JP2004149849A - Method for depositing metal thin film, and substrate with electrode - Google Patents

Method for depositing metal thin film, and substrate with electrode Download PDF

Info

Publication number
JP2004149849A
JP2004149849A JP2002316005A JP2002316005A JP2004149849A JP 2004149849 A JP2004149849 A JP 2004149849A JP 2002316005 A JP2002316005 A JP 2002316005A JP 2002316005 A JP2002316005 A JP 2002316005A JP 2004149849 A JP2004149849 A JP 2004149849A
Authority
JP
Japan
Prior art keywords
thin film
metal thin
substrate
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316005A
Other languages
Japanese (ja)
Inventor
Masatoshi Yamaguchi
正利 山口
Hiroaki Kikuchi
広明 菊池
Hiroyuki Matsuura
弘幸 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002316005A priority Critical patent/JP2004149849A/en
Publication of JP2004149849A publication Critical patent/JP2004149849A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for depositing a metal thin film on a substrate with high precision in which the process is short, and the damage of a base material is reduced, and to provide a substrate with an electrode in which a second metal thin film is deposited thereon with high precision. <P>SOLUTION: The method for depositing a first metal thin film and a second thin film on a substrate comprises a process where a resist layer is formed on the substrate; after exposure via a mask of a first metal thin film pattern and development, the first metal thin film is deposited; without removing the resist layer, a second metal is vapor-deposited via a metal mask having an opening part corresponding to the first metal thin film region to deposit the second metal thin film 2; next, the metal mask is detached; and the resist layer is removed. In this case, the second metal thin film region is not present at the outside of the first metal thin film region. Further, in the substrate with an electrode, the surface of the substrate is provided with the first metal thin film and the second metal thin film in this order; the second metal thin film region is not present at the outside of the first metal thin film region; and the first metal thin film is the electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属薄膜の形成方法及び電極付基板に関し、特に光導波路基板のような基板上の任意の領域に電極を形成し、この電極上にはんだ等の薄膜を形成する方法及び電極付基板に関する。
【0002】
【従来の技術】
従来、ポリマー光導波路基板のような基板上の任意の領域に電極を形成し、この電極上にはんだ等の金属薄膜を形成する方法としては、次のような方法が行われている。
▲1▼基板上に第1のホトレジスト層を形成し、所望の電極パターンの第1のホトレジストマスクを作製し、このマスクを利用して電極を蒸着により形成した後、第1のホトレジスト層を除去するリフトオフ法や、前記蒸着に代わり、めっきにより形成した後、第1のホトレジスト層を除去するめっき法により、電極を形成する。以下同様にして電極上に第2の金属薄膜を形成した後、第2のホトレジスト層を除去する。
あるいは、基板上に第1の金属薄膜を形成し、この薄膜上に第1のホトレジスト層を形成し、所望の電極パターンの第1のホトレジストマスクを作製し、このマスクを利用してエッチングにより不要部の金属薄膜を除去して電極を形成した後、第1のホトレジスト層を除去する。次に第2の金属薄膜を全面に形成し、第2のホトレジスト層を形成し、所望のパターンの第2のホトレジストマスクを作製し、このマスクを利用して、不要部の金属薄膜をエッチングにより除去して電極上に第2の金属薄膜を形成した後、第2のホトレジスト層を除去する。
上記の方法は工程が長く、また、レジスト層の除去工程が2回あるため、レジスト層除去液による下地材料の損傷が大きく、歩留りが低いという問題がある。
【0003】
▲2▼基板上に第1の金属薄膜を形成し、この薄膜上にホトレジスト層を形成し、所望の電極パターンの反転パターンを有するホトレジストマスクを作製し、このマスクを利用してエッチングにより不要部を除去して電極を形成した後、電極上のホトレジスト層を除去する。次に第2の金属薄膜パターンを有するメタルマスクを介して第2の金属を蒸着し、電極上に第2の金属薄膜を形成する。
▲3▼基板上にホトレジスト層を形成し、所望の電極パターンを有するホトレジストマスクを作製し、このマスクを利用して蒸着、めっき等により電極を形成した後、ホトレジスト層を除去する。次に第2の金属薄膜パターンを有するメタルマスクを介して第2の金属を蒸着し、電極上に第2の金属薄膜を形成する。
▲2▼及び▲3▼の方法は、蒸着時の熱輻射により、メタルマスク及び基板の温度が上昇し、両者の熱膨張率の差により位置ずれを生じ、金属薄膜の形成位置に狂いが生じるという問題がある。
図4(b)に示すように、第2の金属薄膜が第1の金属薄膜の領域外に形成されると、第2の金属薄膜と基板との濡れ性が悪い場合には第2の金属薄膜が盛り上がり、第2の金属薄膜上に半導体素子等を搭載すると、基板平面に対して傾いてしまうという重大な問題を生じる。
【0004】
【発明が解決しようとする課題】
従って本発明の目的は、工程が短く、また、レジスト層の除去工程が1回だけですみ、レジスト層除去液や蒸着時の熱輻射による下地材料の損傷が小さく、基板上に金属薄膜を位置に狂いを生じることなく形成することができる金属薄膜の形成方法を提供することである。
本発明の他の目的は、基板上に電極を有し、該電極上に第2の金属薄膜が精度良く形成された電極付基板を提供することである。
【0005】
【課題を解決するための手段】
本発明の第1は、基板上にレジスト層を形成し、第1の金属薄膜パターンを有するマスクを介して露光、現像後、第1の金属薄膜を形成し、レジスト層を除去することなく、第1の金属薄膜領域に対応する開口部を有するメタルマスクを密着させて第2の金属を蒸着して第2の金属薄膜を形成し、次いで、メタルマスクを取り外し、レジスト層を除去する工程を有し、第2の金属薄膜領域が第1の金属薄膜領域の外側には存在しないことを特徴とする、基板上に第1の金属薄膜と第2の金属薄膜を形成する方法である。
本発明の第2は、第1の金属薄膜がリフトオフ又はめっきにより形成される上記1記載の方法である。
本発明の第3は、第1の金属薄膜が電極である上記1又は2記載の方法である。
本発明の第4は、第2の金属薄膜がはんだである上記1〜3のいずれか1項記載の方法である。
本発明の第5は、基板がシリコンである上記1〜4のいずれか1項記載の方法である。
本発明の第6は、基板上に、第1の金属薄膜と第2の金属薄膜をこの順に有し、第2の金属薄膜領域が第1の金属薄膜領域の外側には存在しないこと、及び第1の金属薄膜が電極であることを特徴とする電極付基板である。
本発明の第7は、光導波路形成用である上記6記載の電極付基板である。
本発明の第8は、第2の金属薄膜がはんだである上記6又は7記載の電極付基板である。
【0006】
【発明の実施の形態】
図1は、本発明方法の一実施態様を模式的に説明する図面である。
図1(a)は、基板1(例えば、シリコン基板)上にレジスト層2を形成し、第1の金属薄膜パターンを有するマスクを介して露光、現像後、第1の金属薄膜3(電極)を形成した状態を示している。
図1(b)に示すように、基板の収納治具5に磁性板6を収納し、図1(a)に示すレジスト2と電極3を有する基板1をこの磁性板6の上に載置する。さらに、基板1の電極3に対応する領域が開口しているメタルマスク7を該基板1に密着させる。さらに、押えネジ8により、メタルマスク7、基板1、及び磁性板6を収納治具5に固定することが好ましい。本発明は、レジスト層2を除去することなく、基板1にメタルマスク7を密着させることを第1の特徴とするものである。
【0007】
図1(c)に示すように、押えネジ8により、メタルマスク7、基板1、及び磁性板6を収納治具5に固定したものを蒸着装置の基板ホルダ9に固定する。
これを真空蒸着装置に装着し(図1(d))、蒸着源10から第2の金属薄膜形成材料を蒸発させ、メタルマスク7の開口部領域に露出した基板1の薄膜形成領域に第2の金属薄膜4を蒸着する(図1(e)及び(f))。
蒸着終了後、収納治具5を蒸着装置から取り出し、押えネジ8をゆるめてメタルマスク7を取り外し、基板1の電極3上に、レジスト2と共に、所望の第2の金属薄膜4が形成された基板1を得る(図1(g))。
これをレジスト除去液により処理してレジスト2を除去し、基板1の電極3上に第2の金属薄膜4が形成された基板1を得る(図2(a))。
【0008】
本発明方法では、図2(b)及び(c)に示すように、第2の金属薄膜領域4が第1の金属薄膜領域3の外側には存在しないことを特徴とする。その理由について説明する。
図3に示すように、基板1にレジスト層2を設け、レジストがポジ型の場合にはこれを電極の反転パターンを有するマスクを介して露光、現像すると電極3を形成すべき領域のレジストが除去される。この際、現像液により、レジスト層2は、基板1に近い部分がより多く除去されるため、開口部断面2aは基板1に向かって広がった形状となる。このレジストマスクを介して金属薄膜4を蒸着すると、基板1にはレジストの開口部と同一の形状の蒸着薄膜3(電極)が形成される。このときレジスト層2の表面にも蒸着薄膜が形成される。
【0009】
次にレジスト層2を除去することなく、電極3に対応する開口部を有するメタルマスク7を密着し、このマスクを介して第2の金属を蒸着すると、メタルマスク7の開口部に対応する電極3上には金属薄膜4aが、メタルマスク7の表面には金属薄膜4bが形成される。この際、メタルマスク7の開口部パターンとレジスト層2のレジスト除去部分のパターンに位置ずれがあると、電極3の領域3aには金属薄膜4aが蒸着されるが、レジスト層2の影となった電極3の領域3bには金属が蒸着しない。メタルマスク7の開口部であって、電極3の領域、すなわち、レジスト層2の開口部に対応していない部分では、メタルマスク7の開口部から基板方向に侵入した蒸着物は、レジスト層2に遮蔽され、レジスト層2上に金属薄膜4cが形成される。
このように、レジスト層2の開口部は電極3の領域と完全に一致しているため、電極3の領域外の基板1上に金属薄膜4が形成されることはない。
【0010】
本発明において、基板材料としては、表面に蒸着薄膜が形成し得るものであれば特に制限はなく、ガラス、石英等の無機材料、シリコン、ガリウムヒ素、アルミニウム、チタン等の半導体や、金属材料、ポリイミド、ポリアミド等の高分子材料、またはこれらの材料を複合化した材料が挙げられる。更に基板の保護や屈折率調整などのために、基板材料表面に、二酸化珪素被膜を形成したり、あるいは、窒化シリコン、酸化アルミニウム、窒化アルミニウム、酸化タンタルなどの被膜を形成したものも挙げられる。
本発明方法を適用し得る基板としては、上記基板材料表面に、光導波路を設けたもの、及びさらに、光合波器、光分波路、光減衰器、光回折器、光増幅器、光干渉器、光フィルタ、光スイッチ、波長変換器、発光素子、受光素子あるいはこれらが複合化されたものなどを形成したものが挙げられる。上記の基板材料表面に、発光ダイオード、フォトダイオード等の半導体装置や金属膜を形成したものも挙げられる。
【0011】
蒸着源は、目的に合わせて選択されるが、代表的なものとしては金、クロム、アルミニウム、チタン、これらの合金、例えば、金−錫合金、等が挙げられる。これらの蒸着源は、抵抗加熱や電子ビーム等により加熱され、蒸発し基体表面に蒸着薄膜を形成する。
【0012】
以下実施例を示し、本発明を具体的に説明する。
実施例1
次に示すようにして、図1(a)に示す構造の基板を作製した。
直径約12.7cm、厚さ約1mmのシリコンウエハの上面全体にOPI−N1005(フッ素含有ポリイミド樹脂;日立化成工業株式会社製商品名)をスピン塗布して材料溶液膜を形成した。その後、乾燥器を用い100℃で30分間、次いで200℃で30分間加熱することにより溶媒を蒸発させ、続いて370℃で60分加熱することにより樹脂を硬化させて、厚さ6μmの下部クラッドを形成した。
この下部クラッドの上に、OPI−N3205(フッ素含有ポリイミド樹脂;日立化成工業株式会社製商品名)をスピン塗布して材料溶液膜を形成した。その後、乾燥器を用い100℃で30分間、次いで200℃で30分間加熱することにより溶媒を蒸発させ、続けて350℃で60分加熱することにより樹脂を硬化させて、光導波路となる厚さ6μmのポリイミド膜を形成した。
【0013】
得られたポリイミド膜は、フォトリソグラフィにより光導波路の形状にパターニングした。具体的には、光導波路となるポリイミド層の上にレジストをスピン塗布し、100℃で乾燥後、水銀ランプでマスク像を露光させ、現像して、レジストパターン層を形成した。このレジストパターン層は、前述のポリイミド膜を光導波路の形状に加工するためのマスクとして用い、前述のポリイミド層を酸素でリアクティブイオンエッチング(O−R1E)することにより、光導波路を基板上に多数配列して形成した。その後、レジストパターン層を剥離した。
次に、光導波路及び下部クラッドを覆うように、OPI−N1005(フッ素含有ポリイミド樹脂;日立化成工業株式会社製商品名)をスピン塗布した。得られた材料溶液膜を、乾燥器で100℃で30分、次いで、200℃で30分加熱して材料溶液膜中の溶媒を蒸発させ、350℃で60分加熱することによりポリイミド膜の上部クラッドを形成した。
【0014】
次に、接着層、上部クラッド、光導波路、下部クラッドの積層膜に対してダイシングにより積層方向に切り込みを入れ、シリコン上に電極を形成すべき領域に形成されている接着層、上部クラッドから下部クラッドまでを、基板上から剥がして除去した。これにより、基板上の電極を形成する領域では、シリコン基板が露出した。
次にレジスト膜を形成し、電極3のパターンを有するホトマスクを介して露光し、現像した。次いで、蒸着によるリフトオフ法により、電極3(1つの電極の大きさは220×400〜500μm、厚みは0.5μm)を形成し、図1(a)で表される光導波路基板1を作成した。但し、図1(a)では光導波路積層体は省略してある。
【0015】
収納治具5に磁性板6(アルニコ製、直径12.5cm、厚さ5mm)を収納し、この上に上記基板1を重ね、さらにこの上にメタルマスク7を重ねた。メタルマスク7は、SUS(又は42アロイ)製、直径13.0cm、フォトエッチング法により作成したものである。
【0016】
メタルマスク7を押えネジ8により収納治具5に固定し、これを蒸着装置の基板ホルダ9に収納し、真空蒸着室中で蒸着源10からはんだ材料(Au/Sn質量比=72:28)を約280℃に加熱して蒸発させ、電極3の上に200μm×300μm、厚さ3μmの蒸着膜を形成した。
図2に示すように、はんだ材料4は電極3の表面にのみ蒸着し、電極3の領域外に蒸着することは全くなかった。
【0017】
実施例2
実施例1において、蒸着によるリフトオフ法の代わりに無電解めっき法により電極3を形成した他は同様にして、電極3の上に200μm×300μm、厚さ3μmの蒸着膜を形成した。
図2に示すように、はんだ材料4は電極3の表面にのみ蒸着し、電極3の領域外に蒸着することは全くなかった。
【0018】
比較例
実施例1において、レジストを除去してからメタルマスクを使用して蒸着した他は同様にして、電極3の上に200μm×300μm、厚さ3μmの蒸着膜を形成した。
図4(b)に示すように、はんだ材料4は電極3の領域外にも蒸着し、丸く盛り上がった。
【0019】
【発明の効果】
本発明方法では、第1の金属薄膜の形成の際に使用したレジスト層を除去することなく、第1の金属薄膜の上に蒸着により第2の金属薄膜を形成するため、工程が短く、また、レジスト層の除去工程が1回だけですみ、レジスト層除去液や蒸着時の熱輻射による下地材料の損傷が小さく、基板上に金属薄膜を位置に狂いを生じることなく形成することができる。
また、本発明の電極付基板は、基板上に電極を有し、該電極上に第2の金属薄膜が精度良く形成されているため、第2の金属薄膜上にレーザーダイオードやフォトダイオード等の半導体素子を精度良く搭載することができる。
【図面の簡単な説明】
【図1】本発明方法の一実施態様を示す模式的な説明図である。
【図2】(a)は、本発明の実施例により作製された、基板1上に形成された電極3、この電極3の上に蒸着されたはんだ薄膜4を有する電極付基板の断面図である。(b)は、図2(a)の一部拡大平面図であり、電極3とメタルマスク7の開口部に位置ずれのない場合を示している。
(c)は、図2(a)の一部拡大平面図であり、電極3とメタルマスク7の開口部に位置ずれのある場合を示している。
【図3】本発明方法の一実施態様を示す模式的な説明図であり、本発明方法によれば、電極3とメタルマスク7の開口部に位置ずれがあっても、電極3上にのみ金属薄膜が形成され、基板1上には形成されない理由を説明する図面である。
【図4】従来のメタルマスク蒸着法の概要を示す模式的な図面であり、左側の図は電極3とメタルマスク7の開口部に位置ずれのない場合を示し、右側の図は、電極3とメタルマスク7の開口部に位置ずれのある場合を示している。
【符号の説明】
1:基板、2:レジスト層、3:電極、4:蒸着薄膜、5:収納治具、6:磁性板、7:メタルマスク、8:押えネジ、9:基板ホルダ、10:蒸着源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a metal thin film and a substrate with electrodes, and more particularly to a method for forming an electrode in an arbitrary region on a substrate such as an optical waveguide substrate, and forming a thin film such as solder on the electrode, and a substrate with electrodes. About.
[0002]
[Prior art]
Conventionally, as a method for forming an electrode in an arbitrary region on a substrate such as a polymer optical waveguide substrate and forming a thin metal film such as a solder on the electrode, the following method is used.
{Circle around (1)} A first photoresist layer is formed on a substrate, a first photoresist mask having a desired electrode pattern is formed, electrodes are formed by vapor deposition using this mask, and then the first photoresist layer is removed. The electrodes are formed by a lift-off method, or by plating instead of vapor deposition, and then by plating to remove the first photoresist layer. After forming a second metal thin film on the electrode in the same manner, the second photoresist layer is removed.
Alternatively, a first metal thin film is formed on a substrate, a first photoresist layer is formed on the thin film, a first photoresist mask having a desired electrode pattern is formed, and etching is performed by using the mask. After forming the electrode by removing the metal thin film in the portion, the first photoresist layer is removed. Next, a second metal thin film is formed on the entire surface, a second photoresist layer is formed, a second photoresist mask having a desired pattern is formed, and the metal thin film at an unnecessary portion is etched by using the mask. After removing to form a second metal thin film on the electrode, the second photoresist layer is removed.
The above-mentioned method has a problem that the steps are long and the step of removing the resist layer is performed twice, so that the underlying material is greatly damaged by the resist layer removing liquid and the yield is low.
[0003]
(2) A first metal thin film is formed on a substrate, a photoresist layer is formed on the thin film, a photoresist mask having a reverse pattern of a desired electrode pattern is produced, and unnecessary portions are etched by using the mask. Is removed to form an electrode, and then the photoresist layer on the electrode is removed. Next, a second metal is deposited through a metal mask having a second metal thin film pattern, and a second metal thin film is formed on the electrode.
{Circle around (3)} A photoresist layer is formed on a substrate, a photoresist mask having a desired electrode pattern is prepared, and electrodes are formed by vapor deposition, plating and the like using this mask, and then the photoresist layer is removed. Next, a second metal is deposited through a metal mask having a second metal thin film pattern, and a second metal thin film is formed on the electrode.
According to the methods (2) and (3), the temperature of the metal mask and the substrate rises due to the heat radiation during the vapor deposition, and the difference in thermal expansion coefficient between the two causes a displacement, resulting in a misalignment in the formation position of the metal thin film. There is a problem.
As shown in FIG. 4B, when the second metal thin film is formed outside the region of the first metal thin film, if the wettability between the second metal thin film and the substrate is poor, the second metal thin film is formed. When the thin film rises and a semiconductor element or the like is mounted on the second metal thin film, a serious problem occurs that the thin film is inclined with respect to the plane of the substrate.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to shorten the process, remove the resist layer only once, reduce the damage to the underlying material due to the resist layer removing solution and heat radiation during deposition, and position the metal thin film on the substrate. It is an object of the present invention to provide a method for forming a metal thin film that can be formed without causing any irregularities in the metal film.
Another object of the present invention is to provide a substrate with electrodes, which has electrodes on the substrate and on which the second metal thin film is formed with high accuracy.
[0005]
[Means for Solving the Problems]
The first aspect of the present invention is to form a resist layer on a substrate, expose and develop through a mask having a first metal thin film pattern, form a first metal thin film, and remove the resist layer without removing the resist layer. Forming a second metal thin film by depositing a second metal by closely attaching a metal mask having an opening corresponding to the first metal thin film region, and then removing the metal mask and removing the resist layer; A method for forming a first metal thin film and a second metal thin film on a substrate, wherein the second metal thin film region does not exist outside the first metal thin film region.
A second aspect of the present invention is the method according to the first aspect, wherein the first metal thin film is formed by lift-off or plating.
A third aspect of the present invention is the method according to the above 1 or 2, wherein the first metal thin film is an electrode.
A fourth aspect of the present invention is the method according to any one of the above items 1 to 3, wherein the second metal thin film is a solder.
A fifth aspect of the present invention is the method according to any one of the above items 1 to 4, wherein the substrate is silicon.
A sixth aspect of the present invention is that the first metal thin film and the second metal thin film are provided in this order on the substrate, and the second metal thin film region does not exist outside the first metal thin film region; and The substrate with electrodes, wherein the first metal thin film is an electrode.
A seventh aspect of the present invention is the substrate with electrodes according to the above item 6, wherein the substrate is for forming an optical waveguide.
An eighth aspect of the present invention is the substrate with an electrode according to the above item 6 or 7, wherein the second metal thin film is a solder.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a drawing schematically illustrating one embodiment of the method of the present invention.
FIG. 1A shows that a resist layer 2 is formed on a substrate 1 (for example, a silicon substrate), exposed and developed through a mask having a first metal thin film pattern, and then a first metal thin film 3 (electrode) is formed. Is formed.
As shown in FIG. 1 (b), a magnetic plate 6 is stored in a substrate storage jig 5, and a substrate 1 having a resist 2 and an electrode 3 shown in FIG. 1 (a) is placed on the magnetic plate 6. I do. Further, a metal mask 7 having an opening in a region corresponding to the electrode 3 of the substrate 1 is brought into close contact with the substrate 1. Further, it is preferable that the metal mask 7, the substrate 1, and the magnetic plate 6 are fixed to the storage jig 5 by the holding screws 8. The first feature of the present invention is that the metal mask 7 is brought into close contact with the substrate 1 without removing the resist layer 2.
[0007]
As shown in FIG. 1C, the metal mask 7, the substrate 1, and the magnetic plate 6 fixed to the storage jig 5 by a holding screw 8 are fixed to a substrate holder 9 of a vapor deposition apparatus.
This is mounted on a vacuum evaporation apparatus (FIG. 1D), and the second metal thin film forming material is evaporated from the evaporation source 10 and the second metal thin film forming material is exposed to the second thin film forming area of the substrate 1 exposed in the opening area of the metal mask 7. (FIGS. 1 (e) and 1 (f)).
After the vapor deposition, the storage jig 5 is taken out of the vapor deposition apparatus, the metal screw 7 is removed by loosening the holding screw 8, and the desired second metal thin film 4 is formed on the electrode 3 of the substrate 1 together with the resist 2. A substrate 1 is obtained (FIG. 1 (g)).
This is treated with a resist removing solution to remove the resist 2 to obtain the substrate 1 on which the second metal thin film 4 is formed on the electrodes 3 of the substrate 1 (FIG. 2A).
[0008]
The method according to the present invention is characterized in that the second metal thin film region 4 does not exist outside the first metal thin film region 3 as shown in FIGS. The reason will be described.
As shown in FIG. 3, a resist layer 2 is provided on a substrate 1, and when the resist is of a positive type, the resist is exposed and developed through a mask having an inverted pattern of the electrodes. Removed. At this time, the portion of the resist layer 2 close to the substrate 1 is more removed by the developing solution, so that the cross section 2a of the opening has a shape expanding toward the substrate 1. When the metal thin film 4 is deposited through this resist mask, a deposited thin film 3 (electrode) having the same shape as the opening of the resist is formed on the substrate 1. At this time, a deposited thin film is also formed on the surface of the resist layer 2.
[0009]
Next, without removing the resist layer 2, a metal mask 7 having an opening corresponding to the electrode 3 is adhered, and a second metal is vapor-deposited through this mask, whereby an electrode corresponding to the opening of the metal mask 7 is formed. A metal thin film 4a is formed on 3 and a metal thin film 4b is formed on the surface of the metal mask 7. At this time, if there is a misalignment between the pattern of the opening of the metal mask 7 and the pattern of the resist-removed portion of the resist layer 2, the metal thin film 4 a is vapor-deposited on the region 3 a of the electrode 3. No metal is deposited on the region 3b of the electrode 3 formed. In the opening of the metal mask 7, in the region of the electrode 3, that is, the portion that does not correspond to the opening of the resist layer 2, the deposit that has penetrated in the direction of the substrate from the opening of the metal mask 7 is removed by the resist layer 2. And a metal thin film 4 c is formed on the resist layer 2.
As described above, since the opening of the resist layer 2 completely matches the region of the electrode 3, the metal thin film 4 is not formed on the substrate 1 outside the region of the electrode 3.
[0010]
In the present invention, the substrate material is not particularly limited as long as a vapor-deposited thin film can be formed on the surface, and inorganic materials such as glass and quartz, semiconductors such as silicon, gallium arsenide, aluminum and titanium, metal materials, Examples thereof include a polymer material such as polyimide and polyamide, or a composite material of these materials. Further, for protection of the substrate, adjustment of the refractive index, and the like, a material in which a silicon dioxide film is formed on the surface of the substrate material, or a film formed of silicon nitride, aluminum oxide, aluminum nitride, tantalum oxide, or the like is formed.
As a substrate to which the method of the present invention can be applied, a substrate provided with an optical waveguide on the substrate material surface, and further, an optical multiplexer, an optical demultiplexer, an optical attenuator, an optical diffractor, an optical amplifier, an optical interferometer, An optical filter, an optical switch, a wavelength converter, a light-emitting element, a light-receiving element, or a combination of these elements is formed. A semiconductor device such as a light emitting diode or a photodiode or a metal film formed on the surface of the above-mentioned substrate material may also be used.
[0011]
The evaporation source is selected according to the purpose, and typical examples include gold, chromium, aluminum, titanium, and alloys thereof, for example, a gold-tin alloy. These evaporation sources are heated by resistance heating, an electron beam, or the like, and evaporate to form an evaporated thin film on the surface of the substrate.
[0012]
Hereinafter, the present invention will be described specifically with reference to Examples.
Example 1
A substrate having the structure shown in FIG. 1A was manufactured as follows.
OPI-N1005 (fluorine-containing polyimide resin; trade name of Hitachi Chemical Co., Ltd.) was spin-coated on the entire upper surface of a silicon wafer having a diameter of about 12.7 cm and a thickness of about 1 mm to form a material solution film. Thereafter, the solvent is evaporated by heating at 100 ° C. for 30 minutes and then at 200 ° C. for 30 minutes using a drier, and then the resin is cured by heating at 370 ° C. for 60 minutes to form a 6 μm thick lower clad. Was formed.
OPI-N3205 (fluorine-containing polyimide resin; trade name of Hitachi Chemical Co., Ltd.) was spin-coated on the lower clad to form a material solution film. Thereafter, the solvent is evaporated by heating at 100 ° C. for 30 minutes and then at 200 ° C. for 30 minutes using a dryer, and subsequently, the resin is cured by heating at 350 ° C. for 60 minutes to obtain a thickness that becomes an optical waveguide. A 6 μm polyimide film was formed.
[0013]
The obtained polyimide film was patterned into the shape of an optical waveguide by photolithography. Specifically, a resist was spin-coated on a polyimide layer serving as an optical waveguide, dried at 100 ° C., exposed to a mask image with a mercury lamp, and developed to form a resist pattern layer. This resist pattern layer is used as a mask for processing the above-mentioned polyimide film into the shape of the optical waveguide, and the above-mentioned polyimide layer is subjected to reactive ion etching (O 2 -R1E) with oxygen to form the optical waveguide on the substrate. In a large number. Thereafter, the resist pattern layer was peeled off.
Next, OPI-N1005 (fluorine-containing polyimide resin; trade name of Hitachi Chemical Co., Ltd.) was spin-coated so as to cover the optical waveguide and the lower clad. The obtained material solution film is heated in a drier at 100 ° C. for 30 minutes, then at 200 ° C. for 30 minutes to evaporate the solvent in the material solution film, and then heated at 350 ° C. for 60 minutes to form an upper portion of the polyimide film. A clad was formed.
[0014]
Next, the laminated film of the adhesive layer, the upper clad, the optical waveguide, and the lower clad is cut in the laminating direction by dicing, and the adhesive layer formed in the region where the electrode is to be formed on the silicon, The part up to the clad was peeled off from the substrate and removed. As a result, the silicon substrate was exposed in the region on the substrate where the electrodes were to be formed.
Next, a resist film was formed, exposed through a photomask having a pattern of the electrode 3, and developed. Next, an electrode 3 (one electrode has a size of 220 × 400 to 500 μm and a thickness of 0.5 μm) was formed by a lift-off method by vapor deposition, and an optical waveguide substrate 1 shown in FIG. . However, the optical waveguide laminate is omitted in FIG.
[0015]
The magnetic plate 6 (manufactured by Alnico, diameter 12.5 cm, thickness 5 mm) was stored in the storage jig 5, the substrate 1 was stacked thereon, and the metal mask 7 was further stacked thereon. The metal mask 7 is made of SUS (or 42 alloy), has a diameter of 13.0 cm, and is formed by a photo-etching method.
[0016]
The metal mask 7 is fixed to the storage jig 5 with the holding screw 8 and is stored in the substrate holder 9 of the vapor deposition apparatus. Was heated to about 280 ° C. and evaporated to form a 200 μm × 300 μm, 3 μm thick deposited film on the electrode 3.
As shown in FIG. 2, the solder material 4 was deposited only on the surface of the electrode 3, and was not deposited outside the region of the electrode 3 at all.
[0017]
Example 2
A vapor deposition film having a thickness of 200 μm × 300 μm and a thickness of 3 μm was formed on the electrode 3 in the same manner as in Example 1, except that the electrode 3 was formed by electroless plating instead of the lift-off method by vapor deposition.
As shown in FIG. 2, the solder material 4 was deposited only on the surface of the electrode 3, and was not deposited outside the region of the electrode 3 at all.
[0018]
Comparative Example In the same manner as in Example 1, except that the resist was removed and then vapor deposition was performed using a metal mask, a vapor deposition film having a thickness of 200 μm × 300 μm and a thickness of 3 μm was formed on the electrode 3.
As shown in FIG. 4B, the solder material 4 was also deposited outside the region of the electrode 3 and bulged round.
[0019]
【The invention's effect】
In the method of the present invention, since the second metal thin film is formed by vapor deposition on the first metal thin film without removing the resist layer used in forming the first metal thin film, the steps are short, and In addition, the resist layer is removed only once, damage to the underlying material due to the resist layer removing liquid or heat radiation during vapor deposition is small, and a thin metal film can be formed on the substrate without causing any misalignment.
In addition, since the substrate with electrodes of the present invention has electrodes on the substrate and the second metal thin film is formed on the electrodes with high precision, a laser diode, a photodiode, or the like is formed on the second metal thin film. A semiconductor element can be mounted with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing one embodiment of the method of the present invention.
FIG. 2A is a cross-sectional view of an electrode-formed substrate having an electrode 3 formed on a substrate 1 and a solder thin film 4 deposited on the electrode 3 manufactured according to an embodiment of the present invention. is there. FIG. 2B is a partially enlarged plan view of FIG. 2A and shows a case where there is no displacement between the openings of the electrode 3 and the metal mask 7.
FIG. 2C is a partially enlarged plan view of FIG. 2A and shows a case where there is a displacement between the openings of the electrode 3 and the metal mask 7.
FIG. 3 is a schematic explanatory view showing one embodiment of the method of the present invention. According to the method of the present invention, even if the electrode 3 and the opening of the metal mask 7 are misaligned, only the electrode 3 is provided. FIG. 3 is a diagram illustrating a reason why a metal thin film is formed and is not formed on a substrate 1.
FIG. 4 is a schematic diagram showing an outline of a conventional metal mask vapor deposition method, wherein the left-hand drawing shows a case where there is no displacement between the openings of the electrode 3 and the metal mask 7; And a case where the opening of the metal mask 7 is misaligned.
[Explanation of symbols]
1: substrate, 2: resist layer, 3: electrode, 4: evaporated thin film, 5: storage jig, 6: magnetic plate, 7: metal mask, 8: holding screw, 9: substrate holder, 10: evaporation source

Claims (8)

基板上にレジスト層を形成し、第1の金属薄膜パターンを有するマスクを介して露光、現像後、第1の金属薄膜を形成し、レジスト層を除去することなく、第1の金属薄膜領域に対応する開口部を有するメタルマスクを密着させて第2の金属を蒸着して第2の金属薄膜を形成し、次いで、メタルマスクを取り外し、レジスト層を除去する工程を有し、第2の金属薄膜領域が第1の金属薄膜領域の外側には存在しないことを特徴とする、基板上に第1の金属薄膜と第2の金属薄膜を形成する方法。After forming a resist layer on a substrate, exposing and developing through a mask having a first metal thin film pattern, a first metal thin film is formed, and the first metal thin film region is formed without removing the resist layer. Forming a second metal thin film by depositing a second metal by bringing a metal mask having a corresponding opening into close contact therewith, removing the metal mask, and removing the resist layer; A method of forming a first metal thin film and a second metal thin film on a substrate, wherein the thin film region does not exist outside the first metal thin film region. 第1の金属薄膜がリフトオフ又はめっきにより形成される請求項1記載の方法。The method of claim 1, wherein the first thin metal film is formed by lift-off or plating. 第1の金属薄膜が電極である請求項1又は2記載の方法。3. The method according to claim 1, wherein the first metal thin film is an electrode. 第2の金属薄膜がはんだである請求項1〜3のいずれか1項記載の方法。The method according to any one of claims 1 to 3, wherein the second metal thin film is a solder. 基板がシリコンである請求項1〜4のいずれか1項記載の方法。5. The method according to claim 1, wherein the substrate is silicon. 基板上に、第1の金属薄膜と第2の金属薄膜をこの順に有し、第2の金属薄膜領域が第1の金属薄膜領域の外側には存在しないこと、及び第1の金属薄膜が電極であることを特徴とする電極付基板。A first metal thin film and a second metal thin film are provided in this order on a substrate, and the second metal thin film region does not exist outside the first metal thin film region; A substrate with electrodes, characterized in that: 光導波路形成用である請求項6記載の電極付基板。The substrate with electrodes according to claim 6, which is for forming an optical waveguide. 第2の金属薄膜がはんだである請求項6又は7記載の電極付基板。8. The substrate with electrodes according to claim 6, wherein the second metal thin film is a solder.
JP2002316005A 2002-10-30 2002-10-30 Method for depositing metal thin film, and substrate with electrode Pending JP2004149849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316005A JP2004149849A (en) 2002-10-30 2002-10-30 Method for depositing metal thin film, and substrate with electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316005A JP2004149849A (en) 2002-10-30 2002-10-30 Method for depositing metal thin film, and substrate with electrode

Publications (1)

Publication Number Publication Date
JP2004149849A true JP2004149849A (en) 2004-05-27

Family

ID=32459839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316005A Pending JP2004149849A (en) 2002-10-30 2002-10-30 Method for depositing metal thin film, and substrate with electrode

Country Status (1)

Country Link
JP (1) JP2004149849A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US20170317245A1 (en) * 2014-11-04 2017-11-02 Osram Opto Semiconductors Gmbh Method of applying a material to a surface
WO2019066087A1 (en) * 2017-09-26 2019-04-04 株式会社ブイ・テクノロジー Vapor deposition device, device for manufacturing organic el panel, and method for manufacturing organic el panel
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
US20170317245A1 (en) * 2014-11-04 2017-11-02 Osram Opto Semiconductors Gmbh Method of applying a material to a surface
JP2017534176A (en) * 2014-11-04 2017-11-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Method of depositing material on a surface
WO2019066087A1 (en) * 2017-09-26 2019-04-04 株式会社ブイ・テクノロジー Vapor deposition device, device for manufacturing organic el panel, and method for manufacturing organic el panel
JP2019059973A (en) * 2017-09-26 2019-04-18 株式会社ブイ・テクノロジー Vapor deposition apparatus, manufacturing apparatus of organic el panel, and manufacturing method of organic el panel

Similar Documents

Publication Publication Date Title
JP2004149849A (en) Method for depositing metal thin film, and substrate with electrode
US20060056034A1 (en) Micro lens array, optical member and method of producing micro lens array
TW201947315A (en) Pellicle for EUV lithography
US20060183029A1 (en) Method for producing a mask arrangement and use of the mask arrangement
JP2000164594A (en) Method for forming wiring pattern
JP5343378B2 (en) Stencil mask and manufacturing method thereof
JPS62142323A (en) Manufacture of mask for x-ray photo-lithography and mask obtained by the manufacture
JPH06267843A (en) Pattern forming method
JPS6272128A (en) Manufacturing mask used in x-ray photolithography
JP2022508102A (en) Method of via formation by microimprint
JP2003215368A (en) Optical waveguide structure
JP2004107723A (en) Thin film deposition method
KR20180134104A (en) Method for manufacturing pellicle
JP2004226632A (en) Joint substrate, optical circuit substrate and its manufacturing method
JPH01161718A (en) Manufacture of x-ray mask
JP2020169109A (en) Method of processing inorganic material substrate, device, and method of manufacturing device
JP2001272769A (en) Photomask and method for manufacturing the same as well as method for manufacturing semiconductor device
JPS62119924A (en) Manufacture of transmitting mask
JP3232853B2 (en) Dielectric mask for laser processing and method of manufacturing the same
US6858376B2 (en) Process for structuring a photoresist layer on a semiconductor substrate
JP2002030420A (en) System and method for film deposition
JP3855259B2 (en) Optical waveguide device manufacturing method and substrate
KR100249793B1 (en) Fabrication method of backside via-hole using sapphire wafer
JP2003043282A (en) Optical waveguide device including electrode, optical element, electrode layer, and method for manufacturing optical element
CN117747544A (en) Method for forming through silicon via