JP2004149873A - Corson copper alloy with die abrasion resistance - Google Patents

Corson copper alloy with die abrasion resistance Download PDF

Info

Publication number
JP2004149873A
JP2004149873A JP2002317617A JP2002317617A JP2004149873A JP 2004149873 A JP2004149873 A JP 2004149873A JP 2002317617 A JP2002317617 A JP 2002317617A JP 2002317617 A JP2002317617 A JP 2002317617A JP 2004149873 A JP2004149873 A JP 2004149873A
Authority
JP
Japan
Prior art keywords
copper alloy
corson
mass
rust
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002317617A
Other languages
Japanese (ja)
Inventor
Koji Harada
宏司 原田
Hiroaki Watanabe
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2002317617A priority Critical patent/JP2004149873A/en
Publication of JP2004149873A publication Critical patent/JP2004149873A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Corson copper alloy with die abrasion resistance, which can be used for a material with high strength and a press oil of low viscosity, and is useful for electronic materials. <P>SOLUTION: The control of a composition on the surface of a material was found to be a means capable of reducing abrasion due to a die, and the present invention was accomplished. The Corson copper alloy with die abrasion resistance comprises 1.0-4.5 mass% Ni, 0.3-1.5 mass% Si and the balance Cu with unavoidable impurities, and is characterized in that the oxygen concentration of the surface after a rust preventive film formed as a result of rust prevention treatment has been removed, or the oxygen concentration of the surface after being sputtered with Ar ions by an Auger electron spectroscopy (AES) at a sputter rate of 2.2 nm/minute (in SiO<SB>2</SB>terms) for at least 1.5 minutes or in a depth from the outermost surface equivalent to the above, is 2 atom% or less. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、プレス金型摩耗の少ない銅合金素材に関し、より詳細には、端子やコネクター等の電子部品を製造する際のプレス加工において、金型の摩耗を抑制しかつ使用寿命を向上させるコルソン系銅合金(Cu−Ni−Si合金)に関する。
【0002】
【従来の技術】
一般に、端子やコネクター等の電子部品には機械的強度及び電気伝導性、さらには半田付け性やめっき性等の観点から銅合金が用いられているが、近年りん青銅や黄銅に代表される固溶強化型銅合金に代わって、時効硬化型の銅合金の使用量が増加している。時効硬化型の銅合金は強度が高いと同時に電気伝導性が良い。
このような時効硬化型銅合金として、コルソン系銅合金は代表的な合金である。このような電子部品としての用途においては、この合金の板材を金型でプレス加工するため、その金型磨耗の抑制を目的として、その組成について様々な検討がなされてきた(例えば、特許文献1及び2参照。)
また、コルソン系銅合金にMg成分を添加すると、この合金の応力緩和性が向上することが知られており(例えば、特許文献3参照。)、更に、Zn、Sn、Fe等の成分を添加してコルソン系銅合金を改質することが知られている(例えば、特許文献4参照。)。
しかし、素材はさらに高強度化へ移行する傾向にあり、またプレス時に使用される油も低粘度で脱脂しやすいものが用いられる傾向にある。
【0003】
【特許文献1】
特開平2−66130
【特許文献2】
特開平4−276036
【特許文献3】
特開平5−59468
【特許文献4】
特開2001−49369
【0004】
【発明が解決しようとする課題】
このように高強度材が用いられ、低粘度で脱脂しやすい油がプレス時に使用されると、プレス加工における金型の負荷は益々大きくなり、そのため金型使用寿命の延命化が望まれている。
本発明は、このような課題を解決するために、高強度材及び低粘度プレス油への対応可能な、電子材料用として有用な、耐金型磨耗性のコルソン系銅合金を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題に対処すべく検討を行った結果、素材表面の成分組成を制御することによって金型磨耗を低減できることを見出し、本発明を完成させるに至った。
即ち、本発明は、Niを1.0〜4.5質量%、Siを0.3〜1.5質量%含有し、残部がCu及び不可避的不純物からなる銅合金であって、防錆処理を行った結果生成する防錆皮膜層を除去した後の表面における酸素濃度が2原子%(又はグラム原子%、原子の個数の割合をいう。)以下であることを特徴とする耐金型磨耗性コルソン系銅合金である。
ベンゾトリアゾール系の防錆剤を用いると、合金の最表面付近の領域には、この防錆剤に起因する窒素が含まれ、更にこの防錆剤によって減量された量であるがまた防錆剤の量により影響される量の酸素が含まれる。このような領域を防錆皮膜層といい、防錆剤に起因し又は影響される成分の分布によりその厚さを知ることができる。後述の実施例でも明らかにされるが、この防錆皮膜層を除去した後の表面の酸素濃度が、金型の磨耗に影響していることがわかった。
【0006】
即ち、オージェ電子分光法(AES)によりスパッタ速度2.2nm/分(SiO換算)でArイオンスパッタリングを少なくとも1.5分間、好ましくは1.5〜3.0分間、より好ましくは1.5分間行った後の表面、又はこれに相当する最表面からの深度における酸素濃度が金型磨耗に影響していることが明らかになった。
従って、本発明は、また、Niを1.0〜4.5質量%、Siを0.3〜1.5質量%含有し、残部がCu及び不可避的不純物からなる銅合金であって、オージェ電子分光法(AES)によりスパッタ速度2.2nm/分(SiO換算)でArイオンスパッタリングを少なくとも1.5分間行った後の表面、又はこれに相当する最表面からの深度における酸素濃度が2原子%以下であることを特徴とする耐金型磨耗性コルソン系銅合金である。
【0007】
なお、オージェ電子分光法(AES)を用いて分析を行う場合、最表層から深さ(深度)を正確な絶対値で表すのは分析の特性上困難であるため、SiO換算で算出されたスパッタ速度におけるスパッタ時間で表すのが一般的である。従って、本明細書においては、オージェ電子分光法(AES)によりスパッタ速度2.2nm/分(SiO換算)でArイオンスパッタリングを行った時間により深度を表す。
また、深度については分析方法によって限定されるものではなく、同様な目的の他の分析方法(例えば、X線光電子分光法、二次イオン質量分析法等)にて得られる深度を、オージェ電子分光法(AES)による深度に換算することが可能である。
なお、ベンゾトリアゾール系以外の防錆剤を用いた場合であってもこの深度における酸素量により、金型磨耗を見積もることができる。
【0008】
また、本発明のコルソン系銅合金は、更にMgを0.05〜0.3質量%含有してもよい。この成分の添加により、この合金の応力緩和性を向上させることができる。
更に、本発明のコルソン系銅合金は、更にZn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag及びBeから成る群から選択される少なくとも1種を0.05〜2.0質量%含有してもよい。これらの成分の添加により、この合金の耐食性や強度を向上させることができる。
【0009】
【発明の実施の形態】
コルソン系銅合金(Cu−Ni−Si合金)は通常以下のような工程により製造される。
(1)電気銅を主原料として、これにNi及びSiを大気溶解炉中に投入し、溶湯温度(約1250℃)で出湯しインゴットを得る。
(2)次にこのインゴットを約950℃の温度で熱間圧延を行い、厚さ10mm程度の板に加工し、表層の酸化スケールを除去し、更に冷間圧延により厚さ1mmの板とする。
(3)その後800℃で溶体化処理を行い、0.4mm程度まで冷間圧延する。
(4)この板を、還元性条件下で時効処理を行う。この時効処理により、合金に微細な析出物が均一に分散し、合金の強度が高くなり、銅中の固溶元素量が減少して電気伝導性が向上する。
【0010】
(5)この板を更に約0.15mmまで圧延し、連続焼鈍炉を用いて還元性条件下で歪取焼鈍を行う。この工程によりコルソン系銅合金の表面は酸化されるものと考えられる。この還元性条件は通常炭化水素等の燃料を燃焼することによるが、この際の空燃比により、合金の酸化の程度が決定される。この還元性条件下においても、NiやSiのような活性な金属を含む合金は、残留酸素によりその表面が酸化される。また、アンモニア分解ガス等を用いた還元雰囲気ガス焼鈍も可能であり、この場合には露点を調整することによって同程度の酸化を得ることができる。
(6)更に、適宜防錆剤を用いて防錆処理を行う。通常、ベンゾトリアゾール(以下「BTA」という。)系の防錆剤を希釈したものを塗布する。この防錆処理に用いる防錆剤は合金表面の酸化を抑制するものであるが、その希釈の程度によって合金の酸化の程度は影響される。
【0011】
即ち、このような工程を経て製造されるコルソン系銅合金は、その表面に、(5)の歪取焼鈍過程における還元性条件(空燃比又は露点)や(6)の防錆処理過程における防錆剤の希釈の程度等により影響を受ける酸化皮膜を有していると考えられる。
このようにして生じる酸化皮膜は母材に比べ硬いため、(5)の歪取焼鈍過程の雰囲気における酸素濃度が高いとこの量が増え、金型に与える負荷も増加する。また、酸化皮膜は脆いため、打ち抜きの際に母材から剥離して金属粉が発生し金型の間隙に入り込んで悪影響を及ぼす。さらには酸化皮膜が厚くなると、プレス油の濡れ性も悪くなり金型と材料の凝着を引き起こし金型磨耗が発生しやすくなる。
また、(6)の防錆処理過程における防錆剤の希釈が不十分で防錆剤濃度が低すぎると酸化皮膜が成長し上記の不具合を生じる。
【0012】
本発明においては、このようなコルソン系銅合金の表面から深さ方向の酸素量をオージェ電子分光法(AES)により観察した。即ち、オージェ電子分光法(AES)において最表面の酸素量ではこの防錆皮膜層により金型磨耗への影響が不明瞭なため、スパッタリングで防錆皮膜の成分元素である窒素を完全に除去した上で酸素量を求めた。
コルソン系銅合金に通常用いられているBTAにより防錆処理を行なうと、コルソン系銅合金の最表面には防錆皮膜層が形成され、その厚さはほぼ3〜6nm程度となる。
この程度の厚さの防錆皮膜層を除去した後の表面層の酸素量と、実際にこの合金を打ち抜き加工した際の金型の磨耗との関係を検討した結果(後述の実施例を参照のこと。)、その酸素量が2原子%以下の場合にはこの金型の磨耗が極めて少ないことが判明した。
【0013】
また、(6)の防錆処理過程において、防錆剤濃度が高すぎると、酸化皮膜成長の抑制効果は飽和し、必要以上に防錆皮膜が塗布され、その結果プレス機のガイド等で剥離した防錆皮膜の粉が溜まり作業性を著しく低下させる(後述の実施例を参照のこと。)。そのため、オージェ電子分光法(AES)により観察した最表面の窒素量は10原子%以下、特に3〜10原子%であることが望ましい。
【0014】
【発明の効果】
以上のように、本発明の銅合金素材は、金型磨耗を著しく抑制することができる。従って、電子部品等の加工に対して、より高強度な材料を用いる場合や低粘度プレス油を用いる場合においても対応が可能である。
【0015】
【実施例】
以下、実施例にて本発明を例証するが、本発明を限定することを意図するものではない。
実施例1〜6、比較例1〜4
電気銅を原料とし、添加元素を大気溶解炉中に所定量投入した後、溶湯温度1250℃で出湯し組成がCu−2.5質量%Ni−0.45質量%Si−0.1質量%Mgのインゴットを得た。
次にこのインゴットを950℃の温度で熱間圧延を行うことにより厚さ10mmの板にし、表層の酸化スケールを機械研磨により除去した後、冷間圧延により厚さ1mmの板とした。その後800℃で溶体化処理を行い、0.4mmまで冷間圧延した後、水素中で450℃×8時間の時効処理を行った。
この板材を0.15mmまで圧延した後、連続焼鈍炉を用いて、表3に示す酸素濃度に設定したブタン燃焼ガス中で600℃×30秒間の歪取焼鈍を行った。
その後20質量%硫酸で酸洗しバフ研磨した後、表3に示す種々の濃度に調整したBTA水溶液(液温60℃)に2秒間浸漬し乾燥した。
【0016】
得られた各板材について下記の条件のオージェ電子分光法(AES)により分析を行った。
【表1】

Figure 2004149873
【表2】
Figure 2004149873
【0017】
実施例1と比較例1で得た板材について、このような条件のオージェ電子分光法(AES)により得たスペクトルをそれぞれ図1及び図2に示す。実施例1のコルソン系銅合金板材(図1)の最表面の窒素濃度は約7.5原子%であり、最表面から約1分の深度までの間ではBTAに起因する窒素濃度が高く、更に表面酸化による酸素濃度も若干見られる。この領域が防錆皮膜層であり、この防錆皮膜層より深い深度においては酸素濃度は2原子%以下でほぼ一定である。一方、比較例1のコルソン系銅合金板材(図2)の最表面の窒素濃度は約7.7原子%であり、防錆皮膜層(約1.5分)を除去しても、約3分までの深度において酸素濃度は2〜3原子%であり、実施例1のものよりも酸素濃度が顕著に高い。
【0018】
次に、このような条件のオージェ電子分光法(AES)により最表面のN濃度を求め、更に表面にArイオンスパッタリングを1.5分間行って防錆皮膜層を除去した後のO濃度を求めた。その結果を表3に示す。
また、得られた各板材についてプレス機により打ち抜き型金型磨耗試験を行った。試験の評価は直径3mmの円形チップを100万個打ち抜き直後の材料断面観察により「バリ高さ」を求めた。その結果を表3に示す。打ち抜きによる金型の磨耗が大きいほど、このバリの高さは大きい。このバリの高さが10μmより大きいと製品として問題がある。
更に、この打ち抜き試験後にプレス機のガイド等に見られる防錆皮膜の粉の程度を表3に示す。この粉の発生が多いと、作業性を低下させる。
【0019】
【表3】
Figure 2004149873
【0020】
歪取焼鈍過程における酸素濃度が低く、かつ防錆処理過程におけるBTA濃度が適正な実施例1〜6においては、Arイオンスパッタリングを1.5分間行って防錆皮膜層を除去した後の酸素量は2原子%以下であるのに対し、歪取焼鈍過程における酸素濃度が高いか、又は防錆処理過程におけるBTA濃度が低すぎる比較例1〜4の酸素量は2原子%より大きい。
一方、実施例1〜6のバリ高さは比較例1〜4のそれに比べ顕著に低く、金型の磨耗が少ないことが分かる。即ち、上記酸素量と金型の磨耗とが相関していることが分かる。
しかし、実施例5と6においては、防錆処理過程におけるBTA濃度が高すぎる結果、最表面の窒素量が多く、同時に防錆皮膜の粉の発生が認められる。
【図面の簡単な説明】
【図1】実施例1のコルソン系銅合金板材の、オージェ電子分光法(AES)による深さ方向のC、N、Oの各濃度(原子%)を表す。横軸はスパッタ時間(分)を表す。表面からの深度は時間(分)で表される。
【図2】比較例1のコルソン系銅合金板材の、オージェ電子分光法(AES)による深さ方向のC、N、Oの各濃度(原子%)を表す。横軸はスパッタ時間(分)を表す。表面からの深度は時間(分)で表される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper alloy material with low press mold wear, and more particularly, to Corson which suppresses mold wear and improves service life in press working when manufacturing electronic components such as terminals and connectors. The present invention relates to a copper alloy (Cu-Ni-Si alloy).
[0002]
[Prior art]
In general, copper alloys are used for electronic components such as terminals and connectors from the viewpoints of mechanical strength and electrical conductivity, as well as solderability and plating properties. In recent years, solid alloys represented by phosphor bronze and brass have been used. The use of age hardening type copper alloys instead of solution strengthened type copper alloys is increasing. The age-hardened copper alloy has high strength and good electrical conductivity at the same time.
Corson type copper alloy is a typical alloy as such an age hardening type copper alloy. In such an application as an electronic component, since the plate material of this alloy is pressed by a mold, various studies have been made on the composition thereof for the purpose of suppressing the abrasion of the mold (for example, Patent Document 1). And 2.)
It is known that the addition of an Mg component to a Corson-based copper alloy improves the stress relaxation of the alloy (see, for example, Patent Document 3), and further adds components such as Zn, Sn, and Fe. It is known that the Corson-based copper alloy is modified in such a manner (for example, see Patent Document 4).
However, the raw materials tend to shift to higher strength, and the oil used at the time of pressing tends to be low in viscosity and easy to degrease.
[0003]
[Patent Document 1]
JP-A-2-66130
[Patent Document 2]
JP-A-4-276036
[Patent Document 3]
JP-A-5-59468
[Patent Document 4]
JP-A-2001-49369
[0004]
[Problems to be solved by the invention]
When a high-strength material is used and a low-viscosity, easily degreased oil is used at the time of pressing, the load on the mold in the press working becomes larger, and therefore, it is desired to extend the life of the mold. .
In order to solve such problems, the present invention is to provide a Corson-based copper alloy which is compatible with high-strength materials and low-viscosity press oils, is useful for electronic materials, and has mold-wear resistance. Aim.
[0005]
[Means for Solving the Problems]
The present inventors have conducted studies to address the above problems, and as a result, have found that mold wear can be reduced by controlling the composition of components on the surface of a material, and have completed the present invention.
That is, the present invention is a copper alloy containing 1.0 to 4.5% by mass of Ni and 0.3 to 1.5% by mass of Si, with the balance being Cu and inevitable impurities. Wherein the oxygen concentration on the surface after removal of the rust-preventive film layer formed as a result of the above is not more than 2 atomic% (or gram atomic%, which means the ratio of the number of atoms) to the mold. Corson-based copper alloy.
When a benzotriazole-based rust preventive is used, the area near the outermost surface of the alloy contains nitrogen caused by the rust preventive, and the amount reduced by the rust preventive is also used. Contains an amount of oxygen that is affected by the amount of oxygen. Such a region is referred to as a rust-preventive film layer, and its thickness can be known from the distribution of components caused or affected by the rust-preventive agent. As will be apparent from the examples described later, it was found that the oxygen concentration on the surface after removing the rust-preventive film layer affected the wear of the mold.
[0006]
That is, Ar ion sputtering is performed for at least 1.5 minutes, preferably 1.5 to 3.0 minutes, more preferably 1.5 minutes at a sputtering rate of 2.2 nm / minute (in terms of SiO 2 ) by Auger electron spectroscopy (AES). It was clarified that the oxygen concentration at the surface after performing the test for a minute or at a depth corresponding to the outermost surface affected mold wear.
Therefore, the present invention also relates to a copper alloy containing 1.0 to 4.5% by mass of Ni and 0.3 to 1.5% by mass of Si, with the balance being Cu and unavoidable impurities. Oxygen concentration at a depth from the surface after performing Ar ion sputtering for at least 1.5 minutes at a sputtering rate of 2.2 nm / min (in terms of SiO 2 ) by electron spectroscopy (AES) or the equivalent depth from the outermost surface is 2 It is a mold-wear-resistant Corson-based copper alloy characterized by being at most atomic%.
[0007]
In the case of performing an analysis using Auger electron spectroscopy (AES), because represent depth from the outermost surface layer of the (depth) in the correct absolute value is difficult on the characteristics of the analysis, calculated in terms of SiO 2 Generally, it is represented by the sputtering time at the sputtering speed. Therefore, in this specification, the depth is represented by the time when Ar ion sputtering was performed at a sputtering rate of 2.2 nm / min (in terms of SiO 2 ) by Auger electron spectroscopy (AES).
The depth is not limited by the analysis method, and the depth obtained by another analysis method for the same purpose (for example, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, etc.) is determined by Auger electron spectroscopy. It is possible to convert to the depth by the method (AES).
Even when a rust preventive other than benzotriazole is used, mold wear can be estimated from the oxygen amount at this depth.
[0008]
Further, the Corson-based copper alloy of the present invention may further contain 0.05 to 0.3% by mass of Mg. By adding this component, the stress relaxation property of this alloy can be improved.
Further, the Corson-based copper alloy of the present invention further comprises at least one selected from the group consisting of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag and Be in the range of 0.05 to 2.0. You may contain 0 mass%. By adding these components, the corrosion resistance and strength of the alloy can be improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
A Corson-based copper alloy (Cu-Ni-Si alloy) is usually manufactured by the following steps.
(1) Nitrogen and Si are charged into an atmospheric melting furnace using electrolytic copper as a main raw material, and the molten metal is discharged at a molten metal temperature (about 1250 ° C.) to obtain an ingot.
(2) Next, the ingot is hot-rolled at a temperature of about 950 ° C., processed into a plate having a thickness of about 10 mm, an oxide scale on a surface layer is removed, and further, a plate having a thickness of 1 mm is formed by cold rolling. .
(3) Then, a solution treatment is performed at 800 ° C., and cold rolling is performed to about 0.4 mm.
(4) This plate is subjected to an aging treatment under reducing conditions. By this aging treatment, fine precipitates are uniformly dispersed in the alloy, the strength of the alloy is increased, the amount of solid solution elements in copper is reduced, and the electric conductivity is improved.
[0010]
(5) The sheet is further rolled to about 0.15 mm and subjected to strain relief annealing under a reducing condition using a continuous annealing furnace. It is considered that the surface of the Corson-based copper alloy is oxidized by this step. This reducing condition is usually based on burning fuel such as hydrocarbons, and the degree of oxidation of the alloy is determined by the air-fuel ratio at this time. Even under this reducing condition, the surface of an alloy containing an active metal such as Ni or Si is oxidized by residual oxygen. Further, a reducing atmosphere gas annealing using an ammonia decomposition gas or the like is also possible. In this case, the same degree of oxidation can be obtained by adjusting the dew point.
(6) Further, a rust preventive treatment is appropriately performed using a rust preventive. Usually, a diluted benzotriazole (hereinafter referred to as "BTA") rust inhibitor is applied. The rust preventive used in the rust prevention treatment suppresses the oxidation of the alloy surface, but the degree of oxidation of the alloy is affected by the degree of dilution.
[0011]
That is, the Corson-based copper alloy produced through such a process has on its surface reducing conditions (air-fuel ratio or dew point) in the strain relief annealing process of (5) and rust prevention process in (6). It is considered to have an oxide film that is affected by the degree of dilution of the rust agent.
Since the oxide film thus formed is harder than the base material, if the oxygen concentration in the atmosphere during the strain relief annealing process (5) is high, the amount increases and the load applied to the mold also increases. Further, since the oxide film is brittle, it is separated from the base material at the time of punching, metal powder is generated, and the metal powder enters into the gap of the mold and has an adverse effect. Further, as the oxide film becomes thicker, the wettability of the press oil also worsens, causing adhesion between the mold and the material, which tends to cause mold wear.
Further, if the rust preventive agent is not sufficiently diluted in the rust preventive treatment step (6) and the concentration of the rust preventive agent is too low, an oxide film grows and the above problem occurs.
[0012]
In the present invention, the oxygen amount in the depth direction from the surface of such a Corson-based copper alloy was observed by Auger electron spectroscopy (AES). That is, in the Auger electron spectroscopy (AES), the influence of the rust-preventive coating layer on mold wear is unclear with respect to the oxygen amount on the outermost surface, so that nitrogen as a component element of the rust-preventive coating was completely removed by sputtering. The oxygen content was determined above.
When a rust-preventive treatment is performed by BTA which is generally used for a Corson-based copper alloy, a rust-preventive film layer is formed on the outermost surface of the Corson-based copper alloy, and its thickness is about 3 to 6 nm.
The result of examining the relationship between the amount of oxygen in the surface layer after removing the rust-preventive film layer of this thickness and the wear of the mold when the alloy was actually punched (see Examples described later) It was found that when the amount of oxygen was 2 atomic% or less, the wear of the mold was extremely small.
[0013]
If the concentration of the rust preventive agent is too high in the rust preventive treatment step (6), the effect of suppressing the growth of the oxide film saturates, and the rust preventive film is applied more than necessary. The powder of the rust-preventive film that has accumulated accumulates and significantly lowers the workability (see Examples described later). Therefore, the amount of nitrogen on the outermost surface observed by Auger electron spectroscopy (AES) is desirably 10 atomic% or less, particularly preferably 3 to 10 atomic%.
[0014]
【The invention's effect】
As described above, the copper alloy material of the present invention can significantly suppress mold wear. Therefore, it is possible to cope with the processing of electronic parts and the like even when using a material having higher strength or using a low-viscosity press oil.
[0015]
【Example】
Hereinafter, the present invention is illustrated by examples, but is not intended to limit the present invention.
Examples 1 to 6, Comparative Examples 1 to 4
After using copper as a raw material and adding a predetermined amount of an additional element into an air melting furnace, the molten metal is discharged at a temperature of 1250 ° C., and the composition is Cu-2.5 mass% Ni-0.45 mass% Si-0.1 mass% A Mg ingot was obtained.
Next, the ingot was subjected to hot rolling at a temperature of 950 ° C. to form a plate having a thickness of 10 mm. After removing the oxide scale on the surface layer by mechanical polishing, a plate having a thickness of 1 mm was formed by cold rolling. Thereafter, a solution treatment was performed at 800 ° C., and after cold rolling to 0.4 mm, an aging treatment was performed at 450 ° C. × 8 hours in hydrogen.
After rolling this sheet material to 0.15 mm, it was subjected to strain relief annealing at 600 ° C. for 30 seconds in butane combustion gas set to the oxygen concentration shown in Table 3 using a continuous annealing furnace.
Then, after pickling with 20% by mass of sulfuric acid and buffing, it was immersed in a BTA aqueous solution (solution temperature 60 ° C.) adjusted to various concentrations shown in Table 3 for 2 seconds and dried.
[0016]
Each obtained plate was analyzed by Auger electron spectroscopy (AES) under the following conditions.
[Table 1]
Figure 2004149873
[Table 2]
Figure 2004149873
[0017]
FIGS. 1 and 2 show spectra obtained by Auger electron spectroscopy (AES) under the above conditions for the plate materials obtained in Example 1 and Comparative Example 1, respectively. The nitrogen concentration at the outermost surface of the Corson-based copper alloy sheet of Example 1 (FIG. 1) is about 7.5 atomic%, and the nitrogen concentration due to BTA is high from the outermost surface to a depth of about 1 minute. Further, the oxygen concentration due to surface oxidation is slightly observed. This region is the rust-preventive film layer, and at a depth deeper than the rust-preventive film layer, the oxygen concentration is almost constant at 2 atomic% or less. On the other hand, the nitrogen concentration on the outermost surface of the Corson-based copper alloy sheet material of Comparative Example 1 (FIG. 2) is about 7.7 atomic%, and even if the rust preventive coating layer (about 1.5 minutes) is removed, about 3%. At a depth of up to a minute, the oxygen concentration is 2-3 atomic%, which is significantly higher than that of Example 1.
[0018]
Next, the N concentration on the outermost surface was determined by Auger electron spectroscopy (AES) under such conditions, and the O concentration after removing the rust preventive film layer by performing Ar ion sputtering on the surface for 1.5 minutes was determined. Was. Table 3 shows the results.
In addition, a punching die abrasion test was performed on each of the obtained plate materials using a press machine. In the evaluation of the test, the “burr height” was obtained by observing the material cross section immediately after punching out 1 million circular chips having a diameter of 3 mm. Table 3 shows the results. The greater the wear of the mold due to punching, the greater the height of this burr. If the height of the burr is larger than 10 μm, there is a problem as a product.
Further, Table 3 shows the degree of powder of the rust-preventive film observed on the guide of the press machine after the punching test. If the generation of this powder is large, the workability is reduced.
[0019]
[Table 3]
Figure 2004149873
[0020]
In Examples 1 to 6 in which the oxygen concentration in the strain relief annealing process was low and the BTA concentration in the rust prevention process was appropriate, the oxygen amount after removing the rust prevention film layer by performing Ar ion sputtering for 1.5 minutes. Is 2 atomic% or less, whereas the oxygen amount in Comparative Examples 1 to 4 in which the oxygen concentration in the strain relief annealing process is high or the BTA concentration in the rust prevention treatment process is too low is larger than 2 atomic%.
On the other hand, the burr heights of Examples 1 to 6 are remarkably lower than those of Comparative Examples 1 to 4, and it can be seen that the mold is less worn. That is, it can be seen that the oxygen amount and the mold wear are correlated.
However, in Examples 5 and 6, as a result of the BTA concentration being too high in the rust prevention process, the amount of nitrogen on the outermost surface was large, and at the same time, generation of powder of the rust prevention film was observed.
[Brief description of the drawings]
FIG. 1 shows the respective concentrations (atomic%) of C, N, and O in the depth direction of the Corson-based copper alloy sheet of Example 1 measured by Auger electron spectroscopy (AES). The horizontal axis represents the sputtering time (minute). Depth from the surface is expressed in hours (minutes).
FIG. 2 shows the respective concentrations (atomic%) of C, N, and O in the depth direction of the Corson-based copper alloy sheet of Comparative Example 1 measured by Auger electron spectroscopy (AES). The horizontal axis represents the sputtering time (minute). Depth from the surface is expressed in hours (minutes).

Claims (5)

Niを1.0〜4.5質量%、Siを0.3〜1.5質量%含有し、残部がCu及び不可避的不純物からなる銅合金であって、防錆処理を行った結果生成する防錆皮膜層を除去した後の表面における酸素濃度が2原子%以下であることを特徴とする耐金型磨耗性コルソン系銅合金。It is a copper alloy containing 1.0 to 4.5% by mass of Ni and 0.3 to 1.5% by mass of Si, with the balance being Cu and unavoidable impurities. An abrasion-resistant Corson-based copper alloy characterized by having an oxygen concentration of 2 atomic% or less on the surface after removing the rust-preventing film layer. Niを1.0〜4.5質量%、Siを0.3〜1.5質量%含有し、残部がCu及び不可避的不純物からなる銅合金であって、オージェ電子分光法によりスパッタ速度2.2nm/分(SiO換算)でArイオンスパッタリングを少なくとも1.5分間行った後の表面、又はこれに相当する最表面からの深度における酸素濃度が2原子%以下であることを特徴とする耐金型磨耗性コルソン系銅合金。It is a copper alloy containing 1.0 to 4.5% by mass of Ni and 0.3 to 1.5% by mass of Si, and the balance being Cu and unavoidable impurities. The sputtering rate is 2. Auger electron spectroscopy. Oxygen concentration at a depth from the surface after performing Ar ion sputtering at 2 nm / min (in terms of SiO 2 ) for at least 1.5 minutes or a depth corresponding to the outermost surface is 2 atomic% or less. Abrasion-resistant Corson copper alloy. 最表面の窒素濃度が10原子%以下である請求項1又は2の耐金型磨耗性コルソン系銅合金。The mold-resistant abrasion-resistant Corson-based copper alloy according to claim 1 or 2, wherein the nitrogen concentration on the outermost surface is 10 atomic% or less. 更にMgを0.05〜0.3質量%含有する請求項1〜3のいずれか一項に記載の耐金型磨耗性コルソン系銅合金。The mold-resistant abrasion-resistant Corson-based copper alloy according to any one of claims 1 to 3, further containing 0.05 to 0.3% by mass of Mg. 更にZn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag及びBeから成る群から選択される少なくとも1種を0.05〜2.0質量%含有する請求項1〜4のいずれか一項に記載の耐金型磨耗性コルソン系銅合金。5. The composition according to claim 1, further comprising 0.05 to 2.0% by mass of at least one selected from the group consisting of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag and Be. The mold-wear-resistant Corson-based copper alloy according to any one of the preceding claims.
JP2002317617A 2002-10-31 2002-10-31 Corson copper alloy with die abrasion resistance Pending JP2004149873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317617A JP2004149873A (en) 2002-10-31 2002-10-31 Corson copper alloy with die abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317617A JP2004149873A (en) 2002-10-31 2002-10-31 Corson copper alloy with die abrasion resistance

Publications (1)

Publication Number Publication Date
JP2004149873A true JP2004149873A (en) 2004-05-27

Family

ID=32460965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317617A Pending JP2004149873A (en) 2002-10-31 2002-10-31 Corson copper alloy with die abrasion resistance

Country Status (1)

Country Link
JP (1) JP2004149873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088215A1 (en) * 2006-10-10 2009-08-12 The Furukawa Electric Co., Ltd. Copper alloy material for electrical/electronic part and process for producing the same
WO2020118744A1 (en) * 2018-12-13 2020-06-18 常熟建华模具科技股份有限公司 Rare earth-copper alloy lightweight glass mold and preparation method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088215A1 (en) * 2006-10-10 2009-08-12 The Furukawa Electric Co., Ltd. Copper alloy material for electrical/electronic part and process for producing the same
EP2088215A4 (en) * 2006-10-10 2012-06-27 Furukawa Electric Co Ltd Copper alloy material for electrical/electronic part and process for producing the same
WO2020118744A1 (en) * 2018-12-13 2020-06-18 常熟建华模具科技股份有限公司 Rare earth-copper alloy lightweight glass mold and preparation method therefor

Similar Documents

Publication Publication Date Title
JP4729680B2 (en) Copper-based alloy with excellent press punchability
EP1441040B1 (en) Copper base alloy and method for producing the same
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP3619516B2 (en) Copper alloy material with good pressability and method for producing the same
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
KR102052879B1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
WO2020203576A1 (en) Copper alloy plate, copper alloy plate with plating film and manufacturing methods therefor
JP2002088428A (en) Copper alloy for connector having excellent stress corrosion cracking resistance and its production method
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
US5508001A (en) Copper based alloy for electrical and electronic parts excellent in hot workability and blankability
JP3413864B2 (en) Connector for electrical and electronic equipment made of Cu alloy
JP2007031795A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY
JPH1143731A (en) High strength copper alloy excellent in stamping property and suitable for silver plating
JP2009013499A (en) Copper alloy for connector
JP2001303159A (en) Copper alloy for connector, and its producing method
JP6391618B2 (en) Titanium copper foil and manufacturing method thereof
JP2004149873A (en) Corson copper alloy with die abrasion resistance
JP2016160452A (en) Titanium-copper alloy material having surface coating formed thereon, and production method thereof
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2019052343A (en) Cu-Ni-Si BASED COPPER ALLOY EXCELLENT IN DIE WEAR PROPERTIES
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081027