JP2004149876A - Method for desiliconizing and dephosphorizing molten pig iron - Google Patents

Method for desiliconizing and dephosphorizing molten pig iron Download PDF

Info

Publication number
JP2004149876A
JP2004149876A JP2002317847A JP2002317847A JP2004149876A JP 2004149876 A JP2004149876 A JP 2004149876A JP 2002317847 A JP2002317847 A JP 2002317847A JP 2002317847 A JP2002317847 A JP 2002317847A JP 2004149876 A JP2004149876 A JP 2004149876A
Authority
JP
Japan
Prior art keywords
hot metal
oxygen gas
dephosphorization
flow rate
molten pig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002317847A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ueno
智之 上野
Nobukazu Kitagawa
伸和 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002317847A priority Critical patent/JP2004149876A/en
Publication of JP2004149876A publication Critical patent/JP2004149876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for desiliconizing and dephosphorizing molten pig iron, which not only avoids interruption of treatment due to foaming of slag in a desiliconization period but also controls the temperature drop of the molten pig iron in the earlier period of the following dephosphorization step, and inhibits decarbonization in the late period of dephosphorization. <P>SOLUTION: When sequentially desiliconizing and dephosphorizing the molten pig iron by spraying an oxygen gas onto the surface of a molten pig-iron bath through the lance separately installed above the bath surface, along with blowing iron oxides and flux for smelting into the molten pig iron kept in a conveyance vessel together with a carrier gas through an immersion lance, this desiliconizing and dephosphorizing method changes the flow rate of the top-blown oxygen gas in response to change in components of the molten pig iron, which occurs during the above desiliconization and dephosphorization treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑の脱珪、脱燐方法に係わり、搬送容器内に保持した溶銑へ精錬フラックスを吹き込み脱燐するに際し、それに先立ち脱珪をも行う技術に関する。
【0002】
【従来の技術】
搬送容器(例えば、混銑車等)内に保持した溶銑へ精錬フラックスを吹き込み脱燐するに際しては、脱燐(記号:P)に先行して脱珪素(記号:Si)も起きる。その場合、溶銑の温度が降下するのを抑止したり、あるいは酸素の供給量を増大するため、酸素ガスを上吹き装置を介して浴面へ吹き付けるようにしている。具体的には、脱燐フラックスを溶銑浴面上に添加した後、脱珪期において、ある式を満たすように上吹き酸素ガスの吹き付け条件を変更し、最適な送酸速度を達成したり(例えば、特許文献1参照)、脱珪期に、インジェクション・ランスからは酸化剤のみ吹き込むと共に、別途設けた上吹きランスを介して溶銑の上方より酸素を供給し、脱燐期にインジェクション・ランスで脱燐用フラックスを集中的にて吹き込む(例えば、特許文献2参照)技術が開示されている。
【0003】
しかしながら、これらの技術によると、脱珪処理中に搬送容器内で発生するCOガスに起因してスラグのフォーミングが起き、容器口からスラグが溢れ出て、処理の継続が困難となる場合がある。つまり、フォーミングしたSiOのリッチなスラグは、搬送容器を傾けて該容器の外に設けたピットに流し出しているが(例えば、特許文献3参照)、フォーミングが大き過ぎると、ピットよりスラグが該容器を移動させるレール上に溢れ、容器の移動ができなくなる。また、フォーミングが収まった後に上吹きランスからの送酸速度を変更して、脱燐のため最適送酸速度を達成する必要がある。さらに、脱燐処理の末期には、脱燐反応が拡散律速となって遅くなり、相対的に脱炭反応が激しくなるので、脱炭反応の抑止についても考慮する必要がある。すなわち、溶銑が脱炭されて炭素濃度が低下すると凝固温度が上昇し、操業トラブルが多発するからである。このように、脱珪、脱燐処理を通して常に最適酸素供給となるような上吹き気体酸素の使用技術は提案されていないのが現状である。
【0004】
【特許文献1】
特開平11−217616号公報(2頁、右欄の18〜24行)
【特許文献2】
特開昭62−109913号公報(3頁、左下欄の7〜20行)
【特許文献3】
特開平5−5114号公報(2頁、段落[0008])
【0005】
【発明が解決しようとする課題】
本発明は、かかる事情を鑑み、脱珪期でのスラグフォーミングによる処理中断を回避できるばかりでなく、続く脱燐前期での溶銑温度の降下を抑制でき、且つ脱燐後期には脱炭速度の増加を抑制可能な溶銑の脱珪、脱燐方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
【0007】
すなわち、本発明は、搬送容器内に保持した溶銑に、浸漬ランスを介して酸化鉄及び精錬用フラックスをキャリアガスで吹込むと共に、該溶銑の浴面上方に別途設けたランスを介して酸素ガスを該浴面へ吹き付け、溶銑の脱珪、脱燐処理を順次行うに際して、前記脱珪、脱燐処理中の溶銑の成分変化に応じて、上吹きする酸素ガスの流量を変更することを特徴とする溶銑の脱珪、脱燐方法である。この場合、前記溶銑中の珪素濃度が0.08質量%に到達するまでは、前記上吹きする酸素ガスの流量を25/WHM(m(標準状態)/t/min)以下とし、その後溶銑中の燐濃度が0.040質量%以上にある間は上吹きする酸素ガスの流量を0.08〜0.25m(標準状態)/t/minの範囲とし、溶銑中の燐濃度が0.040質量%未満になったら、上吹き酸素ガスの流量を0.08m(標準状態)/t/min以下とするのが好ましい。ここで、WHMは、溶銑の重量(t)である。
【0008】
本発明では、溶銑の浴面に上吹きする酸素ガスの流量を、溶銑の成分変化に応じて適切に変更するようにしたので、脱珪期でのスラグフォーミングによる処理中断が回避できるばかりでなく、続く脱燐の前期での溶銑温度の降下を抑制でき、且つ脱燐の後期には脱炭速度の増加を抑制できるようになる。
【0009】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0010】
発明者は、最初に、脱珪期のフォーミングスラグが起こす問題の解消に着眼し、その対策を検討するため、搬送容器内の溶銑に対して、浸漬ランス(インジェクション・ランスともいう)を介し、酸化鉄及び精錬用フラックスをキャリアガスで吹込み、且つ溶銑浴面の上方に別途設けた上吹きランスから酸素ガスを吹き付け、該溶銑より珪素や燐を順次除去する実験を多数行った。そして、その実験結果を、図1に示すように、脱珪処理中の上吹き酸素ガスの流量と搬送容器からのスラグの流出状態(記号Sr)との関係として整理した。ここで、搬送容器からのスラグの流出状態Srは、搬送容器口からピットへのスラグの流出速度(記号:Sv、単位:m/min)と搬送容器の下方に設けたピットのスラグ許容体積(記号:Sm:単位:m)の比として定義した。
【0011】
Sr=Sv/Sm …(1)
つまり、その値は、大きいとスラグの流出が過剰であり、小さいとまだ流出に余裕があると考えたのである。そして、図1によれば、Srの値が0.3を境に変化傾向を変えるので、0.3を基準にスラグ流出状態を評価したところ、Sr≦0.3であれば、ピット内でスラグ中のCOガスが該スラグから放出される時間が十分確保されるためか、ピットに余裕が生じ、脱珪処理の継続が可能であったが、Sr>0.3となると、スラグがピットより溢れて線路上で固まり、処理後に搬送容器の移動を阻害することがわかった。従って、フォーミングスラグによる問題を解消するには、Srを0.3以下に抑制して脱珪処理を行う必要があり、図1より上吹き酸素ガスの流量は25/WHM (m(標準状態)/t/min)以下とするのが好ましい。ここで、WHMは、溶銑の重量(t)である。
【0012】
なお、脱珪反応が進行して溶銑中の珪素濃度が低下するにつれて溶銑の脱珪速度が徐々に減少する。また、脱燐処理のために石灰系精錬用フラックスを添加するので、スラグの粘度が低下して、Srが次第に低下し、溶銑中の珪素濃度が0.08質量%未満になると、常にSr≦0.3である。そのため、本発明では、溶銑中の珪素濃度が0.08質量%以上である期間は、25/WHM (m(標準状態)/t/min)以下の上吹き酸素ガスの流量で操業してSrを0.3以下に保つことにしたのである。
【0013】
一方、珪素濃度が0.08質量%よりさらに低い範囲においては、脱燐を円滑にするため酸素供給速度をできるだけ大きくし、且つ脱燐処理中の溶銑温度の降下を抑制する必要がある。そのため、操業としては、上吹き酸素ガスの流量を最大化することが望まれる。なお、その上吹き酸素ガスの流量については後述する。
【0014】
次に、発明者は、脱燐処理の末期には、脱燐反応が拡散律速となって遅くなり、相対的に脱炭反応が激しくなるので、脱炭反応の抑止について検討することにした。そして、溶銑中燐濃度と処理開始から当該燐濃度までの炭素濃度減少量(以下、脱炭量という)との関係を調査し、上吹き酸素ガスの供給有無別で整理した。その関係を図2に示すが、燐濃度が0.040質量%まで脱燐されると、それを境に脱炭が急に活発になり、しかも上吹き酸素ガスの供給がある方がなしの場合より脱炭量が大きくなることが明らかになった。溶銑の炭素濃度が低下すると、溶銑の凝固温度が上昇し、搬送容器内での溶銑付着の原因となるので、低燐域(例えば、0.04質量%以下)にある溶銑では、脱炭の進行をできるだけ抑止する必要がある。そこで、発明者は、引き続き実験を行い、上吹き酸素ガスの流量と溶銑の脱炭速度との関係を調査した。その結果を図3に示すが、図3より、溶銑中燐濃が0.040質量%以下の領域では、上吹き酸素ガスを0.08m(標準状態)/t/min以下に制限するのが望ましいことがわかった。
【0015】
以上の実験より、珪素濃度が0.08質量%に低下するまで及び燐濃度が0.040質量%以下の溶銑に対する上吹き酸素ガスの吹き付け流量の適正範囲が明らかになった。ここで、溶銑中の珪素濃度が0.08質量%未満となって以降で、燐濃度が0.04質量%よりも高い範囲では、上吹き酸素ガス流量が0.08m(標準状態)/t/min以上であっても、脱炭反応よりも脱燐反応が優勢である。したがって、この期間の上吹き酸素ガス流量を0.08m(標準状態)/t/min以上とすることにし、溶銑の脱珪、脱燐方法として図4に示すような溶銑成分に応じて上吹き酸素ガスの流量を変更する操業をイメージした。ところが、溶銑中の珪素濃度が0.08質量%未満となった以降で、燐濃度が0.04質量%よりも高い範囲では、上吹き酸素ガスの流量を上昇させると、搬送容器から溶銑がスロッピングにより流出するトラブルの発生頻度が増加した。
【0016】
そこで、発明者は、上吹き酸素ガスの流量と溶銑流出のトラブル頻度との関係を調査した。その結果を図5に示すが、上吹き酸素ガスの流量上限を、0.25m(標準状態)/t/minにすれば良いことがわかり、漸くにして本発明を完成させたのである。なお、図5の溶銑流出の発生頻度は、流出が発生した脱珪、脱燐処理回数を全脱珪、脱燐処理回数で除し、100を掛けた数値である。
【0017】
【実施例】
混銑車内に保持した溶銑に、浸漬したランスを介して窒素及び酸素の混合ガスをキャリアガスとして集塵ダスト及び生石灰を吹き込む(インジェクション)する脱珪、脱燐処理を行った。その際、同時に浴面上方に別途設けたランスを介して酸素ガスの浴面吹き付けを行い、銑浴への酸素供給及び2次燃焼による溶銑温度の低下抑止を図った。上吹き酸素ガスの供給流量は、表1の比較例1、比較例2及び本発明例1のように設定した。なお、混銑車下に設けたスラグを流出させるピットのスラグ許容体積(Sm)は10mである。また、比較例1、比較例2及び本発明例1のいずれの操業においても、浸漬ランスを介してのキャリアガスの流量は10m/minで、精錬用フラックスとしての集塵ダスト及び生石灰の量は、450kg/minで一定とした。なお、処理前の主な溶銑成分は、[C]=4.60質量%,[Si]=0.20質量%,[P]=0.140質量%である。
【0018】
脱珪、脱燐処理後の溶銑成分は表1に示す通りであった。比較例1の上吹き酸素ガスのパターンでは、脱珪期のスラグフォミングが激しく(Sr=0.4)、混銑車下の線路がスラグで埋没してしまうので、処理を中断した。また、比較例2のパターンでは、脱珪期のスラグフォーミングによる操業トラブルは発生しなかった(Sr=0.2)。しかしながら、低燐域での脱炭量が多く、処理後の炭素濃度は3.8質量%となった。そのため、混銑車内の溶銑を装入鍋(溶銑を転炉へ装入する前の中間容器)に移した際に、凝固温度が上昇し、装入鍋に地金の付着が発生した。
【0019】
これに対して、本発明例1のパターンでは、比較例1及び比較例2で発生した脱珪期のスラグフォーミングによる線路の埋没や溶銑の炭素濃度低下による前記装入鍋への地金付きといった問題は起こらず、安定した低燐溶銑の溶製ができた。
【0020】
【表1】

Figure 2004149876
【0021】
【発明の効果】
以上述べたように、本発明により、脱珪期においてはスラグフォーミングによる処理中断が回避でき、続く脱燐前期においては溶銑の温度降下を抑止しつつ、最適送酸速度を達成でき、さらに低燐期においては、脱炭を抑止した脱燐処理が可能となる。
【図面の簡単な説明】
【図1】溶銑脱珪期の上吹き酸素ガスの流量とスラグの搬送容器からの流出状態(Sr値で表す)との関係を示す図である。
【図2】溶銑脱燐期における溶銑からの脱炭量と該溶銑の燐濃度との関係を示す図である。
【図3】溶銑の脱燐末期における上吹き酸素ガス流量と溶銑の脱炭速度との関係を示す図である。
【図4】本発明に係る溶銑の脱珪、脱燐方法を実施する際の上吹き酸素ガス流量のパターンを説明する図である。
【図5】溶銑の脱燐初期における上吹き酸素ガス流量と溶銑流出の発生頻度との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for desiliconizing and dephosphorizing hot metal, and relates to a technique for performing desiliconization prior to blowing a refining flux into a hot metal held in a transport container for dephosphorization.
[0002]
[Prior art]
When a refining flux is blown into a hot metal held in a transfer container (for example, a mixed iron wheel) to remove phosphorus, desiliconization (symbol: Si) occurs before dephosphorization (symbol: P). In this case, in order to suppress the temperature of the hot metal from dropping or to increase the supply amount of oxygen, oxygen gas is blown to the bath surface via the top blowing device. Specifically, after the dephosphorization flux is added to the hot metal bath surface, during the desiliconization period, the blowing conditions of the top-blown oxygen gas are changed so as to satisfy a certain formula, and an optimum acidification rate is achieved ( For example, refer to Patent Literature 1), during the desiliconization period, only the oxidizing agent is blown from the injection lance, and oxygen is supplied from above the hot metal via a separately provided upper blowing lance. A technique for intensively blowing a dephosphorization flux (see, for example, Patent Document 2) is disclosed.
[0003]
However, according to these technologies, slag forming may occur due to CO gas generated in the transport container during the desiliconization process, and the slag may overflow from the container opening, making it difficult to continue the process. . That is, the formed SiO 2 rich slag flows out into the pit provided outside the container by tilting the transfer container (for example, see Patent Document 3). The container overflows on the rail for moving the container, and the container cannot be moved. Further, it is necessary to change the acid feeding rate from the upper blowing lance after the forming is stopped to achieve the optimum acid feeding rate for dephosphorization. Furthermore, in the final stage of the dephosphorization treatment, the dephosphorization reaction becomes diffusion-controlled and slows down, and the decarburization reaction becomes relatively intense. Therefore, it is necessary to consider suppression of the decarburization reaction. That is, when the hot metal is decarburized and the carbon concentration decreases, the solidification temperature increases, and operation troubles occur frequently. As described above, at present, no technique has been proposed for using top-blown gaseous oxygen so that oxygen is always supplied optimally through desiliconization and dephosphorization treatments.
[0004]
[Patent Document 1]
JP-A-11-217616 (page 2, right column, lines 18 to 24)
[Patent Document 2]
JP-A-62-109913 (page 3, lower left column, lines 7 to 20)
[Patent Document 3]
JP-A-5-5114 (page 2, paragraph [0008])
[0005]
[Problems to be solved by the invention]
In view of such circumstances, the present invention can not only prevent the interruption of the treatment due to the slag forming in the desiliconization period, can also suppress the drop of the hot metal temperature in the subsequent dephosphorization, and reduce the decarburization rate in the latter stage of the dephosphorization. It is an object of the present invention to provide a method for desiliconizing and dephosphorizing hot metal capable of suppressing an increase.
[0006]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in order to achieve the above object, and has embodied the results in the present invention.
[0007]
That is, the present invention provides a method for blowing iron oxide and a refining flux with a carrier gas into a hot metal held in a transport container through an immersion lance, and an oxygen gas through a lance separately provided above a bath surface of the hot metal. Is sprayed onto the bath surface to sequentially perform the desiliconization and dephosphorization of the hot metal, and the flow rate of the oxygen gas blown upward is changed according to a change in the composition of the hot metal during the desiliconization and dephosphorization. And dephosphorization of hot metal. In this case, until the silicon concentration in the hot metal reaches 0.08% by mass, the flow rate of the oxygen gas blown upward is set to 25 / W HM (m 3 (standard state) / t / min) or less. While the phosphorus concentration in the hot metal is 0.040% by mass or more, the flow rate of the oxygen gas blown upward is set in the range of 0.08 to 0.25 m 3 (standard state) / t / min, and the phosphorus concentration in the hot metal is When it is less than 0.040% by mass, the flow rate of the top-blown oxygen gas is preferably set to 0.08 m 3 (standard state) / t / min or less. Here, W HM is the weight (t) of the hot metal.
[0008]
In the present invention, since the flow rate of the oxygen gas blown upward to the bath surface of the hot metal is changed appropriately in accordance with the change in the composition of the hot metal, not only the processing interruption due to the slag forming in the desiliconization period can be avoided, but also Then, it is possible to suppress a drop in the hot metal temperature in the first half of the subsequent dephosphorization, and to suppress an increase in the decarburization rate in the second half of the dephosphorization.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, taking into account the circumstances that led to the invention.
[0010]
The inventor first focused on eliminating the problem caused by the forming slag during the desiliconization period, and examined the countermeasures against the hot metal in the transport container through an immersion lance (also called an injection lance) A number of experiments were conducted in which iron oxide and a flux for refining were blown with a carrier gas, and oxygen gas was blown from an upper blowing lance separately provided above the hot metal bath surface to sequentially remove silicon and phosphorus from the hot metal. Then, the experimental results were arranged as a relationship between the flow rate of the top-blown oxygen gas during the desiliconization process and the outflow state of slag from the transfer container (symbol Sr), as shown in FIG. Here, the outflow state Sr of the slag from the transport container is defined as the outflow speed (symbol: Sv, unit: m 3 / min) of the slag from the inlet of the transport container to the pit and the allowable slag volume of the pit provided below the transport container. (Symbol: Sm: unit: m 3 ).
[0011]
Sr = Sv / Sm (1)
In other words, it was considered that the larger the value, the more the slag flowed out, and the smaller the value, there was still room for the slag outflow. According to FIG. 1, since the change tendency of the value of Sr changes at the boundary of 0.3, the slag outflow state was evaluated based on 0.3. Probably because the time required for the CO gas in the slag to be released from the slag is sufficient, the pit has room, and the desiliconization treatment can be continued. However, when Sr> 0.3, the slag is removed from the pit. It was found that it overflowed and solidified on the track, hindering the movement of the transport container after the treatment. Therefore, in order to eliminate the problem caused by the forming slag, it is necessary to perform the desiliconization treatment while suppressing the Sr to 0.3 or less. From FIG. 1, the flow rate of the upper-blown oxygen gas is 25 / W HM (m 3 (standard (State) / t / min) or less. Here, W HM is the weight (t) of the hot metal.
[0012]
The desiliconization rate of the hot metal gradually decreases as the silicon removal reaction proceeds and the silicon concentration in the hot metal decreases. Further, since the lime-based refining flux is added for the dephosphorization treatment, the viscosity of the slag decreases, the Sr gradually decreases, and when the silicon concentration in the hot metal becomes less than 0.08 mass%, Sr ≦ 0.3. Therefore, in the present invention, the operation is performed at a flow rate of the top-blown oxygen gas of 25 / W HM (m 3 (standard state) / t / min) or less during a period in which the silicon concentration in the hot metal is 0.08% by mass or more. Thus, Sr was kept at 0.3 or less.
[0013]
On the other hand, in the range where the silicon concentration is lower than 0.08% by mass, it is necessary to increase the oxygen supply rate as much as possible in order to facilitate dephosphorization and to suppress a drop in hot metal temperature during the dephosphorization treatment. Therefore, it is desirable to maximize the flow rate of the top-blown oxygen gas in the operation. The flow rate of the upper-blown oxygen gas will be described later.
[0014]
Next, in the last stage of the dephosphorization treatment, the dephosphorization reaction becomes diffusion-controlled and slows down, and the decarburization reaction becomes relatively intense. Then, the relationship between the phosphorus concentration in the hot metal and the amount of reduction in the carbon concentration from the start of the treatment to the phosphorus concentration (hereinafter referred to as decarburization amount) was investigated, and the results were sorted by whether or not the top-blown oxygen gas was supplied. FIG. 2 shows the relationship. When the phosphorus concentration is reduced to 0.040% by mass, the decarburization suddenly becomes active after the dephosphorization. It became clear that the decarburization amount was larger than in the case. If the carbon concentration of the hot metal decreases, the solidification temperature of the hot metal rises, causing hot metal to adhere to the inside of the transport container. Therefore, in hot metal in the low phosphorus region (for example, 0.04 mass% or less), It is necessary to suppress the progress as much as possible. Then, the inventor continued the experiment and investigated the relationship between the flow rate of the top-blown oxygen gas and the decarburization rate of the hot metal. The results are shown in FIG. 3. From FIG. 3, in the region where the phosphorus concentration in the hot metal is 0.040% by mass or less, the upper-blown oxygen gas is limited to 0.08 m 3 (standard state) / t / min or less. Turned out to be desirable.
[0015]
From the above experiment, the appropriate range of the blowing flow rate of the top-blown oxygen gas until the silicon concentration was reduced to 0.08% by mass and the molten iron having the phosphorus concentration of 0.040% by mass or less was clarified. Here, after the silicon concentration in the hot metal becomes less than 0.08% by mass and in the range where the phosphorus concentration is higher than 0.04% by mass, the flow rate of the top-blown oxygen gas is 0.08 m 3 (standard state) / Even at t / min or more, the dephosphorization reaction predominates over the decarburization reaction. Therefore, the flow rate of the top-blown oxygen gas during this period is set to 0.08 m 3 (standard state) / t / min or more, and the method for desiliconizing and dephosphorizing the hot metal depends on the hot metal component as shown in FIG. Imagine an operation that changes the flow rate of the blown oxygen gas. However, after the silicon concentration in the hot metal has become less than 0.08% by mass, in the range where the phosphorus concentration is higher than 0.04% by mass, when the flow rate of the top-blown oxygen gas is increased, the hot metal is discharged from the transport container. The frequency of troubles flowing out due to slopping has increased.
[0016]
Then, the inventor investigated the relationship between the flow rate of the top-blown oxygen gas and the trouble frequency of the hot metal outflow. The results are shown in FIG. 5, which shows that the upper limit of the flow rate of the top-blown oxygen gas should be set to 0.25 m 3 (standard state) / t / min, and the present invention was completed. The occurrence frequency of hot metal outflow in FIG. 5 is a value obtained by dividing the number of desiliconization and dephosphorization treatments at which outflow occurred by the total number of desiliconization and dephosphorization treatments and multiplying by 100.
[0017]
【Example】
A desiliconization and dephosphorization treatment was performed by injecting dust-collected dust and quicklime using a mixed gas of nitrogen and oxygen as a carrier gas through a lance soaked in the hot metal held in the mixed-iron car. At the same time, oxygen gas was sprayed onto the bath surface through a lance separately provided above the bath surface to supply oxygen to the pig bath and to suppress the drop in hot metal temperature due to secondary combustion. The supply flow rate of the top-blown oxygen gas was set as in Comparative Example 1, Comparative Example 2, and Inventive Example 1 in Table 1. Note that the slag allowable volume (Sm) of the pit provided under the mixed iron wheel for discharging the slag is 10 m 3 . In each of the operations of Comparative Example 1, Comparative Example 2, and Invention Example 1, the flow rate of the carrier gas through the immersion lance was 10 m 3 / min, and the amount of dust dust and quick lime as the flux for refining. Was kept constant at 450 kg / min. The main components of the hot metal before the treatment are [C] = 4.60% by mass, [Si] = 0.20% by mass, and [P] = 0.140% by mass.
[0018]
The hot metal components after the desiliconization and dephosphorization treatments were as shown in Table 1. In the pattern of the top-blown oxygen gas in Comparative Example 1, slag foaming during the desiliconization period was severe (Sr = 0.4), and the line below the mixed iron car was buried with slag, so the treatment was interrupted. In the pattern of Comparative Example 2, no operation trouble due to slag forming during the desiliconization period occurred (Sr = 0.2). However, the amount of decarburization in the low phosphorus region was large, and the carbon concentration after the treatment was 3.8% by mass. Therefore, when the hot metal in the mixed iron car was transferred to a charging pan (an intermediate container before the hot metal was charged into the converter), the solidification temperature increased, and ingots were attached to the charging pan.
[0019]
On the other hand, in the pattern of Example 1 of the present invention, burial of the line due to the slag forming in the desiliconization period generated in Comparative Example 1 and Comparative Example 2 and metal ingot in the charging pot due to a decrease in the carbon concentration of the hot metal, etc. No problems occurred, and stable low-phosphorus hot metal was successfully produced.
[0020]
[Table 1]
Figure 2004149876
[0021]
【The invention's effect】
As described above, according to the present invention, in the desiliconization period, it is possible to avoid the interruption of the treatment due to slag forming, and in the subsequent dephosphorization stage, it is possible to achieve the optimum acidification rate while suppressing the temperature drop of the hot metal and further reduce the phosphorus content. In the period, the dephosphorization treatment with decarburization suppressed can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a flow rate of an upper-blown oxygen gas during a hot metal desiliconization period and a state of slag flowing out of a transport container (expressed by an Sr value).
FIG. 2 is a diagram showing the relationship between the amount of decarburization from hot metal and the phosphorus concentration of the hot metal during the hot metal dephosphorization period.
FIG. 3 is a diagram showing the relationship between the top blown oxygen gas flow rate and the decarburization rate of hot metal at the end of dephosphorization of hot metal.
FIG. 4 is a diagram illustrating a pattern of a top-blown oxygen gas flow rate when the method for desiliconizing and dephosphorizing hot metal according to the present invention is performed.
FIG. 5 is a diagram showing the relationship between the top blown oxygen gas flow rate and the occurrence frequency of hot metal outflow in the early stage of dephosphorization of hot metal.

Claims (2)

搬送容器内に保持した溶銑に、浸漬ランスを介して酸化鉄及び精錬用フラックスをキャリアガスで吹込むと共に、該溶銑の浴面上方に別途設けたランスを介して酸素ガスを該浴面へ吹き付け、溶銑の脱珪、脱燐処理を順次行うに際して、
前記脱珪、脱燐処理中の溶銑の成分変化に応じて、上吹きする酸素ガスの流量を変更することを特徴とする溶銑の脱珪、脱燐方法。
The iron oxide and the flux for refining are blown into the hot metal held in the transport container with a carrier gas through an immersion lance, and oxygen gas is blown onto the bath surface through a lance separately provided above the bath surface of the hot metal. , When performing the desiliconization and dephosphorization treatment of hot metal sequentially
A method for desiliconizing and dephosphorizing hot metal, comprising changing a flow rate of an oxygen gas blown upward according to a change in a component of the hot metal during the desiliconization and dephosphorization treatment.
前記溶銑中の珪素濃度が0.08質量%に到達するまでは、前記上吹きする酸素ガスの流量を25/WHM(m(標準状態)/t/min)以下とし、その後溶銑中の燐濃度が0.040質量%以上にある間は上吹きする酸素ガスの流量を0.08〜0.25m(標準状態)/t/minの範囲とし、溶銑中の燐濃度が0.040質量%未満になったら、上吹き酸素ガスの流量を0.08m(標準状態)/t/min以下とすることを特徴とする請求項1記載の溶銑の脱珪、脱燐方法。
ここで、WHMは、溶銑の重量(t)である。
Until the silicon concentration in the hot metal reaches 0.08% by mass, the flow rate of the oxygen gas blown upward is set to 25 / W HM (m 3 (standard state) / t / min) or less. While the phosphorus concentration is 0.040% by mass or more, the flow rate of the oxygen gas blown upward is set in the range of 0.08 to 0.25 m 3 (standard state) / t / min, and the phosphorus concentration in the hot metal is set to 0.040. 2. The method for desiliconizing and dephosphorizing hot metal according to claim 1, wherein the flow rate of the top-blown oxygen gas is set to 0.08 m 3 (standard state) / t / min or less when the amount becomes less than mass%.
Here, W HM is the weight (t) of the hot metal.
JP2002317847A 2002-10-31 2002-10-31 Method for desiliconizing and dephosphorizing molten pig iron Pending JP2004149876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317847A JP2004149876A (en) 2002-10-31 2002-10-31 Method for desiliconizing and dephosphorizing molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317847A JP2004149876A (en) 2002-10-31 2002-10-31 Method for desiliconizing and dephosphorizing molten pig iron

Publications (1)

Publication Number Publication Date
JP2004149876A true JP2004149876A (en) 2004-05-27

Family

ID=32461141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317847A Pending JP2004149876A (en) 2002-10-31 2002-10-31 Method for desiliconizing and dephosphorizing molten pig iron

Country Status (1)

Country Link
JP (1) JP2004149876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079258A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Dephosphorizing method for molten iron
JP2011190532A (en) * 2010-02-22 2011-09-29 Kobe Steel Ltd Dephosphorization treatment method of molten iron in mixer car
CN113621869A (en) * 2021-08-27 2021-11-09 昆明理工大学 Method for removing silicon and phosphorus from iron-silicon-phosphorus alloy containing platinum group metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079258A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Dephosphorizing method for molten iron
JP2011190532A (en) * 2010-02-22 2011-09-29 Kobe Steel Ltd Dephosphorization treatment method of molten iron in mixer car
CN113621869A (en) * 2021-08-27 2021-11-09 昆明理工大学 Method for removing silicon and phosphorus from iron-silicon-phosphorus alloy containing platinum group metal

Similar Documents

Publication Publication Date Title
JP3918568B2 (en) Method for producing ultra-low sulfur steel
JP2004149876A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP2008169407A (en) Method for desulfurizing molten steel
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP2653301B2 (en) Reusing method of low P converter slag
JPH0153329B2 (en)
JP2833736B2 (en) Hot metal pretreatment method
JP2004018942A (en) Preliminary treatment method for hot metal
JP2005344129A (en) Method for refining molten steel
JP3697960B2 (en) Hot metal pretreatment method
JP3370349B2 (en) Melting method of high cleanness ultra low carbon steel
JP4211365B2 (en) Hot metal pretreatment method
JPH055115A (en) Method for pre-treating molten iron
JP3225747B2 (en) Vacuum degassing of molten steel
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness
JP3709141B2 (en) Sloping suppression method in hot metal pretreatment
JP3404760B2 (en) Desulfurization method of molten steel
JP2001329309A (en) Method for dephosphorization treatment of molten iron
JP2005146359A (en) Method for preliminarily treating molten pig iron
JP2003328025A (en) Method for manufacturing low-phosphorus molten pig iron
JPH059534A (en) Method for pretreating molten iron
JP4026447B2 (en) Method for producing low phosphorus hot metal
JPH1150121A (en) Restraining of slag foaming
JP2005139528A (en) Method for dephosphorization-refining molten pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529