JP2004151175A - Optical directional coupler and its manufacturing method - Google Patents

Optical directional coupler and its manufacturing method Download PDF

Info

Publication number
JP2004151175A
JP2004151175A JP2002313722A JP2002313722A JP2004151175A JP 2004151175 A JP2004151175 A JP 2004151175A JP 2002313722 A JP2002313722 A JP 2002313722A JP 2002313722 A JP2002313722 A JP 2002313722A JP 2004151175 A JP2004151175 A JP 2004151175A
Authority
JP
Japan
Prior art keywords
waveguide
optical
directional coupler
region
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002313722A
Other languages
Japanese (ja)
Other versions
JP3883118B2 (en
Inventor
Masaya Suzuki
賢哉 鈴木
Shunichi Soma
俊一 相馬
Yoshinori Hibino
善典 日比野
Tsutomu Kito
勤 鬼頭
Hiroshi Takahashi
浩 高橋
Yasuyuki Inoue
靖之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002313722A priority Critical patent/JP3883118B2/en
Publication of JP2004151175A publication Critical patent/JP2004151175A/en
Application granted granted Critical
Publication of JP3883118B2 publication Critical patent/JP3883118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the length of an optical directional coupler without increasing propagation loss in the region other than the optical directional coupler. <P>SOLUTION: This optical directional coupler is composed of an optical waveguide having two-line symmetric structure formed on a substrate, which gradually approaches through first bend waveguides 323, 324 from input waveguides 321, 322 separated by an interval causing no optical coupling, which extends while holding an interval G in linear waveguides 325, 326 having a length L, and which again recedes to output waveguides 329, 330 separated by an interval causing no optical coupling, through second bend waveguides 327, 328. With a waveguide V value adiabatically varying in the first and second waveguides, the waveguide V value is smaller in a region 1 causing optical coupling than in a region 2 causing no optical coupling. In addition, it is a single mode waveguide in the region 1 causing the optical coupling, and also the rate of change in the propagation direction of the V value is the same in the two waveguides constituting the first and second bend waveguides, as the characteristics of the coupler. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光方向性結合器及び光方向性結合器の製造方法に関する。詳しくは、光ファイバ通信に用いられる導波路光都品において、光パワーを合分波する光方向性結合器に係る。
【0002】
【従来の技術】
光通信技術の急速な発達により、各種光部品が研究開発されているが、中でも平面基板上の光導波路を基本とした導波路型光部品が最も重要な位置を占めている。
これは、導波路型光部品がフォトリソグラフィ技術及び微細加工技術により光波長以下の精度で再現性良く量産可能という特徴を有するからである。
特に、近年は導波路型光部品の大規模化・複雑化が進んでいる。
このような導波路規模の大規模化・複雑化に伴って、量産性向上のため、単位チップあたりの省スペース化が切望されている。
【0003】
ところで、このような導波路型光部品において、光方向性結合器は最も基本的な回路要素である。
例えば、長距離伝送実験において用いられている光導波路による大規模利得等化器は、所望の光学特性を実現するために、20ヶの50%結合光方向性結合器及び5組の遅延線の縦列接続により構成されており、その全回路長は27.9cmにも及ぶ(非特許文献1参照)。
【0004】
以下に、図を用いて上述の文献において用いられている従来の光方向性結合器の概要を説明する。
従来の光方向性結合器の概略図を図10に示す。
従来の光方向性結合器は、2本の入力導波路221及び222、第1曲げ導波路223及び224、直線導波路225及び226、第2曲げ導波路227及び228、更に2本の出力光導波路229及び230からなる。
【0005】
互いに光結合が生じない間隔Sを有する2本の入力導波路221及び222は、それぞれ、第1曲げ導波路223及び224を介して、2本の直線導波路225及び226に接続される。
同様に、2本の直線導波路225及び226は、それぞれ、第2曲げ導波路227及び228を介して、互いに光結合が生じない間隔Sにある2本の入力導波路229及び230へ接続される。
【0006】
上記光方向性結合器においては、例えば、入力導波路221より入射した光波は、第1曲げ導波路223を経由して、光結合を生じる領域1において他方の光導波路と光学的に結合を生じ、第2曲げ導波路227及び228を経由して出力導波路229及び230へと出力される。
一般に、方向性結合器の結合比C.R.は、下式(1)で与えられる。
【0007】
【数1】

Figure 2004151175
【0008】
ここで、Lは直線導波路225,226の長さ、dLは第1及び第2曲げ導波路223,224,227,228において生じる結合成分を直線部の長さに変換した結合長、L0は定数である。
ビーム伝搬法を用いた数値計算によれば、導波路パラメータとして、幅W=7μm、厚さH=6μm、R=10mm、比屈折率差Δ=0.75%、直線導波路間隔G=3μmにて、図9の構造の光方向性結合器ではL0=3349μm,dL=−6463μmとなり、入力光が出力導波路229及び230に等分配される50%結合長L3dB=1439μmが得られる。
また、その損失は0.02dBである。
【0009】
前述の利得等化器フィルタでは、熱光学効果位相シフタの熱干渉を避けるため、入力導波路間隔S及び出力導波路間隔Sは250μm程度とする必要がある。本従来例における導波路パラメータを用いれば、S=250μmでは単位光方向性結合器の回路長は、その第1曲げ導波路の始端から第2曲げ導波路の終端までで5900μmとなる。
従って、利得等化器フィルタでは全回路長27.9cmのうち11.8cmを光方向性結合器が占める。
【0010】
一方、光回路の導波路幅を狭くすることで光結合を強め、光方向性結合器を短長化することが可能である。
以下にビーム伝搬法による数値例を挙げて、従来手法を説明する。
導波路幅Wに対する50%結合長L3dBの関係、及び、その導波路幅Wにおける単独導波路の半径5mmの90度曲げ導波路の伝搬損失を図11に示す。
導波路幅W以外の導波路パラメータは前出の従来例と同様である。
【0011】
導波路幅を狭めることにより、直線導波路225,226での光電界の導波路コアからの染み出しが大きくなるため、光結合を生じる領域1での光結合を強めることができる。
図10より、例えば、W=3μmではL3dB=105μmであるので、上述の条件(S=250μm)では、光方向性結合器の第1曲げ導波路の始端から第2曲げ導波路の終端までの回路長は4570μmへの短長化が可能である。
しかしながら、W=3μmの光導波路では同時に光方向性結合器以外の導波路部分での曲げ半径5mmでの90度曲げによる伝搬損失は2.5dBまで増加する傾向が見て取れる。
【0012】
【非特許文献1】
T. Matsuda et al , ”Ultra−broadband Raman−amplified transoceanic system with adaptive gain equalization”, the 4th International Convention on Undersea Communication (SubOptic 2001), PDP4, Kyoto, May, 2001.
【0013】
【発明が解決しようとする課題】
前述のように、従来の光方向性結合器は光導波路上において機能回路を構成するために必要不可欠な構成要素であるが、例えば前述の例においては、光方向性結合器の全長はおよそ6mmにも及び、その短長化が切実な問題であった。
更に、光方向性結合器の短長化の方策のひとつである導波路幅の狭幅化を適用したとしても、光方向性結合器以外の領域での伝搬損失が極端に大きくなり、実用的な解ではなかった。
本発明は、光方向性結合器以外の領域での伝搬損失を増大させることなく、光方向性結合器の短長化を図ることを目的とする。
【0014】
【課題を解決するための手段】
本発明において開示される発明の概要を簡単に説明すれば次の通りである。
本発明における光方向性結合器は、基板上に形成された光導波路により構成され、光方向性結合器の結合領域以外の領域においては、孤立導波路としての伝搬損失が十分無視できるほど小さい。
【0015】
加えて光方向性結合器は、2本の入力導波路が、光結合が生じない程度十分離れた間隔から第1曲げ導波路を介して徐々に接近し、直線導波路において一定間隔を保ちつつ平行に延在し、再び第2曲げ導波路を介して光結合が生じない位置まで離遠する構造を有し、前記第1曲げ導波路及び前記第2曲げ導波路において導波路パラメータが断熱的に変化することで、その光結合を生じる領域においては導波路V値が、光結合を生じない領域における導波路V値よりも小さく、かつ光結合を生じる領域において導波路は単一モードであり、前記第1曲げ導波路を構成する2本の導波路におけるV値の伝搬方向変化率は等しく、また、前記第2曲げ導波路を構成する2本の導波路におけるV値の伝搬方向変化率は等しくなる光学的特性を有する。
【0016】
このような光方向性結合器は、光結合を生じない領域から光結合を生じる領域にかけて、導波路の屈折率を断熱的に小さくすることにより実現される。
この場合、光結合を生じる領域におけるV値が光結合を生じない領域におけるV値に比べて小さく設定される。
ここで用いた「断熱的」とは、光伝搬の解析において用いられる”adiabatic”を意味し、熱力学で用いられる「断熱変化」を意味するものではない。
また、前記入力導波路と前記第1曲げ導波路の接点、前記出力導波路と前記第2曲げ導波路の接点、前記直線導波路と前記第1曲げ導波路の接点、前記直線導波路と前記第2曲げ導波路の接点、及び前記第1、第2曲げ導波路において導波路屈折率の連続性を保ちつつ、導波路屈折率を十分滑らかに変化させることで、当該光方向性結合器の伝搬損失の増加を回避できる。
【0017】
このような光方向性結合器の構造は、基板上に形成された光導波路において、前記第1曲げ導波路、前記第2曲げ導波路に対して導波路屈折率を調整可能なレーザを照射して、前記入力導波路から前記直線導波路にかけて、及び前記出力導波路から前記直線導波路にかけて、導波路屈折率を徐々に断熱的に変化させることにより作製される。
また、前記第1曲げ導波路、前記第2曲げ導波路の屈折率の変化率は、光方向性結合器に対する導波路屈折率を調整可能なレーザ光の照射位置を適切な速度で移動させることにより実現される。
【0018】
上記方法に加え、光結合を生じない領域から光結合を生じる領域にかけて、前記第1曲げ導波路及び前記第2曲げ導波路の幅を断熱的に狭くすることによっても、実現可能である。
この場合、光結合を生じる領域における横方向V値が光結合を生じない領域における横方向V値に比べて小さく設定される。
また、前記入力導波路と前記第1曲げ導波路の接点、前記出力導波路と前記第2曲げ導波路の接点、前記直線導波路と前記第1曲げ導波路の接点、前記直線導波路と前記第2曲げ導波路の接点、及び前記第1、第2曲げ導波路において導波路屈折率の連続性を保ちつつ、導波路幅を十分滑らかに変化させることで、当該光方向性結合器の伝搬損失の増加を回避できる。
【0019】
上記方法に加え、光結合を生じない領域から光結合を生じる領域にかけて、前記第1曲げ導波路及び前記第2曲げ導波路の厚さをへ断熱的に薄くすることにより、光結合を生じる領域における縦方向V値が光結合を生じない領域における縦方向V値に比べて小さくすることができる。
【0020】
更に、その光方向性結合器の構造は、下部クラッド層を成膜する工程とコア膜を成膜する工程と導波路コアパターンを形成する工程と、上部クラッドを形成する工程を及び、前記コアパターンを形成する工程と上部クラッド層を成膜する工程の間に、前記第1曲げ導波路の前記直線導波路側の領域、前記第2曲げ導波路の前記直線導波路側の領域、及び前記直線導波路全体を除く基板の上部に、適切な高さにシャドウマスクを配置することで、前記第1曲げ導波路の前記直線導波路側の領域、前記第2曲げ導波路の前記直線導波路側の領域、及び前記直線導波路全体を、異方性エッチングすることで、前記入力導波路から前記直線導波路にかけて、及び前記出力導波路から前記直線導波路にかけて、導波路厚を徐々に断熱的に変化させる工程を有する作製方法により作製される。
【0021】
本発明の光方向性結合器では、光結合を生じない領域に比べて光結合を生じる領域でのV値は小さい、即ち導波路コアからの光電界の染み出し成分は大きくなる。
従って、光結合を生じる領域での2本の導波路のモードの重なりは従来型の光方向性結合器に比べて大きくなる。
【0022】
即ち、光結合を生じる領域における2本の導波路間の光結合も強められ、光方向性結合器の短長化が図られる。
加えて、本光方向性結合器では、光方向性結合器以外の回路要素において損失の増大を引き起こすことがない。
これは、光方向性結合器の曲げ導波路部にモード変換器を内包しているので、光結合を生じない領域及び当該光方向性結合器以外の回路要素においては大きなV値の確保が可能、即ち、導波路コアに対して強い光電界の閉じ込めを維持できるからである。
【0023】
また、光方向性結合器自体においても、その曲げ導波路部のモード変換器は光結合を生じない領域と光結合を生じる領域の間で断熱的に、即ち導波路の閉じ込めを徐々に変化させることでモード変換を行うので、光方向性結合器においても過剰な損失を生じない。
また、光結合を生じる領域における最小V値を1以上とすることで、光方向性結合器自体の放射損失増加も防ぐことができる。
以上のように、本発明によれば、その他の回路要素での伝搬損失増大という光学特性の劣化を引き起こすことなく、光方向性結合器の短長化が可能となる。
【0024】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号をつけ、その繰り返しの説明は省略する。
以下の例では石英系光導波路における光方向性結合器について説明する。
【0025】
〔実施例1〕
本発明の第1の実施例に係る光方向性結合器の概略図及びその導波路コアの屈折率の分布を図1に示す。
本実施例の光方向性結合器は、入力導波路321及び322、第1曲げ導波路323及び324、直線導波路325及び326、第2曲げ導波路327及び328、出力導波路329及び330からなる。
【0026】
距離Sだけ離れた位置にある導波路幅Wの入力導波路321及び322は、第1曲げ導波路323及び324を介して直線導波路325及び326に接続される。
更に、直線導波路325及び326は第2曲げ導波路327及び328を介して、距離Sだけ離れた位置における出力導波路329及び330に接続される。直線導波路325及び336は間隔Gを隔てて、長さLに渡って平行に延在する。
【0027】
また、第1曲げ導波路323及び324は、それぞれ入力導波路321及び322から出力導波路325及び326にかけて、その屈折率がn2からn1へと変化する。
即ち、入力導波路321及び322と第1曲げ導波路323及び324の境界Aから第1曲げ導波路323及び324と直線導波路325及び326の境界Bにかけて、導波路の屈折率はn2からn1までに小さくなる。
【0028】
一方、直線導波路325及び326と第2曲げ導波路327及び328の境界Cから第2曲げ導波路327及び328と出力導波路329と330の境界Dにかけて、導波路の屈折率はn1からn2まで大きくなる。
また、入力導波路321及び322と出力導波路329及び330は一様なn2の屈折率を有し、直線導波路325及び326は一様な屈折率n1を有する。
【0029】
上述の構造を有する光方向性結合器をW=5μm,コア厚みH=5μm,G=2μm,R=10mm,S=250μm,n2=1.4804,n1=1.4692,クラッド屈折率n0=1.4582として作製した。
作製した光方向性結合器の結合率と直線導波路325及び326の長さLの関係を図2に示す。
前記第1曲げ導波路323,324における屈折率変化は、境界A及び境界Bでの連続性を保つため、下式(2)とした。
【0030】
【数2】
Figure 2004151175
【0031】
ここで、x2は境界Aにおける伝搬方向位置,x1は境界Bにおける伝搬方向位置である。
更に、ここでは、第1曲げ導波路323,324にともに式(2)を適用した。即ち、第1曲げ導波路323及び第1曲げ導波路324におけるV値の伝搬方向変化率は等しく設定されることになる。
前記第2曲げ導波路327,328についても、境界C及び境界Dでの連続性を保つように設定した。
【0032】
上記パラメータにおけるV値は、同面積のコアを有する光ファイバのV値に換算して、光結合を生じない領域2ではV2=2.74、光結合を生じる領域1ではV1=1.93である。
50%結合長はL3dB=128μm、光方向性結合器単体の損失は0.05dBであった。
また、ビーム伝搬法による計算によれば、光方向性結合器以外の領域における、半径2mmの90度曲げの伝搬損失は、わずか0.1dBであった。
更に、本パラメータでは、第1曲げ導波路の始端から第2曲げ導波路の終端までの全長は4.6mmであった。
【0033】
本実施例の光方向性結合器は以下の方法により作製した。
本実施例における光方向性結合器の作製方法の概略を図3に示す。
まず、火炎堆積法及び反応性イオンエッチングによる一般的な石英系光導波路の作製法に基づいて、光方向性結合器339を作製した。
このとき、導波路パラメータは導波路屈折率をn2=n1=1.4606とした以外は、前出のパラメータと同様となるように作製した。
【0034】
次に、波長193nmのArFエキシマレーザ335からのレーザ光338を100%ミラー336及びレンズ337を介して光方向性結合器339へ垂直に照射した。
ここで、レンズ337を調整しレーザ光338を導波路コア333にて結像させ、導波路コア333での光強度を260mJ/cm/pu1seとした。
レーザパルスの繰り返しは80ppsであった。
レーザ光照射にあたっては、レーザ光の結像位置が、入力導波路321,322から出力導波路329,330へ向かって移動するように、光方向性結合器339を図4に示す速度で矢印Aの方向へ移動させた。
【0035】
即ち、レーザ光338が入力導波路321,322に照射されているときは、一定速度v2で、第1曲げ導波路323,324に照射されているときは式(2)と逆の特性の速度で、直線導波路325,326に照射されているときは一定速度v1で、第2曲げ導波路に照射されているときには式(2)と逆の特性の速度で、更に出力導波路329,330に照射されているときには一定速度v2にて、光方向性結合器339を移動させた。
ここで、移動速度はv2=0.2mm/h,v1=2mm/hとした。
本設定により、導波路の初期屈折率1.4606を、光結合を生じない領域2での最大屈折率n2=1.4804へと、光結合を生じる領域1での最小屈折率n1=1.4692へと変化させた。
【0036】
本実施例では、導波路屈折率を調整可能なレーザとしてArFエキシマレーザを用いたが、例えばKrFエキシマレーザやCOレーザなどの屈折率変化を誘起可能な光源であれば、光源の種類によらず本発明が適用可能であることは明らかである。
また、石英系光導波路の作製法として火炎堆積法及び反応性イオンエッチングによる方法を用いたが、CVD法などの気相堆積法やスピンオングラス(SOG)のようなゾルゲル法による堆積方法及びイオンミリングなどのエッチング方法を用いても本発明は実現可能であり、光導波路の作製方法によらないことも明らかである。
【0037】
〔実施例2〕
本発明の第2の実施例に係る光方向性結合器の概略図を図5に示す。
本実施例の光方向性結合器は、2つの入力導波路101及び102、第1曲げ導波路103及び104、直線導波路105及び106、第2曲げ導波路107及び108、出力導波路109及び110からなる。
距離Sだけ離れた位置にある導波路幅W1の入力導波路101及び102は、第1曲げ導波路103及び104を介して直線導波路105及び106へ接続される。
【0038】
第1曲げ導波路103は、入力導波路101及び直線導波路105と連続的に接続されつつ、その導波路幅がW1からW2へと断熱的に狭くなる構造を有する。
同様に第1曲げ導波路104は、入力導波路102及び直線導波路106と連続的に接続されつつ、その導波路幅がW1からW2へと断熱的に狭くなる構造を有する。
更に、直線導波路105及び106は長さLlに渡って平行に延在した後、第2曲げ導波路107及び108を経由して出力導波路109及び110へと接続される。
【0039】
ここで、第2曲げ導波路107及び108は第1曲げ導波路103及び104と線対称の構造を有する。
即ち、第2曲げ導波路107は、直線導波路105から出力導波路109に向かってその幅を断熱的にW2からW1まで広げる。
また、第2曲げ導波路108は直線導波路106から出力導波路110に向かって、第1曲げ導波路103(104)と対称に、その幅を断熱的にW2からW1まで広げる。
【0040】
第1、第2曲げ導波路では入力導波路101,102側、及び出力導波路109,110側における横方向V値に比べて、直線導波路105,106側での横方向V値は小さくなる。
即ち、後者の領域では光電界の染み出し成分を大きく設定することができ、同領域で大きな光結合を実現することができる。
本実施例では、W1=7μm,W2=3μm,S=250μm,第1曲げ導波路103,104及び第2曲げ導波路105及び106の曲げ半径R=10mm,導波路厚さH=6μm,導波路の比屈折率差Δ=0.75%として石英系光導波路による光方向性結合器を作製した。
【0041】
作製にあたっては、火炎堆積法、及び反応性イオンエッチングによる一般的な作製工程を採用した。
上記パラメータでは光結合を生じない領域2における横方向V値はV2=2.52であり、光結合を生じる領域1における横方向V値はV1=1.08である。
また、本実施例においては第1曲げ導波路103,104における導波路幅の変化は下式(3)に従った。
【0042】
【数3】
Figure 2004151175
【0043】
導波路幅変化の概略を図5の下部に示す。
ここで、x2は入力導波路101,102と第1曲げ導波路103,104の接点Aの伝搬方向の位置であり、x1は第1曲げ導波路103,104と直線導波路105,106の接点Bの伝搬方向の位置である。
また、第2曲げ導波路107,108に対しても、式(3)と同様の特性を有する導波路幅変化を与えた。
【0044】
本実施例における光方向性結合器の結合率の直線部結合長L1依存性を図6に示す。
50%結合長は115μmであった。
これは従来の光方向性結合器の50%結合長である1439μmに比較して1/10以下の長さである。
また、第1曲げ導波路の始端から第2曲げ導波路の終端までの全長は4.6mmてあり、従来の光歩行性結合器に比較しておよそ3/4に短長化された。
また、本光方向性結合器単体の損失は、0.04dBであった。
これは、従来の光方向性結合器の損失0.02dBに比べて0.02dBの増加が見られるのみである。
【0045】
〔実施例3〕
本発明の第3の実施例に係る光方向性結合器の概略について上面図及び側面図を図7に示す。
本実施例の光方向性結合器は、入力導波路151及び152、第1曲げ導波路153及び154、直線導波路155及び156、第2曲げ導波路157及び158、出力導波路159及び160からなる。
距離S1だけ離れた位置にある導波路幅Wの入力導波路151及び152は、第1曲げ導波路153及び154を介して直線導波路155及び156に接続される。
【0046】
更に、直線導波路155及び156は第2曲げ導波路157及び158を介して距離S2だけ離れた位置にある出力導波路159及び160に接続される。
本実施例における光方向性結合器では、図7側面図に示すように、第1曲げ導波路153及び154、第2曲げ導波路157及び158に、それぞれ、入力導波路151及び152から、出力導波路159及び160から直線導波路155及び156に向かって、断熱的にその厚みがH1からH2となる構造を有する。
【0047】
この構造においては、第1、第2曲げ導波路では入力導波路151,152側、及び出力導波路159,160側における縦方向V値に比べて、直線導波路155,156側での縦方向V値は小さく設定できる。
即ち、後者の領域では光電界の染み出し成分を大きく設定することができ、同領域で大きな光結合を実現することができる。
【0048】
上記構造を有する光方向性結合器をW=6μm,H1=6μm,H2=3μm,S1=400μm,S2=250μm、導波路の比屈折率差Δ=0.75%の石英系光導波路により作製した。
本実施例の光方向性結合器の結合比と直線導波路長Lの関係を図8に示す。
50%結合長はL3dB=140μmであり、第1曲げ導波路の始端から第2曲げ導波路の終端までの全長は5.5mmであった。
また、90度曲げ導波路の損失も0.02dBと非常に低い値が得られた。
【0049】
本実施例の光方向性結合器は、図9に示す方法により作製した。
まず、図9(a)に示すように、工程1として、基板161上に、石英系ガラス微粒子を火炎堆積法により堆積した後、1000℃以上の高温にて溶融固化することで、厚さ30μmの下部クラッド層162を成膜した。
更に、図9(b)に示すように、工程2として、同様にゲルマニウムを添加した石英系ガラス微粒子を火炎堆積法により堆積した後、1000℃以上の高温にて溶融固化し、厚さ6μmのコア層163を成膜した。
本工程2においては、ゲルマニウムの添加量を適切に調整することで、導波路の比屈折率差Δを0.75%に設定した。
【0050】
引き続き、図9(c)に示すように、工程3として、反応性イオンエッチングにより導波路パターン164を形成した。
本工程3により、入力導波路151,152、第1曲げ導波路153,154、直線導波路155,156、第2曲げ導波路157,158及び出力導波路159,160を形成した。
更に、図9(d)に示すように、工程4として、長さLsの窓を有するシャドウマスク165を導波路パターン164の上面から距離Ds=1.2mmの位置に配置した後、工程5において再び反応性イオンエッチングにより、導波路パターン表面を異方性エッチングした。
ここで、シャドウマスク165はパイレックスガラスによるものを用いた。
【0051】
その後、図9(e)に示すように、工程5として、シャドウマスクの窓の直下のコア厚が3μmとなるようにエッチング時間を調整した。
最後に、図9(f)に示すように、工程6として、工程1,2と同様に火炎堆積法で石英系ガラス微粒子を堆積し、1000℃以上の高温にて溶融固化することで、厚さ30μmの上部クラッド層166を成膜した。
本実施例では、石英系光導波路による実現方法に基づいて説明したが、導波路材料及びその成腹方法には拠らず、例えばインジウムリン化合物などの半導体導波路やポリマー導波路を用いても実現可能であり、更にその作製方法はCVD法などの気相堆積法によっても可能である。
【0052】
このように説明したように、本発明は、光方向性結合器を構成している光導波路のV値を断熱的に(連続的に滑らかに)変化させ、光方向性結合器の長さを短く出来るものである。
V値の変化方法としては、屈折率を変化させる方法と、コア幅を変化させる方法、コアの高さを変化させる方法、及びその組み合わせがある。
本発明を用いることにより、結合比50%の通常の光方向性結合器の場合でも、任意の結合比のものでも方向性結合器全体の長さを短くする事が可能である。
【0053】
なお、実施例1では導波路の屈折率変化、実施例2では導波路のコア幅変化、実施例3では導波路のコア厚さ変化の例を示したが、これらV値を変化させる方法は単独に用いても良いし、適宜組み合わせても用いることもできる。
例えば、「コア幅と高さ」の両方とも変化させる、「コア幅と屈折率」の両方とも変化させる、「コア高さと屈折率」の両方とも変化させる、「コア幅と高さと屈折率」の全てを適宜変化させることも本発明の範囲である。
これらの変化方法を適宜組み合わせて用いれば、V値の変化を大きくすることができ、光回路全体の規模を小型化することができる。
また、小型化することにより基板1枚あたりの光回路数を多く取ることができ、価格的にも歩留まり的にも効果がある。
【0054】
【発明の効果】
以上、実施例に基づいて具体的に説明したように、本発明によれば、光方向性結合器以外の導波路領域での損失の増加及び光方向性結合器自体の損失の増加を招くことなく、光方向性結合器の短長化が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における光方向性結合器を示す概略図及びその屈折率分布を示すグラフである。
【図2】本発明の第1の実施例における光方向性結合器の結合比と直線導波路長の関係を示すグラフである。
【図3】本発明の第1の実施例の光方向性結合器の作製方法を示す説明図である。
【図4】本発明の第1の実施例の光方向性結合器の作製方法におけるレーザ光の光方向性結合器への照射位置と照射位置の移動速度の関係を示すグラフである。
【図5】本発明の第2の実施例における光方向性結合器を示す概略図及びその屈折率分布を示すグラフである。
【図6】本発明の第2の実施例における光方向性結合器の結合比と直線導波路長の関係を示すグラフである。
【図7】本発明の第3の実施例における光方向性結合器を示す概略図及び側面図である。
【図8】本発明の第3の実施例の光方向性結合器の結合比と直線導波路長Lの関係を示す図である。
【図9】本発明の第3の実施例の光方向性結合器の作製方法を示す工程図である。
【図10】従来の光方向性結合器を示す概略図である。
【図11】従来の光方向性結合器の50%結合長と導波路幅の関係、及び90度曲げ導波路の伝搬損失と導波路幅の関係を示すグラフである。
【符号の説明】
101,102,151,152,221,222,321,322 入力導波路
103,104,153,154,223,224,323,324 第1曲げ導波路
105,106,155,156,225,226,325,326 直線導波路
107,108,157,158,227,228,327,328 第2曲げ導波路
109,110,159,160,229,230,329,330 出力導波路
161 基板
162 下部クラッド層
163 コア層
164 導波路パターン
165 シャドウマスク
166 上部クラッド層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light directional coupler and a method for manufacturing the light directional coupler. More specifically, the present invention relates to an optical directional coupler that combines and demultiplexes optical power in a waveguide optical device used for optical fiber communication.
[0002]
[Prior art]
With the rapid development of optical communication technology, various optical components have been researched and developed. Among them, a waveguide type optical component based on an optical waveguide on a flat substrate occupies the most important position.
This is because the waveguide-type optical component has a feature that it can be mass-produced with a precision equal to or less than the light wavelength and with good reproducibility by a photolithography technique and a fine processing technique.
In particular, in recent years, the scale and complexity of waveguide-type optical components have been increasing.
With the increase in the scale and complexity of the waveguide, it has been desired to save space per unit chip in order to improve mass productivity.
[0003]
Incidentally, in such a waveguide type optical component, the optical directional coupler is the most basic circuit element.
For example, a large-scale gain equalizer based on an optical waveguide used in a long-distance transmission experiment is designed to realize desired optical characteristics by using 20 50% coupling optical directional couplers and 5 sets of delay lines. It is configured by cascade connection, and its total circuit length is as long as 27.9 cm (see Non-Patent Document 1).
[0004]
The outline of the conventional optical directional coupler used in the above-mentioned document will be described below with reference to the drawings.
FIG. 10 is a schematic diagram of a conventional optical directional coupler.
The conventional optical directional coupler includes two input waveguides 221 and 222, first bent waveguides 223 and 224, straight waveguides 225 and 226, second bent waveguides 227 and 228, and two output optical waveguides. It consists of wave paths 229 and 230.
[0005]
Two input waveguides 221 and 222 having an interval S at which optical coupling does not occur are connected to two linear waveguides 225 and 226 via first bending waveguides 223 and 224, respectively.
Similarly, the two straight waveguides 225 and 226 are connected via the second bending waveguides 227 and 228 to two input waveguides 229 and 230 at an interval S where optical coupling does not occur with each other. You.
[0006]
In the optical directional coupler, for example, a light wave incident from the input waveguide 221 is optically coupled to the other optical waveguide in the region 1 where optical coupling occurs via the first bending waveguide 223. , And output to the output waveguides 229 and 230 via the second bending waveguides 227 and 228.
In general, the coupling ratio of a directional coupler, C.I. R. Is given by the following equation (1).
[0007]
(Equation 1)
Figure 2004151175
[0008]
Here, L is the length of the linear waveguides 225, 226, dL is the coupling length obtained by converting the coupling component generated in the first and second bent waveguides 223, 224, 227, 228 into the length of the linear portion, and L0 is It is a constant.
According to the numerical calculation using the beam propagation method, as the waveguide parameters, width W = 7 μm, thickness H = 6 μm, R = 10 mm, relative refractive index difference Δ = 0.75%, linear waveguide interval G = 3 μm In the optical directional coupler having the structure of FIG. 9, L0 = 3349 μm and dL = −6463 μm, and a 50% coupling length L3dB = 1439 μm in which input light is equally distributed to the output waveguides 229 and 230 is obtained.
The loss is 0.02 dB.
[0009]
In the gain equalizer filter described above, the input waveguide interval S and the output waveguide interval S need to be about 250 μm in order to avoid thermal interference of the thermo-optic effect phase shifter. Using the waveguide parameters in the conventional example, when S = 250 μm, the circuit length of the unit optical directional coupler is 5900 μm from the start of the first bent waveguide to the end of the second bent waveguide.
Therefore, in the gain equalizer filter, the optical directional coupler occupies 11.8 cm of the total circuit length of 27.9 cm.
[0010]
On the other hand, by reducing the waveguide width of the optical circuit, optical coupling can be strengthened, and the optical directional coupler can be shortened.
The conventional method will be described below with reference to numerical examples based on the beam propagation method.
FIG. 11 shows the relationship between the 50% coupling length L3 dB and the waveguide width W, and the propagation loss of a single waveguide with a radius of 5 mm and a 90 ° bending waveguide at the waveguide width W.
The waveguide parameters other than the waveguide width W are the same as in the above-described conventional example.
[0011]
By narrowing the waveguide width, the amount of the optical electric field leaking out of the waveguide cores in the linear waveguides 225 and 226 increases, so that the optical coupling in the region 1 where optical coupling occurs can be strengthened.
From FIG. 10, for example, L3dB = 105 μm when W = 3 μm, and therefore, under the above-mentioned conditions (S = 250 μm), the distance from the start end of the first bent waveguide to the end of the second bent waveguide of the optical directional coupler The circuit length can be reduced to 4570 μm.
However, in the optical waveguide of W = 3 μm, the propagation loss due to 90 ° bending at a bending radius of 5 mm in the waveguide portion other than the optical directional coupler tends to increase to 2.5 dB.
[0012]
[Non-patent document 1]
T. Matsuda et al, "Ultra-broadband Raman-amplified transoceanic system with adaptive gain eq.
[0013]
[Problems to be solved by the invention]
As described above, the conventional optical directional coupler is an indispensable component for forming a functional circuit on the optical waveguide. For example, in the above-described example, the total length of the optical directional coupler is approximately 6 mm. The shortening was a serious problem.
Furthermore, even if the width of the waveguide is reduced, which is one of the measures to shorten the length of the optical directional coupler, the propagation loss in the region other than the optical directional coupler becomes extremely large, so that it is not practical. It was not a good solution.
An object of the present invention is to reduce the length of an optical directional coupler without increasing propagation loss in a region other than the optical directional coupler.
[0014]
[Means for Solving the Problems]
The outline of the invention disclosed in the present invention will be briefly described as follows.
The optical directional coupler according to the present invention includes an optical waveguide formed on a substrate, and in a region other than the coupling region of the optical directional coupler, the propagation loss as an isolated waveguide is small enough to be ignored.
[0015]
In addition, the optical directional coupler is configured such that the two input waveguides gradually approach each other via the first bending waveguide from an interval sufficiently separated so that optical coupling does not occur, while maintaining a constant interval in the linear waveguide. It has a structure that extends in parallel and separates again to a position where optical coupling does not occur via the second bending waveguide, and the waveguide parameters of the first bending waveguide and the second bending waveguide are adiabatic. In the region where optical coupling occurs, the waveguide V value is smaller than the waveguide V value in the region where optical coupling does not occur, and the waveguide has a single mode in the region where optical coupling occurs. The rate of change in the propagation direction of the V value in the two waveguides forming the first bent waveguide is equal, and the rate of change in the propagation direction of the V value in the two waveguides forming the second bent waveguide is equal. Have equal optical properties.
[0016]
Such an optical directional coupler is realized by adiabatically reducing the refractive index of the waveguide from a region where optical coupling does not occur to a region where optical coupling occurs.
In this case, the V value in the region where optical coupling occurs is set smaller than the V value in the region where optical coupling does not occur.
The term "adiabatic" used herein means "diabatic" used in the analysis of light propagation, and does not mean "adiabatic change" used in thermodynamics.
A contact between the input waveguide and the first bent waveguide; a contact between the output waveguide and the second bent waveguide; a contact between the straight waveguide and the first bent waveguide; and a contact between the straight waveguide and the first bent waveguide. By maintaining the continuity of the refractive index of the waveguide in the contact of the second bending waveguide and the first and second bending waveguides and changing the refractive index of the waveguide sufficiently smoothly, An increase in propagation loss can be avoided.
[0017]
Such an optical directional coupler has a structure in which, in an optical waveguide formed on a substrate, the first bending waveguide and the second bending waveguide are irradiated with a laser capable of adjusting the refractive index of the waveguide. The waveguide is manufactured by gradually and adiabatically changing the refractive index of the waveguide from the input waveguide to the straight waveguide and from the output waveguide to the straight waveguide.
Further, the rate of change of the refractive index of the first bending waveguide and the second bending waveguide is such that the irradiation position of the laser beam capable of adjusting the waveguide refractive index with respect to the optical directional coupler is moved at an appropriate speed. Is realized by:
[0018]
In addition to the above method, the present invention can also be realized by narrowing the widths of the first bending waveguide and the second bending waveguide adiabatically from a region where optical coupling does not occur to a region where optical coupling occurs.
In this case, the lateral V value in the region where optical coupling occurs is set smaller than the lateral V value in the region where optical coupling does not occur.
A contact between the input waveguide and the first bent waveguide; a contact between the output waveguide and the second bent waveguide; a contact between the straight waveguide and the first bent waveguide; and a contact between the straight waveguide and the first bent waveguide. Propagation of the optical directional coupler by changing the waveguide width sufficiently smoothly while maintaining the continuity of the waveguide refractive index in the contact of the second bending waveguide and the first and second bending waveguides. An increase in loss can be avoided.
[0019]
In addition to the above-mentioned method, the thickness of the first bending waveguide and the second bending waveguide is adiabatically reduced from a region where optical coupling is not generated to a region where optical coupling is generated, so that a region where optical coupling is generated. Can be reduced as compared with the vertical V value in a region where optical coupling does not occur.
[0020]
Further, the structure of the optical directional coupler includes a step of forming a lower clad layer, a step of forming a core film, a step of forming a waveguide core pattern, and a step of forming an upper clad, Between the step of forming a pattern and the step of forming an upper cladding layer, a region of the first bent waveguide on the straight waveguide side, a region of the second bent waveguide on the straight waveguide side, and By arranging a shadow mask at an appropriate height above the substrate except for the entire straight waveguide, a region of the first bent waveguide on the straight waveguide side, the straight waveguide of the second bent waveguide The region on the side, and the entire straight waveguide are anisotropically etched to gradually insulate the waveguide thickness from the input waveguide to the straight waveguide and from the output waveguide to the straight waveguide. Process to change It is manufactured according to the manufacturing method having.
[0021]
In the optical directional coupler of the present invention, the V value in the region where optical coupling occurs is smaller than that in the region where optical coupling does not occur.
Therefore, the mode overlap between the two waveguides in the region where optical coupling occurs is greater than in the conventional optical directional coupler.
[0022]
That is, the optical coupling between the two waveguides in the region where optical coupling occurs is strengthened, and the length of the optical directional coupler is reduced.
In addition, the present optical directional coupler does not cause an increase in loss in circuit elements other than the optical directional coupler.
This is because the mode converter is included in the bending waveguide portion of the optical directional coupler, so that a large V value can be secured in a region where optical coupling does not occur and circuit elements other than the optical directional coupler. That is, it is possible to maintain a strong optical electric field confinement with respect to the waveguide core.
[0023]
Also in the optical directional coupler itself, the mode converter of the bent waveguide portion adiabatically changes the confinement of the waveguide between the region where optical coupling does not occur and the region where optical coupling occurs, that is, gradually changes the confinement of the waveguide. As a result, mode conversion is performed, so that no excessive loss occurs in the optical directional coupler.
Further, by setting the minimum V value in the region where optical coupling occurs to 1 or more, it is possible to prevent an increase in radiation loss of the optical directional coupler itself.
As described above, according to the present invention, the optical directional coupler can be shortened without causing deterioration of optical characteristics such as increase in propagation loss in other circuit elements.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In all the drawings for describing the embodiments of the present invention, components having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.
In the following example, an optical directional coupler in a silica-based optical waveguide will be described.
[0025]
[Example 1]
FIG. 1 shows a schematic view of an optical directional coupler according to a first embodiment of the present invention and a distribution of a refractive index of a waveguide core thereof.
The optical directional coupler according to this embodiment includes input waveguides 321 and 322, first bending waveguides 323 and 324, straight waveguides 325 and 326, second bending waveguides 327 and 328, and output waveguides 329 and 330. Become.
[0026]
Input waveguides 321 and 322 having a waveguide width W at a position separated by a distance S are connected to linear waveguides 325 and 326 via first bending waveguides 323 and 324.
Further, the straight waveguides 325 and 326 are connected to the output waveguides 329 and 330 at a position separated by the distance S via the second bending waveguides 327 and 328. The straight waveguides 325 and 336 extend in parallel over a length L with an interval G.
[0027]
The refractive index of the first bending waveguides 323 and 324 changes from n2 to n1 from the input waveguides 321 and 322 to the output waveguides 325 and 326, respectively.
That is, from the boundary A between the input waveguides 321 and 322 and the first bent waveguides 323 and 324 to the boundary B between the first bent waveguides 323 and 324 and the straight waveguides 325 and 326, the refractive index of the waveguide is n2 to n1. By then become smaller.
[0028]
On the other hand, from the boundary C between the straight waveguides 325 and 326 and the second bending waveguides 327 and 328 to the boundary D between the second bending waveguides 327 and 328 and the output waveguides 329 and 330, the refractive index of the waveguide is n1 to n2. Up to.
The input waveguides 321 and 322 and the output waveguides 329 and 330 have a uniform refractive index of n2, and the linear waveguides 325 and 326 have a uniform refractive index n1.
[0029]
W = 5 μm, core thickness H = 5 μm, G = 2 μm, R = 10 mm, S = 250 μm, n2 = 1.804, n1 = 1.4692, cladding refractive index n0 = 1.4582.
FIG. 2 shows the relationship between the coupling ratio of the manufactured optical directional coupler and the length L of the linear waveguides 325 and 326.
The change in the refractive index of the first bent waveguides 323 and 324 is expressed by the following equation (2) in order to maintain continuity at the boundary A and the boundary B.
[0030]
(Equation 2)
Figure 2004151175
[0031]
Here, x2 is the propagation direction position at the boundary A, and x1 is the propagation direction position at the boundary B.
Further, here, equation (2) is applied to the first bending waveguides 323 and 324. That is, the rate of change of the V value in the propagation direction in the first bending waveguide 323 and the first bending waveguide 324 is set to be equal.
The second bending waveguides 327 and 328 are also set so as to maintain continuity at the boundary C and the boundary D.
[0032]
The V value in the above parameters is converted into the V value of an optical fiber having a core of the same area, and V2 = 2.74 in the region 2 where optical coupling does not occur, and V1 = 1.93 in the region 1 where optical coupling occurs. is there.
The 50% coupling length was L3 dB = 128 μm, and the loss of the optical directional coupler alone was 0.05 dB.
Further, according to the calculation by the beam propagation method, the propagation loss in a region other than the optical directional coupler in a 90-degree bending with a radius of 2 mm was only 0.1 dB.
Further, with this parameter, the total length from the beginning of the first bending waveguide to the end of the second bending waveguide was 4.6 mm.
[0033]
The optical directional coupler of this example was manufactured by the following method.
FIG. 3 shows an outline of a method for manufacturing the optical directional coupler in the present embodiment.
First, the optical directional coupler 339 was manufactured based on a general method of manufacturing a silica-based optical waveguide by flame deposition and reactive ion etching.
At this time, the waveguide parameters were manufactured in the same manner as the above parameters except that the refractive index of the waveguide was set to n2 = n1 = 1.460.
[0034]
Next, a laser beam 338 from an ArF excimer laser 335 having a wavelength of 193 nm was vertically irradiated on the optical directional coupler 339 via a 100% mirror 336 and a lens 337.
Here, the lens 337 is adjusted to form an image of the laser beam 338 on the waveguide core 333, and the light intensity at the waveguide core 333 is set to 260 mJ / cm. 2 / Pu1se.
The laser pulse repetition was 80 pps.
In irradiating the laser light, the optical directional coupler 339 is moved at the speed shown in FIG. 4 by the arrow A so that the image forming position of the laser light moves from the input waveguides 321 and 322 toward the output waveguides 329 and 330. In the direction of.
[0035]
That is, when the laser beam 338 is applied to the input waveguides 321 and 322, the speed is a constant speed v2. When the laser beam 338 is applied to the first bending waveguides 323 and 324, the speed has a characteristic opposite to that of the equation (2). When the linear waveguides 325 and 326 are irradiated, the output waveguides 329 and 330 have a constant speed v1. When the linear waveguides 325 and 326 are irradiated, the output waveguides 329 and 330 have a speed opposite to that of the equation (2). , The optical directional coupler 339 was moved at a constant speed v2.
Here, the moving speed was v2 = 0.2 mm / h and v1 = 2 mm / h.
With this setting, the initial refractive index 1.4606 of the waveguide is set to the maximum refractive index n2 = 1.8044 in the region 2 where optical coupling does not occur, and the minimum refractive index n1 = 1.804 in the region 1 where optical coupling occurs. 4,692.
[0036]
In this embodiment, an ArF excimer laser is used as a laser whose waveguide refractive index can be adjusted. 2 It is obvious that the present invention is applicable to any light source such as a laser capable of inducing a change in the refractive index regardless of the type of the light source.
In addition, although a method using a flame deposition method and a method using reactive ion etching were used as a method for manufacturing a quartz optical waveguide, a vapor deposition method such as a CVD method, a deposition method using a sol-gel method such as spin-on-glass (SOG), and ion milling. It is apparent that the present invention can be realized even by using an etching method such as that described above, and does not depend on a method of manufacturing an optical waveguide.
[0037]
[Example 2]
FIG. 5 is a schematic diagram of an optical directional coupler according to a second embodiment of the present invention.
The optical directional coupler according to the present embodiment includes two input waveguides 101 and 102, first bending waveguides 103 and 104, straight waveguides 105 and 106, second bending waveguides 107 and 108, an output waveguide 109 and It consists of 110.
Input waveguides 101 and 102 having a waveguide width W1 at a position separated by a distance S are connected to straight waveguides 105 and 106 via first bending waveguides 103 and 104.
[0038]
The first bending waveguide 103 has a structure in which the width of the waveguide is adiabatically narrowed from W1 to W2 while being continuously connected to the input waveguide 101 and the linear waveguide 105.
Similarly, the first bent waveguide 104 has a structure in which the width of the waveguide is adiabatically narrowed from W1 to W2 while being continuously connected to the input waveguide 102 and the linear waveguide 106.
Further, the straight waveguides 105 and 106 extend in parallel over the length Ll, and then are connected to the output waveguides 109 and 110 via the second bending waveguides 107 and 108.
[0039]
Here, the second bending waveguides 107 and 108 have a line-symmetric structure with the first bending waveguides 103 and 104.
That is, the width of the second bent waveguide 107 is adiabatically increased from W2 to W1 from the straight waveguide 105 to the output waveguide 109.
The width of the second bent waveguide 108 is adiabatically increased from W2 to W1 from the straight waveguide 106 to the output waveguide 110, symmetrically with the first bent waveguide 103 (104).
[0040]
In the first and second bent waveguides, the lateral V value on the straight waveguides 105 and 106 is smaller than the lateral V value on the input waveguides 101 and 102 and the output waveguides 109 and 110. .
That is, in the latter region, the seepage component of the optical electric field can be set large, and large optical coupling can be realized in the same region.
In this embodiment, W1 = 7 μm, W2 = 3 μm, S = 250 μm, bending radii R of the first bending waveguides 103 and 104 and second bending waveguides 105 and 106 = 10 mm, waveguide thickness H = 6 μm, and An optical directional coupler using a silica-based optical waveguide was manufactured with the relative refractive index difference Δ = 0.75% of the waveguide.
[0041]
In the production, a general production process using a flame deposition method and reactive ion etching was employed.
With the above parameters, the lateral V value in the region 2 where optical coupling does not occur is V2 = 2.52, and the lateral V value in the region 1 where optical coupling occurs is V1 = 1.08.
In the present embodiment, the change in the waveguide width in the first bent waveguides 103 and 104 complies with the following equation (3).
[0042]
[Equation 3]
Figure 2004151175
[0043]
An outline of the change in the waveguide width is shown in the lower part of FIG.
Here, x2 is the position in the propagation direction of the contact point A between the input waveguides 101, 102 and the first bent waveguides 103, 104, and x1 is the contact point between the first bent waveguides 103, 104 and the linear waveguides 105, 106. B in the propagation direction.
Further, a change in the waveguide width having the same characteristics as in the equation (3) was given to the second bent waveguides 107 and 108.
[0044]
FIG. 6 shows the dependence of the coupling ratio of the optical directional coupler on the linear portion coupling length L1 in this embodiment.
The 50% bond length was 115 μm.
This is 1/10 or less of 1439 μm, which is the 50% coupling length of the conventional optical directional coupler.
The total length from the beginning of the first bending waveguide to the end of the second bending waveguide is 4.6 mm, which is approximately 3/4 shorter than that of the conventional optical walking coupler.
Further, the loss of the present optical directional coupler alone was 0.04 dB.
This is only an increase of 0.02 dB compared to the loss of the conventional optical directional coupler of 0.02 dB.
[0045]
[Example 3]
FIG. 7 shows a schematic top view and a side view of an optical directional coupler according to a third embodiment of the present invention.
The optical directional coupler of the present embodiment includes input waveguides 151 and 152, first bending waveguides 153 and 154, straight waveguides 155 and 156, second bending waveguides 157 and 158, and output waveguides 159 and 160. Become.
The input waveguides 151 and 152 having a waveguide width W at a position separated by the distance S1 are connected to the linear waveguides 155 and 156 via the first bent waveguides 153 and 154.
[0046]
Further, the straight waveguides 155 and 156 are connected to the output waveguides 159 and 160 located at a position separated by the distance S2 via the second bending waveguides 157 and 158.
In the optical directional coupler according to the present embodiment, as shown in the side view of FIG. 7, the first bending waveguides 153 and 154 and the second bending waveguides 157 and 158 output from the input waveguides 151 and 152, respectively. It has a structure in which the thickness is adiabatically changed from H1 to H2 from the waveguides 159 and 160 toward the linear waveguides 155 and 156.
[0047]
In this structure, in the first and second bending waveguides, the vertical direction V values on the straight waveguides 155 and 156 side are compared with the vertical direction V values on the input waveguides 151 and 152 side and the output waveguides 159 and 160 side. The V value can be set small.
That is, in the latter region, the seepage component of the optical electric field can be set large, and large optical coupling can be realized in the same region.
[0048]
An optical directional coupler having the above structure is manufactured using a quartz optical waveguide having W = 6 μm, H1 = 6 μm, H2 = 3 μm, S1 = 400 μm, S2 = 250 μm, and a relative refractive index difference Δ = 0.75% of the waveguide. did.
FIG. 8 shows the relationship between the coupling ratio of the optical directional coupler of this embodiment and the length L of the straight waveguide.
The 50% coupling length was L3 dB = 140 μm, and the total length from the beginning of the first bending waveguide to the end of the second bending waveguide was 5.5 mm.
Further, the loss of the 90-degree bent waveguide was as low as 0.02 dB.
[0049]
The optical directional coupler of this example was manufactured by the method shown in FIG.
First, as shown in FIG. 9A, as a first step, a quartz glass fine particle is deposited on a substrate 161 by a flame deposition method, and then is melted and solidified at a high temperature of 1000 ° C. or more, thereby obtaining a thickness of 30 μm. Was formed.
Further, as shown in FIG. 9 (b), in a step 2, similarly, silica-based glass fine particles to which germanium was added were deposited by a flame deposition method, and then melted and solidified at a high temperature of 1000 ° C. or more to form a 6 μm thick film. The core layer 163 was formed.
In this step 2, the relative refractive index difference Δ of the waveguide was set to 0.75% by appropriately adjusting the amount of germanium added.
[0050]
Subsequently, as shown in FIG. 9C, as a step 3, a waveguide pattern 164 was formed by reactive ion etching.
By this step 3, the input waveguides 151 and 152, the first bent waveguides 153 and 154, the straight waveguides 155 and 156, the second bent waveguides 157 and 158, and the output waveguides 159 and 160 were formed.
Further, as shown in FIG. 9D, in a step 4, after a shadow mask 165 having a window having a length Ls is arranged at a distance Ds = 1.2 mm from the upper surface of the waveguide pattern 164, in a step 5, The surface of the waveguide pattern was again anisotropically etched by reactive ion etching.
Here, the shadow mask 165 was made of Pyrex glass.
[0051]
Thereafter, as shown in FIG. 9E, in step 5, the etching time was adjusted so that the core thickness immediately below the window of the shadow mask was 3 μm.
Finally, as shown in FIG. 9 (f), as step 6, the quartz glass fine particles are deposited by the flame deposition method in the same manner as steps 1 and 2, and are melted and solidified at a high temperature of 1000 ° C. or more, so that the thickness is increased. An upper cladding layer 166 having a thickness of 30 μm was formed.
Although the present embodiment has been described based on a method of realizing a silica-based optical waveguide, it does not depend on the waveguide material and the method of forming the waveguide, and may use a semiconductor waveguide such as an indium phosphide compound or a polymer waveguide. It can be realized, and the manufacturing method can also be performed by a vapor deposition method such as a CVD method.
[0052]
As described above, according to the present invention, the V value of the optical waveguide constituting the optical directional coupler is adiabatically (continuously and smoothly) changed to reduce the length of the optical directional coupler. It can be shortened.
As a method of changing the V value, there are a method of changing the refractive index, a method of changing the core width, a method of changing the height of the core, and a combination thereof.
By using the present invention, the entire length of the directional coupler can be shortened even in the case of a normal optical directional coupler having a coupling ratio of 50% or an arbitrary coupling ratio.
[0053]
In the first embodiment, the refractive index of the waveguide is changed. In the second embodiment, the core width of the waveguide is changed. In the third embodiment, the core thickness of the waveguide is changed. They may be used alone or in combination as appropriate.
For example, change both "core width and height", change both "core width and refractive index", change both "core height and refractive index", "core width, height and refractive index" It is also within the scope of the present invention to appropriately change all of the above.
By appropriately combining these changing methods, the change in the V value can be increased, and the scale of the entire optical circuit can be reduced.
Further, by reducing the size, the number of optical circuits per substrate can be increased, which is effective in terms of cost and yield.
[0054]
【The invention's effect】
As described above, according to the present invention, according to the present invention, the loss in the waveguide region other than the optical directional coupler increases and the loss of the optical directional coupler itself increases. In addition, the length of the optical directional coupler can be shortened.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a light directional coupler according to a first embodiment of the present invention and a graph showing a refractive index distribution thereof.
FIG. 2 is a graph showing the relationship between the coupling ratio of the optical directional coupler and the length of the linear waveguide in the first embodiment of the present invention.
FIG. 3 is an explanatory view showing a method of manufacturing the optical directional coupler according to the first embodiment of the present invention.
FIG. 4 is a graph showing a relationship between an irradiation position of the laser beam to the light directional coupler and a moving speed of the irradiation position in the method of manufacturing the light directional coupler according to the first embodiment of the present invention.
FIG. 5 is a schematic diagram showing a light directional coupler according to a second embodiment of the present invention and a graph showing a refractive index distribution thereof.
FIG. 6 is a graph showing the relationship between the coupling ratio of the optical directional coupler and the length of the linear waveguide according to the second embodiment of the present invention.
FIG. 7 is a schematic diagram and a side view showing an optical directional coupler according to a third embodiment of the present invention.
FIG. 8 is a diagram illustrating a relationship between a coupling ratio of a light directional coupler and a linear waveguide length L according to a third embodiment of the present invention.
FIG. 9 is a process chart showing a method for manufacturing the optical directional coupler according to the third embodiment of the present invention.
FIG. 10 is a schematic diagram showing a conventional optical directional coupler.
FIG. 11 is a graph showing a relationship between a 50% coupling length and a waveguide width of a conventional optical directional coupler, and a relationship between a propagation loss and a waveguide width of a 90-degree bent waveguide.
[Explanation of symbols]
101,102,151,221,221,222,321,322 Input waveguide
103, 104, 153, 154, 223, 224, 323, 324 First bending waveguide
105, 106, 155, 156, 225, 226, 325, 326 Linear waveguide
107, 108, 157, 158, 227, 228, 327, 328 Second bent waveguide
109, 110, 159, 160, 229, 230, 329, 330 Output waveguide
161 substrate
162 Lower cladding layer
163 core layer
164 Waveguide pattern
165 shadow mask
166 Upper cladding layer

Claims (10)

基板上に形成された光導波路により構成され、孤立導波路としての伝搬損失が十分無視できるほど小さい2本の導波路が、光結合が生じない間隔だけ離れた入力導波路から第1曲げ導波路を介して徐々に接近し、直線導波路において一定の間隔を保ちつつ延在し、再び第2曲げ導波路を介して光結合が生じない間隔だけ離れた出力導波路まで離遠し、また前記2本の導波路は線対称構造を有する光方向性結合器であって、前記第1曲げ導波路及び前記第2曲げ導波路において導波路V値が断熱的に変化することにより、その光結合を生じる領域においては、導波路V値が光結合を生じない領域における導波路V値よりも小さく、かつ、光結合を生じる領域において導波路は単一モード導波路であるとともに、前記第1曲げ導波路を構成する2本の導波路におけるV値の伝搬方向変化率は等しく、また、前記第2曲げ導波路を構成する2本の導波路におけるV値の伝搬方向変化率は等しいことを特徴とする光方向性結合器。Two waveguides, each of which is constituted by an optical waveguide formed on a substrate and whose propagation loss as an isolated waveguide is small enough to be negligible, are separated from an input waveguide separated by an interval where optical coupling does not occur from a first bent waveguide. Gradually extending through the linear waveguide while maintaining a constant interval in the straight waveguide, and separated again through the second bending waveguide to an output waveguide separated by an interval where optical coupling does not occur. The two waveguides are optical directional couplers having a line symmetric structure, and the optical coupling is performed by adiabatically changing the waveguide V values in the first bending waveguide and the second bending waveguide. In the region where optical coupling occurs, the waveguide V value is smaller than the waveguide V value in the region where optical coupling does not occur, and in the region where optical coupling occurs, the waveguide is a single mode waveguide and the first bending is performed. Constructing a waveguide 2 Wherein the rate of change in the propagation direction of the V value in the two waveguides is equal, and the rate of change in the propagation direction of the V value in the two waveguides constituting the second bent waveguide is equal. . 光結合を生じない領域から光結合を生じる領域にかけて、前記第1曲げ導波路及び前記第2曲げ導波路の屈折率を断熱的に小さくすることにより、光結合を生じる領域におけるV値が光結合を生じない領域におけるV値に比べて小さくなることを特徴とする請求項1記載の光方向性結合器。By adiabatically reducing the refractive indices of the first bending waveguide and the second bending waveguide from the region where optical coupling does not occur to the region where optical coupling occurs, the V value in the region where optical coupling occurs becomes optically coupled. 2. The optical directional coupler according to claim 1, wherein the value is smaller than a V value in a region where no light is generated. 前記導波路屈折率の断熱的変化は、前記入力導波路と前記第1曲げ導波路の接点、前記出力導波路と前記第2曲げ導波路の接点、前記直線導波路と前記第1曲げ導波路の接点、前記直線導波路と前記第2曲げ導波路の接点、及び前記第1、第2曲げ導波路において十分滑らかであることを特徴とする請求項2記載の光方向性結合器。The adiabatic change in the refractive index of the waveguide is caused by the contact between the input waveguide and the first bent waveguide, the contact between the output waveguide and the second bent waveguide, the straight waveguide and the first bent waveguide. 3. The optical directional coupler according to claim 2, wherein the contact points of the straight waveguide and the second bent waveguide, and the first and second bent waveguides are sufficiently smooth. 4. 光結合を生じない領域から光結合を生じる領域にかけて、前記第1曲げ導波路及び前記第2曲げ導波路の幅を断熱的に狭くすることにより、光結合を生じる領域における横方向V値が光結合を生じない領域における横方向V値に比べて小さくなることを特徴とする請求項1記載の光方向性結合器。By adiabatically narrowing the widths of the first bending waveguide and the second bending waveguide from a region where optical coupling does not occur to a region where optical coupling occurs, the lateral V value in the region where optical coupling occurs becomes light. 2. The optical directional coupler according to claim 1, wherein the optical directional coupler is smaller than a lateral V value in a region where coupling is not generated. 前記導波路幅の断熱的変化は、前記入力導波路と前記第1曲げ導波路の接点、前記出力導波路と前記第2曲げ導波路の接点、前記直線導波路と前記第1曲げ導波路の接点、前記直線導波路と前記第2曲げ導波路の接点、及び前記第1、第2曲げ導波路において十分滑らかであることを特徴とする請求項4記載の光方向性結合器。The adiabatic change in the waveguide width is caused by the contact between the input waveguide and the first bent waveguide, the contact between the output waveguide and the second bent waveguide, and the contact between the straight waveguide and the first bent waveguide. The optical directional coupler according to claim 4, wherein the contact, the contact between the straight waveguide and the second bending waveguide, and the first and second bending waveguides are sufficiently smooth. 光結合を生じない領域から光結合を生じる領域にかけて、前記第1曲げ導波路及び前記第2曲げ導波路厚さを断熱的に薄くすることにより、光結合を生じる領域における縦方向V値が光結合を生じない領域における縦方向V値に比べて小さくなることを特徴とする請求項1記載の光方向性結合器。The thickness of the first bending waveguide and the thickness of the second bending waveguide are adiabatically reduced from the region where optical coupling does not occur to the region where optical coupling occurs, so that the longitudinal V value in the region where optical coupling occurs is reduced. The optical directional coupler according to claim 1, wherein the optical directional coupler is smaller than a vertical V value in a region where coupling does not occur. 光結合を生じる領域における最小V値は1以上であることを特徴とする請求項1,2,3,4,5又は6記載の光方向性結合器。7. The optical directional coupler according to claim 1, wherein a minimum V value in a region where optical coupling occurs is 1 or more. 請求項2又は3に記載した光方向性結合器の製造方法であって、一般的な光導波路作製工程により製造した光方向性結合器において、前記第1曲げ導波路、前記第2曲げ導波路に対して導波路屈折率を調整可能なレーザを照射することにより、前記入力導波路から前記直線導波路にかけて、及び前記出力導波路から前記直線導波路にかけて、導波路屈折率を徐々に断熱的に変化させる工程を有すること特徴とする光方向性結合器の製造方法。4. The method for manufacturing an optical directional coupler according to claim 2, wherein the first bending waveguide and the second bending waveguide are manufactured by a general optical waveguide manufacturing process. By irradiating a laser whose waveguide refractive index can be adjusted, the waveguide refractive index is gradually adiabatic from the input waveguide to the linear waveguide and from the output waveguide to the linear waveguide. A method of manufacturing an optical directional coupler, comprising the step of changing 前記レーザの光方向性結合器への照射位置を適切な速度で移動させることにより、前記導波路屈折率を断熱的に変化させる工程を有する請求項8に記載の光方向性結合器の製造方法。The method for manufacturing a light directional coupler according to claim 8, further comprising a step of adiabatically changing the refractive index of the waveguide by moving an irradiation position of the laser to the light directional coupler at an appropriate speed. . 請求項6に記載した光方向性結合器の製造方法であって、基板上に形成された光導波路により構成された光方向性結合器の作製方法であって、下部クラッド層を成膜する工程とコア膜を成膜する工程と導波路コアパターンを形成する工程と、上部クラッドを形成する工程を有するとともに、前記コアパターンを形成する工程と上部クラッド層を成膜する工程の間、若しくは前記コア膜を成膜する工程と導波路コアパターンを形成する工程の間に、前記第1曲げ導波路の前記直線導波路側の領域、前記第2曲げ導波路の前記直線導波路側の領域、及び前記直線導波路全体を除く基板の上部に、適切な高さにシャドウマスクを配置し、前記第1曲げ導波路の前記直線導波路側の領域、前記第2曲げ導波路の前記直線導波路側の領域、及び前記直線導波路全体を、異方性エッチングすることで、前記入力導波路から前記直線導波路にかけて、及び前記出力導波路から前記直線導波路にかけて、導波路厚を徐々に断熱的に薄くさせる工程を有すること特徴とする光方向性結合器の製造方法。7. The method for manufacturing a light-directional coupler according to claim 6, wherein the method comprises: forming a lower clad layer by forming a light-directional coupler formed by an optical waveguide formed on a substrate. And a step of forming a core film, a step of forming a waveguide core pattern, and a step of forming an upper clad, between the step of forming the core pattern and the step of forming an upper clad layer, or Between the step of forming a core film and the step of forming a waveguide core pattern, a region of the first bent waveguide on the straight waveguide side, a region of the second bent waveguide on the straight waveguide side, And placing a shadow mask at an appropriate height on an upper portion of the substrate except for the entire straight waveguide, a region of the first bent waveguide on the straight waveguide side, and a straight waveguide of the second bent waveguide. Side area and the straight line A step of gradually and adiabatically reducing the thickness of the waveguide from the input waveguide to the linear waveguide and from the output waveguide to the linear waveguide by anisotropically etching the entire waveguide. A method for manufacturing an optical directional coupler, comprising:
JP2002313722A 2002-10-29 2002-10-29 Optical directional coupler and manufacturing method of optical directional coupler Expired - Lifetime JP3883118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313722A JP3883118B2 (en) 2002-10-29 2002-10-29 Optical directional coupler and manufacturing method of optical directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313722A JP3883118B2 (en) 2002-10-29 2002-10-29 Optical directional coupler and manufacturing method of optical directional coupler

Publications (2)

Publication Number Publication Date
JP2004151175A true JP2004151175A (en) 2004-05-27
JP3883118B2 JP3883118B2 (en) 2007-02-21

Family

ID=32458240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313722A Expired - Lifetime JP3883118B2 (en) 2002-10-29 2002-10-29 Optical directional coupler and manufacturing method of optical directional coupler

Country Status (1)

Country Link
JP (1) JP3883118B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148290A (en) * 2005-11-30 2007-06-14 Hitachi Chem Co Ltd Directional optical coupler
JPWO2021038643A1 (en) * 2019-08-23 2021-03-04
CN113009621A (en) * 2019-12-19 2021-06-22 中兴光电子技术有限公司 Directional coupler and beam splitter thereof
CN114355508A (en) * 2022-01-24 2022-04-15 吉林大学 Few-mode waveguide power divider based on directional coupling structure and preparation method thereof
WO2024080245A1 (en) * 2022-10-14 2024-04-18 住友ベークライト株式会社 Optical waveguide and optical wiring component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148290A (en) * 2005-11-30 2007-06-14 Hitachi Chem Co Ltd Directional optical coupler
JP4636439B2 (en) * 2005-11-30 2011-02-23 日立化成工業株式会社 Calculation method of core width and distance between cores of two linear optical waveguides of directional optical coupler
JPWO2021038643A1 (en) * 2019-08-23 2021-03-04
WO2021038643A1 (en) * 2019-08-23 2021-03-04 日本電信電話株式会社 Optical circuit
CN113009621A (en) * 2019-12-19 2021-06-22 中兴光电子技术有限公司 Directional coupler and beam splitter thereof
CN114355508A (en) * 2022-01-24 2022-04-15 吉林大学 Few-mode waveguide power divider based on directional coupling structure and preparation method thereof
CN114355508B (en) * 2022-01-24 2023-12-05 吉林大学 Few-mode waveguide power divider based on directional coupling structure and preparation method thereof
WO2024080245A1 (en) * 2022-10-14 2024-04-18 住友ベークライト株式会社 Optical waveguide and optical wiring component

Also Published As

Publication number Publication date
JP3883118B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
US10241273B2 (en) Polarization rotator and optical signal processing method
JP4208754B2 (en) Optical delay element
JP3976514B2 (en) Manufacturing method of optical waveguide
US9354394B2 (en) Optical components having a common etch depth
Poulsen et al. Advances in silica-based integrated optics
US9297956B2 (en) Optical device, optical transmitter, optical receiver, optical transceiver, and method of manufacturing optical device
Yamada et al. Microphotonics devices based on silicon wire waveguiding system
CN114114540B (en) Design method of efficient compact adiabatic mode converter
CN114167545A (en) Design method of ultra-compact adiabatic mode coupler
CN114326101B (en) Design method of adiabatic mode evolution device
CN111983754A (en) Ultra-compact silicon waveguide mode conversion device based on super surface structure
JP2002228863A (en) Optical coupling structure
US11048045B1 (en) Integrated lens mode size converter
US10082623B2 (en) Rib type optical waveguide and optical multiplexer / demultiplexer using same
JP2005326876A (en) Optical waveguide
JP3883118B2 (en) Optical directional coupler and manufacturing method of optical directional coupler
US20130183440A1 (en) Optical waveguide-type wavelength dispersion compensation device and manufacturing method thereof
JP4114791B2 (en) Laminated optical waveguide
CN114114681B (en) Numerical design method of adiabatic mode coupler
CN114114537B (en) Design method of ultra-compact adiabatic tapered waveguide
Moura et al. Design and optimization of subwavelength silicon photonics edge coupler for cleaved fibers
Yamada et al. Silicon wire waveguiding system: fundamental characteristics and applications
US20100254656A1 (en) Optical waveguide, method for manufacturing the optical waveguide, and optical device provided with the optical waveguide
JP4003658B2 (en) Lens array spot size conversion optical circuit
CN116931170A (en) Grating end face coupler and design method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20061110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3883118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term