JP2004152980A - Thin magnetic film inductor element and micro power conversion device using the same - Google Patents

Thin magnetic film inductor element and micro power conversion device using the same Download PDF

Info

Publication number
JP2004152980A
JP2004152980A JP2002315990A JP2002315990A JP2004152980A JP 2004152980 A JP2004152980 A JP 2004152980A JP 2002315990 A JP2002315990 A JP 2002315990A JP 2002315990 A JP2002315990 A JP 2002315990A JP 2004152980 A JP2004152980 A JP 2004152980A
Authority
JP
Japan
Prior art keywords
spiral coil
thin
insulating substrate
coil conductor
induction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002315990A
Other languages
Japanese (ja)
Inventor
Yoshitomo Hayashi
善智 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002315990A priority Critical patent/JP2004152980A/en
Publication of JP2004152980A publication Critical patent/JP2004152980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin magnetic film inductor element which is hardly magnetically saturated and has a large inductance, and also to provide a micro power conversion device which is mounted with the thin magnetic film inductor element and hence is reduced in mounting area and is improved in power conversion efficiency. <P>SOLUTION: On a ferrite substrate 1, a first spiral coil conductor 4 and a second spiral coil conductor 5 are formed by plating. Near the center of the ferrite substrate 1, a through hole is formed. The central ends of the first and the second spiral coil conductors 4 and 5 are electrically connected with a connection conductor 3 via the through hole. The first and the second spiral coil conductors 4 and 5 are so formed that the currents in these conductors may be caused to flow in opposite directions. Due to this structure, magnetic flux inside the ferrite substrate 1 can be increased. The increase in magnetic flux density increases the inductance of the thin magnetic film inductor element, resulting in the reduction in size of the thin magnetic film induction element. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板に形成した半導体集積回路(以下ICと記す)と、コイルやコンデンサ、抵抗などの受動部品で構成されるDC−DCコンバ−タなどの超小型電力変換装置とそれに用いられる薄膜磁気誘導素子に関する。
【0002】
【従来の技術】
近年、電子情報機器、特に携帯型の各種電子情報機器の普及が著しい。それらの電子情報機器は、電池を電源とするものが多く、DC−DCコンバータなどの電力変換装置を内蔵している。通常その電力変換装置は、スイッチング素子、整流素子、制御用ICなどの能動素子とコイル、トランス、コンデンサ、抵抗などの受動素子の各個別部品をセラミック基板やプラスチック等のプリント基板などの上にハイブリッド型の電源モジュールとして、構成されている。
図5は、DC−DCコンバータの回路構成図である。図中の外枠の点線部分50がDC−DCコンバータの回路である。
【0003】
DC−DCコンバータは、入力コンデンサCi、出力コンデンサCo、調整用の抵抗RT 、コンデンサCT 、薄膜磁気誘導素子Lおよび制御用ICで構成される。直流の入力電圧Viを入力し、制御用ICのMOSFETをスイッチングさせて、直流の所定の出力電圧Voを出力する。薄膜磁気誘導素子Lと出力コンデンサCoは直流電圧を出力するためのフィルタ回路である。
この回路において、薄膜磁気誘導素子Lの直流抵抗が大きくなると、この部分での電圧降下が大きくなり、DC−DCコンバータの変換効率は小さくなる。
ハイブリッド型電源モジュールの小型化は、MCM(マルチチップモジュール)や積層セラミック部品等の技術により進歩してきている。しかしながら、個別の部品を同一基板上に並べて実装するため、電源モジュールの実装面積の縮小化が制限されている。
【0004】
近年、半導体技術の適用により、半導体集積回路装置を形成したシリコン基板に平面型の薄膜磁気誘導素子を形成し、小型化を図った例がある(例えば、特許文献1参照)。
これにより磁気誘導部品の薄型化とその実装面積の削減が可能となったが、その他の個別チップ部品数が多く、まだ実装面積が大きい。そのため、磁性絶縁薄板の片面に渦巻き状のコイル導体を形成して、大きな電流を流しても磁気飽和しにくい薄膜磁気誘導素子としたもの(例えば、特願2000−021453号の図1や、磁性絶縁薄膜の両面に形成したコイル導体を接続導体により接続してソレノイド膜構造として高いインダクタンス値を得やすい薄膜磁気誘導素子としたもの(例えば、特願2002−224578号の図3、図25)により、超小型電力変換装置の小型化と高効率化をはかった例がある。
【0005】
【特許文献1】
特開2001−196542号公報 図1
【0006】
【発明が解決しようとする課題】
しかし、渦巻き状のコイル導体を磁気絶縁薄板の片面に形成した薄膜磁気誘導素子では、ソレノイド捲き線構造のような高いインダクタンス値を得ることが困難である。
一方、ソレノイド捲き線構造の薄膜磁気誘導素子は磁気飽和が起こり易く、大きな電流を流すことが困難である。すなわち、どちらの構造も高いインダクタンス値と磁気飽和特性の量特性を共に満たすものではなかった。
この発明の目的は、磁気飽和しにくく、高いインダクタンス値を有する薄膜磁気誘導素子と、これを搭載して実装面積を小さくし、電力変換効率を向上させることができる超小型電力変換装置を提供することにある。
【0007】
【課題を解決するための手段】
前記の目的を達成するために、(1)磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1の渦巻き状コイル導体と、前記磁性絶縁基板の第2主面に形成された第2の渦巻き状コイル導体と、第1の渦巻き状コイル導体の中心端と第2の渦巻き状コイル導体の中心端を接続する接続導体とを有する薄膜磁気誘導素子であって、第1および第2の渦巻き状コイル導体に流れる電流の向きを互いに逆向きにし、第1および第2の渦巻き状コイル導体に流れる電流で前記磁性絶縁基板内に誘起される磁束密度を増大させる構成の薄膜磁性誘導素子とする。
(2)前記磁性絶縁基板が、フェライト基板である薄膜磁気誘導素子とする。
(3)前記渦巻き状コイル導体表面を絶縁膜もしくは磁性を有する微粒子を分散させた樹脂で被覆する薄膜磁気誘導素子とする。
(4)半導体集積回路の形成された半導体基板と、薄膜磁気誘導素子と、コンデンサとを有する超小型電力変換装置において、磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1の渦巻き状コイル導体と、前記磁性絶縁基板の第2主面に形成された第2の渦巻き状コイル導体と、第1の渦巻き状コイル導体の中心端と第2の渦巻き状コイル導体の中心端を接続する接続導体とを有する薄膜磁気誘導素子であって、第1および第2の渦巻き状コイル導体に流れる電流の向きを互いに逆向きにし、第1および第2の渦巻き状コイル導体に流れる電流で前記磁性絶縁基板内に誘起される磁束密度を増大させる薄膜磁気誘導素子を具備する構成とする。
(5)半導体集積回路の形成された半導体基板と、薄膜磁気誘導素子と、コンデンサとを有する超小型電力変換装置において、半導体基板と薄膜磁性誘素子を形成する磁性絶縁基板とが積層一体化され、半導体基板に形成された集積回路の外部導出端子が、少なくとも磁気絶縁基板に形成された端子を経由して外部回路と接続する構成とする。
【0008】
【発明の実施の形態】
図1、図2は、この発明の第1実施例の薄膜磁気誘導素子の要部構成図であり、図1(a)はフェライト基板の表面側の平面図、図1(b)はフェライト基板の表面側から透視した裏面側の平面図、図2は図1(a)のX−X線で切断した断面図である。また、図1(a)は、図2のA1−A1面を矢印方向から見た平面図であり、図1(b)は、図2のA2−A2面を矢印方向から見た平面図である。また、図1(a)のX−X線を裏面に投影すると図1(b)のX−X線になる。
【0009】
図1、図2において、300μm〜700μmの厚さのフェライト基板1の第1主面1aに第1の渦巻き状コイル導体4、第2主面1bに第2の渦巻き状コイル導体5をメッキで形成する。フェライト基板1の外周部に複数個の接続配線2、6を形成し、第1主面1aの一個の接続配線6と第1の渦巻き状コイル導体4の外周端41とを接続し、第2主面1bの一個の接続配線6と第2の渦巻き状コイル導体5の外周端51とを接続する。また、接続配線6上に電界メッキもしくは無電界メッキにより、最表面が、Au(金)メッキ層である接続配線7を形成する。
【0010】
フェライト基板1の中央付近に直径0.15mm〜0.5mmの貫通孔を開け、この貫通孔を介して第1の渦巻き状コイル導体4と第2の渦巻き状コイル導体5の中央端同士が接続導体3で電気的に接続する。第1の渦巻き状コイル導体4に流れる電流の向きと第2の渦巻き状コイル導体5に流れる電流の向きは逆方向となるように、第1および第2渦巻き状コイル導体4、5を形成する。また、これら渦巻き状コイル導体4、5の表面および隙間を磁性体分散樹脂8で埋め込み、堆積させる。
また、図2では、第1および第2渦巻き状コイル導体4、5を互いに対向するように配置して形成しているが、任意の位置に形成してよい。しかし、図2の点線で示す第1の渦巻き状コイル導体4aのようにずらして、第1と第2の渦巻き状コイル導体4a、5の互いの隙間を埋めるように、互い違いに配置して形成しすると、フェライト基板1内の磁気飽和がしにくくなり望ましい。
【0011】
図3は、図2の実線のように形成された第1および第2の渦巻き状コイル導体に電流を流し、磁束が誘起される様子を示す図である。第1の渦巻き状コイル導体4には、外周端41から中心に向かって電流20が流れ、第2の渦巻き状コイル導体5には、中心から外周端51に向かって電流20が流れる。このように電流20が流れることで、第1および第2の渦巻き状コイル導体4、5に流れる電流20で磁界21が誘起され、この磁界21で誘起された磁束の方向22が、磁心となるフェライト基板1内で中心から外周に向かう方向に揃い、磁束密度が高くなる。
【0012】
磁束密度が高くなることで、薄膜磁気誘導素子のインダクタンスを大きくすることができて、薄膜磁気誘導素子の小型化を図ることができる。
また、フェライト基板1の両側(第1、第2主面)に第1、第2の渦巻き状コイル導体4、5を形成することで、高いインダクタンスで、大きな電流を流しても磁気飽和が起こりにくい薄膜磁気誘導素子とすることができる。
図4は、この発明の第2実施例の超小型電力変換装置の要部断面図である。
図1、図2の薄膜磁気誘導素子の一方の主面に制御用ICチップ(半導体チップ11)を配置し、他方の主面に積層セラミックコンデンサアレイ15を配置することで図5の外枠の点線部分50の超小型電力変換装置(DC−DCコンバータ)が形成される。
【0013】
この半導体チップ11に形成された集積回路(IC)の端子(パット電極上に形成したスタッドバンプ12も含む:外部導出端子)は、フェライト基板1に形成された接続配線2、6、7と積層セラミックコンデンサアレイ14の接続配線15を経由して図示しない外部回路と接続する。尚、図中の13はアンダーフィル(接着樹脂)であり、半導体チップ11と薄膜磁気誘導素子とを固着する働きをする。
図1、図2の小型化された薄膜磁気誘導素子を搭載することで、超小型電力変換装置の小型化を図ることができる。
【0014】
また、前記半導体チップ11と前記フェライト基板1とを固着して、薄膜磁気誘導素子と一体となった半導体集積回路装置とすることも勿論できる。
【0015】
【発明の効果】
この発明によれば、磁気絶縁基板の両側に渦巻き状コイル導体を形成し、互いのコイルに流れる電流を逆向きとすることで、高いインダクタンス値を得ながら、大きな電流を流しても磁気飽和しにくいコイル特性の薄膜磁気誘導素子を得ることができる。
また、この薄膜磁気誘導素子の一方の面に集積回路を作り込んだ半導体基板を固着させ、さらに、他方の面に積層セラミックコンデンサアレイを固着させることで、小型で、高い電力変換効率の超小型電力変換装置を製作することができる。
【図面の簡単な説明】
【図1】この発明の第1実施例の薄膜磁気誘導素子の要部構成図であり、(a)はフェライト基板の表面側の平面図、(b)はフェライト基板の表面側から透視した裏面側の平面図
【図2】図1(a)のX−X線で切断した断面図
【図3】図2の実線のように形成された第1および第2の渦巻き状コイル導体に電流を流し、磁束が誘起される様子を示す図
【図4】この発明の第2実施例の超小型電力変換装置の要部断面図
【図5】DC−DCコンバータの回路構成図
【符号の説明】
1 フェライト基板
1a 第1主面(表面)
1b 第2主面(裏面)
2、6、7、15 接続配線
3 接続導体
4、4a 第1の渦巻き状コイル導体
5 第2の渦巻き状コイル導体
8 磁性体分散樹脂
11 半導体チップ
12 スタッドバンプ
13 アンダーフィル
14 積層セラミックコンデンサ
20 電流
21 磁界
22 磁束の方向
41 外周端(第1の渦巻き状コイル導体)
51 外周端(第2の渦巻き状コイル導体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is used for a semiconductor integrated circuit (hereinafter, referred to as an IC) formed on a semiconductor substrate, an ultra-compact power conversion device such as a DC-DC converter including passive components such as a coil, a capacitor, and a resistor, and used therefor. The present invention relates to a thin-film magnetic induction device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic information devices, particularly various types of portable electronic information devices, have become remarkably widespread. Many of these electronic information devices use a battery as a power source, and incorporate a power conversion device such as a DC-DC converter. Normally, the power converter is a hybrid of active elements such as switching elements, rectifiers, and control ICs and passive elements such as coils, transformers, capacitors, and resistors on a ceramic substrate or a printed substrate such as plastic. It is configured as a type power module.
FIG. 5 is a circuit configuration diagram of the DC-DC converter. A dotted line portion 50 in the outer frame in the figure is a circuit of the DC-DC converter.
[0003]
The DC-DC converter includes an input capacitor Ci, an output capacitor Co, an adjustment resistor RT, a capacitor CT, a thin-film magnetic induction element L, and a control IC. The DC input voltage Vi is input, the MOSFET of the control IC is switched, and a predetermined DC output voltage Vo is output. The thin-film magnetic induction element L and the output capacitor Co are a filter circuit for outputting a DC voltage.
In this circuit, when the DC resistance of the thin-film magnetic induction element L increases, the voltage drop at this portion increases, and the conversion efficiency of the DC-DC converter decreases.
The miniaturization of the hybrid power supply module has been advanced by technologies such as MCM (multi-chip module) and multilayer ceramic parts. However, since individual components are mounted side by side on the same substrate, reduction in the mounting area of the power supply module is limited.
[0004]
2. Description of the Related Art In recent years, there has been an example in which a planar thin-film magnetic induction element is formed on a silicon substrate on which a semiconductor integrated circuit device is formed by applying a semiconductor technology, thereby achieving miniaturization (for example, see Patent Document 1).
As a result, the thickness of the magnetic induction component can be reduced and the mounting area can be reduced. However, the number of other individual chip components is large, and the mounting area is still large. For this reason, a spiral coil conductor is formed on one side of a magnetic insulating thin plate to form a thin-film magnetic induction element which is hardly magnetically saturated even when a large current flows (for example, FIG. 1 of Japanese Patent Application No. 2000-021453, and FIG. The coil conductors formed on both sides of the insulating thin film are connected by connecting conductors to form a thin film magnetic inductive element that easily obtains a high inductance value as a solenoid film structure (for example, FIGS. 3 and 25 of Japanese Patent Application No. 2002-224578). There is an example of miniaturization and high efficiency of a micro power converter.
[0005]
[Patent Document 1]
JP 2001-196542 A FIG.
[0006]
[Problems to be solved by the invention]
However, in a thin-film magnetic induction element in which a spiral coil conductor is formed on one side of a magnetic insulating thin plate, it is difficult to obtain a high inductance value such as a solenoid wound structure.
On the other hand, in a thin film magnetic induction element having a solenoid wound structure, magnetic saturation easily occurs, and it is difficult to flow a large current. That is, neither structure satisfies both the high inductance value and the quantity characteristics of the magnetic saturation characteristics.
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin-film magnetic induction element which is hardly magnetically saturated and has a high inductance value, and a micro power conversion device which can mount the thin film magnetic induction element to reduce a mounting area and improve power conversion efficiency. It is in.
[0007]
[Means for Solving the Problems]
To achieve the above object, (1) a magnetic insulating substrate, a first spiral coil conductor formed on a first main surface of the magnetic insulating substrate, and a first spiral coil conductor formed on a second main surface of the magnetic insulating substrate A thin-film magnetic induction element, comprising: a second spiral coil conductor formed as described above; and a connection conductor connecting a center end of the first spiral coil conductor and a center end of the second spiral coil conductor. And a thin film having a configuration in which the directions of currents flowing through the second spiral coil conductors are opposite to each other, and the magnetic flux density induced in the magnetic insulating substrate by the currents flowing through the first and second spiral coil conductors is increased. A magnetic induction element is used.
(2) The magnetic insulating substrate is a thin-film magnetic induction element that is a ferrite substrate.
(3) A thin-film magnetic induction element in which the surface of the spiral coil conductor is coated with an insulating film or a resin in which magnetic fine particles are dispersed.
(4) In a micro power converter having a semiconductor substrate on which a semiconductor integrated circuit is formed, a thin-film magnetic induction element, and a capacitor, a magnetic insulating substrate and a first insulating substrate formed on a first main surface of the magnetic insulating substrate. A first spiral coil conductor, a second spiral coil conductor formed on the second main surface of the magnetic insulating substrate, a center end of the first spiral coil conductor, and a center of the second spiral coil conductor. A thin-film magnetic induction element having a connection conductor for connecting ends thereof, wherein the directions of currents flowing through the first and second spiral coil conductors are opposite to each other, and flow through the first and second spiral coil conductors. A configuration is provided that includes a thin-film magnetic induction element that increases a magnetic flux density induced in the magnetic insulating substrate by a current.
(5) In a micro power converter having a semiconductor substrate on which a semiconductor integrated circuit is formed, a thin-film magnetic induction element, and a capacitor, the semiconductor substrate and a magnetic insulating substrate forming the thin-film magnetic induction element are laminated and integrated. The external lead-out terminal of the integrated circuit formed on the semiconductor substrate is connected to an external circuit via at least the terminal formed on the magnetic insulating substrate.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 and 2 are main part configuration diagrams of a thin-film magnetic induction element according to a first embodiment of the present invention. FIG. 1 (a) is a plan view of the front side of a ferrite substrate, and FIG. 1 (b) is a ferrite substrate. 2 is a cross-sectional view taken along the line XX of FIG. 1A. FIG. 1A is a plan view of the A1-A1 plane of FIG. 2 viewed from the arrow direction, and FIG. 1B is a plan view of the A2-A2 plane of FIG. 2 viewed from the arrow direction. is there. When the XX line in FIG. 1A is projected on the back surface, the XX line in FIG. 1B is obtained.
[0009]
1 and 2, a first spiral coil conductor 4 is formed on a first main surface 1a of a ferrite substrate 1 having a thickness of 300 μm to 700 μm, and a second spiral coil conductor 5 is formed on a second main surface 1b by plating. Form. A plurality of connection wires 2 and 6 are formed on the outer peripheral portion of the ferrite substrate 1, and one connection wire 6 of the first main surface 1 a is connected to the outer peripheral end 41 of the first spiral coil conductor 4, and the second One connection wiring 6 of the main surface 1 b is connected to the outer peripheral end 51 of the second spiral coil conductor 5. Further, the connection wiring 7 whose outermost surface is an Au (gold) plating layer is formed on the connection wiring 6 by electroplating or electroless plating.
[0010]
A through hole having a diameter of 0.15 mm to 0.5 mm is formed near the center of the ferrite substrate 1, and the center ends of the first spiral coil conductor 4 and the second spiral coil conductor 5 are connected to each other through the through hole. It is electrically connected by the conductor 3. The first and second spiral coil conductors 4 and 5 are formed such that the direction of the current flowing through the first spiral coil conductor 4 and the direction of the current flowing through the second spiral coil conductor 5 are opposite. . The surfaces and gaps of the spiral coil conductors 4 and 5 are buried and deposited with a magnetic substance-dispersed resin 8.
Further, in FIG. 2, the first and second spiral coil conductors 4 and 5 are arranged so as to face each other, but may be formed at any position. However, the first and second spiral coil conductors 4a and 5a are staggered and formed so as to be shifted from each other like the first spiral coil conductor 4a indicated by a dotted line in FIG. This is desirable because magnetic saturation in the ferrite substrate 1 is less likely to occur.
[0011]
FIG. 3 is a diagram showing a state in which a current is applied to the first and second spiral coil conductors formed as shown by the solid line in FIG. 2 to induce magnetic flux. The current 20 flows through the first spiral coil conductor 4 from the outer peripheral end 41 toward the center, and the current 20 flows through the second spiral coil conductor 5 from the center toward the outer peripheral end 51. When the current 20 flows in this manner, a magnetic field 21 is induced by the current 20 flowing through the first and second spiral coil conductors 4 and 5, and the direction 22 of the magnetic flux induced by the magnetic field 21 becomes the magnetic core. The magnetic flux density is increased in the direction from the center to the outer periphery in the ferrite substrate 1, and the magnetic flux density is increased.
[0012]
By increasing the magnetic flux density, the inductance of the thin-film magnetic induction element can be increased, and the size of the thin-film magnetic induction element can be reduced.
Further, by forming the first and second spiral coil conductors 4 and 5 on both sides (first and second main surfaces) of the ferrite substrate 1, magnetic saturation occurs even when a large current flows with high inductance. It is possible to obtain a thin-film magnetic induction element that is difficult.
FIG. 4 is a sectional view of a main part of a micro power converter according to a second embodiment of the present invention.
By arranging a control IC chip (semiconductor chip 11) on one main surface of the thin-film magnetic induction element of FIGS. 1 and 2 and arranging a multilayer ceramic capacitor array 15 on the other main surface, the outer frame of FIG. A micro power converter (DC-DC converter) indicated by a dotted line 50 is formed.
[0013]
The terminals of the integrated circuit (IC) formed on the semiconductor chip 11 (including the stud bumps 12 formed on the pad electrodes: external lead terminals) are laminated with the connection wirings 2, 6, 7 formed on the ferrite substrate 1. It is connected to an external circuit (not shown) via the connection wiring 15 of the ceramic capacitor array 14. Incidentally, reference numeral 13 in the drawing denotes an underfill (adhesive resin), which functions to fix the semiconductor chip 11 and the thin-film magnetic induction element.
By mounting the miniaturized thin-film magnetic induction element shown in FIGS. 1 and 2, the miniaturization of the ultra-small power converter can be achieved.
[0014]
Further, the semiconductor chip 11 and the ferrite substrate 1 may be fixed to each other to form a semiconductor integrated circuit device integrated with the thin-film magnetic induction element.
[0015]
【The invention's effect】
According to the present invention, the spiral coil conductors are formed on both sides of the magnetic insulating substrate, and the current flowing in each coil is reversed, so that a high inductance value is obtained and magnetic saturation occurs even when a large current flows. A thin-film magnetic induction element having difficult coil characteristics can be obtained.
In addition, a semiconductor substrate having an integrated circuit is fixed on one surface of the thin-film magnetic induction element, and a multilayer ceramic capacitor array is fixed on the other surface, so that the device is compact and has a high power conversion efficiency. A power converter can be manufactured.
[Brief description of the drawings]
FIGS. 1A and 1B are main part configuration diagrams of a thin-film magnetic induction element according to a first embodiment of the present invention, wherein FIG. 1A is a plan view of the front side of a ferrite substrate, and FIG. FIG. 2 is a cross-sectional view taken along line XX of FIG. 1 (a). FIG. 3 is a diagram showing current flowing through first and second spiral coil conductors formed as shown by solid lines in FIG. FIG. 4 is a view showing a state in which a flowing magnetic flux is induced. FIG. 4 is a sectional view of a main part of a micro power converter according to a second embodiment of the present invention. FIG. 5 is a circuit configuration diagram of a DC-DC converter.
1 Ferrite substrate 1a First main surface (front surface)
1b 2nd main surface (back surface)
2, 6, 7, 15 Connection wiring 3 Connection conductor 4, 4a First spiral coil conductor 5 Second spiral coil conductor 8 Magnetic material dispersed resin 11 Semiconductor chip 12 Stud bump 13 Underfill 14 Multilayer ceramic capacitor 20 Current 21 Magnetic field 22 Magnetic flux direction 41 Outer end (first spiral coil conductor)
51 Outer end (second spiral coil conductor)

Claims (5)

磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1の渦巻き状コイル導体と、前記磁性絶縁基板の第2主面に形成された第2の渦巻き状コイル導体と、第1の渦巻き状コイル導体の中心端と第2の渦巻き状コイル導体の中心端を接続する接続導体とを有する薄膜磁気誘導素子であって、第1および第2の渦巻き状コイル導体に流れる電流の向きを互いに逆向きにし、第1および第2の渦巻き状コイル導体に流れる電流で前記磁性絶縁基板内に誘起される磁束密度を増大させることを特徴とする薄膜磁気誘導素子。A magnetic insulating substrate, a first spiral coil conductor formed on a first main surface of the magnetic insulating substrate, a second spiral coil conductor formed on a second main surface of the magnetic insulating substrate, A thin-film magnetic induction element having a center end of a first spiral coil conductor and a connection conductor connecting a center end of a second spiral coil conductor, wherein a current flowing through the first and second spiral coil conductors is reduced. A thin-film magnetic induction element, wherein the directions are opposite to each other, and the magnetic flux density induced in the magnetic insulating substrate by current flowing through the first and second spiral coil conductors is increased. 前記磁性絶縁基板が、フェライト基板であることを特徴とする請求項1に記載の薄膜磁気誘導素子。The thin-film magnetic induction device according to claim 1, wherein the magnetic insulating substrate is a ferrite substrate. 前記渦巻き状コイル導体表面を絶縁膜もしくは磁性を有する微粒子を分散させた樹脂で被覆することを特徴とする請求項1に記載の薄膜磁気誘導素子。2. The thin-film magnetic induction device according to claim 1, wherein the surface of the spiral coil conductor is covered with an insulating film or a resin in which fine particles having magnetism are dispersed. 半導体集積回路の形成された半導体基板と、薄膜磁気誘導素子と、コンデンサとを有する超小型電力変換装置において、
磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1の渦巻き状コイル導体と、前記磁性絶縁基板の第2主面に形成された第2の渦巻き状コイル導体と、第1の渦巻き状コイル導体の中心端と第2の渦巻き状コイル導体の中心端を接続する接続導体とを有する薄膜磁気誘導素子であって、第1および第2の渦巻き状コイル導体に流れる電流の向きを互いに逆向きにし、第1および第2の渦巻き状コイル導体に流れる電流で前記磁性絶縁基板内に誘起される磁束密度を増大させる薄膜磁気誘導素子を具備することを特徴とする超小型電力変換装置。
In a micro power converter having a semiconductor substrate on which a semiconductor integrated circuit is formed, a thin-film magnetic induction element, and a capacitor,
A magnetic insulating substrate, a first spiral coil conductor formed on a first main surface of the magnetic insulating substrate, a second spiral coil conductor formed on a second main surface of the magnetic insulating substrate, A thin-film magnetic induction element having a center end of one spiral coil conductor and a connection conductor connecting a center end of a second spiral coil conductor, wherein a current flowing through the first and second spiral coil conductors is reduced. An ultra-small electric power, comprising: a thin-film magnetic induction element whose directions are opposite to each other, and which increases a magnetic flux density induced in the magnetic insulating substrate by currents flowing through the first and second spiral coil conductors. Conversion device.
半導体集積回路の形成された半導体基板と、薄膜磁気誘導素子と、コンデンサとを有する超小型電力変換装置において、
半導体基板と薄膜磁性誘素子を形成する磁性絶縁基板とが積層一体化され、半導体基板に形成された集積回路の外部導出端子が、少なくとも磁気絶縁基板に形成された端子を経由して外部回路と接続することを特徴とする超小型電力変換装置。
In a micro power converter having a semiconductor substrate on which a semiconductor integrated circuit is formed, a thin-film magnetic induction element, and a capacitor,
A semiconductor substrate and a magnetic insulating substrate forming a thin-film magnetic induction element are laminated and integrated, and an external lead terminal of an integrated circuit formed on the semiconductor substrate is connected to an external circuit via at least a terminal formed on the magnetic insulating substrate. An ultra-compact power conversion device characterized by being connected.
JP2002315990A 2002-10-30 2002-10-30 Thin magnetic film inductor element and micro power conversion device using the same Pending JP2004152980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315990A JP2004152980A (en) 2002-10-30 2002-10-30 Thin magnetic film inductor element and micro power conversion device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315990A JP2004152980A (en) 2002-10-30 2002-10-30 Thin magnetic film inductor element and micro power conversion device using the same

Publications (1)

Publication Number Publication Date
JP2004152980A true JP2004152980A (en) 2004-05-27

Family

ID=32459830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315990A Pending JP2004152980A (en) 2002-10-30 2002-10-30 Thin magnetic film inductor element and micro power conversion device using the same

Country Status (1)

Country Link
JP (1) JP2004152980A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128335A (en) * 2004-10-28 2006-05-18 Jfe Mineral Co Ltd Flat magnetic element
WO2007069574A1 (en) * 2005-12-12 2007-06-21 Sanyo Electric Co., Ltd. High-frequency circuit element
JP2007266321A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Electromagnetic induction component and power-supply apparatus
JP2007266322A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Electromagnetic inductive component, and power-supply apparatus
JP2008034632A (en) * 2006-07-28 2008-02-14 Seiko Epson Corp Interposer and its manufacturing process, and semiconductor module and its manufacturing process
JP2015079932A (en) * 2013-10-18 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite electronic component and board for mounting the same
CN104838455A (en) * 2012-10-04 2015-08-12 Lg伊诺特有限公司 Electromagnetic booster for wireless charging and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128335A (en) * 2004-10-28 2006-05-18 Jfe Mineral Co Ltd Flat magnetic element
JP4498888B2 (en) * 2004-10-28 2010-07-07 Jfeミネラル株式会社 Planar magnetic element
WO2007069574A1 (en) * 2005-12-12 2007-06-21 Sanyo Electric Co., Ltd. High-frequency circuit element
JP2007266321A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Electromagnetic induction component and power-supply apparatus
JP2007266322A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Electromagnetic inductive component, and power-supply apparatus
JP4715585B2 (en) * 2006-03-28 2011-07-06 パナソニック電工株式会社 Electromagnetic induction parts and power supply
JP2008034632A (en) * 2006-07-28 2008-02-14 Seiko Epson Corp Interposer and its manufacturing process, and semiconductor module and its manufacturing process
CN104838455A (en) * 2012-10-04 2015-08-12 Lg伊诺特有限公司 Electromagnetic booster for wireless charging and method of manufacturing the same
JP2015079932A (en) * 2013-10-18 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite electronic component and board for mounting the same

Similar Documents

Publication Publication Date Title
US6930584B2 (en) Microminiature power converter
US20200373079A1 (en) Inductor component and inductor-component incorporating substrate
US8018311B2 (en) Microminiature power converter
JP4835414B2 (en) Ultra-compact power converter
US8217748B2 (en) Compact inductive power electronics package
TWI385778B (en) Semiconductor power device having a stacked discrete inductor structure
US7268659B2 (en) Micro electric power converter
US20150102891A1 (en) Chip electronic component, board having the same, and packaging unit thereof
US20090243389A1 (en) Multiple output magnetic induction unit and a multiple output micro power converter having the same
WO2010089921A1 (en) Method for manufacturing module with planar coil, and module with planar coil
JP2002233140A (en) Microminiature power converter
US20040179383A1 (en) Micro power converter with multiple outputs
JP3649214B2 (en) Ultra-compact power converter and manufacturing method thereof
US20160217903A1 (en) Electronic component
Wang et al. Integrated magnetics on silicon for power supply in package (PSiP) and power supply on chip (PwrSoC)
US10790792B2 (en) LC composite device, processor, and method for manufacturing LC composite device
JP2004152980A (en) Thin magnetic film inductor element and micro power conversion device using the same
JP4573498B2 (en) Ultra-compact power converter
JP3661380B2 (en) Planar inductor
US8218331B2 (en) Electronic component module
WO2010016367A1 (en) Composite electronic component
JP2007081146A (en) Semiconductor device with inductor
JP2004296816A (en) Magnetic induction element and ultra compact power conversion apparatus using the same
JP2023054823A (en) Dc/dc converter component
CN113113210B (en) Apparatus, system and method for increased current distribution on high density circuit boards

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20060703

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A02 Decision of refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A02