JP2004151619A - Zoom lens and optical equipment having same - Google Patents

Zoom lens and optical equipment having same Download PDF

Info

Publication number
JP2004151619A
JP2004151619A JP2002319415A JP2002319415A JP2004151619A JP 2004151619 A JP2004151619 A JP 2004151619A JP 2002319415 A JP2002319415 A JP 2002319415A JP 2002319415 A JP2002319415 A JP 2002319415A JP 2004151619 A JP2004151619 A JP 2004151619A
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
lens unit
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002319415A
Other languages
Japanese (ja)
Inventor
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002319415A priority Critical patent/JP2004151619A/en
Publication of JP2004151619A publication Critical patent/JP2004151619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a zoom lens for obtaining a still image by optically correcting the blur of an image when the zoom lens shakes and optical equipment which has the same. <P>SOLUTION: The zoom lens comprises a 1st lens group with positive refractive power, a 2nd lens group with positive or negative refractive power, a 3rd lens group with positive refractive power, and a 4th lens group with negative refractive power in this order from an object side, and realizes zooming by moving the respective lens groups on the optical axis so that the sum of the space between the 1st and 2nd lens groups and the space between the 2nd and 3rd lens groups becomes larger at the telephoto end than at the wide-angle end and the the space between the 3rd and 4th lens groups becomes smaller at the telephoto end than at the wide-angle end. An image forming position is displaced by moving a lens group with positive refracting power which is part of the 1st lens group so as to have decentered moving components in the perpendicular direction to the optical axis. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ズームレンズ及びそれを有する光学機器に関し、更に詳しくは、光学系の一部のレンズ群を光軸に対し垂直方向の成分を持つように移動させてズームレンズが振動(傾動)したときの画像ぶれ(像ぶれ)を高い光学性能を有しつつ、良好に補正した銀塩写真カメラ、ビデオカメラ、電子スチルカメラ、デジタルカメラ等の光学機器に好適なものである。
【0002】
【従来の技術】
近年、高画質化や撮影条件の拡大の目的のため手振れ等により生ずる撮影画像のブレ(画像ブレ)を光学的または電気的に補正した防振機能を有した銀塩カメラ、ビデオカメラ、デジタルカメラ等が提案されている。
【0003】
例えば正、負、正、正の屈折力のレンズ群の4群ズームレンズにて第3レンズ群を正、正の屈折力のレンズ群に分離し、像側のレンズ群を光軸と垂直方向に移動させることにより像ぶれ補正を行うズームレンズが知られている(特許文献1)。
【0004】
また主にビデオカメラ用のズームレンズとしてズーミング中第1レンズ群と第3レンズ群を固定とした正、負、正、正の屈折力のレンズ群の4群ズームレンズにて第3レンズ群を正、負の屈折力のレンズ群に分離してどちらか一方のレンズ群を光軸と垂直方向に移動させることにより像ぶれ補正を行うズームレンズが知られている(特許文献2)。
【0005】
また正、正、負の屈折力のレンズ群の3群ズームレンズにて第1レンズ群を光軸と垂直方向に移動させることにより像ぶれ補正を行うズームレンズが知られている(特許文献3)。
【特許文献1】
特開平9−230236号公報
【特許文献2】
特開平10−232420号公報
【特許文献3】
特開平11−052243号公報
【0006】
【発明が解決しようとする課題】
一般に、撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて画像ぶれの補正を行う光学系においては、比較的容易に画像ぶれを補正することができる利点はあるが、移動させるレンズの為の駆動手段を必要とし、又防振時における偏心収差の発生量が多くなってくるという問題点がある。
【0007】
例えば画像ぶれの補正を行う補正光学系がレンズの構成枚数が多く、高重量であると電気的駆動を行う際に大きなトルクを必要とする。又、画像ぶれを補正する為の、補正レンズ群を適切に設定しないと一定量の画像ぶれの補正効果を得るために補正光学系の移動量を多くとる必要が生じてくる。
【0008】
一方、補正光学系の移動に対する像の補正効果を強めてしまうと、一定の像ぶれ補正に対する正確な補正を行うためには、偏心に対して結像変位作用が敏感になりすぎてくるため正確にレンズの移動制御を行うことが難しくなってくる。
【0009】
特許文献3で提案されているズームレンズでは全ての実施例において第1レンズ群全体を偏心させることにより像ぶれ補正を行っているため、偏心量に対する適正な像ぶれ補正量のコントロールを行ったり、偏心時に良好な光学性能を得たりすることが難しかった。
【0010】
本発明は高画質を維持しつつ補正光学系の小型化、かつ一定量の像ぶれ補正効果を行うための補正光学系の移動量のコントロールを容易に行い、補正光学系の電気的駆動を容易に行うことができるズームレンズ及びそれを有する光学機器の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明のズームレンズは、物体側より順に、正の屈折力の第1レンズ群、正又は負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群を有し、広角端に対して望遠端での、該第1レンズ群と該第2レンズ群との間隔と該第2レンズ群と該第3レンズ群との間隔の和が大きく、広角端に対して望遠端での、該第3レンズ群と第4レンズ群の間隔が小さくなるように各レンズ群が光軸上を移動してズーミングを行い、該第1レンズ群中の一部の正の屈折力のレンズ群は、光軸に対し、垂直方向の偏心移動成分を持つように移動して結像位置の変位を行うこととしている。
【0012】
この他本発明では、
◎前記第1レンズ群は物体側より順に、B11レンズ群と正の屈折力のB12レンズ群を有し、該B12レンズ群は、光軸に対し、垂直方向の偏心移動成分を持つように移動して結像位置の変位を行うことを特徴としている。
◎前記B11レンズ群の最も像面側のレンズ面の曲率半径をRa、前記B12レンズ群の最も物体側のレンズ面の曲率半径をRbとするとき、
−0.9<(Ra−Rb)/(Ra+Rb)<−0.2
の条件式を満足することを特徴としている。
◎広角端における全系の焦点距離をFw、前記第1レンズ群の焦点距離をF1、前記B12レンズ群の焦点距離をFB12とするとき、
0.5 < F1/Fw < 10
0.3 < F1/FB12< 10
の条件式を満足することを特徴としている。
◎広角端における全系の焦点距離をFw、第iレンズ群の焦点距離をFiとするとき、
0.4 < F3/Fw <1.7
0.3 <|F4/Fw|<0.8
の条件式を満足することを特徴としている。
◎前記、結像位置の変位は像ぶれであることを特徴としている。
◎撮像素子上に像を形成するための光学系である事を特徴としている。
◎本発明の光学機器は、前述したいずれか1項のズームレンズと、該ズームレンズによって形成された像を受光する撮像素子を有していることを特徴としている。
【0013】
【発明の実施の形態】
図1は実施形態1のズームレンズの広角端におけるレンズ断面図、図2、図3、図4は実施形態1のズームレンズの広角端、中間のズーム位置、望遠端における縦収差図、図5、図6、図7は実施形態1のズームレンズの広角端、中間のズーム位置、望遠端における防振前の横収差図、図8、図9、図10は実施形態1のズームレンズの広角端、中間のズーム位置、望遠端における画角の0.5°分に相当する像位置を変化させた後(防振後)での横収差図である。
【0014】
このとき補正レンズ群B22は、光軸と垂直方向の成分が0.51mmとなるように移動している。
【0015】
図11は実施形態2のズームレンズの広角端におけるレンズ断面図、図12、図13、図14は実施形態2のズームレンズの広角端、中間のズーム位置、望遠端における縦収差図、図15、図16、図17は実施形態2のズームレンズの広角端、中間のズーム位、置望遠端における防振前の横収差図、図18、図19、図20は実施形態2のズームレンズの広角端、中間のズーム位置、望遠端における画角の0.5°分に相当する像位置を変化させた後(防振後)での横収差図である。
【0016】
このとき補正レンズ群B22は、光軸と垂直方向の成分が0.52mmとなるように移動している。
【0017】
図21は実施形態3のズームレンズの広角端におけるレンズ断面図、図22、図23、図24は実施形態3のズームレンズの広角端、中間のズーム位置、望遠端における縦収差図、図25、図26、図27は実施形態3のズームレンズの広角端、中間のズーム位置望遠端における防振前の横収差図、図28、図29、図30は実施形態3のズームレンズの広角端、中間のズーム位置、望遠端における画角の0.5°分に相当する像位置を変化させた後(防振後)での横収差図である。
【0018】
このとき補正レンズ群B22は、光軸と垂直方向の成分が0.51mmとなるようにしている。
【0019】
図31は実施形態4のズームレンズの広角端におけるレンズ断面図、図32、図33、図34は実施形態4のズームレンズの広角端、中間のズーム位置、望遠端における縦収差図、図35、図36、図37は実施形態4のズームレンズの広角端、中間のズーム位置望遠端における防振前の横収差図、図38、図39、図40は実施形態4のズームレンズの広角端、中間のズーム位置、望遠端における画角の0.5°分に相当する像位置を変化させた後(防振後)での横収差図である。
【0020】
このとき補正レンズ群B22は、光軸と垂直方向の成分が0.50mmとなるように移動している。
【0021】
図41は実施形態5のズームレンズの広角端におけるレンズ断面図、図42、図43、図44は実施形態5のズームレンズの広角端、中間のズーム位置、望遠端における縦収差図、図45、図46、図47は実施形態5のズームレンズの広角端、中間のズーム位置望遠端における防振前の横収差図、図48、図49、図50は実施形態5のズームレンズの広角端、中間のズーム位置、望遠端における画角の0.5°分に相当する像位置を変化させた後(防振後)での横収差図である。
【0022】
このとき補正レンズ群B22は、光軸と垂直方向の成分が0.54mmとなるように移動している。
【0023】
図1、図11、図21、図31、図41のレンズ断面図において(A)は広角端のズーム位置、(B)は中間のズーム位置、(C)は望遠端のズーム位置を示している。
【0024】
又レンズ断面図においてL1は正の屈折力の第1レンズ群、L2は正又は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群である。矢印は広角側から望遠側への変倍(ズーミング)を行う際の各レンズ群の移動方向を示す。SPは絞り、IPは像面であり、撮像素子(CCD)や銀塩フィルム等が位置している。
【0025】
第1レンズ群L1は、正又は負の屈折力のB11レンズ群B11、正の屈折力のB12レンズ群B12を有している。
【0026】
収差図の球面収差において実線はd線、二点鎖線はg線、鎖線は正弦条件であり、収差図の非点収差において実線はサジタル光線、点線はメリディオナル光線を表し、収差図の倍率色収差において二点鎖線はg線を表わす。ωは半画角を示す。
【0027】
各実施形態では、広角端に対し望遠端での第1レンズ群L1と第2レンズ群L2の間隔と第2レンズ群L2と第3レンズ群L3との間隔の和が大きく、広角端に対して望遠端での第2レンズ群L2と第3レンズ群L3の間隔が小さくなるように、各レンズ群が光軸上移動してズーミングを行っている。
【0028】
第3レンズ群L3と第4レンズ群L4の空気間隔の変化により主な変倍作用を行い、更に望遠側に行くに従って第1レンズ群L1と第3レンズ群L3間の空気間隔を拡大することにより更なる変倍作用を行うと同時に、第2レンズ群L2を第1レンズ群L1と第3レンズ群L3に対し相対移動を行うことにより、高変倍を達成する際に生じる望遠側のズーム径域での球面収差の補正を良好に行っている。
【0029】
そして、第1レンズ群L1中のB12レンズ群B12を光軸に対し、少なくとも垂直方向の偏心移動成分を持たすことにより、結像位置の変位作用を生じさせている。
【0030】
更に第1レンズ群L1中にB12レンズ群B12以外に正の屈折力のレンズ群を配置することにより、B12レンズ群B12の偏心により発生する諸収差をキャンセルすると同時にB12レンズ群B12の一定偏心量に対する結像位置の変位量のコントロールを行いB12レンズ群B12の電気的駆動に対する最適な移動量を得ることを容易にしている。
【0031】
各実施形態では、第1レンズ群L1は、B12レンズ群B12の物体側に比較的弱い正又は負の屈折力のB11レンズ群B11を配置し、B12レンズ群B12を光軸に対し偏心移動成分を持つように移動することにより結像位置の変位を行っている。
【0032】
それにより結像位置の変位時に生じるB11レンズ群B11とB12レンズ群B12に入射する光線角度の制御を行いB12レンズ群B12の偏心による収差変化量のコントロールを容易に行うと同時に、B12レンズ群B12の一定偏心量に対する結像位置の変位の変化量を増した際にも良好な画像を得ることができるため、レンズ群B12のレンズ径の小型化を行うことが容易となり、同時にB12レンズ群B12を移動するメカ機構系の小型化の達成も容易にしている。
【0033】
尚、実施形態1、2は物体側より順に、正、負、正、負の屈折力のレンズ群より成り、実施形態3、4、5は物体側より順に、正、正、正、負の屈折力のレンズ群より成っている。
【0034】
各実施形態のズームレンズは、B11レンズ群B11の最も像面側のレンズ面の曲率半径をRa、B12レンズ群B12の最も物体側のレンズ面の曲率半径をRb、広角端における全系の焦点距離をFw、第iレンズ群の焦点距離をFi、B12レンズ群B12の焦点距離をFB12とするとき、
−0.9<(Ra−Rb)/(Ra+Rb)<−0.2・・・(1)
0.5< F1/Fw <10 ・・・(2)
0.3< F1/FB12<10 ・・・(3)
0.4< F3/Fw <1.7 ・・・(4)
0.3< |F4/Fw| <0.8 ・・・(5)
の条件式のうち1以上を満足するようにしている。
【0035】
これらの条件式のうち1つでも満足すれば、後述するようにその条件式に相当する効果が得られる。
【0036】
次に前述の各条件式の技術的意味について説明する。
【0037】
条件式(1)は結像位置の変位時における画質の劣化を抑えるための条件式であり、特にB12レンズ群B12の平行偏心成分による球面収差及びコマ収差の発生を抑制するための条件式である。条件式(1)の数値範囲を越えると結像位置の変位時と無変位時の相互面における球面収差とコマ収差のキャンセル関係が崩れてしまうため良くない。
【0038】
条件式(2)は、主に結像位置の変位作用を行った際の画質劣化を抑えつつB12レンズ群B12のレンズ径の小型化とレンズ重量の軽量化を行いレンズ駆動を容易に行う為の条件式である。
【0039】
条件式(2)の上限を越えて、第1レンズ群L1の屈折力が弱ってくると一定の焦点距離及び変倍比を確保するためにレンズ系の全長が増大してしまうため良くない。他方、下限値を越えると第1レンズ群L1の屈折力が強くなりすぎて、負の球面収差が強く発生し、他のレンズ群にて全変倍域中これを良好に補正することが困難となってくる。
【0040】
条件式(3)は第1レンズ群L1中の結像位置の変位作用を行うB12レンズ群B12の屈折力に関するもので、一定の結像位置の変位作用を行うためのB12レンズ群B12の移動量を抑えつつ高画質を維持するためのものである。条件式(3)の上限を越えてB12レンズ群B12の負の屈折力が弱くなってくると一定の結像位置の変位作用を行うためにB12レンズ群B12の移動量が増加してくるとともに移動時に一定の周辺光量を得るためにB12レンズ群B12のレンズ径が増大してしまい良くない。
【0041】
他方、下限値を越えると、B12レンズ群B12の負の屈折力が大きくなってくると同時に第1レンズ群L1中のB12レンズ群B12以外のレンズ群の正の屈折力を大きくしなければならなくなり、高次の球面収差やコマ収差が大きく発生してきて結像位置の変位時の収差補正が困難となってくる。
【0042】
尚、各実施形態においてB12レンズ群B12は各々1枚の正レンズと負レンズで構成することが結像位置の変位時のレンズ群移動の際の収差変動を抑えるのに良い。
【0043】
条件式(4)の上限を越えると、第3レンズ群L3の屈折力が弱まり、一定の変倍比を得るためには各レンズ群の移動量が大きくなってしまい、結果としてレンズ系のコンパクト化が困難となってくる。また下限を越えると、負の屈折力作用が大きくなるためペッツバール和が負の方向に大となり、像面湾曲が大きくなってくるので良くない。
【0044】
条件式(5)の上限値を越えると第4レンズ群L4の屈折力が弱くなりすぎるためバックフォーカスが長くなってくるためレンズ全長が増大してきて良くない。
【0045】
他方、下限値を越えるとレンズ全系のバックフォーカスが短くなりすぎてきて、一定の周辺光量を得るためには第3レンズ群L3の外径が大きくなってくるため撮影装置に適用した場合、装置全体が大型化してしまうと同時に像面湾曲等、軸外の高次収差が大きく発生してくるので良くない。
【0046】
各実施形態において、更に好ましくは条件式(1)〜(5)の数値範囲を次の如く設定するのが良い。
【0047】
−0.7<(Ra−Rb)/(Ra+Rb)<−0.3・・・(1a)
1 < F1/Fw <7 ・・・(2a)
0.8< F1/FB12 <5 ・・・(3a)
0.5< F3/Fw <1.4 ・・・(4a)
0.4< |F4/Fw| <0.7 ・・・(5a)
次に各実施形態において、前述した特徴以外の特徴について説明する。
◎ 無限遠物体から近距離物体へのフォーカスは第3レンズ群L3を物体側に移動することにより行うことができるが他のレンズ群の移動と組み合わせてフォ−カスを行っても良い。
◎ 第1レンズ群L1と第4レンズ群L4をズーミング中一体に移動させることはレンズ駆動機構の簡略化に有利となるので良い。特に第1レンズ群L1内のレンズ群を偏心させる際、レンズ群の移動メカ機構の格納を行い易くなり、同時にメカ自重による第1レンズ群L1の偏心を抑制し易くなる。
◎ 光彩絞りSPはズーミング中、光軸上、各レンズ群とは独立した移動にすると入射瞳の位置を最適に配置することが出来る。
◎ 第1レンズ群L1は、物体側より順に、物体側に凸面を向けた正レンズと像面に凹面を向けた負レンズ、正レンズと負レンズが接合された、または向き合う面の曲率が近似した、物体側に凸面を向けた全体として正の屈折力を有し、偏心により結像位置の変位作用を有するレンズ群とするのが良い。
◎ 第2レンズ群L2は少なくとも1枚の両レンズ面が凸面の正レンズと両レンズ面が凹面の負レンズを有するような構成が高変倍時に良好な光学性能を得るために望ましい。
◎ 第3レンズ群L3は、少なくとも物体側に凹面を向けた負の3aレンズとそれより像面側に像面側のレンズ面が凸面の正の3bレンズを有するように構成にするのが良い。更には第3レンズ群L3中に非球面を配置することが良好な画質の達成のために望ましい。
◎ 第4レンズ群L4は正レンズと、それより像面側に物体側に凹面を向けた 負レンズを有するレンズ構成が良い。
◎ 第4レンズ群が、正、負レンズの2枚で構成される場合には少なくとも1面に非球面を有することが望ましい。
◎ 更なる光学性能の向上のためレンズ系に非球面の追加や回折光学素子、屈折分布型の光学材料等の導入を行うことは効果的である。
◎ 結像位置の変位作用を行う際は偏心レンズ群を最も簡素な移動方法として光軸と垂直な方向に偏心移動させているが、偏心による結像位置の変化補正を行う目的で例えば偏心レンズ群の回転中心を光軸上の有限位置に設けて回転させるように、偏心レンズ群に光軸に対する垂直移動成分に傾き成分を加えても良い。
【0048】
以上説明したように、各実施形態によれば、物体側より正、正又は負、正、負の屈折力のレンズ群を有するズームレンズにおいて、第1レンズ群L1中の一部の正の屈折力のレンズ群を光軸に対し少なくとも垂直方向の成分を持つように偏心作用を与えることにより結像位置の変位を行い、その際、良好な光学性能を維持できるコンパクトで高変倍比を有するズームレンズを達成することができる。
【0049】
次に各実施形態1〜5に各々対応する数値実施例1〜5の数値データを示す。各数値実施例においてiは物体側からの光学面の順序を示し、Riは第i番目の光学面(第i面)の曲率半径、Diは第i面と第i面+1面との間の間隔、Niとνiはそれぞれd線に対する第i番目の光学部材の材料の屈折率、アッベ数を示す。fは焦点距離、FnoはFナンバー、ωは半画角である。またkを円錐定数、A、B、C、D、Eを2次、4次、6次、8次、10次の非球面係数とし、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、非球面形状は、
x=(h/R)/[1+{1−(1+K)(h/R)1/2]+Ah+Bh+Ch+Dh+Eh10
で表示される。但しRは曲率半径である。「e−0X」は「×10−x」を意味している。又、各数値実施例における上述した条件式との対応を表1に示す。
【0050】
【外1】

Figure 2004151619
【0051】
【外2】
Figure 2004151619
【0052】
【外3】
Figure 2004151619
【0053】
【外4】
Figure 2004151619
【0054】
【外5】
Figure 2004151619
【0055】
【表1】
Figure 2004151619
【0056】
次に本発明のズームレンズを撮影光学系として用いたレンズシャッターカメラやデジタルスチルカメラ等の光学機器の実施形態を図51を用いて説明する。
【0057】
図51において、10はカメラ本体、11は本発明のズームレンズによって構成された撮影光学系、12は被写体像を観察するためのファインダーである。
【0058】
13はストロボ装置、14は測定窓、15はカメラの動作を知らせる液晶表示窓、16はレリーズボタン、17は各種のモードを切り替える操作スイッチである。
【0059】
このように本発明のズームレンズを光学機器に適用することにより、小型で高い光学性能を有する光学機器を達成している。
【0060】
【発明の効果】
本発明によれば、高画質を維持しつつ補正光化学系の小型化、かつ一定量の像ぶれ補正効果を行うための補正光学系の移動量のコントロールを容易に行い、補正光学系の電気的駆動を容易に行うことができるズームレンズ及びそれを有する光学機器を達成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1の広角端のレンズ断面図
【図2】本発明の実施形態1の通常状態の広角端における縦収差図
【図3】本発明の実施形態1の通常状態の中間のズーム位置における縦収差図
【図4】本発明の実施形態1の通常状態の望遠端における縦収差図
【図5】本発明の実施形態1の通常状態の広角端における横収差図
【図6】本発明の実施形態1の通常状態の中間のズーム位置における横収差図
【図7】本発明の実施形態1の通常状態の望遠端における横収差図
【図8】本発明の実施形態1の画角0.5°分の画像ぶれの補正の広角端における横収差図
【図9】本発明の実施形態1の画角0.5°分の画像ぶれの補正の中間のズーム位置における横収差図
【図10】本発明の実施形態1の画角0.5°分の画像ぶれの補正の望遠端における横収差図
【図11】半発明の実施形態2の広角端のレンズ断面図
【図12】本発明の実施形態2の通常状態の広角端における縦収差図
【図13】本発明の実施形態2の通常状態の中間のズーム位置における縦収差図
【図14】本発明の実施形態2の通常状態の望遠端における縦収差図
【図15】本発明の実施形態2の通常状態の広角端における横収差図
【図16】本発明の実施形態2の通常状態の中間のズーム位置における横収差図
【図17】本発明の実施形態2の通常状態の望遠端における横収差図
【図18】本発明の実施形態2の画角0.5°分の画像ぶれの補正の広角端における横収差図
【図19】本発明の実施形態2の画角0.5°分の画像ぶれの補正の中間のズーム位置における横収差図
【図20】本発明の実施形態2の画角0.5°分の画像ぶれの補正求項1の望遠端における横収差図
【図21】本発明の実施形態3の広角端のレンズ断面図
【図22】本発明の実施形態3の通常状態の広角端における縦収差図
【図23】本発明の実施形態3の通常状態の中間のズーム位置における縦収差図
【図24】本発明の実施形態3の通常状態の望遠端における縦収差図
【図25】本発明の実施形態3の通常状態の広角端における横収差図
【図26】本発明の実施形態3の通常状態の中間のズーム位置における横収差図
【図27】本発明の実施形態3の通常状態の望遠端における横収差図
【図28】本発明の実施形態3の画角0.5°分の画像ぶれの補正の広角端における横収差図
【図29】本発明の実施形態3の画角0.5°分の画像ぶれの補正の中間のズーム位置における横収差図
【図30】本発明の実施形態3の画角0.5°分の画像ぶれの補正の望遠端における横収差図
【図31】本発明の実施形態4の広角端のレンズ断面図
【図32】本発明の実施形態4の通常状態の広角端における縦収差図
【図33】本発明の実施形態4の通常状態の中間のズーム位置における縦収差図
【図34】本発明の実施形態4の通常状態の望遠端における縦収差図
【図35】本発明の実施形態4の通常状態の広角端における横収差図
【図36】本発明の実施形態4の通常状態の中間のズーム位置における横収差図
【図37】本発明の実施形態4の通常状態の望遠端における横収差図
【図38】本発明の実施形態4の画角0.5°分の画像ぶれの補正の広角端における横収差図
【図39】本発明の実施形態4の画角0.5°分の画像ぶれの補正の中間のズーム位置における横収差図
【図40】本発明の実施形態4の画角0.5°分の画像ぶれの補正の望遠端における横収差図
【図41】本発明の実施形態5の広角端のレンズ断面図
【図42】本発明の実施形態5の通常状態の広角端における縦収差図
【図43】本発明の実施形態5の通常状態の中間のズーム位置における縦収差図
【図44】本発明の実施形態5の通常状態の望遠端における縦収差図
【図45】本発明の実施形態5の通常状態の広角端における横収差図
【図46】本発明の実施形態5の通常状態の中間のズーム位置における横収差図
【図47】本発明の実施形態5の通常状態の望遠端における横収差図
【図48】本発明の実施形態5の画角0.5°分の画像ぶれの補正の広角端における横収差図
【図49】本発明の実施形態5の画角0.5°分の画像ぶれの補正の中間のズーム位置における横収差図
【図50】本発明の実施形態5の画角0.5°分の画像ぶれの補正の望遠端における横収差図
【図51】本発明の光学機器の要部概略図
【符号の説明】
L1 第1レンズ群
B11 B11レンズ群
B12 B12レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
SP 開口絞り
IP 像面
d d線
g g線
△s サジタル像面
△M メリディオナル像面
ω 画角
Fno Fナンバー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zoom lens and an optical apparatus having the same, and more specifically, a zoom lens vibrates (tilts) by moving a part of a lens group of an optical system so as to have a component in a direction perpendicular to an optical axis. The present invention is suitable for optical devices such as a silver halide photographic camera, a video camera, an electronic still camera, and a digital camera, which have high optical performance and excellent correction of image blur (image blur) at the time.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a silver halide camera, a video camera, and a digital camera having an image stabilization function that optically or electrically corrects blurring of a shot image (image blurring) caused by camera shake for the purpose of improving image quality and expanding shooting conditions. Etc. have been proposed.
[0003]
For example, the third lens group is divided into positive and positive refractive power lens groups by a four-group zoom lens having positive, negative, positive, and positive refractive power, and the image-side lens group is perpendicular to the optical axis. 2. Description of the Related Art There is known a zoom lens that performs image blur correction by moving the zoom lens to a position (see Patent Document 1).
[0004]
The third lens group is mainly a zoom lens for a video camera during zooming. The fourth lens group includes a positive lens group, a positive lens group, a positive lens group, and a positive lens group having a fixed refractive power. 2. Description of the Related Art A zoom lens that performs image blur correction by separating a lens group having positive and negative refractive power and moving one of the lens groups in a direction perpendicular to an optical axis is known (Japanese Patent Application Laid-Open No. H11-163,837).
[0005]
Further, there is known a zoom lens that corrects image blur by moving a first lens group in a direction perpendicular to an optical axis by a three-group zoom lens of lens groups having positive, positive, and negative refractive powers (Patent Document 3). ).
[Patent Document 1]
JP-A-9-230236 [Patent Document 2]
JP-A-10-232420 [Patent Document 3]
JP-A-11-052243
[Problems to be solved by the invention]
In general, in an optical system that corrects image blur by decentering some lenses of the imaging system in a direction perpendicular to the optical axis, there is an advantage that image blur can be corrected relatively easily. There is a problem that a driving means for the lens to be moved is required, and the amount of eccentric aberration generated during image stabilization increases.
[0007]
For example, if the correction optical system that corrects image blur has a large number of lens components and is heavy, a large torque is required for electrical driving. Unless the correction lens group for correcting image blur is set appropriately, it is necessary to increase the moving amount of the correction optical system in order to obtain a certain amount of image blur correction effect.
[0008]
On the other hand, if the effect of correcting the image with respect to the movement of the correction optical system is strengthened, the imaging displacement effect becomes too sensitive to eccentricity in order to perform accurate correction for a certain image blur correction. It becomes more difficult to control the movement of the lens.
[0009]
In the zoom lens proposed in Patent Literature 3, image blur correction is performed by decentering the entire first lens unit in all embodiments, so that an appropriate image blur correction amount can be controlled with respect to the eccentric amount. It has been difficult to obtain good optical performance during eccentricity.
[0010]
The present invention makes it possible to reduce the size of the correction optical system while maintaining high image quality, and to easily control the amount of movement of the correction optical system for performing a certain amount of image blur correction effect, thereby facilitating the electrical driving of the correction optical system. And an optical apparatus having the same.
[0011]
[Means for Solving the Problems]
The zoom lens of the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive or negative refractive power, a third lens group having a positive refractive power, and a second lens group having a positive refractive power. It has four lens groups, and at the telephoto end with respect to the wide-angle end, the sum of the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group is large. Each lens group moves on the optical axis so as to reduce the distance between the third lens group and the fourth lens group at the telephoto end with respect to the wide-angle end, thereby performing zooming. Some of the lens units having a positive refractive power are moved so as to have an eccentric movement component in a direction perpendicular to the optical axis to displace the imaging position.
[0012]
In addition, in the present invention,
The first lens group includes, in order from the object side, a B11 lens group and a B12 lens group having a positive refractive power, and the B12 lens group moves so as to have an eccentric movement component in a direction perpendicular to the optical axis. In this case, the imaging position is displaced.
When the radius of curvature of the lens surface closest to the image plane in the B11 lens group is Ra, and the radius of curvature of the lens surface closest to the object in the B12 lens group is Rb,
-0.9 <(Ra-Rb) / (Ra + Rb) <-0.2
Is satisfied.
When the focal length of the entire system at the wide-angle end is Fw, the focal length of the first lens group is F1, and the focal length of the B12 lens group is FB12,
0.5 <F1 / Fw <10
0.3 <F1 / FB12 <10
Is satisfied.
◎ When the focal length of the entire system at the wide-angle end is Fw and the focal length of the i-th lens unit is Fi,
0.4 <F3 / Fw <1.7
0.3 <| F4 / Fw | <0.8
Is satisfied.
変 位 The displacement of the imaging position is characterized by image blurring.
◎ It is characterized by being an optical system for forming an image on an image sensor.
The optical apparatus according to the present invention includes the zoom lens according to any one of the above, and an imaging device that receives an image formed by the zoom lens.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view of the zoom lens according to the first embodiment at the wide-angle end, and FIGS. 2, 3, and 4 are longitudinal aberration diagrams at the wide-angle end, an intermediate zoom position, and a telephoto end of the zoom lens according to the first embodiment. , FIGS. 6 and 7 are lateral aberration diagrams of the zoom lens according to the first embodiment at the wide-angle end, an intermediate zoom position, and a telephoto end before image stabilization. FIGS. 8, 9, and 10 are wide-angle views of the zoom lens according to the first embodiment. FIG. 14 is a lateral aberration diagram after changing the image position corresponding to 0.5 ° of the angle of view at the end, the middle zoom position, and the telephoto end (after image stabilization).
[0014]
At this time, the correction lens group B22 is moving so that the component in the direction perpendicular to the optical axis becomes 0.51 mm.
[0015]
FIG. 11 is a lens cross-sectional view at the wide angle end of the zoom lens according to the second embodiment. FIGS. 12, 13, and 14 are longitudinal aberration diagrams at the wide angle end, an intermediate zoom position, and a telephoto end of the zoom lens according to the second embodiment. 16 and 17 are lateral aberration diagrams of the zoom lens according to the second embodiment at the wide-angle end, an intermediate zoom position, and a telephoto end before image stabilization. FIGS. 18, 19, and 20 are diagrams of the zoom lens of the second embodiment. FIG. 11 is a lateral aberration diagram after an image position corresponding to 0.5 ° of the angle of view at the wide angle end, an intermediate zoom position, and a telephoto end is changed (after image stabilization).
[0016]
At this time, the correction lens group B22 is moving so that the component in the direction perpendicular to the optical axis becomes 0.52 mm.
[0017]
21 is a sectional view of the zoom lens according to the third embodiment at the wide-angle end, and FIGS. 22, 23, and 24 are longitudinal aberration diagrams at the wide-angle end, an intermediate zoom position, and a telephoto end of the zoom lens according to the third embodiment. 26, 27 are lateral aberration diagrams of the zoom lens according to the third embodiment at the wide-angle end and intermediate zoom positions at the telephoto end before image stabilization. FIGS. 28, 29, and 30 are wide-angle ends of the zoom lens of the third embodiment. FIG. 14 is a lateral aberration diagram after an image position corresponding to 0.5 ° of the angle of view at the intermediate zoom position and the telephoto end is changed (after image stabilization).
[0018]
At this time, the correction lens group B22 is configured such that the component in the direction perpendicular to the optical axis is 0.51 mm.
[0019]
FIG. 31 is a sectional view of the zoom lens according to the fourth embodiment at the wide-angle end, and FIGS. 32, 33, and 34 are longitudinal aberration diagrams at the wide-angle end, an intermediate zoom position, and a telephoto end of the zoom lens according to the fourth embodiment. 36, FIG. 36, and FIG. 37 are lateral aberration diagrams of the zoom lens according to the fourth embodiment at the wide-angle end and an intermediate zoom position at a telephoto end before image stabilization. FIGS. FIG. 14 is a lateral aberration diagram after an image position corresponding to 0.5 ° of the angle of view at the intermediate zoom position and the telephoto end is changed (after image stabilization).
[0020]
At this time, the correction lens group B22 is moving so that the component in the direction perpendicular to the optical axis becomes 0.50 mm.
[0021]
41 is a sectional view of the zoom lens according to the fifth embodiment at the wide-angle end, and FIGS. 42, 43, and 44 are longitudinal aberration diagrams at the wide-angle end, an intermediate zoom position, and a telephoto end of the zoom lens according to the fifth embodiment. 46, 47 are lateral aberration diagrams of the zoom lens according to the fifth embodiment at the wide-angle end and the middle zoom position at the telephoto end before image stabilization. FIGS. 48, 49, and 50 are the wide-angle ends of the zoom lens of the fifth embodiment. FIG. 14 is a lateral aberration diagram after an image position corresponding to 0.5 ° of the angle of view at the intermediate zoom position and the telephoto end is changed (after image stabilization).
[0022]
At this time, the correction lens group B22 is moving so that the component in the direction perpendicular to the optical axis becomes 0.54 mm.
[0023]
In FIGS. 1, 11, 21, 31, and 41, (A) shows the zoom position at the wide-angle end, (B) shows the intermediate zoom position, and (C) shows the zoom position at the telephoto end. I have.
[0024]
In the lens cross-sectional view, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a positive or negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a negative lens having a negative refractive power. This is the fourth lens group. Arrows indicate the moving direction of each lens unit when performing zooming from the wide-angle side to the telephoto side. SP is an aperture, IP is an image plane, and an image sensor (CCD), a silver halide film, and the like are located.
[0025]
The first lens unit L1 includes a B11 lens unit B11 having a positive or negative refractive power and a B12 lens unit B12 having a positive refractive power.
[0026]
In the spherical aberration of the aberration diagram, the solid line is the d line, the two-dot chain line is the g line, the chain line is the sine condition. The two-dot chain line indicates the g line. ω indicates a half angle of view.
[0027]
In each of the embodiments, the sum of the distance between the first lens unit L1 and the second lens unit L2 and the distance between the second lens unit L2 and the third lens unit L3 at the telephoto end with respect to the wide-angle end is large. Each lens unit moves on the optical axis to perform zooming so that the distance between the second lens unit L2 and the third lens unit L3 at the telephoto end is reduced.
[0028]
The main zooming action is performed by changing the air gap between the third lens unit L3 and the fourth lens unit L4, and the air gap between the first lens unit L1 and the third lens unit L3 is further increased toward the telephoto side. , And at the same time, by moving the second lens unit L2 relative to the first lens unit L1 and the third lens unit L3, zooming on the telephoto side that occurs when a high zoom ratio is achieved. Correction of spherical aberration in the diameter range is performed well.
[0029]
The B12 lens unit B12 in the first lens unit L1 has an eccentric movement component at least in a direction perpendicular to the optical axis, thereby causing a displacement effect of the image forming position.
[0030]
Further, by disposing a lens unit having a positive refractive power other than the B12 lens unit B12 in the first lens unit L1, various aberrations caused by the eccentricity of the B12 lens unit B12 are canceled, and at the same time, the constant eccentric amount of the B12 lens unit B12 , The amount of displacement of the imaging position with respect to is controlled, and it is easy to obtain the optimal amount of movement for electrical drive of the B12 lens unit B12.
[0031]
In each embodiment, the first lens unit L1 includes a B11 lens unit B11 having a relatively weak positive or negative refractive power disposed on the object side of the B12 lens unit B12, and the B12 lens unit B12 having an eccentric moving component with respect to the optical axis. The imaging position is displaced by moving so as to have.
[0032]
Thereby, the angle of light rays incident on the B11 lens unit B11 and the B12 lens unit B12 generated when the imaging position is displaced is controlled to easily control the amount of aberration change due to the eccentricity of the B12 lens unit B12, and at the same time, the B12 lens unit B12 A good image can be obtained even when the amount of change in the displacement of the imaging position with respect to the constant eccentric amount is increased, so that the lens diameter of the lens unit B12 can be easily reduced, and at the same time, the B12 lens unit B12 It is also easy to achieve the miniaturization of the mechanical mechanism system for moving the robot.
[0033]
The first and second embodiments are composed of lens units having positive, negative, positive, and negative refractive powers in order from the object side, and the third, fourth, and fifth embodiments are sequentially arranged with positive, positive, positive, and negative lenses in order from the object side. It consists of a lens group with refractive power.
[0034]
In the zoom lens of each embodiment, the radius of curvature of the lens surface closest to the image plane in the B11 lens unit B11 is Ra, the radius of curvature of the lens surface closest to the object in the B12 lens unit B12 is Rb, and the focal point of the entire system at the wide-angle end. When the distance is Fw, the focal length of the ith lens group is Fi, and the focal length of the B12 lens group B12 is FB12,
-0.9 <(Ra-Rb) / (Ra + Rb) <-0.2 (1)
0.5 <F1 / Fw <10 (2)
0.3 <F1 / FB12 <10 (3)
0.4 <F3 / Fw <1.7 (4)
0.3 <| F4 / Fw | <0.8 (5)
At least one of the conditional expressions is satisfied.
[0035]
If at least one of these conditional expressions is satisfied, an effect equivalent to that conditional expression can be obtained as described later.
[0036]
Next, the technical meaning of each of the above conditional expressions will be described.
[0037]
Conditional expression (1) is a conditional expression for suppressing the deterioration of the image quality when the imaging position is displaced. In particular, the conditional expression (1) is a conditional expression for suppressing the occurrence of spherical aberration and coma due to the parallel decentering component of the B12 lens unit B12. is there. Exceeding the numerical range of the conditional expression (1) is not good because the canceling relationship between spherical aberration and coma aberration on the mutual surface when the imaging position is displaced and when there is no displacement is broken.
[0038]
Conditional expression (2) is intended to simplify the lens drive of the B12 lens unit B12 by reducing the lens diameter and the lens weight while suppressing the image quality deterioration mainly when the image forming position is displaced. Is a conditional expression.
[0039]
If the refractive power of the first lens unit L1 is weakened beyond the upper limit of the conditional expression (2), the total length of the lens system increases in order to secure a constant focal length and a zoom ratio, which is not good. On the other hand, if the lower limit value is exceeded, the refractive power of the first lens unit L1 becomes too strong, and negative spherical aberration is generated strongly, and it is difficult for other lens units to satisfactorily correct this throughout the entire zoom range. It becomes.
[0040]
Conditional expression (3) relates to the refractive power of the B12 lens unit B12 that performs a displacement operation of the imaging position in the first lens unit L1, and moves the B12 lens unit B12 to perform a displacement operation of a fixed imaging position. This is for maintaining high image quality while suppressing the amount. When the negative refractive power of the B12 lens unit B12 becomes weaker beyond the upper limit of the conditional expression (3), the displacement of the B12 lens unit B12 increases in order to perform a displacing operation of a fixed image forming position, and the moving amount of the B12 lens unit B12 increases. In order to obtain a constant amount of peripheral light during movement, the lens diameter of the B12 lens unit B12 increases, which is not good.
[0041]
On the other hand, when the value exceeds the lower limit, the negative refractive power of the B12 lens unit B12 increases, and at the same time, the positive refractive power of the lens units other than the B12 lens unit B12 in the first lens unit L1 must be increased. As a result, high-order spherical aberration and coma aberration are largely generated, and it becomes difficult to correct aberration when the imaging position is displaced.
[0042]
In each embodiment, it is preferable that the B12 lens group B12 includes one positive lens and one negative lens, respectively, in order to suppress the fluctuation of aberration when the lens group moves when the imaging position is displaced.
[0043]
If the upper limit of conditional expression (4) is exceeded, the refractive power of the third lens unit L3 will be weakened, and the amount of movement of each lens unit will be large in order to obtain a constant zoom ratio. Is becoming more difficult. On the other hand, if the lower limit is exceeded, the action of the negative refractive power becomes large, so that the Petzval sum becomes large in the negative direction, and the field curvature becomes large, which is not good.
[0044]
If the upper limit of conditional expression (5) is exceeded, the refracting power of the fourth lens unit L4 will be too weak, and the back focus will be long.
[0045]
On the other hand, if the lower limit value is exceeded, the back focus of the entire lens system becomes too short, and the outer diameter of the third lens unit L3 increases in order to obtain a constant peripheral light amount. This is not good because the overall size of the apparatus becomes large and at the same time large off-axis high-order aberrations such as curvature of field occur.
[0046]
In each embodiment, it is more preferable to set the numerical ranges of the conditional expressions (1) to (5) as follows.
[0047]
−0.7 <(Ra−Rb) / (Ra + Rb) <− 0.3 (1a)
1 <F1 / Fw <7 (2a)
0.8 <F1 / FB12 <5 (3a)
0.5 <F3 / Fw <1.4 (4a)
0.4 <| F4 / Fw | <0.7 (5a)
Next, in each embodiment, features other than the above-described features will be described.
The focusing from an object at infinity to an object at a short distance can be performed by moving the third lens unit L3 to the object side, but focusing may be performed in combination with the movement of another lens unit.
Moving the first lens unit L1 and the fourth lens unit L4 together during zooming is advantageous in simplifying the lens driving mechanism. In particular, when the lens units in the first lens unit L1 are decentered, it becomes easy to store the mechanism for moving the lens units, and at the same time, it becomes easy to suppress the decentering of the first lens unit L1 due to its own weight.
When the iris stop SP is moved independently of each lens group on the optical axis during zooming, the position of the entrance pupil can be optimally arranged.
◎ The first lens unit L1 has, in order from the object side, a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image surface, and the curvature of the surface where the positive lens and the negative lens are joined or facing each other is similar. It is preferable to use a lens group having a positive refractive power as a whole with the convex surface facing the object side and having a function of displacing the imaging position by eccentricity.
The second lens unit L2 preferably has at least one positive lens with both lens surfaces convex and a negative lens with both lens surfaces concave to obtain good optical performance at high zooming.
The third lens unit L3 is preferably configured to have at least a negative 3a lens having a concave surface facing the object side and a positive 3b lens having a convex image surface lens surface on the image surface side. . Further, it is desirable to arrange an aspheric surface in the third lens unit L3 in order to achieve good image quality.
は The fourth lens unit L4 preferably has a positive lens and a negative lens having a concave surface facing the object side on the image side.
When the fourth lens group is composed of two positive and negative lenses, it is desirable that at least one surface has an aspheric surface.
◎ It is effective to add an aspherical surface to the lens system and to introduce a diffractive optical element, a refraction distribution type optical material, etc. for further improving the optical performance.
◎ When performing the displacement operation of the imaging position, the eccentric lens group is eccentrically moved in the direction perpendicular to the optical axis as the simplest moving method, but for the purpose of correcting the change of the imaging position due to eccentricity, for example, an eccentric lens A tilt component may be added to the eccentric lens group in such a manner that the rotation center of the lens group is provided at a finite position on the optical axis and the lens is rotated.
[0048]
As described above, according to each embodiment, in the zoom lens including the lens units having positive, positive or negative, positive, and negative refractive power from the object side, a part of the positive refraction in the first lens unit L1 is used. The decentering action is applied to the power lens group so that it has at least a component perpendicular to the optical axis to shift the imaging position. At this time, it has a compact and high zoom ratio that can maintain good optical performance A zoom lens can be achieved.
[0049]
Next, numerical data of Numerical Examples 1 to 5 respectively corresponding to the first to fifth embodiments will be shown. In each numerical example, i indicates the order of the optical surface from the object side, Ri is the radius of curvature of the i-th optical surface (i-th surface), and Di is the distance between the i-th surface and the i-th surface + 1 surface. The intervals, Ni and νi, indicate the refractive index and Abbe number of the material of the i-th optical member with respect to the d-line, respectively. f is the focal length, Fno is the F number, and ω is the half angle of view. Further, k is a conical constant, A, B, C, D, and E are second-order, fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, and the direction of the optical axis at a height h from the optical axis. When the displacement of x is x with respect to the surface vertex, the aspheric shape is
x = (h 2 / R) / [1+ {1- (1 + K) (h / R) 2} 1/2] + Ah 2 + Bh 4 + Ch 6 + Dh 8 + Eh 10
Displayed with. Here, R is a radius of curvature. "E-0X" means "x10- x ". Table 1 shows the correspondence between the numerical expressions and the conditional expressions described above.
[0050]
[Outside 1]
Figure 2004151619
[0051]
[Outside 2]
Figure 2004151619
[0052]
[Outside 3]
Figure 2004151619
[0053]
[Outside 4]
Figure 2004151619
[0054]
[Outside 5]
Figure 2004151619
[0055]
[Table 1]
Figure 2004151619
[0056]
Next, an embodiment of an optical apparatus such as a lens shutter camera or a digital still camera using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.
[0057]
In FIG. 51, reference numeral 10 denotes a camera body, 11 denotes a photographing optical system constituted by the zoom lens of the present invention, and 12 denotes a finder for observing a subject image.
[0058]
Reference numeral 13 denotes a strobe device, 14 denotes a measurement window, 15 denotes a liquid crystal display window for notifying the operation of the camera, 16 denotes a release button, and 17 denotes an operation switch for switching various modes.
[0059]
As described above, by applying the zoom lens of the present invention to an optical device, a compact optical device having high optical performance is achieved.
[0060]
【The invention's effect】
According to the present invention, the correction photochemical system can be reduced in size while maintaining high image quality, and the amount of movement of the correction optical system for performing a certain amount of image blur correction effect can be easily controlled. A zoom lens that can be easily driven and an optical device having the same can be achieved.
[Brief description of the drawings]
1 is a sectional view of a lens at a wide-angle end according to a first embodiment of the present invention; FIG. 2 is a longitudinal aberration diagram at a wide-angle end in a normal state according to the first embodiment of the present invention; FIG. 4 is a longitudinal aberration diagram at a telephoto end in a normal state according to the first embodiment of the present invention. FIG. 5 is a lateral aberration diagram at a wide-angle end in a normal state according to the first embodiment of the present invention. FIG. 6 is a lateral aberration diagram at a middle zoom position in a normal state according to the first embodiment of the present invention. FIG. 7 is a lateral aberration diagram at a telephoto end in a normal state according to the first embodiment of the present invention. FIG. 9 is a lateral aberration diagram at the wide-angle end of image blur correction for a 0.5 ° angle of view of FIG. 9 at an intermediate zoom position of image blur correction for a 0.5 ° angle of view according to the first embodiment of the present invention. FIG. 10 is a telephoto view for correcting image blur for an angle of view of 0.5 ° according to the first embodiment of the present invention. FIG. 11 is a sectional view of a lens at a wide angle end according to a second embodiment of the present invention. FIG. 12 is a longitudinal aberration diagram at a wide angle end in a normal state according to a second embodiment of the present invention. FIG. 14 is a longitudinal aberration diagram at a middle zoom position in the normal state of FIG. 14 FIG. 14 is a longitudinal aberration diagram at a telephoto end of a normal state according to the second embodiment of the present invention FIG. FIG. 16 is a lateral aberration diagram at a middle zoom position of the normal state according to the second embodiment of the present invention. FIG. 17 is a lateral aberration diagram at a telephoto end in a normal state according to the second embodiment of the present invention. FIG. 19 is a lateral aberration diagram at the wide-angle end of image blur correction for an angle of view of 0.5 ° according to the second embodiment of the present invention. FIG. 20 is a lateral aberration diagram at the zoom position of FIG. 20 according to the second embodiment of the present invention. FIG. 21 is a lateral aberration diagram at the telephoto end of image blur correction for angle 0.5 ° at the telephoto end. FIG. 21 is a lens cross-sectional view at the wide-angle end according to the third embodiment of the present invention. FIG. 23 is a longitudinal aberration diagram at the wide-angle end of the state. FIG. 23 is a longitudinal aberration diagram at an intermediate zoom position of the normal state according to the third embodiment of the present invention. FIG. 24 is a longitudinal aberration diagram at the telephoto end in the normal state according to the third embodiment of the present invention. FIG. 25 is a lateral aberration diagram at the wide-angle end in a normal state according to the third embodiment of the present invention; FIG. 26 is a lateral aberration diagram at an intermediate zoom position in the normal state according to the third embodiment of the present invention; FIG. 28 is a lateral aberration diagram at a telephoto end in a normal state according to the third embodiment. FIG. 28 is a lateral aberration diagram at a wide-angle end of image blur correction for an angle of view of 0.5 ° according to the third embodiment of the present invention. In the middle zoom position of the image blur correction of 0.5 ° FIG. 30 is a lateral aberration diagram at the telephoto end of image blur correction for an angle of view of 0.5 ° according to the third embodiment of the present invention. FIG. 31 is a lens cross section at a wide angle end according to the fourth embodiment of the present invention. FIG. 32 is a longitudinal aberration diagram at the wide-angle end in the normal state according to the fourth embodiment of the present invention. FIG. 33 is a longitudinal aberration diagram at an intermediate zoom position in the normal state according to the fourth embodiment of the present invention. FIG. 35 is a longitudinal aberration diagram at a telephoto end in a normal state according to the fourth embodiment. FIG. 35 is a lateral aberration diagram at a wide-angle end in a normal state according to the fourth embodiment of the present invention. FIG. 37 is a lateral aberration diagram at a telephoto end in a normal state according to the fourth embodiment of the present invention. FIG. 38 is a wide angle of image blur correction for an angle of view of 0.5 ° according to the fourth embodiment of the present invention. 39 is a lateral aberration diagram at an edge. FIG. 39 is a view corresponding to an angle of view of 0.5 ° according to the fourth embodiment of the present invention. FIG. 40 is a lateral aberration diagram at an intermediate zoom position for image blur correction. FIG. 40 is a lateral aberration diagram at the telephoto end of image blur correction for an angle of view of 0.5 ° according to the fourth embodiment of the present invention. FIG. 42 is a cross-sectional view of a lens at a wide angle end according to a fifth embodiment. FIG. 42 is a longitudinal aberration diagram at a wide angle end in a normal state according to the fifth embodiment of the present invention. FIG. 44 is a longitudinal aberration diagram at the telephoto end in a normal state according to the fifth embodiment of the present invention. FIG. 45 is a lateral aberration diagram at a wide angle end in a normal state according to the fifth embodiment of the present invention. FIG. 47 is a lateral aberration diagram at a middle zoom position in the normal state of the fifth embodiment. FIG. 47 is a lateral aberration diagram at a telephoto end in the normal state of the fifth embodiment of the present invention. Fig. 49: lateral aberration diagram at the wide-angle end of image blur correction for ° FIG. 50 is a lateral aberration diagram at an intermediate zoom position of image blur correction for an angle of view of 0.5 ° according to the fifth embodiment of the present invention. Fig. 51 is a lateral aberration diagram at the telephoto end of Fig. 51. Fig. 51 is a schematic diagram of a main part of the optical apparatus of the present invention.
L1 First lens group B11 B11 lens group B12 B12 lens group L2 Second lens group L3 Third lens group L4 Fourth lens group SP Aperture stop IP Image plane dd line gg line △ s Sagittal image plane △ M Meridional image plane ω Angle of view Fno F number

Claims (1)

物体側より順に、正の屈折力の第1レンズ群、正又は負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群を有し、広角端に対して望遠端での、該第1レンズ群と該第2レンズ群との間隔と該第2レンズ群と該第3レンズ群との間隔の和が大きく、広角端に対して望遠端での、該第3レンズ群と第4レンズ群の間隔が小さくなるように各レンズ群が光軸上を移動してズーミングを行い、該第1レンズ群中の一部の正の屈折力のレンズ群は、光軸に対し、垂直方向の偏心移動成分を持つように移動して結像位置の変位を行うことを特徴とするズームレンズ。In order from the object side, a first lens group having a positive refractive power, a second lens group having a positive or negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a negative refractive power, At the telephoto end with respect to the wide-angle end, the sum of the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group is large. Each lens unit moves on the optical axis to perform zooming so that the distance between the third lens unit and the fourth lens unit at the end becomes small, and positive refractive power of a part of the first lens unit is changed. The lens group of (1) moves so as to have an eccentric movement component in a direction perpendicular to the optical axis to displace the imaging position.
JP2002319415A 2002-11-01 2002-11-01 Zoom lens and optical equipment having same Pending JP2004151619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319415A JP2004151619A (en) 2002-11-01 2002-11-01 Zoom lens and optical equipment having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319415A JP2004151619A (en) 2002-11-01 2002-11-01 Zoom lens and optical equipment having same

Publications (1)

Publication Number Publication Date
JP2004151619A true JP2004151619A (en) 2004-05-27

Family

ID=32462272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319415A Pending JP2004151619A (en) 2002-11-01 2002-11-01 Zoom lens and optical equipment having same

Country Status (1)

Country Link
JP (1) JP2004151619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017724A1 (en) * 2014-07-30 2017-04-27 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP7467134B2 (en) 2020-01-27 2024-04-15 キヤノン株式会社 Optical system, and imaging device and lens device having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017724A1 (en) * 2014-07-30 2017-04-27 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
US10338357B2 (en) 2014-07-30 2019-07-02 Nikon Corporation Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP7467134B2 (en) 2020-01-27 2024-04-15 キヤノン株式会社 Optical system, and imaging device and lens device having the same

Similar Documents

Publication Publication Date Title
JP4738823B2 (en) Zoom lens and imaging apparatus having the same
JP4630423B2 (en) Zoom lens and optical apparatus using the same
JP4046834B2 (en) Variable magnification optical system with anti-vibration function
JP4181790B2 (en) Zoom lens and optical apparatus having the same
EP1998204A1 (en) Zoom lens of the telephoto type having four groups, rear focusing and an image shake correction function
JP4109884B2 (en) Zoom lens and optical apparatus having the same
JP6238732B2 (en) Zoom lens and imaging apparatus having the same
JP2008292733A (en) Zoom lens and imaging apparatus having the same
JP4289958B2 (en) Zoom lens and imaging apparatus having the same
JP6579789B2 (en) Zoom lens and imaging apparatus having the same
JP2001033703A (en) Rear focus type zoom lens
JP2004334185A (en) Zoom lens
JP4630424B2 (en) Zoom lens and optical apparatus having the same
JP2002311330A (en) Zoom lens and optical apparatus using the same
JP4035328B2 (en) Variable magnification optical system and optical apparatus using the same
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP4444625B2 (en) Zoom lens and imaging apparatus having the same
JP2002098894A (en) Zoom lens and optical equipment provided therewith
JPH11167063A (en) Zoom lens
JP4109854B2 (en) Zoom lens and optical apparatus having the same
JP2002162565A (en) Zoom lens and optical equipment using the same
JP2006284753A (en) Zoom lens, and optical apparatus having same
JP2005148437A (en) Variable power optical system
JP4630451B2 (en) Zoom lens and optical apparatus using the same
JP2004037700A (en) Zoom lens and optical device having same