JP2004150126A - Bearing wall and steel house using the same - Google Patents

Bearing wall and steel house using the same Download PDF

Info

Publication number
JP2004150126A
JP2004150126A JP2002316452A JP2002316452A JP2004150126A JP 2004150126 A JP2004150126 A JP 2004150126A JP 2002316452 A JP2002316452 A JP 2002316452A JP 2002316452 A JP2002316452 A JP 2002316452A JP 2004150126 A JP2004150126 A JP 2004150126A
Authority
JP
Japan
Prior art keywords
mat
bearing wall
load
steel
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002316452A
Other languages
Japanese (ja)
Other versions
JP3617837B2 (en
Inventor
Yoshimitsu Murahashi
喜満 村橋
Shigeaki Tonai
繁明 藤内
Hiroshi Tanaka
浩史 田中
Hiroshi Ito
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Nippon Steel Corp
Original Assignee
Nichiha Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002316452A priority Critical patent/JP3617837B2/en
Application filed by Nichiha Corp, Nippon Steel Corp filed Critical Nichiha Corp
Priority to PCT/JP2003/005287 priority patent/WO2004040075A1/en
Priority to KR1020077024140A priority patent/KR100891209B1/en
Priority to KR1020057007740A priority patent/KR20050062785A/en
Priority to TW092109586A priority patent/TWI266821B/en
Priority to AU2003227365A priority patent/AU2003227365A1/en
Priority to CNA038248263A priority patent/CN1694992A/en
Publication of JP2004150126A publication Critical patent/JP2004150126A/en
Application granted granted Critical
Publication of JP3617837B2 publication Critical patent/JP3617837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/522Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/527Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement by delivering the materials on a rotating drum, e.g. a sieve drum, from which the materials are picked up by a felt
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/08Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2046Shock-absorbing materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing wall and a steel house using the bearing wall having excellent shearing strength, capable of fully absorbing vibrational energy and low in cost. <P>SOLUTION: This bearing wall 1 comprises a steel frame body 2 formed by framing shape steel 21 in rectangular shape, and a structural face member 3 fixed to the steel frame body 2. The structural face member 3 is formed of a cement plate obtained by dispersing a cement-based inorganic material, a material containing silicic acid, lightweight aggregate and reinforcing fiber in water to form slurry, carrying out sheet forming and dehydration of the slurry to form a single layer mat, winding the single layer mat around a making roll, laminating it in a plurality of layers until reaching a prescribed thickness to form a laminated mat, detaching the laminated mat from the making roll, manufacturing a pressed mat by press molding, and hardening and curing the pressed mat. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁及びこれを用いたスチールハウスに関する。
【0002】
【従来技術】
従来より,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁がある(特許文献1参照)。
即ち,該耐力壁は,通常の枠組壁工法(2×4工法)による壁構造の枠体を薄板軽量形鋼によって構成したものである。そして,構造用面材としては,通常9mm程度の厚みの木質合板が用いられている。
また,このような耐力壁を用いてスチールハウスを構成していた。
【0003】
【特許文献1】
特開2001−55807号公報
【0004】
【解決しようとする課題】
しかしながら,耐力壁が充分に配置できない建物等において耐力壁の高強度化が要求される場合には,上記木質合板を用いた耐力壁は,その耐震特性を充分に得ることが困難であるという問題がある。即ち,建築基準法に基く中規模地震を対象とした1次設計(許容応力度設計),及び大規模地震を対象とした2次設計(保有耐力設計)を満足するせん断強度特性を得ることが困難である。
【0005】
上記1次設計は,中規模地震により耐力壁が損傷を受けないような設計であり,上記2次設計は,大規模地震の際に振動エネルギーを吸収して建物の崩壊を防ぐ設計である。
即ち,せん断強度と振動エネルギー吸収性とが要求される。
【0006】
また,1次設計,2次設計に要求される値は,種々の条件によって異なる。1次設計に要求される値は,建物の形状や立地条件によって決まる。2次設計に要求される値は,構造用面材そのものの特性によって支配される。そして,構造用面材の降伏後,著しい耐力上昇や耐力低下が殆どなく,面材降伏後も充分に変形する(せん断変形角0.03rad)特性をもつ面材を使用した場合,2次設計の値は1次設計の値の約1.5倍となる。
即ち,このような特性をもつ面材を使用した場合,例えば,図11に示すごとく,耐力壁に与えた荷重とこれによるせん断変形角との関係を表すグラフにおいて,点P,点Qの示す値が,それぞれ1次設計,2次設計に要求される(実施例3参照)。
【0007】
ところが,上記構造用面材として木質合板を用いた場合には,2次設計の要求値が1次設計の値の約2.0倍と大きくなり,これを満足させる必要がある。
そこで,厚みを12mmと大きくした木質合板を用いて耐力壁を構成することにより,上記1次設計,2次設計を満足させることはできる。しかし,この場合,耐力壁の最大耐力は大きくなるが,この最大耐力に相当する荷重に充分耐えることができるスチール枠体やアンカーボルト,ホールダウン金物などの固定具等が必要となる。これは,建築基準法により,構造用面材の最大耐力に対応可能な枠体や固定具等の強度が定められているからである。従って,この場合にはコストアップにつながるという問題がある。
【0008】
そのため,上記耐力壁の荷重−変形曲線としては,図11の曲線L0に示すごとく,上記1次設計の要求値を通過すると共に2次設計の要求値に達した後,耐力が変化しない状態で変形が続くものであって,上記2次設計の要求値が大きすぎない(1次設計の要求値の約1.5倍程度)のものが理想である。以下これを「理想曲線」という。
逆に,かかる理想曲線に近似した荷重−変形曲線を実現することにより,せん断強度確保,振動エネルギー吸収性確保,及び低コストを実現することができるといえる。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたもので,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価な耐力壁,及びこれを用いたスチールハウスを提供しようとするものである。
【0010】
【課題の解決手段】
第1の発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁であって,
上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなることを特徴とする耐力壁にある(請求項1)。
【0011】
次に,本発明の作用効果につき説明する。
上記構造用面材は,上記軽量骨材及び補強繊維を原料に混合させているため,上記単層マット1層あたりの強度を向上させることができる。
また,上記構造用面材は,上記のごとく,単層マットを積層した積層マットを形成することにより得られる。即ち,上記構造用面材は,層状に形成されるため,せん断強度,靱性に優れる。
【0012】
このように,上記のような原料及び方法で得られたセメント板からなる上記構造用面材は,充分なせん断強度を有すると共に充分な靱性を有する。
上記耐力壁は,かかるせん断強度及び靱性に優れた構造用面材を上記スチール枠体に固定してなるため,充分なせん断強度及び靱性を有する。そして靱性に優れていることにより上記耐力壁は比較的大きく撓むことができ,入力された振動エネルギーを充分に吸収することができる。
【0013】
また,上記セメント板からなる構造用面材は,例えば,上記積層マットの形成時において積層数や板厚を適宜調整することにより,最大耐力を必要充分な大きさに調整することができる。即ち,最大耐力を大きくしすぎることを防ぎ,上記スチール枠体やアンカーボルト,ホールダウン金物などの固定具等の強度を極端に大きくする必要性が生じることを防ぐことができる。それ故,安価な耐力壁及び構造躯体を得ることができる。
【0014】
また,上記の構成により,上記耐力壁の荷重−変形曲線に関しても,上述した理想曲線(図11の曲線L0参照)に近似したものとすることができる(実施例3参照)。特に,上記積層マットの形成時において積層数を適宜調整することにより,耐力壁の荷重−変形曲線を上記理想曲線に近付けることができる。
【0015】
以上のごとく,本発明によれば,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価な耐力壁を提供することができる。
【0016】
第2の発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁を有するスチールハウスであって,上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなることを特徴とするスチールハウスにある(請求項2)。
【0017】
本スチールハウスは,上述した理想曲線(図11の曲線L0)に近似した荷重−変形曲線を実現することができる耐力壁からなる(実施例3参照)。
従って,本発明によれば,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価なスチールハウスを提供することができる。
【0018】
【発明の実施の形態】
上記第1の発明(請求項1)又は第2の発明(請求項2)において,上記形鋼として,例えば,厚さ0.8〜1.6mmの薄板を用いた薄板軽量形鋼を用いることができる。
また,上記セメント系無機材料は,例えば,ポルトランドセメント,高炉スラグセメント,フライアッシュセメント,シリカセメント,アルミナセメント,白色セメント等より選ばれる一種又は二種以上からなる。
【0019】
上記ケイ酸含有物質は,例えば,スラグ,フライアッシュ,ケイ砂,ケイ石粉,シリカフューム,珪藻土等より選ばれる一種又は二種以上からなる。
上記軽量骨材は,例えば,パーライト,バーミキュライト,シラスバルーン,セメント板の廃材粉砕物等より選ばれる一種又は二種以上からなる。
【0020】
上記補強繊維は,例えば,木質パルプ(NUKP,NBKP,LUKP,LBKP等),木粉,木質繊維束等の木質補強繊維,ポリプロピレン繊維,ビニロン繊維,アラミド繊維等の合成補強繊維,セピオライト,ワラストナイト等の鉱物補強繊維等より選ばれる一種又は二種以上からなる。
【0021】
また,上記スラリーを作製するに当っては,上記セメント系無機材料,ケイ酸含有物質,軽量骨材,補強繊維のほかに,例えば,蟻酸カルシウム,硫酸アルミニウム等の硬化促進剤,パラフィン,ワックス,界面活性剤等の防水剤や撥水剤等を分散させてもよい。
【0022】
また,上記スラリーの固形分濃度は,5〜20質量%とすることが好ましい。これにより,効率よく積層マットの所定の厚みを得ることができる。上記濃度が5質量%未満の場合には,単層マットの厚みが薄すぎて,所定の厚みになるまで多層に積層する必要があり,生産効率が低下するおそれがある。一方,20質量%を超えると,単層マットの厚みが厚すぎて,脱水効率が低下し,積層界面における密着性が低下するおそれがある。
【0023】
また,上記構造用面材は,例えば,厚み10〜15mm,比重0.8〜1.1,曲げ強度8〜14N/mmであることが好ましい。また,上記積層マットは,上記単層マットを5〜10枚積層してなることが好ましい。
【0024】
【実施例】
(実施例1)
本発明の実施例にかかる耐力壁及びこれを用いたスチールハウスにつき,図1〜図8を用いて説明する。
上記耐力壁1は,図1〜図3に示すごとく,形鋼21を矩形状に枠組みしてなるスチール枠体2(図4〜図6)と,該スチール枠体2に固定された構造用面材3とからなる。
【0025】
上記構造用面材3は,以下のようにして得られたセメント板からなる。
まず,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリー41とする。図7に示すごとく,該スラリー41を抄造脱水して単層マットをフォーミングする。該単層マットをメイキングロール51に巻き取り,所定の厚みになるまで複数層積層して積層マット43を形成する。該積層マット43を上記メイキングロール51から切り離す。この積層マット43をプレス成形してプレスマットを作製し,該プレスマットを硬化養生する。
その後,外形加工等を行うことにより,上記セメント板からなる構造用面材3を得る。
【0026】
また,上記形鋼21としては,厚さ約1.0mm程度の薄板を用いた薄板軽量形鋼を用いる。そして,図5,図6に示すごとく,上記スチール枠体2における上下方向の縦材211としては,断面略C字形状のC形鋼を用い,左右方向の横材212としては,断面略コ字状の溝形鋼を用いる。
【0027】
また,図4,図6に示すごとく,上記スチール枠体2の左右側辺には,2本縦材211(C形鋼)を背面同士を重ねてビス11により固定したものをそれぞれ配する。そして,上記左右の縦材211の下方における内側には,耐力壁1を基礎に固定するためのホールダウン金物23が固定されている。
また,上記スチール枠体2の左右に関する略中央部には,縦材211(C形鋼)を配設している。
【0028】
また,図5に示すごとく,上記スチール枠体2の上辺及び下辺には,上記横材212(溝形鋼)がその開口面を向かい合わせるようにしてそれぞれ配されている。そして,該横材212と上記縦材211とは,ビス11により固定されている。
図1〜図3に示すごとく,上記スチール枠体2の片面に上記構造用面材3を固定することにより耐力壁1を得る。即ち,上記スチール枠体2の外形と略同形状の構造用面材3を,ビス12を用いて上記スチール枠体2に固定する。
【0029】
次に,上記構造用面材3の製造方法につき詳説する。
即ち,まず,上記セメント系無機材料としてのポルトランドセメント35質量%,上記ケイ酸含有物質としてのスラグ25質量%とフライアッシュ10質量%,上記軽量骨材としてのパーライト10質量%,上記補強繊維としての木質パルプ10質量%,及び軽量骨材としてのリジェクト10質量%を混合する。
この原料混合物を水に分散させて,固形分約12質量%のスラリー41とする。
【0030】
該スラリー41を,図7に示すフローオン式の抄造機5の原料ボックス52に投入する。該抄造機5は,上記メイキングロール51と,原料フローボックス56と,サクションボックス57と,上記メイキングロール51に接触すると共に上記原料フローボックス56の下方及び上記サクションボックス57の上面を通過しながら循環するフェルト55とを有する。
【0031】
上記原料ボックス52に投入されたスラリー41は,原料フローボックス56に供給され,該原料フローボックス56から上記フェルト55上に流される。フェルト55上に流されたスラリー41は,上記サクションボックス57による吸引によって脱水される。これにより,フェルト55上に薄い原料の層からなる単層マットが形成される。
【0032】
このようにしてフェルト55上に形成された単層マットは,メイキングロール51に巻き取られて積層されることにより,積層マット43が形成される。そして,単層マット7層分が積層された時点でカッター59によって切断,展開して,上記積層マット43をメイキングロール51から切り離す。その後,積層マット43をプレス成形してプレスマットとする。
【0033】
該プレスマットを,50〜80℃,湿度90〜100RHの条件で,時間7〜30時間硬化養生する。
その後,外形加工等を行うことにより,上記セメント板からなる構造用面材3を得る。該構造用面材3は,厚み10〜15mm,比重0.8〜1.1,曲げ強度8〜14N/mmである。
【0034】
また,図8に示すごとく,上記耐力壁1を複数用いて,これらを組み付けていくことにより,スチールハウス6を構築することができる。
【0035】
次に,本例の作用効果につき説明する。
上記構造用面材3は,上記軽量骨材及び補強繊維を原料に混合させているため,上記単層マット1層あたりの強度を向上させることができる。
また,上記構造用面材3は,上記のごとく,単層マットを積層した積層マットを形成することにより得られる。即ち,上記構造用面材3は,層状に形成されるため,せん断強度,靱性に優れる。
【0036】
このように,上記のような原料及び方法で得られたセメント板からなる上記構造用面材3は,充分なせん断強度を有すると共に充分な靱性を有する。
上記耐力壁1は,このようにせん断強度及び靱性に優れた構造用面材3を上記スチール枠体2に固定してなるため,充分なせん断強度及び靱性を有する。そして靱性に優れていることにより上記耐力壁1は比較的大きく撓むことができ,入力された振動エネルギーを充分に吸収することができる。
【0037】
また,上記セメント板からなる構造用面材3は,上記積層マットの形成時において積層数や板厚を適宜調整することにより,最大耐力を必要充分な大きさに調整することができる。即ち,最大耐力を大きくしすぎることを防ぎ,上記スチール枠体2やビス11,12等の強度を極端に大きくする必要性が生じることを防ぐことができる。それ故,安価な耐力壁を得ることができる。
【0038】
また,上記の構成により,上記耐力壁1の荷重−変形曲線に関しても,上述した理想曲線(図11の曲線L0)に近似したものとすることができる(実施例3参照)。特に,上記積層マットの形成時において積層数を適宜調整することにより,耐力壁1の荷重−変形曲線を上記理想曲線に近付けることができる。
【0039】
以上のごとく,本例によれば,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価な耐力壁及びスチールハウスを提供することができる。
【0040】
(実施例2)
本例は,図9に示すごとく,構造用面材3を製造するに当り,いわゆるハチェック式の抄造機50を用いたものである。
該抄造機50は,メイキングロール51と,回転シリンダー53が配設された複数のインレットボックス54と,上記メイキングロール51と上記回転シリンダー53とに接触しながらこれらの間を循環するフェルト55とを有する。
【0041】
上記抄造機50の原料ボックス52に投入されたスラリー41は,各インレットボックス54に供給され,上記回転シリンダー53の外周表面において脱水されて薄い原料の層が形成される。この原料の層は,上記フェルト55に吸着されて単層マットを形成する。また,上記複数の回転シリンダー53の外周表面に形成された原料の層は,上記フェルト55上において重なる。
【0042】
このようにしてフェルト55上に形成された単層マットは,メイキングロール51に巻き取られて積層されることにより,積層マット43が形成される。そして,単層マット7層分が積層された時点でカッター59によって切断,展開して,上記積層マット43をメイキングロール51から切り離す。その後,積層マット43をプレス成形してプレスマットとする。
以下,実施例1と同様の方法で構造用面材3を製造する。
また,その他は実施例1と同様であり,本例によっても実施例1と同様の作用効果を得ることができる。
【0043】
(実施例3)
本例は,図10,図11に示すごとく,本発明の耐力壁の面内せん断強度特性につき評価した例である。
試験体として使用した耐力壁1は,実施例1に示したものである(図1〜図3)。該耐力壁1の外形寸法は,縦3030mm,横910mm。スチール枠体2の前後幅は92mm,構造用面材2の厚みは12mmである。
【0044】
上記ビス12の固定位置は,上記スチール枠体2における左右端の縦材211と,上辺,下辺の横材212に対しては,基本的に150mm間隔とする。また,上記スチール枠体2の左右に関する略中央部に配された縦材211に対しては,基本的に300mm間隔とする。また,ビス12の直径は,4.2mmである。
せん断試験方法は,(財)日本建築センター評定書BCJ−LS−395「KC型スチールハウス タイプA」に従った。
【0045】
具体的には,図10に示すごとく,上記耐力壁1をせん断試験機7にセットする。該せん断試験機7は,前後に対向配置された2つの固定台71,72と,一方の固定台71に対して左右方向に移動可能に取り付けられた可動押圧部73と,該可動押圧部73を移動させるシリンダ74とを有する。
上記可動押圧部73は,上記耐力壁1の上辺13に沿って左方又は右方へ向って荷重をかけていく。
【0046】
これにより,上記耐力壁1は,左方又は右方へ撓むように変形していく。このときの荷重とせん断変形角とを測定し,両者の関係を示したものが,図11に示す荷重−変形曲線である。本発明の耐力壁1についての荷重−変形曲線は,符号L1を付したものである。図11において,縦軸が上記荷重を耐力壁1の左右幅で割った値であり,横軸がせん断変形角である。縦軸の荷重は,耐力壁1の耐力に対応する。
【0047】
図11において,符号L0を付したものが,上述した理想曲線である。即ち,1次設計の要求値を通過すると共に2次設計の要求値に達した後,耐力が変化しない状態で変形が続くという変形特性をあらわす曲線である。
ここで,上記1次設計の要求値は,11.0kN/mであり,上記2次設計の要求値は,16.5kN/mである。
【0048】
図11に示すごとく,本発明の耐力壁1の変形曲線L1は,上記理想曲線L0に極めて近似している。このことから,本発明の耐力壁1によれば,せん断強度確保,振動エネルギー吸収性確保,及び低コストを実現することができることが分かる。
【0049】
(比較例)
本例は,比較のため,本発明品とは異なる他の種々の構造用面材を用いた耐力壁の面内せん断強度特性を測定した例である。実験方法は上記実施例3に示したとおりである。
【0050】
比較試料1としては,一般的に用いられる9mm木質合板を構造用面材として用いた例である。
比較試料2としては,12.5mm石こうボードを構造用面材として用いた例である。
比較試料3としては,12.5mm木質合板を構造用面材として用い,スチール枠体2に対する外周のビス固定間隔を75mmとした例である。比較例3については,直径4.8mmのビスを用いた。
その他は,実施例3と同様である。
【0051】
比較試料1,2,3について面内せん断強度特性を測定した結果は,それぞれ,図11における曲線L21,L22,L23に示す。
即ち,比較試料1(曲線L21)及び比較試料2(曲線L22)は,1次設計及び2次設計の要求値を大きく下回り,最大耐力も不充分であった。そして,上記理想曲線L0から大きく外れた荷重−変形曲線となった。
【0052】
また,比較試料3(曲線L23)は,1次設計及び2次設計の要求値を満たすが,その最大耐力が極めて大きく,上記理想曲線L0から大きく外れる。
従って,この最大耐力に充分耐えることができるスチール枠体やアンカーボルト,ホールダウン金物などの固定具等が必要となり,コストアップにつながるという問題が生ずる。
【0053】
(実施例4)
本例は,本発明の耐力壁に用いる構造用面材の物性について,他のセメント板と比較した例である。
即ち,実施例1において示した構造用面材2について,その撓み量と比重を測定した。撓み量は,破壊時における試験体の中央部の変位を測定したものである。
撓み量の測定については,JIS A 1408に準じ,試験体としては500×400mm,厚み12mmのものを用いた。
【0054】
比較として,以下の比較試料4,5についても同様の測定をした。
比較試料4としては,セメント75質量%,木片25質量%に適量の水を加えて混合した原料を,型板上に散布し,プレス成形した,いわゆる乾式製法によって製造したセメント板を用いた。即ち,軽量骨材,補強繊維が添加されておらず,湿式製法により得たものではない。
【0055】
比較試料5としては,乾式製法によって,表裏層とその間に配した芯材とからなる三層構造のセメント板を用いた。即ち,上記表裏層として,セメント40質量%,ケイ砂25質量%,木片15質量%,木粉5質量%,リジェクト15質量%に適量の水を加えて混合した原料を配し,上記芯材として,セメント35質量%,ケイ砂20質量%,木質繊維束10質量%,木片5質量%,リジェクト28質量%,発泡ポリスチレンビーズ2質量%に適量の水を加えて混合した原料を配したものである。
なお,各試料は,それぞれ5個ずつ用意し測定した(n=5)。測定の結果を表1に示す。
【0056】
【表1】

Figure 2004150126
【0057】
表1から分かるように,本発明の構造用面材は,撓み量が大きく,比重が低い。撓み量が大きいことから,上記構造用面材は靱性が高いといえると考えられる。
また,比重が低いことは,振動エネルギーの吸収性,靱性の高さにつながると考えられる。
【図面の簡単な説明】
【図1】実施例1における,耐力壁の正面図。
【図2】実施例1における,耐力壁の側面図。
【図3】実施例1における,耐力壁の上面図。
【図4】実施例1における,スチール枠体の正面図。
【図5】実施例1における,スチール枠体の側面図。
【図6】図4のA−A線矢視断面図。
【図7】実施例1における,フローオン式の抄造機の説明図。
【図8】実施例1における,スチールハウスの一部の斜視図。
【図9】実施例2における,ハチェック式の抄造機の説明図。
【図10】実施例3における,せん断試験機の説明図。
【図11】実施例3における,各種耐力壁の面内せん断強度特性を表す線図。
【符号の説明】
1...耐力壁,
11,12...ビス,
2...スチール枠体,
21...形鋼,
3...構造用面材,
5,50...抄造機,
6...スチールハウス,
7...せん断試験機,[0001]
【Technical field】
TECHNICAL FIELD The present invention relates to a load-bearing wall comprising a steel frame formed by forming a shape steel into a rectangular shape, a structural panel fixed to the steel frame, and a steel house using the same.
[0002]
[Prior art]
BACKGROUND ART Conventionally, there is a load-bearing wall composed of a steel frame formed by shaping a shaped steel into a rectangular shape and a structural surface material fixed to the steel frame (see Patent Document 1).
That is, the load-bearing wall is formed by forming a frame body having a wall structure by a normal framed wall construction method (2 × 4 construction method) from a thin plate lightweight steel. As a structural face material, a wood plywood having a thickness of about 9 mm is usually used.
In addition, steel houses were constructed using such load-bearing walls.
[0003]
[Patent Document 1]
JP 2001-55807 A
[Problem to be solved]
However, when the strength of the bearing wall is required to be increased in buildings where the bearing wall cannot be arranged sufficiently, it is difficult to obtain the seismic characteristics of the bearing wall using the wood plywood. There is. In other words, it is possible to obtain shear strength characteristics that satisfy the primary design (allowable stress design) for medium-scale earthquakes and the secondary design (holding strength design) for large-scale earthquakes based on the Building Standards Law. Have difficulty.
[0005]
The primary design is designed so that the load-bearing walls are not damaged by a medium-scale earthquake, and the secondary design is a design that absorbs vibration energy during a large-scale earthquake to prevent building collapse.
That is, shear strength and vibration energy absorption are required.
[0006]
The values required for the primary design and the secondary design differ depending on various conditions. The values required for the primary design are determined by the shape and location of the building. The values required for the secondary design are governed by the properties of the structural facings themselves. When the structural material is yielded, there is almost no significant increase or decrease in proof stress, and the material is sufficiently deformed even after yielding (shear deformation angle 0.03 rad). Is about 1.5 times the value of the primary design.
That is, when a face material having such characteristics is used, for example, as shown in FIG. 11, in the graph showing the relationship between the load applied to the load-bearing wall and the shear deformation angle due to this, points P and Q are shown. Values are required for the primary design and the secondary design, respectively (see Embodiment 3).
[0007]
However, when wood plywood is used as the structural surface material, the required value of the secondary design is about 2.0 times as large as the value of the primary design, and it is necessary to satisfy this.
Therefore, the primary design and the secondary design can be satisfied by forming the load-bearing wall using a wooden plywood having a thickness as large as 12 mm. However, in this case, although the maximum strength of the load-bearing wall becomes large, a fixing device such as a steel frame, an anchor bolt, and a hole-down hardware that can sufficiently withstand a load corresponding to the maximum strength is required. This is because the Building Standards Law stipulates the strength of frames and fixtures that can support the maximum strength of structural structural materials. Therefore, in this case, there is a problem that the cost is increased.
[0008]
Therefore, as shown in a curve L0 in FIG. 11, the load-deformation curve of the bearing wall passes the required value of the primary design and reaches the required value of the secondary design. It is ideal that the deformation continues and the required value of the secondary design is not too large (about 1.5 times the required value of the primary design). Hereinafter, this is called an "ideal curve".
Conversely, by realizing a load-deformation curve approximating the ideal curve, it can be said that shear strength, vibration energy absorption, and low cost can be realized.
[0009]
The present invention has been made in view of such conventional problems, and aims to provide an inexpensive load-bearing wall which has excellent shear strength and can sufficiently absorb vibration energy, and a steel house using the same. Is what you do.
[0010]
[Means for solving the problem]
A first invention is a load-bearing wall comprising a steel frame formed by framing a shaped steel into a rectangular shape, and a structural face material fixed to the steel frame,
The structural surface material is formed by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water to form a slurry, paper-forming and dewatering the slurry, forming a single-layer mat, and forming the single-layer mat. The mat is wound up on a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-formed to produce a press mat, and the press mat is cured. A load-bearing wall comprising a cement board obtained by curing (claim 1).
[0011]
Next, the operation and effect of the present invention will be described.
In the structural face material, since the lightweight aggregate and the reinforcing fiber are mixed in the raw material, the strength per one layer of the single-layer mat can be improved.
Further, the structural face material can be obtained by forming a laminated mat in which a single-layer mat is laminated as described above. That is, since the structural face material is formed in a layer shape, it is excellent in shear strength and toughness.
[0012]
As described above, the structural face plate made of the cement board obtained by the above-described raw materials and methods has sufficient shear strength and sufficient toughness.
The load-bearing wall has sufficient shear strength and toughness because the structural face material having excellent shear strength and toughness is fixed to the steel frame. Due to the excellent toughness, the load bearing wall can bend relatively large, and the input vibration energy can be sufficiently absorbed.
[0013]
In addition, for the structural face material made of the cement board, the maximum yield strength can be adjusted to a necessary and sufficient size, for example, by appropriately adjusting the number of layers and the sheet thickness at the time of forming the laminated mat. That is, it is possible to prevent the maximum proof stress from being excessively increased, and to prevent the necessity of extremely increasing the strength of the steel frame, the anchor bolt, the fixture such as the hole-down hardware, and the like. Therefore, inexpensive bearing walls and structural frames can be obtained.
[0014]
Further, with the above configuration, the load-deformation curve of the load-bearing wall can be approximated to the above-described ideal curve (see the curve L0 in FIG. 11) (see the third embodiment). In particular, the load-deformation curve of the load-bearing wall can be made closer to the ideal curve by appropriately adjusting the number of layers when forming the laminated mat.
[0015]
As described above, according to the present invention, it is possible to provide an inexpensive load-bearing wall that is excellent in shear strength and can sufficiently absorb vibration energy.
[0016]
According to a second aspect of the present invention, there is provided a steel house having a load-bearing wall comprising a steel frame formed by forming a shaped steel into a rectangular shape and a structural panel fixed to the steel frame. For the material, a cement-based inorganic material, a silicate-containing material, a lightweight aggregate and reinforcing fibers are dispersed in water to form a slurry, and the slurry is formed and dewatered to form a single-layer mat. The laminated mat is formed by laminating a plurality of layers to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-formed to produce a press mat, and cured and cured. A steel house comprising the obtained cement plate (claim 2).
[0017]
This steel house is made of a load-bearing wall capable of realizing a load-deformation curve similar to the above-mentioned ideal curve (curve L0 in FIG. 11) (see Example 3).
Therefore, according to the present invention, it is possible to provide an inexpensive steel house having excellent shear strength and capable of sufficiently absorbing vibration energy.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the first invention (Claim 1) or the second invention (Claim 2), as the section steel, for example, a thin sheet lightweight section steel having a thickness of 0.8 to 1.6 mm is used. Can be.
The cement-based inorganic material is, for example, one or more selected from Portland cement, blast furnace slag cement, fly ash cement, silica cement, alumina cement, white cement, and the like.
[0019]
The silicic acid-containing substance is, for example, one or more selected from slag, fly ash, silica sand, silica stone powder, silica fume, diatomaceous earth, and the like.
The lightweight aggregate is, for example, one or more selected from perlite, vermiculite, shirasu balloon, pulverized waste material of cement board, and the like.
[0020]
The reinforcing fibers include, for example, wood pulp (NUKP, NBKP, LUKP, LBKP, etc.), wood reinforcing fibers such as wood flour, wood fiber bundles, synthetic reinforcing fibers such as polypropylene fibers, vinylon fibers, and aramid fibers, sepiolite, and warast. One or more selected from mineral reinforcing fibers such as knight.
[0021]
In preparing the slurry, in addition to the cement-based inorganic material, the silicate-containing material, the lightweight aggregate, and the reinforcing fibers, for example, a hardening accelerator such as calcium formate and aluminum sulfate, paraffin, wax, A waterproofing agent such as a surfactant or a water repellent may be dispersed.
[0022]
The solid content of the slurry is preferably 5 to 20% by mass. Thereby, the predetermined thickness of the laminated mat can be efficiently obtained. If the above concentration is less than 5% by mass, the thickness of the single-layer mat is too thin, and it is necessary to laminate the single-layer mat to a predetermined thickness, and the production efficiency may be reduced. On the other hand, if it exceeds 20% by mass, the thickness of the single-layer mat is too large, the dewatering efficiency is reduced, and the adhesion at the lamination interface may be reduced.
[0023]
Further, it is preferable that the structural face material has, for example, a thickness of 10 to 15 mm, a specific gravity of 0.8 to 1.1, and a bending strength of 8 to 14 N / mm 2 . It is preferable that the laminated mat is formed by laminating 5 to 10 single-layer mats.
[0024]
【Example】
(Example 1)
A bearing wall according to an embodiment of the present invention and a steel house using the same will be described with reference to FIGS.
As shown in FIGS. 1 to 3, the load-bearing wall 1 includes a steel frame 2 (FIGS. 4 to 6) formed by forming a shaped steel 21 into a rectangular shape, and a structural frame fixed to the steel frame 2. And a face material 3.
[0025]
The structural face material 3 is made of a cement plate obtained as follows.
First, a slurry 41 is prepared by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water. As shown in FIG. 7, the slurry 41 is formed and dewatered to form a single-layer mat. The single-layer mat is wound around a making roll 51, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat 43. The laminated mat 43 is separated from the making roll 51. The laminated mat 43 is press-molded to produce a press mat, and the press mat is cured and cured.
Thereafter, the structural face material 3 made of the cement plate is obtained by performing an outer shape processing or the like.
[0026]
Further, as the above-mentioned shaped steel 21, a thin, lightweight shaped steel using a thin plate having a thickness of about 1.0 mm is used. As shown in FIGS. 5 and 6, a C-shaped steel having a substantially C-shaped cross section is used as the vertical member 211 in the vertical direction of the steel frame 2, and a horizontal member 212 is used as the horizontal member 212 in the horizontal direction. U-shaped channel steel is used.
[0027]
As shown in FIGS. 4 and 6, on the left and right sides of the steel frame 2, two vertical members 211 (C-shaped steel) with their backs overlapped and fixed with screws 11 are arranged. A hole-down metal fitting 23 for fixing the load-bearing wall 1 to the foundation is fixed inside the lower left and right vertical members 211.
In addition, a vertical member 211 (C-shaped steel) is disposed at a substantially central portion on the left and right of the steel frame 2.
[0028]
As shown in FIG. 5, the cross members 212 (channel steel) are arranged on the upper side and the lower side of the steel frame 2 so that the opening surfaces thereof face each other. The horizontal member 212 and the vertical member 211 are fixed by screws 11.
As shown in FIGS. 1 to 3, the bearing wall 1 is obtained by fixing the structural face material 3 to one surface of the steel frame 2. That is, the structural face material 3 having substantially the same shape as the outer shape of the steel frame 2 is fixed to the steel frame 2 using the screws 12.
[0029]
Next, a method of manufacturing the structural face material 3 will be described in detail.
That is, first, 35% by mass of Portland cement as the cement-based inorganic material, 25% by mass of slag and 10% by mass of fly ash as the silicic acid-containing substance, 10% by mass of pearlite as the lightweight aggregate, and 10% by mass of the reinforcing fiber 10% by mass of wood pulp and 10% by mass of reject as lightweight aggregate.
This raw material mixture is dispersed in water to form a slurry 41 having a solid content of about 12% by mass.
[0030]
The slurry 41 is put into a raw material box 52 of a flow-on type paper machine 5 shown in FIG. The papermaking machine 5 circulates while making contact with the making roll 51, the raw material flow box 56, the suction box 57, and the making roll 51, and passing below the raw material flow box 56 and the upper surface of the suction box 57. And a felt 55 to be formed.
[0031]
The slurry 41 put in the raw material box 52 is supplied to a raw material flow box 56 and flows from the raw material flow box 56 onto the felt 55. The slurry 41 flowing on the felt 55 is dehydrated by suction by the suction box 57. As a result, a single-layer mat made of a thin material layer is formed on the felt 55.
[0032]
The single-layer mat formed on the felt 55 in this manner is wound around the making roll 51 and laminated to form the laminated mat 43. Then, when seven single-layer mats are stacked, they are cut and developed by the cutter 59 to separate the stacked mat 43 from the making roll 51. Thereafter, the laminated mat 43 is press-formed to form a press mat.
[0033]
The press mat is cured and cured at 50 to 80 ° C. and 90 to 100 RH for 7 to 30 hours.
Thereafter, the structural face material 3 made of the cement plate is obtained by performing an outer shape processing or the like. The structural face material 3 has a thickness of 10 to 15 mm, a specific gravity of 0.8 to 1.1, and a bending strength of 8 to 14 N / mm 2 .
[0034]
As shown in FIG. 8, a steel house 6 can be constructed by using a plurality of the load-bearing walls 1 and assembling them.
[0035]
Next, the operation and effect of this embodiment will be described.
Since the structural surface material 3 is obtained by mixing the lightweight aggregate and the reinforcing fibers with the raw materials, the strength per one layer of the single-layer mat can be improved.
Further, the structural face material 3 is obtained by forming a laminated mat in which a single-layer mat is laminated as described above. That is, since the structural face material 3 is formed in a layer shape, it is excellent in shear strength and toughness.
[0036]
As described above, the structural face material 3 made of the cement board obtained by the above-described raw materials and methods has sufficient shear strength and sufficient toughness.
The load-bearing wall 1 has sufficient shear strength and toughness because the structural face material 3 having excellent shear strength and toughness is fixed to the steel frame 2 as described above. Due to the excellent toughness, the load-bearing wall 1 can bend relatively large, and the input vibration energy can be sufficiently absorbed.
[0037]
In addition, the structural strength member 3 made of the cement board can be adjusted to have a necessary and sufficient maximum proof stress by appropriately adjusting the number of layers and the thickness of the laminate when forming the laminated mat. That is, it is possible to prevent the maximum proof stress from being excessively increased, and to prevent the necessity of extremely increasing the strength of the steel frame 2, the screws 11, 12, and the like. Therefore, an inexpensive bearing wall can be obtained.
[0038]
Further, with the above configuration, the load-deformation curve of the load-bearing wall 1 can also be made to approximate the ideal curve described above (curve L0 in FIG. 11) (see Example 3). In particular, the load-deformation curve of the load-bearing wall 1 can be made closer to the ideal curve by appropriately adjusting the number of layers at the time of forming the laminated mat.
[0039]
As described above, according to this example, it is possible to provide an inexpensive load-bearing wall and a steel house which are excellent in shear strength and can sufficiently absorb vibration energy.
[0040]
(Example 2)
In this example, as shown in FIG. 9, a so-called Hashek type paper machine 50 is used for manufacturing the structural face material 3.
The papermaking machine 50 includes a making roll 51, a plurality of inlet boxes 54 provided with a rotating cylinder 53, and a felt 55 circulating between the making roll 51 and the rotating cylinder 53 while being in contact therewith. Have.
[0041]
The slurry 41 put into the raw material box 52 of the papermaking machine 50 is supplied to each inlet box 54 and dehydrated on the outer peripheral surface of the rotary cylinder 53 to form a thin raw material layer. The layer of the raw material is absorbed by the felt 55 to form a single-layer mat. The layers of the raw materials formed on the outer peripheral surfaces of the plurality of rotary cylinders 53 overlap on the felt 55.
[0042]
The single-layer mat formed on the felt 55 in this manner is wound around the making roll 51 and laminated to form the laminated mat 43. Then, when seven single-layer mats are stacked, they are cut and developed by the cutter 59 to separate the stacked mat 43 from the making roll 51. Thereafter, the laminated mat 43 is press-formed to form a press mat.
Hereinafter, the structural face material 3 is manufactured in the same manner as in the first embodiment.
In other respects, the third embodiment is the same as the first embodiment, and this embodiment can provide the same functions and effects as those of the first embodiment.
[0043]
(Example 3)
In this example, as shown in FIGS. 10 and 11, an in-plane shear strength characteristic of the load-bearing wall of the present invention was evaluated.
The load-bearing wall 1 used as a test body is that shown in Example 1 (FIGS. 1 to 3). The outer dimensions of the load-bearing wall 1 are 3030 mm long and 910 mm wide. The front and rear width of the steel frame 2 is 92 mm, and the thickness of the structural face material 2 is 12 mm.
[0044]
The fixing positions of the screws 12 are basically 150 mm apart from the left and right vertical members 211 and the upper and lower horizontal members 212 in the steel frame 2. In addition, the vertical length of the steel frame 2 is basically set at 300 mm with respect to the vertical member 211 disposed at the substantially central portion with respect to the left and right. The diameter of the screw 12 is 4.2 mm.
The shear test method was in accordance with the Japan Construction Center Rating Report BCJ-LS-395 “KC Type Steel House Type A”.
[0045]
Specifically, as shown in FIG. 10, the load-bearing wall 1 is set on a shear tester 7. The shear testing machine 7 includes two fixed bases 71 and 72 disposed facing each other in front and rear, a movable pressing part 73 attached to one of the fixed bases 71 so as to be movable in the left-right direction, and a movable pressing part 73. And a cylinder 74 for moving the cylinder.
The movable pressing portion 73 applies a load leftward or rightward along the upper side 13 of the load-bearing wall 1.
[0046]
Thereby, the load-bearing wall 1 is deformed so as to bend leftward or rightward. The load and the shear deformation angle at this time were measured, and the relationship between the two was shown in the load-deformation curve shown in FIG. The load-deformation curve for the load-bearing wall 1 of the present invention is denoted by reference numeral L1. In FIG. 11, the vertical axis represents the value obtained by dividing the load by the lateral width of the load-bearing wall 1, and the horizontal axis represents the shear deformation angle. The load on the vertical axis corresponds to the strength of the load-bearing wall 1.
[0047]
In FIG. 11, what is denoted by reference numeral L0 is the ideal curve described above. That is, it is a curve representing a deformation characteristic in which the deformation is continued in a state where the proof stress does not change after passing the required value of the primary design and reaching the required value of the secondary design.
Here, the required value of the primary design is 11.0 kN / m, and the required value of the secondary design is 16.5 kN / m.
[0048]
As shown in FIG. 11, the deformation curve L1 of the load-bearing wall 1 of the present invention is very close to the ideal curve L0. From this, it can be seen that according to the load-bearing wall 1 of the present invention, it is possible to realize the securing of the shear strength, the securing of the vibration energy absorption, and the low cost.
[0049]
(Comparative example)
In this example, for comparison, the in-plane shear strength characteristics of a load-bearing wall using various other structural face materials different from the present invention were measured. The experimental method is as described in Example 3 above.
[0050]
Comparative Example 1 is an example in which a commonly used 9 mm wood plywood is used as a structural surface material.
Comparative Example 2 is an example using a 12.5 mm gypsum board as a structural surface material.
Comparative Example 3 is an example in which 12.5 mm wood plywood is used as a structural surface material, and the screw fixing interval on the outer periphery with respect to the steel frame 2 is set to 75 mm. For Comparative Example 3, a screw having a diameter of 4.8 mm was used.
Others are the same as the third embodiment.
[0051]
The results of measuring the in-plane shear strength characteristics of Comparative Samples 1, 2, and 3 are shown by curves L21, L22, and L23 in FIG. 11, respectively.
That is, Comparative Sample 1 (curve L21) and Comparative Sample 2 (curve L22) were much lower than the required values of the primary design and the secondary design, and the maximum proof stress was insufficient. Then, a load-deformation curve greatly deviating from the ideal curve L0 was obtained.
[0052]
Further, the comparative sample 3 (curve L23) satisfies the required values of the primary design and the secondary design, but has a very large maximum proof stress, and greatly deviates from the ideal curve L0.
Therefore, a steel frame, anchor bolts, fixing fixtures such as hole-down hardware, etc., which can sufficiently withstand the maximum proof stress are required, which causes a problem that the cost is increased.
[0053]
(Example 4)
This example is an example in which the physical properties of the structural face material used for the load-bearing wall of the present invention are compared with those of other cement boards.
That is, the bending amount and specific gravity of the structural face material 2 shown in Example 1 were measured. The amount of deflection is obtained by measuring the displacement of the central part of the test specimen at the time of fracture.
For the measurement of the amount of deflection, a test piece having a size of 500 × 400 mm and a thickness of 12 mm was used in accordance with JIS A 1408.
[0054]
For comparison, the same measurement was performed for the following comparative samples 4 and 5.
As the comparative sample 4, a cement plate manufactured by a so-called dry manufacturing method, in which a raw material obtained by adding an appropriate amount of water to 75% by mass of cement and 25% by mass of wood pieces and mixing the resulting mixture was sprayed on a template and press-molded, was used. That is, no light aggregate and no reinforcing fiber were added, and the material was not obtained by a wet manufacturing method.
[0055]
As a comparative sample 5, a cement plate having a three-layer structure including front and back layers and a core material disposed therebetween by a dry manufacturing method was used. That is, a raw material obtained by adding an appropriate amount of water to 40% by mass of cement, 25% by mass of silica sand, 15% by mass of wood chips, 5% by mass of wood flour, and 15% by mass of reject as the above-mentioned front and back layers is provided. A mixture of 35% by mass of cement, 20% by mass of silica sand, 10% by mass of wood fiber bundles, 5% by mass of wood chips, 28% by mass of reject, 2% by mass of expanded polystyrene beads and an appropriate amount of water added and mixed It is.
In addition, each sample prepared and measured five pieces each (n = 5). Table 1 shows the measurement results.
[0056]
[Table 1]
Figure 2004150126
[0057]
As can be seen from Table 1, the structural face material of the present invention has a large amount of deflection and a low specific gravity. Since the amount of deflection is large, it can be considered that the structural face material has high toughness.
Also, it is thought that the low specific gravity leads to high absorption of vibration energy and high toughness.
[Brief description of the drawings]
FIG. 1 is a front view of a load-bearing wall according to a first embodiment.
FIG. 2 is a side view of the load-bearing wall according to the first embodiment.
FIG. 3 is a top view of the load-bearing wall according to the first embodiment.
FIG. 4 is a front view of the steel frame according to the first embodiment.
FIG. 5 is a side view of the steel frame according to the first embodiment.
FIG. 6 is a sectional view taken along line AA of FIG. 4;
FIG. 7 is an explanatory view of a flow-on type papermaking machine in the first embodiment.
FIG. 8 is a perspective view of a part of the steel house in the first embodiment.
FIG. 9 is an explanatory diagram of a Hatschek-type papermaking machine in Embodiment 2.
FIG. 10 is an explanatory view of a shear tester in a third embodiment.
FIG. 11 is a diagram showing in-plane shear strength characteristics of various load-bearing walls in Example 3.
[Explanation of symbols]
1. . . Load-bearing wall,
11,12. . . Screw,
2. . . Steel frame,
21. . . Shaped steel,
3. . . Structural materials,
5,50. . . Paper machine,
6. . . Steel house,
7. . . Shear testing machine,

【0010】
【課題の解決手段】
第1の発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁であって,
上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であることを特徴とする耐力壁にある(請求項1)。
[0010]
[Means for solving the problem]
A first invention is a load-bearing wall comprising a steel frame formed by framing a shaped steel into a rectangular shape, and a structural face material fixed to the steel frame,
The structural surface material is formed by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water to form a slurry, paper-forming and dewatering the slurry, forming a single-layer mat, and forming the single-layer mat. The mat is wound up on a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-formed to produce a press mat, and the press mat is cured. Ri Do cement plate obtained by curing,
The load-bearing wall approximates the following ideal curve in a load-deformation curve,
After the ideal curve passes the required value of the primary design (allowable stress design) based on the Building Standards Law and reaches the required value of the secondary design (holding strength design) based on the Building Standards Law, the proof stress changes. The load-bearing wall is characterized in that the deformation is continued without being performed, and the required value of the secondary design is a curve that is about 1.5 times the required value of the primary design (claim 1). ).

【0016】
第2の発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁を有するスチールハウスであって,
上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であることを特徴とするスチールハウスにある(請求項2)。
[0016]
A second invention is a steel house having a load-bearing wall composed of a steel frame formed by framed shaped steel in a rectangular shape and a structural face material fixed to the steel frame,
The structural surface material is formed by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water to form a slurry, paper-forming and dewatering the slurry, forming a single-layer mat, and forming the single-layer mat. The mat is wound up on a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-formed to produce a press mat, and the press mat is cured. Ri Do cement plate obtained by curing,
The load-bearing wall approximates the following ideal curve in a load-deformation curve,
After the ideal curve passes the required value of the primary design (allowable stress design) based on the Building Standards Law and reaches the required value of the secondary design (holding strength design) based on the Building Standards Law, the proof stress changes. The steel house is characterized in that the deformation is continued without being performed, and the required value of the secondary design is a curve that is about 1.5 times the required value of the primary design. ).

【0010】
【課題の解決手段】
第1の発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁であって,
上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であり、
かつ、上記構造用面材は、その撓み量が8〜12mmであり、曲げ強度が8〜14N/mm であることを特徴とする耐力壁にある(請求項1)。
[0010]
[Means for solving the problem]
A first invention is a load-bearing wall comprising a steel frame formed by framing a shaped steel into a rectangular shape, and a structural face material fixed to the steel frame,
The structural surface material is formed by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water to form a slurry, paper-forming and dewatering the slurry, forming a single-layer mat, and forming the single-layer mat. The mat is wound up on a making roll, a plurality of layers are laminated to a predetermined thickness to form a laminated mat, and the laminated mat is separated from the making roll, press-formed to produce a press mat, and the press mat is cured. It consists of a cement board obtained by curing,
The load-bearing wall approximates the following ideal curve in a load-deformation curve,
After the ideal curve passes the required value of the primary design (allowable stress design) based on the Building Standards Law and reaches the required value of the secondary design (holding strength design) based on the Building Standards Law, the proof stress changes. be those modified while no continues, Ri curves der the required value of the secondary design is about 1.5 times the required value of the primary design,
And the structural surface material is its deflection amount 8 to 12 mm, in bearing wall, wherein the flexural strength is 8~14N / mm 2 (claim 1).

【0016】
第2の発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁を有するスチールハウスであって,
上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であり、
かつ、上記構造用面材は、その撓み量が8〜12mmであり、曲げ強度が8〜14N/mm であることを特徴とするスチールハウスにある(請求項2)。
[0016]
A second invention is a steel house having a load-bearing wall composed of a steel frame formed by framed shaped steel in a rectangular shape and a structural face material fixed to the steel frame,
The structural surface material is formed by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water to form a slurry, paper-forming and dewatering the slurry, forming a single-layer mat, and forming the single-layer mat. The mat is wound up on a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-formed to produce a press mat, and the press mat is cured. It consists of a cement board obtained by curing,
The load-bearing wall approximates the following ideal curve in a load-deformation curve,
After the ideal curve passes the required value of the primary design (allowable stress design) based on the Building Standards Law and reaches the required value of the secondary design (holding strength design) based on the Building Standards Law, the proof stress changes. be those modified while no continues, Ri curves der the required value of the secondary design is about 1.5 times the required value of the primary design,
And the structural surface material, the amount of deflection is 8 to 12 mm, the bending strength is the steel house, which is a 8~14N / mm 2 (claim 2).

Claims (2)

形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁であって,
上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなることを特徴とする耐力壁。
A load-bearing wall comprising a steel frame formed by forming a shaped steel into a rectangular shape, and a structural face material fixed to the steel frame,
The structural surface material is formed by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water to form a slurry, paper-forming and dewatering the slurry, forming a single-layer mat, and forming the single-layer mat. The mat is wound up on a making roll, a plurality of layers are laminated to a predetermined thickness to form a laminated mat, and the laminated mat is separated from the making roll, press-formed to produce a press mat, and the press mat is cured. A load-bearing wall comprising a cement board obtained by curing.
形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁を有するスチールハウスであって,
上記構造用面材は,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし,該スラリーを抄造脱水して単層マットをフォーミングし,該単層マットをメイキングロールに巻き取り,所定の厚みになるまで複数層積層して積層マットを形成し,該積層マットを上記メイキングロールから切り離し,プレス成形してプレスマットを作製し,該プレスマットを硬化養生することにより得られたセメント板からなることを特徴とするスチールハウス。
A steel house having a load-bearing wall composed of a steel frame formed by forming a shape steel into a rectangular shape, and a structural face material fixed to the steel frame,
The structural surface material is formed by dispersing a cement-based inorganic material, a silicate-containing substance, a lightweight aggregate, and reinforcing fibers in water to form a slurry, paper-forming and dewatering the slurry, forming a single-layer mat, and forming the single-layer mat. The mat is wound up on a making roll, a plurality of layers are laminated to a predetermined thickness to form a laminated mat, and the laminated mat is separated from the making roll, press-formed to produce a press mat, and the press mat is cured. A steel house comprising a cement board obtained by curing.
JP2002316452A 2002-10-30 2002-10-30 Bearing wall and steel house using the same Expired - Lifetime JP3617837B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002316452A JP3617837B2 (en) 2002-10-30 2002-10-30 Bearing wall and steel house using the same
KR1020077024140A KR100891209B1 (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
KR1020057007740A KR20050062785A (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
TW092109586A TWI266821B (en) 2002-10-30 2003-04-24 Bearing wall and a steel house utilizing the bearing wall
PCT/JP2003/005287 WO2004040075A1 (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
AU2003227365A AU2003227365A1 (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
CNA038248263A CN1694992A (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316452A JP3617837B2 (en) 2002-10-30 2002-10-30 Bearing wall and steel house using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003389481A Division JP2004150267A (en) 2003-11-19 2003-11-19 Bearing wall and steel house using the same

Publications (2)

Publication Number Publication Date
JP2004150126A true JP2004150126A (en) 2004-05-27
JP3617837B2 JP3617837B2 (en) 2005-02-09

Family

ID=32211684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316452A Expired - Lifetime JP3617837B2 (en) 2002-10-30 2002-10-30 Bearing wall and steel house using the same

Country Status (6)

Country Link
JP (1) JP3617837B2 (en)
KR (2) KR100891209B1 (en)
CN (1) CN1694992A (en)
AU (1) AU2003227365A1 (en)
TW (1) TWI266821B (en)
WO (1) WO2004040075A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303269A (en) * 2006-04-11 2007-11-22 Nippon Steel Corp Wall panel
JP2008285993A (en) * 2006-12-05 2008-11-27 Sekisui Chem Co Ltd Reinforcement method of building

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720823B1 (en) * 2005-10-18 2007-05-23 대한주택공사 Staggered wall-beam srtucure system and apartment house using the same
CN105625580B (en) * 2009-07-23 2019-09-10 威信广厦模块住宅工业有限公司 Construction module for construction of buildings
CN102011442A (en) * 2009-09-07 2011-04-13 初明进 Light steel-concrete combination structure shear wall and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153554A (en) * 1989-11-13 1991-07-01 Toyo Pairu Fume Kan Seisakusho:Kk Production of fiber reinforced lightweight cement plate
JP2001055807A (en) * 1999-08-13 2001-02-27 Kawasaki Steel Corp Bearing wall and steel house
JP3482369B2 (en) * 2000-01-27 2003-12-22 ニチハ株式会社 Manufacturing method of lightweight inorganic plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303269A (en) * 2006-04-11 2007-11-22 Nippon Steel Corp Wall panel
JP2008285993A (en) * 2006-12-05 2008-11-27 Sekisui Chem Co Ltd Reinforcement method of building

Also Published As

Publication number Publication date
TWI266821B (en) 2006-11-21
KR100891209B1 (en) 2009-04-02
CN1694992A (en) 2005-11-09
AU2003227365A1 (en) 2004-05-25
AU2003227365A8 (en) 2004-05-25
KR20050062785A (en) 2005-06-27
JP3617837B2 (en) 2005-02-09
KR20070114827A (en) 2007-12-04
TW200406525A (en) 2004-05-01
WO2004040075A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
RU2592307C2 (en) Highly efficient fireproof gypsum-cement composition with high resistance to water and heat resistance for reinforced cement light construction cement panels
CA2616615C (en) A bearing wall board and a method of producing the same
US20150175887A1 (en) Fire core compositions and methods
WO1996007800A1 (en) Partition wall
MXPA06003492A (en) Cement sheet product and production method thereof.
JP2004150126A (en) Bearing wall and steel house using the same
Ghosh A review on paper Crete: a sustainable building material
CN109572090B (en) Thermal insulation material and preparation method thereof
JPS6014701B2 (en) Lightweight exterior wall material and its manufacturing method
JP2004150267A (en) Bearing wall and steel house using the same
US20220332643A1 (en) Improved fiber cement products and methods for the production thereof
JP4468760B2 (en) Inorganic papermaking board and method for producing the same
JP4219852B2 (en) Bearing wall and steel house
JPH10292610A (en) Sound-proof floor structure
CN205116540U (en) Real core wallboard of calcium silicate board polyphenyl particle composite
CN110219397A (en) First fill assembled steel screen frame pearlite concrete heat preservation and soundproof fire-resisting partition plate
JPH08232375A (en) Partition wall
JP2001048630A5 (en)
JP2001048630A (en) Inorganic bearing face material and its production
JPS59107985A (en) Manufacture of floor board
CN216840204U (en) Prefabricated plate convenient to concatenation
CN210828043U (en) Slag ceramsite recycled concrete light batten
CN213927048U (en) Energy-saving building load-bearing wall composite board
KR102586781B1 (en) How to Dehydrate Acoustic Panels
JPS61261247A (en) Manufacture of cementitious board

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Ref document number: 3617837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term