発生する無駄な無負荷損をゼロにすることができ、標準変圧器や既設の変圧器でも大きな省エネルギー効果が得られる。
【0043】
さらに、励磁突入電流による保護装置の誤動作の誘発が防止できるので、周辺電力系統の電圧変動に与える影響を大幅に低減でき、信頼性の高い受電設備を構成することができる。
【0044】
実施の形態2.
図4は、この発明の実施の形態2である変圧器の励磁突入電流低減回路を説明するための単線図である。なお、図4では、図1に示した構成と同一ないしは同等である構成要素には、同一の符号が付されている。ここでは、この実施の形態2に関わる部分を中心に説明する。
【0045】
図4に示すように、この実施の形態2による変圧器の励磁突入電流低減回路では、図1(実施の形態1)に示した構成において、Δ/Y結線の三相変圧器8に代えて、スコット結線変圧器25が設けられている。スコット結線変圧器25の負荷は、低圧側単三配線26に接続されている。
【0046】
実施の形態1にて説明したように、夜間においても運転する負荷は、主として三相高圧断路器5に接続され、夜間に運転停止する負荷は、三相高圧断路器4,6に接続されている。つまり、スコット結線変圧器25と三相変圧器16は、頻繁に励磁突入電流の発生が繰り返される。そこで、単相高圧断路器10は、スコット結線変圧器25の励磁突入電流を低減するために設けてあり、三相高圧断路器17は、三相変圧器16の励磁突入電流を低減するために設けてある。
【0047】
三相変圧器16の励磁突入電流を低減する動作は、実施の形態1にて説明した通りである。この実施の形態2では、図4、図5を参照して、スコット結線変圧器25の励磁突入電流を低減する動作を説明する。なお、図5は、図4に示すスコット結線変圧器25と単相高圧断路器10との接続関係および励磁突入電流を低減する動作を説明する図である。
【0048】
図5では、単相高圧断路器10の一方の端子とスコット結線変圧器25の一次側(三相側)とを接続する高圧側単相配線9は、スコット結線変圧器25の一次側と三相高圧断路器4の他方の端子とを接続する高圧側三相配線7のU相,V相,W相のうち、例えばV相,W相から引き出されている。単相高圧断路器10の他方の端子は、低圧側単相配線19を介して、常時課電される低圧側三相配線14のV相,W相に接続されることが示されている。
【0049】
図4、図5を参照して、スコット結線変圧器25の負荷が無くなりスコット結線変圧器25を高圧回路から切り離し、再課電するまでの操作手順を説明する。スコット結線変圧器25の負荷が無くなったので、まず、三相高圧断路器4を開にする。次に、三相高圧断路器4が開であることを確認して単相高圧断路器10を一定期間閉にし、高圧側単相配線9と低圧側三相配線19とを接続する。その結果、低圧側三相配線14の単相低圧電圧210Vがスコット結線変圧器25の一次側のV相,W相の2端子間に印加される。次に、単相高圧断路器10を開にしてスコット結線変圧器25を無励磁状態とする。この後、負荷に電力を供給する必要時に三相高圧断路器4を投入してスコット結線変圧器25に高圧電圧6600Vを印加する。
【0050】
なお、実施の形態1にて説明したように、三相高圧断路器4と単相高圧断路器10との間には、三相高圧断路器4が開のときにのみ単相高圧断路器10を閉にすることができ、三相高圧断路器4が閉の場合は単相高圧断路器10は閉にできないように、インターロックが組まれている。
【0051】
以上の操作手順において、三相高圧断路器4を開にしてスコット結線変圧器25を三相高圧電源1から切り離したとき、スコット結線変圧器25の鉄心には、通常では三相高圧6600Vによる常規磁束密度に比例した残留磁束が残っている。しかし、今の例では、スコット結線変圧器25は、三相高圧電源1から切り離した後、三相のうちのV相,W相の2端子が三相高圧断路器10を介して単相励磁電源である低圧側三相配線14に接続される。つまり、スコット結線変圧器25は、単相低圧電圧で単相励磁されることになる。
【0052】
すなわち、スコット結線変圧器25の一次側(高圧側)は、T字結線であるので、V相,W相の2端子間に単相低圧電圧210Vが課電されると、全鉄心脚が低圧電圧で励磁される。つまり、単相高圧断路器10を開にして無励磁状態になったスコット結線変圧器25の鉄心には、最後に励磁された低減励磁時の残留磁束が残っている。
【0053】
しかし、単相励磁電源である低圧側三相配線14の電圧は、単相低圧電圧210Vであり、定格電圧6600Vに比べて十分に小さいので、この低減励磁後の残留磁束密度は、十分に小さい。したがって、スコット結線変圧器25の運転とその停止を繰り返したときの励磁突入電流は十分に小さいものとなる。
【0054】
具体的に説明する。上記式(2)を求めたのと同じ条件で、図5に示すこの実施の形態2による突入電流低減回路を適用した場合の最大励磁突流と従来の電力供給回路におけるスコット結線変圧器の最大励磁突流との比を前記式(1)から求めると、
(2×1.7+0.9×1.7×(210/6600)−2)÷(2×1.7+0.9×1.7−2)=0.49 ・・・(5)
となり、従来方法に対して約半分に低減できることが解る。また、変圧器巻線に働く電磁機械力は、電流の二乗に比例するので、約1/4に低減できることも解る。
【0055】
このように、実施の形態2によれば、三相高圧電源の電圧を単相低圧電圧に変換し単相負荷に課電する第1配電回路と第2配電回路のうち、第1配電回路が単相負荷に常時課電し、第2配電回路が単相負荷への課電を休止することがある場合に、前記第2配電回路に含まれるスコット結線変圧器の三相側と前記第1配電回路の単相低圧電圧出力側との間に開閉器を設け、前記スコット結線変圧器の運転停止中に、前記スコット結線変圧器にその定格電圧よりも低い単相電圧を前記第1配電回路から供給して低減励磁を行うようにしたので、前記スコット結線変圧器の運転再開時に発生する励磁突入電流を大幅に低減することができる。したがって、実施の形態1と同様の作用・効果がえられる。
【0056】
実施の形態3.
図6は、この発明の実施の形態3である変圧器の励磁突入電流低減回路を説明するための単線図である。なお、図6では、この発明に関係のない機器類は図示省略されている。
【0057】
図6において、6600Vの三相高圧電源1には、三相遮断器2の一方の端子が接続され、三相遮断器2の他方の端子側には、高圧側三相配線3と高圧側単相配線27,28とが敷設されている。高圧側三相配線3には、三相高圧断路器4の一方の端子が接続され、三相高圧断路器4の他方の端子には、スコット結線変圧器25の一次側(三相側)が接続されている。スコット結線変圧器25の二次側(単相巻線側)の一方の単相巻線には、低圧側単三配線26が敷設されている。
【0058】
高圧側単相配線27には、単相高圧断路器29の一方の端子が接続され、単相高圧断路器29の他方の端子には、高圧側単相配線31を介して単相三線式変圧器32の一次側(高圧側)が接続されている。単相三線式変圧器32の二次側(低圧側)には、低圧側単三配線33が敷設されている。低圧側単三配線33には、低圧側単相配線34を介して単相低圧断路器35の一方の端子が接続され、単相低圧断路器35の他方の端子は、低圧側単三配線26に接続されている。
【0059】
また、高圧側単相配線28には、単相高圧断路器30の一方の端子が接続され、単相高圧断路器30の他方の端子は、高圧側単相配線37を介して単相三線式変圧器38の一次側(高圧側)が接続されている。単相三線式変圧器38の二次側(低圧側)には、低圧側単三配線39が敷設されている。低圧側単三配線39には、低圧側単相配線40を介して単相低圧断路器41の一方の端子が接続され、単相低圧断路器41の他方の端子は、低圧側単相配線42を介して低圧側単三配線33に接続されている。
【0060】
以上の構成において、6600Vの三相高圧電源1から供給された高圧電力は、三相遮断器2を出た後3分岐される。一つは、高圧側三相配線3、三相高圧断路器4、高圧側三相配線7を通った後、スコット結線変圧器25にて単相低圧電圧210Vに変圧され、低圧側単三配線26を通って負荷に供給されている。もう一つは、高圧側単相配線27、単相高圧断路器29、高圧側単相配線31を通った後に、単相三線式変圧器32にて単相低圧電圧105Vに変圧され、低圧側単三配線33を通って負荷に供給されている。さらにもう一つは、高圧側単相配線28、単相高圧断路器30、高圧側単相配線37を通った後に、単相三線式変圧器38にて単相低圧電圧210Vに変圧され、低圧側単相配線40を通って負荷に供給されている。
【0061】
ここで、夜間においても運転する負荷は、主として単相高圧断路器29に接続され、夜間に運転停止する負荷は、三相高圧断路器4と単相高圧断路器30とに接続されている。つまり、スコット結線変圧器25と単相三線式変圧器38は、頻繁に励磁突入電流の発生が繰り返される。そこで、単相低圧断路器35は、スコット結線変圧器25の励磁突入電流を低減するために設けてあり、単相低圧断路器41は、単相三線式変圧器38の励磁突入電流を低減するために設けてある。
【0062】
以下、図6〜図8を参照して励磁突入電流を低減する動作を説明する。なお、図7は、図6に示すスコット結線変圧器25と単相低圧断路器35との接続関係および励磁突入電流を低減する動作を説明する図である。図8は、図6に示す単相三線式変圧器38と単相低圧断路器41との接続関係および励磁突入電流を低減する動作を説明する図である。
【0063】
図7では、スコット結線変圧器25の一次側(三相側)は、高圧側三相配線7のU相,V相,W相の各相に接続され、二次側(単相巻線側)は、低圧側三相配線36、単相低圧断路器35、低圧側三相配線34を介して常時課電されている低圧側単三配線33に接続されることが示されている。ここに、スコット結線変圧器25の二次側(単相巻線側)の定格電圧は単相低圧電圧210Vであり、低圧側単三配線33の電圧は単相低圧電圧105Vである。
【0064】
図6、図7を参照して、スコット結線変圧器25の負荷が無くなりスコット結線変圧器25を高圧回路から切り離し、再課電するまでの操作手順を説明する。スコット結線変圧器25の負荷が無くなったので、まず、三相高圧断路器4を開にする。次に、三相高圧断路器4が開であることを確認して単相低圧断路器35を一定期間閉にし、低圧側単相配線36と低圧側単相配線34とを接続する。その結果、低圧側単三配線33の単相低圧電圧105Vがスコット結線変圧器25の二次側定格電圧210Vの端子間に印加される。次に、単相低圧断路器35を開にしてスコット結線変圧器25を無励磁状態とする。その後、スコット結線変圧器25の負荷に電力を供給する必要時に三相高圧断路器4を投入してスコット結線変圧器25に高圧電圧6600Vを印加する。
【0065】
なお、三相高圧断路器4と単相低圧断路器35との間には、三相高圧断路器4が開のときにのみ単相低圧断路器35を閉にすることができ、三相高圧断路器4が閉の場合は単相低圧断路器35は閉にできないように、インターロックが組まれている。
【0066】
以上の操作手順において、三相高圧断路器4を開にしてスコット結線変圧器25を三相高圧電源1から切り離したとき、スコット結線変圧器25の鉄心には、通常では三相高圧6600Vによる常規磁束密度に比例した残留磁束が残っている。しかし、今の例では、スコット結線変圧器25は、三相高圧電源1から切り離した後、二次側(低圧側)定格電圧210Vの端子が単相低圧断路器35を介して単相励磁電源である低圧側単三配線33に接続される。つまり、スコット結線変圧器25は、単相低圧電圧で単相励磁されることになる。
【0067】
すなわち、スコット結線変圧器25の低圧側は、単相巻線であるので、定格電圧210Vの端子間に単相低圧電圧105Vが課電されると、全鉄心脚が定格電圧の半分の単相低圧電圧で励磁される。つまり、単相低圧断路器35を開にして無励磁状態になったスコット結線変圧器25の鉄心には、最後に励磁された低減励磁時の残留磁束が残っている。
【0068】
しかし、単相励磁電源である低圧側単三配線33の電圧は、単相低圧電圧105Vであり定格電圧210Vに比べて十分に小さいので、この低減励磁後の残留磁束密度は、十分に小さい。したがって、スコット結線変圧器25の運転とその停止を繰り返したときの励磁突入電流は十分に小さいものとなる。
【0069】
具体的に説明する。上記式(2)を求めたのと同じ条件で、図7に示すこの実施の形態3による突入電流低減回路を適用した場合の最大励磁突流と従来の電力供給回路におけるスコット結線変圧器の最大励磁突流との比を前記式(1)から求めると、
(2×1.7+0.9×1.7×(105/210)−2)÷(2×1.7+0.9×1.7−2)=0.79 ・・・(6)
となり、従来方法に対して26%低減できることが解る。また、変圧器巻線に働く電磁機械力は、電流の二乗に比例するので、約55%に低減できることも解る。
【0070】
次に、図8では、単相三線式変圧器38の一次側(高圧側)は、高圧側単相配線37に接続されている。二次側(低圧側)は、低圧側単相配線40、単相低圧断路器41、低圧側単相配線42を介して常時課電されている低圧側単三配線33に接続されていることが示されている。ここに、単相三線式変圧器38の二次側(低圧側)の定格電圧は210Vであり、低圧側単三配線33の電圧は単相低圧電圧105Vである。
【0071】
図6、図8を参照して、単相三線式変圧器38の負荷が無くなり単相三線式変圧器38を高圧回路から切り離し、再課電するまでの操作手順を説明する。単相三線式変圧器38の負荷が無くなったので、まず、単相高圧断路器30を開にする。次に、単相高圧断路器30が開であることを確認して単相低圧断路器41を閉にし、低圧側単相配線40と低圧側単相配線42とを接続する。その結果、低圧側単三配線33の単相低圧電圧105Vが単相三線式変圧器38の二次側(低圧側)定格電圧210Vの端子間に印加される。次に、単相低圧断路器41を開にして単相三線式変圧器38を無励磁状態とする。その後、単相三線式変圧器38の負荷に電力を供給する必要時に単相高圧断路器30を投入して単相三線式変圧器38に高圧電圧6600Vを印加する。
【0072】
なお、単相高圧断路器30と単相低圧断路器41との間には、単相高圧断路器30が開のときにのみ単相低圧断路器41を閉にすることができ、単相高圧断路器30が閉の場合は単相低圧断路器41は閉にできないように、インターロックが組まれている。
【0073】
以上の操作手順において、単相高圧断路器30を開にして単相三線式変圧器38を三相高圧電源1から切り離したとき、単相三線式変圧器38の鉄心には、通常では三相高圧6600Vによる常規磁束密度に比例した残留磁束が残っている。しかし、今の例では、単相三線式変圧器38は、三相高圧電源1から切り離した後、低圧側定格電圧210Vの端子が単相低圧断路器41を介して単相励磁電源である低圧側単三配線33に接続される。つまり、単相三線式変圧器38は、低圧側定格電圧210Vの端子間に単相低圧電圧105Vが印加されるので、単相励磁されることになる。
【0074】
すなわち、単相三線式変圧器38の低圧側は、単相巻線であるので、定格電圧210Vの端子間に単相低圧電圧105Vが課電されると、全鉄心脚が定格電圧の半分の定電圧で励磁される。つまり、単相低圧断路器41を開にして無励磁状態になった単相三線式変圧器38の鉄心には、最後に励磁された低減励磁時の残留磁束が残っている。
【0075】
しかし、単相励磁電源である低圧側単三配線33の電圧は、単相低圧電圧105Vであり定格電圧210Vに比べて十分に小さいので、この低減励磁後の残留磁束密度は、十分に小さい。したがって、単相三線式変圧器38の運転とその停止を繰り返したときの励磁突入電流は十分に小さいものとなる。
【0076】
具体的に説明する。上記式(2)を求めたのと同じ条件で、図8に示すこの実施の形態3による突入電流低減回路を適用した場合の最大励磁突流と従来の電力供給回路における単相三線式変圧器の最大励磁突流との比を前記式(1)から求めると、
(2×1.7+0.9×1.7×(105/210)−2)÷(2×1.7+0.9×1.7−2)=0.79 ・・・(7)
となり、従来方法に対して26%低減できることが解る。また、変圧器巻線に働く電磁機械力は、電流の二乗に比例するので、約55%に低減できることも解る。
【0077】
このように、実施の形態3によれば、三相高圧電源の電圧を単相低圧電圧に変換し単相負荷に課電する第1配電回路と第2配電回路のうち、第1配電回路が単相負荷に常時課電し、第2配電回路が単相負荷への課電を休止することがある場合に、前記第2配電回路に含まれる単相変圧器の低圧側(スコット結線変圧器の単相巻線側)と前記第1配電回路の単相低圧電圧出力側との間に開閉器を設け、前記単相変圧器(スコット結線変圧器)の運転停止中に、前記単相変圧器(スコット結線変圧器)にその定格電圧よりも低い単相電圧を前記第1配電回路から供給して低減励磁を行うようにしたので、前記単相変圧器(スコット結線変圧器)の運転再開時に発生する励磁突入電流を低減することができる。したがって、実施の形態1と同様の作用・効果がえられる。
【0078】
【発明の効果】
以上説明したように、この発明によれば、三相高圧電源から単相低圧電圧を変換生成する変圧器を含む電力供給回路において、前記変圧器の2端子と前記2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記変圧器の運転停止中に前記変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器を設け、前記変圧器を低減励磁するようにしたので、運転再開時に発生する励磁突入電流を大幅に低減することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1である変圧器の励磁突入電流低減回路を説明するための単線図である。
【図2】図1に示すΔ/Y結線の三相変圧器と単相断路器との接続関係および励磁突入電流を低減する動作を説明する図である。
【図3】図1に示すY/Δ結線の三相変圧器と三相高圧断路器との接続関係および励磁突入電流を低減する動作を説明する図である。
【図4】この発明の実施の形態2である変圧器の励磁突入電流低減回路を説明するための単線図である。
【図5】図4に示すスコット結線変圧器と単相断路器との接続関係および励磁突入電流を低減する動作を説明する図である。
【図6】この発明の実施の形態3である変圧器の励磁突入電流低減回路を説明するための単線図である。
【図7】図6に示すスコット結線変圧器と単相低圧断路器との接続関係および励磁突入電流を低減する動作を説明する図である。
【図8】図6に示す単相三線式変圧器と単相低圧断路器との接続関係および励磁突入電流を低減する動作を説明する図である。
【符号の説明】
1 三相高圧電源、2 三相遮断器、3,7,15 高圧側三相配線、4,5,6,17 三相高圧断路器、8 Δ/Y結線の三相変圧器、9,27,28,37 高圧側単相配線、10,29,30 単相高圧断路器、11,14,18,39 低圧側三相配線、12 高圧側三相配線、13 Δ/Δ結線の三相変圧器、16 Y/Δ結線の三相変圧器、19,20,34,36,40,42 低圧側単相配線、23 短絡線、25 スコット結線変圧器、26,33 低圧側単三配線、31 高圧側単相配線、32,38 単相三線式変圧器、35,41単相低圧断路器。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transformer inrush current reduction circuit for reducing an inrush current generated when power is supplied to a transformer such as a three-phase transformer, a Scott connection transformer, and a single-phase transformer.
[0002]
[Prior art]
Conventionally, in a power supply circuit including a transformer, when the transformer is turned on by a switch, the excitation inrush current of several tens of times the rated current flows, although it varies depending on the turning-on phase. It is known that a transient phenomenon of a state occurs. The magnitude of the exciting inrush current is greatly affected by the residual magnetic flux remaining in the transformer core when the transformer is disconnected from the power supply, in addition to the closing phase. This exciting inrush current induces a malfunction of the protection device and has a great influence on voltage fluctuations of the peripheral power system. For this reason, various measures have been taken to reduce the inrush current.
[0003]
The exciting inrush current also damages the transformer itself due to the electromagnetic mechanical force caused by the exciting inrush current. Since the exciting inrush current is generated under a normal use condition, if the occurrence of the exciting inrush current is repeated frequently, the transformer may be damaged and may be destroyed. Therefore, for the purpose of energy saving, when the transformer is energized every day before the working hours when the load increases and the transformer is disconnected at night when the load is gone, the excitation inrush current is frequently repeated. Either use an inrush current reduction transformer or take special measures to reduce inrush current. On the other hand, in a general power supply circuit, in order to reduce damage to the transformer, power must be applied to the transformer even without a load, so that there is no choice but to waste unnecessary no-load loss. It is a fact.
[0004]
The excitation inrush current of the transformer is supplied when the instantaneous value of the power supply voltage is zero, but becomes maximum when the residual magnetic flux in the iron core matches the direction of the magnetic flux immediately after the voltage is supplied. In that case, the maximum value Imax in the first cycle at which the exciting inrush current becomes maximum is expressed by the following equation (1).
[0005]
Imax = K · (2 · Bm + Br−2) (1)
In Equation (1), K is a proportional constant, Bm is a normal magnetic flux density, and Br is a residual magnetic flux density.
[0006]
As is apparent from the equation (1), as a method of reducing the maximum value Imax of the inrush current by the transformer itself, a method of reducing the normal magnetic flux density Bm and a method of providing a butt gap at the joint portion of the iron core are provided. There is a method of reducing the magnetic flux density Br.
[0007]
In addition to these, a transformer is supplied to a power source via a resistor for suppressing an inrush current of an exciting current, or an operation of a three-phase transformer in which operation and stop are performed as disclosed in Patent Document 1. During shutdown, a method has been considered in which the primary side of the three-phase transformer is excited with a three-phase voltage lower than the primary voltage, and then the operation of the three-phase transformer is restarted.
[0008]
Further, as disclosed in Patent Document 2, during operation stop of a three-phase transformer in which operation and stop are performed, a single-phase AC power is supplied between terminals of one winding of the three-phase transformer. A method has also been considered in which the residual magnetic flux is reduced by connecting and exciting the voltage until it becomes zero while reducing the voltage with time, and then restarting the operation of the three transformers.
[0009]
[Patent Document 1]
JP-A-64-89915: page 3 to page 4: FIG.
[Patent Document 2]
JP-A-07-73526: 0011 to 0018: FIG.
[0010]
[Problems to be solved by the invention]
However, in the method of reducing the normal magnetic flux density Bm, the iron core cross-sectional area increases in proportion to the degree of reduction of the normal magnetic flux density Bm. This leads to an increase in the size and weight of the entire transformer, resulting in problems such as an increase in cost and a difficulty in obtaining predetermined transformer characteristics.
[0011]
On the other hand, in the method of reducing the residual magnetic flux density by providing a butt gap at the joint of the iron core, a significant reduction in the residual magnetic flux density of the iron core can be achieved, but a vibrating force due to a large magnetic force acts on the butt gap, The butt gap becomes a noise source, and measures must be taken to reduce the magnetic flux density compared to general transformers and make the core structure extremely strong in order to make the butt gap a structure that can withstand the vibration force. There is a problem that must be.
[0012]
Further, according to the method described in Patent Literature 1, the residual magnetic flux of the transformer core can be reduced before the operation of the three-phase transformer is restarted, and thereby the excitation rush generated when the operation of the three-phase transformer is restarted. Although the current can be reduced, there is a problem that a three-phase low-voltage power supply and a three-phase switch are required.
[0013]
Also in the method described in Patent Document 2, the residual magnetic flux of the transformer core can be reduced before the operation of the three-phase transformer is restarted, whereby the exciting inrush current generated when the operation of the three-phase transformer is restarted can be reduced. Although it can be reduced, the problem is that a special device is needed that can reduce the voltage over time to zero.
[0014]
The present invention has been made in view of the above, and without increasing the iron core cross-sectional area, and without providing a butt gap at the joint, has the same structure as the iron core of a general transformer, a so-called standard transformer The purpose of the present invention is to obtain a transformer excitation inrush current reduction circuit that can reduce the residual magnetic flux density and greatly reduce the excitation inrush current, even if it is applied to existing transformers. I have.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, an exciting rush current reducing circuit for a transformer according to the present invention is a power supply circuit including a transformer for converting and generating a single-phase low-voltage from a three-phase high-voltage power supply. Between the terminal and the corresponding two phases of the other circuit capable of supplying a single-phase voltage lower than the rated voltage of the two terminals, during the shutdown of the transformer the single-phase low voltage A switch is provided which is opened and closed so as to temporarily apply a voltage.
[0016]
According to the present invention, after the operation of the transformer is stopped, the switch is opened and closed, and a single-phase voltage lower than the rated voltage of the transformer is temporarily applied from another circuit. Since the residual magnetic flux density of the iron core is proportional to the applied voltage, the transformer will be reduced-excited by a single-phase voltage lower than the rated voltage. Therefore, since the residual magnetic flux density in the non-excited state after the switch is opened and before the operation is resumed is smaller than the residual magnetic flux density due to the rated voltage, the excitation inrush current generated when the operation is resumed. Is greatly reduced.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of a transformer inrush current reduction circuit according to the present invention will be described below in detail with reference to the accompanying drawings.
[0018]
Embodiment 1 FIG.
FIG. 1 is a single-line diagram for explaining an exciting rush current reducing circuit of a transformer according to a first embodiment of the present invention. In FIG. 1, devices not related to the present invention are not shown.
[0019]
In FIG. 1, one terminal of a three-phase circuit breaker 2 is connected to a 6600 V three-phase high-voltage power supply 1, and a high-voltage side three-phase wiring 3 is laid on the other terminal side of the three-phase circuit breaker 2. I have. One terminal of each of the three-phase high-voltage disconnectors 4, 5, and 6 is connected to the high-voltage side three-phase wiring 3. The other terminal of the three-phase high-voltage disconnector 4 is connected to the primary side (high-voltage side) of a three-phase transformer 8 of Δ / Y connection via a high-voltage-side three-phase wiring 7. Is connected to one terminal of the single-phase high-voltage disconnector 10. On the secondary side (low-voltage side) of the three-phase transformer 8, a low-voltage side three-phase wiring 11 is laid.
[0020]
The other terminal of the three-phase high-voltage disconnector 5 is connected to the primary side (high-voltage side) of a three-phase transformer 13 having a Δ / Δ connection via a high-voltage three-phase wiring 12. On the next side (low voltage side), a low voltage side three-phase wiring 14 is laid. The other terminal of the three-phase high-voltage disconnector 6 is connected to the primary side (high-voltage side) of the three-phase transformer 16 in the Y / Δ connection and one terminal of the three-phase high-voltage disconnector 17 via the high-voltage three-phase wiring 15. And are connected. On the secondary side (low-voltage side) of the three-phase transformer 16, low-voltage three-phase wiring 18 is laid. The other terminal of the single-phase high-voltage disconnector 10 is connected to the low-voltage three-phase wiring 14 via the low-voltage single-phase wiring 19, and the other terminal of the three-phase high-voltage disconnector 17 is connected to the low-voltage single-phase The wiring 20 is connected to the low-voltage three-phase wiring 14.
[0021]
In the above configuration, the high-voltage power supplied from the 6600-V three-phase high-voltage power supply 1 passes through the three-phase circuit breaker 2, the high-voltage side three-phase wiring 3, the three-phase high-voltage disconnectors 4, 5, and 6, The transformers 8, 13, and 16 transform the voltages to single-phase low-voltages 210 V, 420 V, and 210 V, respectively, and supply the load to the loads through the low-voltage three-phase wirings 11, 14, and 18.
[0022]
Here, the load that operates even at night is mainly connected to the three-phase high-voltage disconnector 5, and the load that stops operation at night is connected to the three-phase high-voltage disconnectors 4 and 6. That is, in the three-phase transformers 8 and 16, the generation of the exciting rush current is frequently repeated. Thus, the single-phase high-voltage disconnector 10 is provided to reduce the inrush current of the three-phase transformer 8, and the three-phase high-voltage disconnector 17 is provided to reduce the inrush current of the three-phase transformer 16. It is provided.
[0023]
Hereinafter, the operation of reducing the inrush current will be described with reference to FIGS. FIG. 2 is a diagram for explaining the connection relationship between the three-phase transformer 8 and the single-phase high-voltage disconnector 10 having the Δ / Y connection shown in FIG. 1 and the operation of reducing the inrush current of the excitation. FIG. 3 is a diagram for explaining the connection relationship between the three-phase transformer 16 and the three-phase high-voltage disconnector 17 having the Y / Δ connection shown in FIG. 1 and the operation of reducing the exciting rush current.
[0024]
In FIG. 2, the high-voltage side single-phase wiring 9 connecting one terminal of the single-phase high-voltage disconnector 10 and the primary side of the three-phase transformer 8 in the Δ / Y connection is connected to the three-phase transformer 8 in the Δ / Y connection. Out of the U-phase, V-phase, and W-phase of the high-voltage three-phase wiring 7 that connects the primary side of the three-phase high-voltage disconnector 4 to the other terminal, for example. It is shown that the other terminal of the single-phase high-voltage disconnector 10 is connected via the low-voltage single-phase wiring 19 to the V-phase and W-phase of the low-voltage three-phase wiring 14 to which power is always applied.
[0025]
With reference to FIGS. 1 and 2, an operation procedure until the load of the three-phase transformer 8 is removed, the three-phase transformer 8 is disconnected from the high-voltage circuit, and the power is re-applied will be described. Since the load on the three-phase transformer 8 has been eliminated, first, the three-phase high-voltage disconnector 4 is opened. Next, after confirming that the three-phase high-voltage disconnector 4 is open, the single-phase high-voltage disconnector 10 is closed for a certain period, and the high-voltage-side single-phase wiring 9 and the low-voltage-side three-phase wiring 19 are connected. As a result, a low-voltage 210 V single-phase voltage of the low-voltage side three-phase wiring 14 is applied between the V-phase and W-phase two terminals on the primary side of the three-phase transformer 8. Next, the single-phase high-voltage disconnector 10 is opened to put the three-phase transformer 8 in a non-excited state. Thereafter, when it is necessary to supply power to the load of the three-phase transformer 8, the three-phase high-voltage disconnector 4 is turned on to apply a high voltage of 6600 V to the three-phase transformer 8.
[0026]
The single-phase high-voltage disconnector 10 can be closed between the three-phase high-voltage disconnector 4 and the single-phase high-voltage disconnector 10 only when the three-phase high-voltage disconnector 4 is open. An interlock is provided so that the single-phase high-voltage disconnector 10 cannot be closed when the disconnector 4 is closed.
[0027]
In the above operation procedure, when the three-phase high-voltage disconnector 4 is opened and the three-phase transformer 8 is disconnected from the three-phase high-voltage power supply 1, the iron core of the three-phase transformer 8 usually has a three-phase high voltage of 6600V. A residual magnetic flux proportional to the magnetic flux density remains. However, in the present example, after the three-phase transformer 8 is disconnected from the three-phase high-voltage power supply 1, the two terminals of the V-phase and W-phase are connected via the three-phase high-voltage disconnector 10 to the low-voltage side that is a single-phase excitation power supply. Connected to three-phase wiring 14. That is, the three-phase transformer 8 is reduced and excited by the single-phase low-voltage.
[0028]
That is, since the high-voltage side of the three-phase transformer 8 is a △ connection, when a single-phase low-voltage 210 V is impressed between the V-phase and W-phase two terminals, the other U-phase and V-phase two terminals are applied. A single-phase low voltage of 105 V is applied between the two terminals of U-phase and U-phase. As a result, all the iron legs are reduced and excited at a low voltage. That is, in the core of the three-phase transformer 8 which is in the non-excited state when the single-phase high-voltage disconnector 10 is opened, the residual magnetic flux at the time of the reduced excitation, which is finally excited, remains.
[0029]
However, the voltage of the low-voltage side three-phase wiring 14, which is a single-phase excitation power supply, is 210 V, which is sufficiently smaller than the rated voltage of 6,600 V, so that the residual magnetic flux density after this reduced excitation is sufficiently small. Therefore, the exciting inrush current when the operation and the stop of the three-phase transformer 8 are repeated is sufficiently small.
[0030]
This will be specifically described. The residual magnetic flux density of the iron core is proportional to the applied voltage. Now, assuming that the normal magnetic flux density Bm is 1.7 Tesla, which is generally applied, and the residual magnetic flux density Br is 0.9 × Bm, which is generally referred to, the first embodiment shown in FIG. The ratio of the maximum exciting sudden flow when the inrush current reducing circuit according to the present invention is applied to the maximum exciting sudden current of the three-phase transformer in the conventional power supply circuit is obtained from the above equation (1).
(2 × 1.7 + 0.9 × 1.7 × (210/6600) −2) ÷ (2 × 1.7 + 0.9 × 1.7-2) = 0.49 (2)
It can be seen that the reduction can be reduced to about half of the conventional method. Further, it can be understood that the electromagnetic mechanical force acting on the transformer winding can be reduced to about 1/4 since it is proportional to the square of the current.
[0031]
Next, in FIG. 3, one terminal of the three-phase high-voltage disconnector 17 is connected to the primary side of the three-phase transformer 16 in the Y / Δ connection and the three-phase high-voltage disconnector 6 through the high-voltage three-phase wiring 15. It is connected to each of the U-phase, V-phase, and W-phase for connecting to the other terminal. The other terminal of the three-phase high-voltage disconnector 17, for example, a U terminal and a W terminal are connected by a short-circuit line 23, and a V terminal and one of the two short-circuited W terminals are connected to the low-voltage side three-phase wiring 20. It is shown that they are connected to the V-phase and W-phase of the low-voltage side three-phase wiring 14 to which power is always applied.
[0032]
With reference to FIGS. 1 and 3, an operation procedure until the load on the three-phase transformer 16 is removed, the three-phase transformer 16 is disconnected from the high-voltage circuit, and the power is re-applied will be described. Since the load on the three-phase transformer 16 has been eliminated, first, the three-phase high-voltage disconnector 6 is opened. Next, after confirming that the three-phase high-voltage disconnector 6 is open, the three-phase high-voltage disconnector 17 is closed for a certain period, and the high-voltage single-phase wiring 15 and the low-voltage three-phase The wiring 20 is connected. As a result, a low-voltage 210 V single-phase voltage of the low-voltage side three-phase wiring 14 is applied between the V-phase and W-phase two terminals on the primary side of the three-phase transformer 16. Next, the three-phase high-voltage disconnector 17 is opened to put the three-phase transformer 16 into a non-excited state. Thereafter, when it is necessary to supply power to the load of the three-phase transformer 16, the three-phase high-voltage disconnector 6 is turned on to apply a high voltage of 6600 V to the three-phase transformer 16.
[0033]
The three-phase high-voltage disconnector 17 can be closed between the three-phase high-voltage disconnector 6 and the three-phase high-voltage disconnector 17 only when the three-phase high-voltage disconnector 6 is open. An interlock is provided so that the three-phase high-voltage disconnector 17 cannot be closed when the disconnector 6 is closed.
[0034]
In the above operation procedure, when the three-phase high-voltage disconnecting switch 6 is opened and the three-phase transformer 16 is disconnected from the three-phase high-voltage power supply 1, the core of the three-phase transformer 16 usually has a normal three-phase high voltage of 6600V. A residual magnetic flux proportional to the magnetic flux density remains. However, in the present example, the three-phase transformer 16 is disconnected from the three-phase high-voltage power supply 1 and then connected to the single-phase low-voltage power supply via the three-phase high-voltage disconnector 17 in which the U-phase and W-phase two terminals are short-circuited. It is connected to a certain low voltage side three-phase wiring 14. That is, the three-phase transformer 16 is reduced and excited by the single-phase low-voltage.
[0035]
That is, since the primary side (high voltage side) of the three-phase transformer 16 is Y-connected and the two terminals of the U-phase and W-phase on the power supply side are short-circuited by the three-phase high-voltage disconnector 17, the V-phase, A single-phase low voltage 210 is applied between two W-phase terminals, and a single-phase low voltage 210V is also applied between two V-phase and U-phase terminals. As a result, all the U, V, and W phase iron legs are excited at a low voltage. That is, in the core of the three-phase transformer 16 which is in the non-excited state when the three-phase high-voltage disconnector 17 is opened, the residual magnetic flux at the time of the reduced excitation, which is finally excited, remains.
[0036]
However, the voltage of the low-voltage side three-phase wiring 14, which is a single-phase excitation power supply, is 210 V, which is sufficiently smaller than the rated voltage of 6,600 V, so that the residual magnetic flux density after this reduced excitation is sufficiently small. Therefore, the excitation inrush current when the operation and the stop of the three-phase transformer 16 are repeated is sufficiently small.
[0037]
This will be specifically described. Under the same conditions as those for obtaining the above equation (2), the maximum excitation surge when the inrush current reducing circuit according to the first embodiment shown in FIG. 3 is applied and the maximum excitation of the three-phase transformer in the conventional power supply circuit When the ratio to the jet flow is obtained from the above equation (1),
(2 × 1.7 + 0.9 × 1.7 × (210 / (6600 ÷ √3) -2) ÷ (2 × 1.7 + 0.9 × 1.7-2) = 0.49 (3) )
It can be seen that the reduction can be reduced to about half of the conventional method. Further, it can be understood that the electromagnetic mechanical force acting on the transformer winding can be reduced to about 1/4 since it is proportional to the square of the current.
[0038]
Although FIGS. 1 and 3 show an example in which the three-phase high-voltage disconnector 17 is connected to the primary side (high-voltage side) of the three-phase transformer 16, the three-phase transformer 16 has a Δ / Y connection (6600 / In the case of 420 V), when 105 V can be selected as the single-phase low-voltage, the three-phase high-voltage disconnector 17 is connected to the low-voltage side of the three-phase transformer of the Δ / Y connection (6600/420 V) to reduce excitation. A configuration may be adopted. Since the ratio in this case is as shown in the following equation (4), it can be understood that the same effect of reducing the inrush current can be obtained.
[0039]
(2 × 1.7 + 0.9 × 1.7 × (105 ÷ 2) / (420 ÷ √3) -2) ÷ (2 × 1.7 + 0.9 × 1.7-2) = 0.57・ (4)
In this case, the three-phase high-voltage disconnector 17 can be used for low-voltage, and the wiring to the three-phase transformer for Δ / Y connection (6600 / 420V) can be made with low-voltage piezoelectric wires. There is.
[0040]
As described above, according to the first embodiment, of the first power distribution circuit and the second power distribution circuit that convert the voltage of the three-phase high-voltage power supply to the single-phase low-voltage and apply the power to the single-phase load, When a single-phase load is constantly applied and the second distribution circuit may stop applying power to the single-phase load, the three-phase transformer included in the second distribution circuit and the single distribution circuit of the first distribution circuit may be stopped. A switch is provided between the phase low-voltage output side and a single-phase voltage lower than the rated voltage is supplied to the three-phase transformer from the first power distribution circuit while the three-phase transformer is stopped. Since the reduced excitation is performed, the inrush current generated when the operation of the three-phase transformer is restarted can be significantly reduced.
[0041]
Therefore, there is no need to take special measures for standard transformers or existing transformers, and there is no need to prepare a special excitation power supply. Power supply circuit can be configured.
[0042]
Also, since the damage to the three-phase transformer can be greatly reduced, disconnect the three-phase transformer from the circuit when no load is applied without taking special measures such as installing an inrush current reduction transformer. Can be. As a result, useless no-load loss generated from the three-phase transformer can be reduced to zero, and a large energy saving effect can be obtained even with a standard transformer or an existing transformer.
[0043]
Further, since it is possible to prevent the protection device from malfunctioning due to the inrush current, it is possible to significantly reduce the influence on the voltage fluctuation of the peripheral power system, and to configure highly reliable power receiving equipment.
[0044]
Embodiment 2 FIG.
FIG. 4 is a single-line diagram for describing an exciting rush current reducing circuit of a transformer according to a second embodiment of the present invention. Note that, in FIG. 4, components that are the same as or equivalent to the configuration illustrated in FIG. 1 are denoted by the same reference numerals. Here, a description will be given focusing on a portion relating to the second embodiment.
[0045]
As shown in FIG. 4, in the transformer inrush current reduction circuit according to the second embodiment, in the configuration shown in FIG. 1 (first embodiment), , A Scott connection transformer 25 are provided. The load of the Scott connection transformer 25 is connected to the low-voltage AA wiring 26.
[0046]
As described in the first embodiment, a load that operates even at night is mainly connected to the three-phase high-voltage disconnector 5, and a load that stops operation at night is connected to the three-phase high-voltage disconnectors 4 and 6. I have. That is, in the Scott connection transformer 25 and the three-phase transformer 16, the generation of the exciting rush current is frequently repeated. Therefore, the single-phase high-voltage disconnector 10 is provided to reduce the inrush current of the Scott connection transformer 25, and the three-phase high-voltage disconnector 17 is provided to reduce the inrush current of the three-phase transformer 16. It is provided.
[0047]
The operation of reducing the inrush current of the three-phase transformer 16 is as described in the first embodiment. In the second embodiment, an operation of reducing the inrush current of the Scott connection transformer 25 will be described with reference to FIGS. FIG. 5 is a diagram for explaining the connection relationship between the Scott connection transformer 25 and the single-phase high-voltage disconnector 10 shown in FIG. 4 and the operation for reducing the exciting inrush current.
[0048]
In FIG. 5, the high-voltage single-phase wiring 9 that connects one terminal of the single-phase high-voltage disconnector 10 to the primary side (three-phase side) of the Scott connection transformer 25 is connected to the primary side of the Scott connection transformer 25 by three terminals. The U-phase, the V-phase, and the W-phase of the high-voltage three-phase wiring 7 that connects to the other terminal of the phase high-voltage disconnector 4 are drawn from, for example, the V-phase and the W-phase. It is shown that the other terminal of the single-phase high-voltage disconnector 10 is connected via the low-voltage single-phase wiring 19 to the V-phase and W-phase of the low-voltage three-phase wiring 14 to which power is always applied.
[0049]
With reference to FIGS. 4 and 5, a description will be given of an operation procedure from when the load on the Scott connection transformer 25 is removed to disconnect the Scott connection transformer 25 from the high-voltage circuit and reapply power. Since the load on the Scott connection transformer 25 has been eliminated, first, the three-phase high-voltage disconnector 4 is opened. Next, after confirming that the three-phase high-voltage disconnector 4 is open, the single-phase high-voltage disconnector 10 is closed for a certain period, and the high-voltage-side single-phase wiring 9 and the low-voltage-side three-phase wiring 19 are connected. As a result, the single-phase low-voltage 210 V of the low-voltage three-phase wiring 14 is applied between the V-phase and W-phase terminals on the primary side of the Scott connection transformer 25. Next, the single-phase high-voltage disconnector 10 is opened to bring the Scott connection transformer 25 into a non-excited state. Thereafter, the three-phase high-voltage disconnector 4 is turned on when it is necessary to supply power to the load, and a high-voltage voltage of 6600 V is applied to the Scott connection transformer 25.
[0050]
As described in the first embodiment, between the three-phase high-voltage disconnector 4 and the single-phase high-voltage disconnector 10, the single-phase high-voltage disconnector 10 is opened only when the three-phase high-voltage disconnector 4 is open. Can be closed, and an interlock is provided so that the single-phase high-voltage disconnector 10 cannot be closed when the three-phase high-voltage disconnector 4 is closed.
[0051]
In the above operation procedure, when the three-phase high-voltage disconnector 4 is opened and the Scott connection transformer 25 is disconnected from the three-phase high-voltage power supply 1, the iron core of the Scott connection transformer 25 normally has a three-phase high voltage of 6600V. A residual magnetic flux proportional to the magnetic flux density remains. However, in this example, after the Scott connection transformer 25 is disconnected from the three-phase high-voltage power supply 1, two terminals of the V-phase and the W-phase of the three phases are single-phase excited via the three-phase high-voltage disconnector 10. It is connected to the low voltage side three-phase wiring 14 which is a power supply. That is, the Scott connection transformer 25 is single-phase excited with a single-phase low-voltage.
[0052]
That is, since the primary side (high-voltage side) of the Scott connection transformer 25 is a T-connection, when a single-phase low-voltage 210 V is applied between the V-phase and W-phase terminals, the low voltage of all iron legs is reduced. It is excited by voltage. That is, in the iron core of the Scott connection transformer 25 which is in the non-excited state when the single-phase high-voltage disconnector 10 is opened, the residual magnetic flux at the time of the reduced excitation which is finally excited remains.
[0053]
However, since the voltage of the low-voltage side three-phase wiring 14, which is a single-phase excitation power supply, is a single-phase low-voltage 210V, which is sufficiently smaller than the rated voltage 6600V, the residual magnetic flux density after this reduced excitation is sufficiently small. . Therefore, the excitation inrush current when the operation and stop of the Scott connection transformer 25 are repeated is sufficiently small.
[0054]
This will be specifically described. Under the same conditions as those for obtaining the above equation (2), the maximum excitation surge when the inrush current reduction circuit according to the second embodiment shown in FIG. 5 is applied and the maximum excitation of the Scott connection transformer in the conventional power supply circuit When the ratio to the jet flow is obtained from the above equation (1),
(2 × 1.7 + 0.9 × 1.7 × (210/6600) −2) ÷ (2 × 1.7 + 0.9 × 1.7-2) = 0.49 (5)
It can be seen that the reduction can be reduced to about half of the conventional method. Further, it can be understood that the electromagnetic mechanical force acting on the transformer winding can be reduced to about 1/4 since it is proportional to the square of the current.
[0055]
As described above, according to the second embodiment, of the first power distribution circuit and the second power distribution circuit that convert the voltage of the three-phase high-voltage power supply to the single-phase low-voltage and apply the power to the single-phase load, When the single-phase load is always applied and the second distribution circuit may stop applying the power to the single-phase load, the three-phase side of the Scott connection transformer included in the second distribution circuit and the first A switch is provided between the single-phase low-voltage output side of the distribution circuit and a single-phase voltage lower than the rated voltage of the Scott connection transformer during the operation of the Scott connection transformer. , The reduced inrush current generated when the Scott connection transformer is restarted can be greatly reduced. Therefore, the same operation and effect as in the first embodiment can be obtained.
[0056]
Embodiment 3 FIG.
FIG. 6 is a single-line diagram for describing an exciting rush current reducing circuit of a transformer according to a third embodiment of the present invention. In FIG. 6, devices not related to the present invention are not shown.
[0057]
6, one terminal of a three-phase circuit breaker 2 is connected to a 6600 V three-phase high-voltage power supply 1, and the other terminal side of the three-phase circuit breaker 2 is connected to a high-voltage three-phase wiring 3 and a high-voltage single unit. Phase wirings 27 and 28 are laid. One terminal of a three-phase high-voltage disconnector 4 is connected to the high-voltage side three-phase wiring 3, and the primary terminal (three-phase side) of the Scott connection transformer 25 is connected to the other terminal of the three-phase high-voltage disconnector 4. It is connected. On one single-phase winding on the secondary side (single-phase winding side) of the Scott connection transformer 25, low-voltage AA wiring 26 is laid.
[0058]
One terminal of the single-phase high-voltage disconnector 29 is connected to the high-voltage single-phase wiring 27, and the other terminal of the single-phase high-voltage disconnector 29 is connected to the single-phase three-wire transformer via the high-voltage single-phase wiring 31. The primary side (high pressure side) of the vessel 32 is connected. On the secondary side (low-voltage side) of the single-phase three-wire transformer 32, low-voltage AA wiring 33 is laid. One terminal of a single-phase low-voltage disconnecting switch 35 is connected to the low-voltage AA wiring 33 via a low-voltage single-phase wiring 34, and the other terminal of the single-phase low-voltage disconnecting switch 35 is connected to the low-voltage AA wiring 26. It is connected to the.
[0059]
One terminal of a single-phase high-voltage disconnector 30 is connected to the high-voltage single-phase wiring 28, and the other terminal of the single-phase high-voltage disconnector 30 is connected to a single-phase three-wire system via a high-voltage single-phase wiring 37. The primary side (high pressure side) of the transformer 38 is connected. On the secondary side (low-voltage side) of the single-phase three-wire transformer 38, low-voltage AA wiring 39 is laid. One terminal of a single-phase low-voltage disconnector 41 is connected to the low-voltage AA wire 39 via a low-voltage single-phase wire 40, and the other terminal of the single-phase low-voltage disconnector 41 is connected to a low-voltage single-phase wire 42. Is connected to the low-voltage AA wire 33 via the.
[0060]
In the above configuration, the high-voltage power supplied from the 6600-V three-phase high-voltage power supply 1 exits the three-phase circuit breaker 2 and is branched into three. One is that after passing through the high-voltage three-phase wiring 3, the three-phase high-voltage disconnector 4, and the high-voltage three-phase wiring 7, the Scott connection transformer 25 transforms the voltage to a single-phase low-voltage 210V, and the low-voltage AA wiring It is supplied to the load through 26. The other is, after passing through the high-voltage single-phase wiring 27, the single-phase high-voltage disconnector 29, and the high-voltage single-phase wiring 31, is transformed into a single-phase low-voltage 105V by a single-phase three-wire transformer 32, It is supplied to the load through AA wiring 33. The other is that after passing through the high-voltage side single-phase wiring 28, the single-phase high-voltage disconnecting switch 30, and the high-voltage side single-phase wiring 37, the voltage is transformed to a single-phase low-voltage 210V by a single-phase three-wire transformer 38, It is supplied to the load through the side single-phase wiring 40.
[0061]
Here, the load that operates even at night is mainly connected to the single-phase high-voltage disconnector 29, and the load that stops operation at night is connected to the three-phase high-voltage disconnector 4 and the single-phase high-voltage disconnector 30. That is, in the Scott connection transformer 25 and the single-phase three-wire transformer 38, the inrush current of the excitation is frequently repeated. Thus, the single-phase low-voltage disconnector 35 is provided to reduce the inrush current of the Scott connection transformer 25, and the single-phase low-voltage disconnector 41 reduces the inrush current of the single-phase three-wire transformer 38. It is provided for.
[0062]
The operation for reducing the inrush current will be described below with reference to FIGS. FIG. 7 is a view for explaining the connection relationship between the Scott connection transformer 25 and the single-phase low-voltage disconnecting switch 35 shown in FIG. 6 and the operation for reducing the magnetizing inrush current. FIG. 8 is a diagram for explaining a connection relationship between the single-phase three-wire transformer 38 and the single-phase low-voltage disconnector 41 shown in FIG. 6 and an operation for reducing the inrush current of the excitation.
[0063]
In FIG. 7, the primary side (three-phase side) of the Scott connection transformer 25 is connected to each of the U-phase, V-phase, and W-phase of the high-voltage side three-phase wiring 7, and the secondary side (single-phase winding side). ) Indicates that it is connected to the low-voltage AA wire 33, which is always charged, via the low-voltage three-phase wire 36, the single-phase low-voltage disconnector 35, and the low-voltage three-phase wire 34. Here, the rated voltage on the secondary side (single-phase winding side) of the Scott connection transformer 25 is a single-phase low-voltage 210 V, and the voltage on the low-voltage AA wire 33 is a single-phase low-voltage 105 V.
[0064]
With reference to FIGS. 6 and 7, an operation procedure until the load of the Scott connection transformer 25 is removed, the Scott connection transformer 25 is disconnected from the high voltage circuit, and power is re-applied will be described. Since the load on the Scott connection transformer 25 has been eliminated, first, the three-phase high-voltage disconnector 4 is opened. Next, after confirming that the three-phase high-voltage disconnector 4 is open, the single-phase low-voltage disconnector 35 is closed for a certain period of time, and the low-voltage single-phase wiring 36 and the low-voltage single-phase wiring 34 are connected. As a result, the single-phase low-voltage voltage 105V of the low-voltage AA wire 33 is applied between the terminals of the Scott connection transformer 25 with the secondary-side rated voltage 210V. Next, the single-phase low-voltage disconnector 35 is opened to bring the Scott connection transformer 25 into a non-excited state. Thereafter, when it is necessary to supply power to the load of the Scott connection transformer 25, the three-phase high voltage disconnector 4 is turned on to apply a high voltage of 6600V to the Scott connection transformer 25.
[0065]
In addition, between the three-phase high-voltage disconnecting switch 4 and the single-phase low-voltage disconnecting switch 35, the single-phase low-pressure disconnecting switch 35 can be closed only when the three-phase high-voltage disconnecting switch 4 is open. An interlock is provided so that the single-phase low-pressure disconnector 35 cannot be closed when the disconnector 4 is closed.
[0066]
In the above operation procedure, when the three-phase high-voltage disconnector 4 is opened and the Scott connection transformer 25 is disconnected from the three-phase high-voltage power supply 1, the iron core of the Scott connection transformer 25 normally has a three-phase high voltage of 6600V. A residual magnetic flux proportional to the magnetic flux density remains. However, in this example, after the Scott connection transformer 25 is disconnected from the three-phase high-voltage power supply 1, the terminal of the secondary side (low-voltage side) rated voltage 210 V is connected to the single-phase excitation power supply via the single-phase low-voltage disconnector 35. Is connected to the low-voltage AA wire 33. That is, the Scott connection transformer 25 is single-phase excited with a single-phase low-voltage.
[0067]
That is, since the low-voltage side of the Scott connection transformer 25 is a single-phase winding, when a single-phase low-voltage voltage of 105 V is impressed between the terminals of the rated voltage of 210 V, the single-phase winding of all iron legs is half of the rated voltage. Excited at low voltage. In other words, the residual magnetic flux at the time of the reduced excitation that was last excited remains in the iron core of the Scott connection transformer 25 that is in the non-excited state when the single-phase low-voltage disconnector 35 is opened.
[0068]
However, the voltage of the low-voltage AA wire 33, which is a single-phase excitation power supply, is a single-phase low-voltage voltage of 105 V, which is sufficiently smaller than the rated voltage of 210 V, so that the residual magnetic flux density after this reduced excitation is sufficiently small. Therefore, the excitation inrush current when the operation and stop of the Scott connection transformer 25 are repeated is sufficiently small.
[0069]
This will be specifically described. Under the same conditions as those for obtaining the above equation (2), the maximum excitation surge when the rush current reducing circuit according to the third embodiment shown in FIG. 7 is applied, and the maximum excitation of the Scott connection transformer in the conventional power supply circuit. When the ratio to the jet flow is obtained from the above equation (1),
(2 × 1.7 + 0.9 × 1.7 × (105/210) −2) ÷ (2 × 1.7 + 0.9 × 1.7-2) = 0.79 (6)
It can be seen that the reduction can be achieved by 26% compared to the conventional method. It can also be seen that the electromagnetic mechanical force acting on the transformer windings can be reduced to about 55% since it is proportional to the square of the current.
[0070]
Next, in FIG. 8, the primary side (high voltage side) of the single-phase three-wire type transformer 38 is connected to the high-voltage side single-phase wiring 37. The secondary side (low voltage side) is connected to the low voltage side AA wiring 33 which is always charged via the low voltage side single phase wiring 40, the single phase low voltage disconnecting switch 41, and the low voltage side single phase wiring 42. It is shown. Here, the rated voltage on the secondary side (low voltage side) of the single-phase three-wire type transformer 38 is 210 V, and the voltage of the low-voltage AA wire 33 is single-phase low-voltage voltage 105 V.
[0071]
With reference to FIGS. 6 and 8, an operation procedure until the load on the single-phase three-wire transformer 38 is removed, the single-phase three-wire transformer 38 is disconnected from the high-voltage circuit, and power is re-applied will be described. Since the load on the single-phase three-wire transformer 38 has been eliminated, first, the single-phase high-voltage disconnector 30 is opened. Next, after confirming that the single-phase high-voltage disconnector 30 is open, the single-phase low-voltage disconnector 41 is closed, and the low-voltage single-phase wiring 40 and the low-voltage single-phase wiring 42 are connected. As a result, the single-phase low-voltage voltage 105V of the low-voltage AA wire 33 is applied between the terminals of the secondary (low-voltage) rated voltage 210V of the single-phase three-wire transformer 38. Next, the single-phase low-voltage disconnector 41 is opened to put the single-phase three-wire transformer 38 into a non-excited state. Thereafter, when it is necessary to supply power to the load of the single-phase three-wire transformer 38, the single-phase high-voltage disconnector 30 is turned on to apply a high voltage of 6600 V to the single-phase three-wire transformer 38.
[0072]
The single-phase low-voltage disconnector 41 can be closed between the single-phase high-voltage disconnector 30 and the single-phase low-voltage disconnector 41 only when the single-phase high-voltage disconnector 30 is open. An interlock is provided so that the single-phase low-pressure disconnector 41 cannot be closed when the disconnector 30 is closed.
[0073]
In the above operation procedure, when the single-phase high-voltage disconnector 30 is opened and the single-phase three-wire transformer 38 is disconnected from the three-phase high-voltage power supply 1, the core of the single-phase three-wire transformer 38 usually has a three-phase A residual magnetic flux proportional to the normal magnetic flux density due to the high voltage of 6600 V remains. However, in this example, after the single-phase three-wire transformer 38 is disconnected from the three-phase high-voltage power supply 1, the terminal of the low-voltage-side rated voltage 210 V is connected to the low-voltage It is connected to the side AA wiring 33. That is, the single-phase three-wire transformer 38 is single-phase excited because the single-phase low-voltage 105 V is applied between the terminals of the low-voltage-side rated voltage 210 V.
[0074]
That is, since the low-voltage side of the single-phase three-wire transformer 38 is a single-phase winding, when a single-phase low-voltage voltage of 105 V is impressed between the terminals of the rated voltage of 210 V, all the iron legs become half of the rated voltage. Excited at constant voltage. That is, in the core of the single-phase three-wire transformer 38 which is in the non-excited state when the single-phase low-voltage disconnector 41 is opened, the residual magnetic flux at the time of the reduced excitation, which is finally excited, remains.
[0075]
However, the voltage of the low-voltage AA wire 33, which is a single-phase excitation power supply, is a single-phase low-voltage voltage of 105 V, which is sufficiently smaller than the rated voltage of 210 V, so that the residual magnetic flux density after this reduced excitation is sufficiently small. Therefore, the excitation inrush current when the operation and stop of the single-phase three-wire transformer 38 are repeated is sufficiently small.
[0076]
This will be specifically described. Under the same conditions as those for obtaining the above equation (2), the maximum exciting sudden flow when the inrush current reducing circuit according to the third embodiment shown in FIG. 8 is applied and the single-phase three-wire transformer in the conventional power supply circuit. When the ratio with the maximum exciting jet is obtained from the above equation (1),
(2 × 1.7 + 0.9 × 1.7 × (105/210) −2) ÷ (2 × 1.7 + 0.9 × 1.7-2) = 0.79 (7)
It can be seen that the reduction can be achieved by 26% compared to the conventional method. It can also be seen that the electromagnetic mechanical force acting on the transformer windings can be reduced to about 55% since it is proportional to the square of the current.
[0077]
As described above, according to the third embodiment, of the first power distribution circuit and the second power distribution circuit that converts the voltage of the three-phase high-voltage power supply to the single-phase low-voltage and applies the power to the single-phase load, the first power distribution circuit is When the single-phase load is constantly applied and the second distribution circuit may stop applying the power to the single-phase load, the low-voltage side (Scott connection transformer) of the single-phase transformer included in the second distribution circuit may be used. A switch is provided between the single-phase winding side) and the single-phase low-voltage output side of the first distribution circuit, and the single-phase transformer (Scott-connected transformer) is stopped during the single-phase transformer operation. The single-phase transformer (Scott-connected transformer) is supplied with a single-phase voltage lower than its rated voltage from the first power distribution circuit to perform reduced excitation, so that the single-phase transformer (Scott-connected transformer) is restarted. Exciting inrush current generated at the time can be reduced. Therefore, the same operation and effect as in the first embodiment can be obtained.
[0078]
【The invention's effect】
As described above, according to the present invention, in a power supply circuit including a transformer that converts and generates a single-phase low-voltage from a three-phase high-voltage power supply, the two terminals of the transformer are lower than the rated voltages of the two terminals. Opening and closing operations to temporarily apply a single-phase low-voltage from the other circuit to the transformer during the shutdown of the transformer between the corresponding two phases of another circuit that can supply a single-phase voltage. Since a switch is provided to reduce the excitation of the transformer, the inrush current generated when the operation is restarted can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a single-line diagram for describing an exciting inrush current reducing circuit of a transformer according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a connection relationship between a three-phase transformer having a Δ / Y connection and a single-phase disconnector illustrated in FIG. 1 and an operation of reducing an exciting inrush current.
FIG. 3 is a diagram illustrating a connection relationship between a three-phase transformer and a three-phase high-voltage disconnector having a Y / Δ connection illustrated in FIG. 1 and an operation of reducing an exciting inrush current.
FIG. 4 is a single-line diagram for describing an exciting rush current reducing circuit of a transformer according to a second embodiment of the present invention.
5 is a diagram illustrating a connection relationship between a Scott connection transformer and a single-phase disconnector illustrated in FIG. 4 and an operation of reducing an exciting inrush current.
FIG. 6 is a single-line diagram for describing an exciting rush current reducing circuit of a transformer according to a third embodiment of the present invention;
FIG. 7 is a diagram illustrating a connection relationship between the Scott connection transformer and the single-phase low-voltage disconnector illustrated in FIG. 6 and an operation of reducing an exciting inrush current.
8 is a diagram illustrating a connection relationship between a single-phase three-wire transformer and a single-phase low-voltage disconnector illustrated in FIG. 6 and an operation of reducing an exciting inrush current.
[Explanation of symbols]
1 three-phase high-voltage power supply, two-phase circuit breaker, 3,7,15 high-voltage side three-phase wiring, 4,5,6,17 three-phase high-voltage disconnector, 8 Δ / Y-connected three-phase transformer, 9,27 , 28,37 High voltage side single phase wiring, 10,29,30 Single phase high voltage disconnector, 11,14,18,39 Low voltage side three phase wiring, 12 High voltage side three phase wiring, 13 Δ / Δ connection three phase transformer , 16 Y / Δ connection three phase transformer, 19, 20, 34, 36, 40, 42 low voltage side single phase wiring, 23 short circuit line, 25 Scott connection transformer, 26, 33 low voltage side AA wiring, 31 High-voltage single-phase wiring, 32, 38 Single-phase three-wire transformer, 35, 41 Single-phase low-voltage disconnector.

Claims (7)

三相高圧電源から単相低圧電圧を変換生成する変圧器を含む電力供給回路において、
前記変圧器の2端子と前記2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記変圧器の運転停止中に前記変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器、
を備えたことを特徴とする変圧器の励磁突入電流低減回路。
In a power supply circuit including a transformer that converts and generates a single-phase low-voltage from a three-phase high-voltage power supply,
Between the two terminals of the transformer and the corresponding two phases of another circuit capable of supplying a single-phase voltage lower than the rated voltage of the two terminals, during the shutdown of the transformer, the other A switch that is opened and closed to temporarily apply a single-phase low voltage from the circuit,
An inrush current reduction circuit for a transformer, comprising:
三相高圧電源から単相低圧電圧を変換生成する三相変圧器を含む電力供給回路において、
前記三相変圧器の三角結線側の2端子と前記2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記三相変圧器の運転停止中に前記三相変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器、
を備えたことを特徴とする変圧器の励磁突入電流低減回路。
In a power supply circuit including a three-phase transformer that converts and generates a single-phase low-voltage from a three-phase high-voltage power supply,
The operation of the three-phase transformer is stopped between two terminals on the triangular connection side of the three-phase transformer and corresponding two phases of another circuit capable of supplying a single-phase voltage lower than the rated voltage of the two terminals. A switch that is opened and closed to temporarily apply a single-phase low voltage from the other circuit to the three-phase transformer,
An inrush current reduction circuit for a transformer, comprising:
三相高圧電源から単相低圧電圧を変換生成する三相変圧器を含む電力供給回路において、
前記三相変圧器の星形結線の短絡された2端子と残りの端子との都合2端子と前記2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記三相変圧器の運転停止中に前記三相変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器、
を備えたことを特徴とする変圧器の励磁突入電流低減回路。
In a power supply circuit including a three-phase transformer that converts and generates a single-phase low-voltage from a three-phase high-voltage power supply,
The two short-circuited terminals of the star connection of the three-phase transformer and the remaining two terminals and the corresponding two-phase of another circuit capable of supplying a single-phase voltage lower than the rated voltage of the two terminals. A switch that is opened and closed to temporarily apply a single-phase low-voltage from the other circuit to the three-phase transformer while the three-phase transformer is stopped,
An inrush current reduction circuit for a transformer, comprising:
前記開閉器は、一方の3端子が前記三相変圧器の星形結線の3端子に接続され、他方の3端子のうち短絡された2端子と残りの端子との都合2端子が前記他の回路の対応する2相に接続されることを特徴とする請求項3に記載の変圧器の励磁突入電流低減回路。In the switch, one of three terminals is connected to three terminals of the star connection of the three-phase transformer, and two terminals of the other three terminals, which are a short-circuited two terminal and the other terminal, are connected to the other terminal. 4. The circuit according to claim 3, wherein the circuits are connected to two corresponding phases of the circuit. 三相高圧電源から単相低圧電圧を変換生成するスコット結線変圧器を含む電力供給回路において、
前記スコット結線変圧器の三相側の2端子と前記三相側の2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記スコット結線変圧器の運転停止中に前記スコット結線変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器、
を備えたことを特徴とする変圧器の励磁突入電流低減回路。
In a power supply circuit including a Scott connection transformer that converts and generates a single-phase low-voltage from a three-phase high-voltage power supply,
The Scott connection transformer is connected between two terminals on the three-phase side of the Scott connection transformer and corresponding two phases of another circuit capable of supplying a single-phase voltage lower than the rated voltage of the three-phase two terminals. A switch that is opened and closed to temporarily apply a single-phase low-voltage from the other circuit to the Scott connection transformer while the operation is stopped,
An inrush current reduction circuit for a transformer, comprising:
三相高圧電源から単相低圧電圧を変換生成するスコット結線変圧器を含む電力供給回路において、
前記スコット結線変圧器の二次側単相巻線の2端子と前記二次側単相巻線の2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記スコット結線変圧器の運転停止中に前記スコット結線変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器、
を備えたことを特徴とする変圧器の励磁突入電流低減回路。
In a power supply circuit including a Scott connection transformer that converts and generates a single-phase low-voltage from a three-phase high-voltage power supply,
The two terminals of the secondary-side single-phase winding of the Scott connection transformer and the corresponding two-phase of another circuit capable of supplying a single-phase voltage lower than the rated voltage of the two terminals of the secondary-side single-phase winding. A switch that is opened and closed to temporarily apply a single-phase low-voltage from the other circuit to the Scott connection transformer while the operation of the Scott connection transformer is stopped;
An inrush current reduction circuit for a transformer, comprising:
三相高圧電源から単相低圧電圧を変換生成する単相変圧器を含む電力供給回路において、
前記単相変圧器の2端子と前記2端子の定格電圧よりも低い単相電圧を供給できる他の回路の対応する2相との間に、前記単相変圧器の運転停止中に前記単相変圧器に前記他の回路から単相低圧電圧を一時的に印加するように開閉操作される開閉器、
を備えたことを特徴とする変圧器の励磁突入電流低減回路。
In a power supply circuit including a single-phase transformer that converts and generates a single-phase low-voltage from a three-phase high-voltage power supply,
Between the two terminals of the single-phase transformer and the corresponding two phases of another circuit capable of supplying a single-phase voltage lower than the rated voltage of the two terminals, during the shutdown of the single-phase transformer, A switch that is opened and closed so as to temporarily apply a single-phase low voltage from the other circuit to the transformer,
An inrush current reduction circuit for a transformer, comprising:
JP2002316612A 2002-10-30 2002-10-30 Exciting rush current reduction circuit for transformer Pending JP2004153932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316612A JP2004153932A (en) 2002-10-30 2002-10-30 Exciting rush current reduction circuit for transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316612A JP2004153932A (en) 2002-10-30 2002-10-30 Exciting rush current reduction circuit for transformer

Publications (2)

Publication Number Publication Date
JP2004153932A true JP2004153932A (en) 2004-05-27
JP2004153932A5 JP2004153932A5 (en) 2005-09-15

Family

ID=32460266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316612A Pending JP2004153932A (en) 2002-10-30 2002-10-30 Exciting rush current reduction circuit for transformer

Country Status (1)

Country Link
JP (1) JP2004153932A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026423A1 (en) * 2010-08-23 2012-03-01 株式会社 東芝 Exciting inrush current suppression apparatus
CN103608885A (en) * 2011-07-27 2014-02-26 株式会社东芝 Magnetizing inrush current suppression device
CN103795030A (en) * 2014-01-15 2014-05-14 山东大学 Transformer relay protection method based on longitudinal branch connection conductance
CN106972506A (en) * 2017-05-11 2017-07-21 成都瑞尔维轨道交通技术有限公司 Distribution system and power system
CN109448952A (en) * 2018-12-19 2019-03-08 卧龙电气南阳防爆集团股份有限公司 A kind of low pressure pre-magnetizing system and method for high-power fairing

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610885A4 (en) * 2010-08-23 2014-08-06 Toshiba Inc Kk Exciting inrush current suppression apparatus
US9197057B2 (en) 2010-08-23 2015-11-24 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression apparatus
CN102918618A (en) * 2010-08-23 2013-02-06 株式会社东芝 Exciting inrush current suppression apparatus
EP2610885A1 (en) * 2010-08-23 2013-07-03 Kabushiki Kaisha Toshiba, Inc. Exciting inrush current suppression apparatus
AU2011294341B2 (en) * 2010-08-23 2015-04-02 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression apparatus
WO2012026423A1 (en) * 2010-08-23 2012-03-01 株式会社 東芝 Exciting inrush current suppression apparatus
JP2012043744A (en) * 2010-08-23 2012-03-01 Toshiba Corp Excitation inrush current suppressor
CN103608885A (en) * 2011-07-27 2014-02-26 株式会社东芝 Magnetizing inrush current suppression device
CN103608885B (en) * 2011-07-27 2016-03-30 株式会社东芝 Transformer inrush current suppression apparatus
US9583934B2 (en) 2011-07-27 2017-02-28 Kabushiki Kaisha Toshiba Excitation inrush current suppression device
CN103795030A (en) * 2014-01-15 2014-05-14 山东大学 Transformer relay protection method based on longitudinal branch connection conductance
CN106972506A (en) * 2017-05-11 2017-07-21 成都瑞尔维轨道交通技术有限公司 Distribution system and power system
CN106972506B (en) * 2017-05-11 2023-10-13 成都交达电气有限公司 Power distribution system and power system
CN109448952A (en) * 2018-12-19 2019-03-08 卧龙电气南阳防爆集团股份有限公司 A kind of low pressure pre-magnetizing system and method for high-power fairing
CN109448952B (en) * 2018-12-19 2023-11-24 卧龙电气南阳防爆集团股份有限公司 Low-voltage pre-magnetizing system and method for high-voltage high-power rectifying device

Similar Documents

Publication Publication Date Title
US10554148B2 (en) Device and method for premagnetization of a power transformer in a converter system
US10326395B2 (en) System and method for magnetizing a transformer in an electrical system prior to energizing the electrical system
EP1922794B1 (en) System and method for limiting ac inrush current
US7466109B1 (en) Systems and methods involving variable speed generators
Parikh et al. Mitigation of magnetic inrush current during controlled energization of coupled un-loaded power transformers in presence of residual flux without load side voltage measurements
Pillai et al. Grounding and ground fault protection of multiple generator installations on medium-voltage industrial and commercial power systems II. Grounding methods
JP2004153932A (en) Exciting rush current reduction circuit for transformer
Kahrobaee et al. Investigation and Mitigation of Transformer Inrush Current during Black Start of an Independent Power Producer Plant
US6727603B1 (en) Automatic mode transitions for microturbine generating systems
RU2461112C2 (en) Method and system for current limitation in ac generator
CN215934756U (en) Generator control circuit and thermal power generation device
KR100451250B1 (en) Phase failure select method and open phase circuit breaker
JP4706999B2 (en) Excitation current suppression device
JP2002199578A (en) Linkage protective apparatus for power system
JP2005192318A (en) Throw-in method of three-phase transformer, and device thereof
JP3829192B2 (en) Inrush current suppression method
JP3100536B2 (en) High pressure switchgear device
JP2005354753A (en) Power generation plant
Ventruella et al. A second look at generator 51 V relays
CN113035531A (en) Phase-shifting transformer, voltage conversion system and frequency conversion system
SU1081732A1 (en) A.c.power supply device
Balachandran et al. A New Technique for Mitigation of Transformer Inrush Current
JP2008017628A (en) Overcurrent protection system
JPH09261874A (en) Uninterruptive power supply for high-voltage power receiving three-phase load
JP2007104848A (en) Emergency diesel generator exciting device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123