JP2004146532A - Shield - Google Patents

Shield Download PDF

Info

Publication number
JP2004146532A
JP2004146532A JP2002308835A JP2002308835A JP2004146532A JP 2004146532 A JP2004146532 A JP 2004146532A JP 2002308835 A JP2002308835 A JP 2002308835A JP 2002308835 A JP2002308835 A JP 2002308835A JP 2004146532 A JP2004146532 A JP 2004146532A
Authority
JP
Japan
Prior art keywords
conductive
shield
resin molded
molded product
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002308835A
Other languages
Japanese (ja)
Inventor
Tadashi Miyazaki
宮崎 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2002308835A priority Critical patent/JP2004146532A/en
Publication of JP2004146532A publication Critical patent/JP2004146532A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shield having excellent contact reliability for attaining continuity at the surface. <P>SOLUTION: A shielding case 43 (shielding body) is formed of a conductive resin molding 51 in which a conductive fiber 53 is mixed within a non-conductive resin 52, and a non-electrolyte plated layer 54 formed on the surface of the conductive resin molding 51. Although the number of conductive fibers 53 is rather small at the surface layer 51a of the conductive resin molding 51, such small number of conductive fibers 53 is conductive to the non-electrolyte plated layer 54 formed on the surface layer 51a, and this non-electrolyte plated layer 54 becomes conductive through the contact with the other member. Therefore, contact reliability for continuity with the other members can be improved by enlarging the area of the non-electrolyte plated layer 54. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電磁シールド用の遮蔽体に関するものである。
【0002】
【従来の技術】
例えば電気自動車のインバータ装置などのような電磁シールドが必要な機器では、遮蔽手段として金属製(例えば、アルミダイキャスト製)のシールドケースが用いられている。この金属製のシールドケースは、その表面において導通をとることができるという利点があるが、重量が大となる欠点もある。そこで、軽量化を図った遮蔽体としては、導電性繊維を含んだ樹脂成形品を用いたものが知られている(例えば、特許文献1を参照)。
【0003】
【特許文献1】
特開2000−332886号公報
【0004】
【発明が解決しようとする課題】
しかし、導電性繊維を含んだ樹脂成形品を射出成形する際には、樹脂材料と導電性繊維の流れに差が生じ、樹脂成形品の表層部では、導電性繊維が少なく、大部分が樹脂のみで占められてしまう。そのため、導電性樹脂製の遮蔽体では、その表面で導通をとろうとしても接触が不安定になることが懸念され、接触面積が小さいほど接触信頼性が低下するという問題がある。
【0005】
本願発明は上記事情に鑑みて創案され、表面で導通をとる場合の接触信頼性に優れた遮蔽体を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1の発明は、合成樹脂内に導電材を混在させてなる導電性樹脂成形品と、この導電性樹脂成形品の表面に形成された無電解メッキ層とを備えていることを特徴としている。
尚、導電材としては、導電性繊維や導電性の粉体、粒体などを用いることができる。
請求項2の発明は、請求項1の発明において、前記導電材が金属製であるものにおいて、前記無電解メッキ層が前記導電性樹脂成形品の表面全体に亘って形成されて構成とした。
【0007】
【発明の作用及び効果】
[請求項1の発明]
導電性樹脂成形品の表層部では導電材の数が少ないのであるが、その数少ない導電材は表層部に形成した無電解メッキ層に導通しており、この無電解メッキ層では他の部材を接触させて導通をとることができる。したがって、無電解メッキ層の面積を拡大することにより、他の部材と導通をとる場合の接触信頼性を向上させることができる。
【0008】
[請求項2の発明]
導電材が金属製からなる場合、高いシールド効果が期待できる。また、導電材が金属製である場合には、導電性樹脂成形品の表面に露出した導電材が腐食することが懸念されるが、本発明によれば、導電性樹脂成形品の表面に露出した導電材は、全て無電解メッキ層によって保護されるので、腐食の虞はない。
【0009】
【発明の実施の形態】
[実施形態1]
以下、本発明を具体化した実施形態1を図1乃至図3を参照して説明する。
【0010】
本実施形態では、ハーネス側コネクタ10と機器側コネクタ40とから構成されるシールドコネクタに適用した例を説明する。
ハーネス側コネクタ10は機器側コネクタ40に対し下から組み付けられる。組付け手段としては、ハーネス側コネクタ10に設けたレバー11のカム溝(図示せず)と機器側コネクタ40に設けたカムピン(図示せず)とを係合させ、レバー11の回動に伴うカム溝とカムピンとのカム作用によってハーネス側コネクタ10を機器側コネクタ40に接近させる周知の構造が用いられている。
【0011】
ハーネス側コネクタ10は、絶縁性樹脂材からなるハウジング12内に3つの雌端子金具13を一列に並べて収容するとともに、ハウジング12に対しこれを包囲するようにシールドシェル14(本発明の構成要件である遮蔽体)を組み付けたものである。雌端子金具13の下端部に接続されたシールド電線15はハウジング12の下方へ導出されており、そのシールド電線15の筒状のシールド層16(例えば、編組)の端末部がシールドシェル14の下端部にリングカシメなどの手段によって導通可能に固着されている。シールドシェル14は、全体として筒状をなし、3つの雌端子金具13を包囲する。シールドシェル14の上端部には外側へ張り出すフランジ部17が形成されており、フランジ部17の上面は、両コネクタ10,40の組付け方向に対して直交する(水平な)平坦状の接続面とされている。このフランジ部17の上面は、両コネクタ10,40を組み付けたときに機器側コネクタ40の接続部48の下面に当接される。
【0012】
機器側コネクタ40は、例えば、電気自動車のインバータケース等の機器41に設けられたものであって、機器本体42を収容するシールドケース43(本発明の構成要件である遮蔽体)の筒部44内に、絶縁性樹脂材からなる筒状のハウジング45を組み付けるとともに、そのハウジング45内に3つの雄端子金具46を一列に並べて収容して構成されている。雄端子金具46は機器本体42に接続されており、これらの雄端子金具46におけるハウジング45内に収容されている部分はシールドケース43によって包囲された状態となっている。シールドケース43における筒部44の形成母体である支持部47の下面のうち筒部44を包囲する領域は接続部48とされ、この接続部の下面は、両コネクタ10,40の組付け方向に対して直交する(水平な)平坦状の接続面とされている。この接続部48の下面は、両コネクタ10,40を組み付けたときにハーネス側コネクタ10のフランジ部17の上面に接近する。
【0013】
両コネクタ10,40を組み付ける過程では、シールドシェル14のフランジ部17がシールドケース43の接続部48に対して下から接近し、両コネクタ10,40の嵌合が完了すると、フランジ部17の上面が接続部48の下面に対して面接触状態で当接する。この当接により、シールドシェル14とシールドケース43とが導通可能に接続された状態となり、もって、シールド機能が発揮される。
【0014】
次に、シールドシェル14とシールドケース43の構造を、図3及び図4を参照して説明する。本実施形態のシールドシェル14とシールドケース43は、厚さ寸法と形状は互いに異なるものの、基本的な構成は同一であるため、便宜上シールドケース43についてのみ説明し、シールドシェル14については説明を省略する。
シールドケース43は、非導電性の合成樹脂52内に導電性繊維53(本発明の構成要件である導電材)を混在させてなる導電性樹脂成形品51と、この導電性樹脂成形品51の表面及び裏面に形成された無電解メッキ層54とから構成されている。本実施形態では、非導電性の合成樹脂52として、ポリブチレンテレフタレート(PBT)やポリアミドなどが用いられ、導電性繊維53としては、カーボンファイバーが用いられている。また、無電解メッキ層54としては、無電解Niメッキしたものや、無電解Niメッキをベースにしてその表面に電気Snメッキを施したもの等が用いられ、その厚さは、5〜8μmとされている。
【0015】
導電性樹脂成形品51は、導電性繊維53を混ぜた溶融状態の合成樹脂52を射出成型機(図示せず)のキャビティ内に射出することによって所定のシールドケース43の形状に成型されている。射出成型では、合成樹脂52内における導電性繊維53の分布は厚さ方向において不均一となる。即ち、導電性樹脂成形品51の表層部51a(スキン層)は、導電性繊維53の数が少なくて、殆ど合成樹脂52によって構成された樹脂リッチ層となっており、数少ない導電性繊維53の一部が表層部51aの外面に露出されている(図3を参照)。一方、両表層部51aの間の中間層51bでは、導電性繊維53が、表層部51aよりも密に存在するとともに、厚さ方向及び面方向においてほぼ均一に分布している。
【0016】
中間層51bでは、導電性繊維53同士が互いに接触する状態で分布しており、また、中間層51bと表層部51aにまたがって分布している導電性繊維53は、中間層51b内の導電性繊維53に接触する状態となっている。これにより、導電性樹脂成形品51内の導電性繊維53は互いに導通可能となり、全体として1つの導電体を構成するのであって、この導電性樹脂成形品51によってシールドケース43はシールド機能を発揮し得るようになっている。
【0017】
尚、この導電性繊維53によるシールド性能については、導電性繊維53の密度を一定とした上で導電性樹脂成形品の肉厚を厚くして導電性繊維53の数を増やすか、若しくは、導電性繊維53の密度を高めることによってシールド性能を高めることが可能である。
このようにして成形された導電性樹脂成形品51に対し、その表層部51aに表面に無電解メッキ層54が形成され、この無電解メッキ層54がシールドケース43の表面(外面)に露出した状態となる。この無電解メッキ層54は、表層部51aの表面全体に亘り、且つ厚さにムラがないように形成されており、表層部51aに露出している導電性繊維53が無電解メッキ層54内に埋設される。これにより、表層部51aでは導電性繊維53の数が少ないにも拘わらず、その数少ない導電性繊維53が確実に表層部51aに対して導通可能に接続され、ひいては、導電性樹脂成形品51内の導電性繊維53全体と無電解メッキ層54とが導通可能に接続される。尚、この無電解メッキ層は、導電性繊維53と同様に、シールド機能を発揮する。
【0018】
そして、この無電解メッキ層54の外面のうちシールドケース43の接続部48の下面となる平坦な広い領域は、シールドシェル14のフランジ部17の上面(他の部材)との接触手段となる。尚、シールドシェル14もシールドケース43と同様の構造であるから、フランジ部17の上面も接続部48の下面と同じく、導電性樹脂成形品51の表層部51aに形成された無電解メッキ層54で構成されている。つまり、シールドシェル14とシールドケース43との接続部分では、無電解メッキ層54同士が広い面積に亘って面接触状態で当接することになる。
【0019】
上述のように本実施形態のシールドケース43とシールドシェル14は、合成樹脂52内に導電性繊維53を混在させてなる導電性樹脂成形品51と、この導電性樹脂成形品51の表面に形成された無電解メッキ層54とから構成されるので、全体を金属製(例えば、アルミダイキャスト製)としたものに比べて軽量化が可能となっている。
また、導電性樹脂成形品51を用いた場合、その表層部51aでは導電性繊維53の数が少なくなるため、その表層部51aを相手部材に接触させた場合には導通信頼性の低下が懸念される。しかし、本実施形態では、表層部51aの数少ない導電性繊維53は、その表層部51aの外面に形成した所定厚さを有する無電解メッキ層54に導通されているため、この無電解メッキ層54を相手部材との接触手段として機能させることで、確実に導通をとることができる。
【0020】
特に、本実施形態では、無電解メッキ層54を表層部51aの全体(相手部材との接触面全体を含む)に亘って形成しているので、接触面積が広くなり、接触信頼性がより高められている。
さらに、無電解メッキ層54を表層部51aの全体に亘って形成したことにより、導電性繊維53が金属繊維(例えば、Fe繊維など)であって、外気との接触などによって腐食することが懸念される繊維である場合でも、その導電性繊維53が外気に触れることが防止され、金属製の導電性繊維53の腐食を確実に防止することが可能となっている。
【0021】
[他の実施形態]
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施態様も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では無電解メッキ層を導電性樹脂成形品の表裏両面に形成したが、本発明によれば、無電解メッキ層は導電性樹脂成形品の表裏いずれか一方の面のみに形成してもよい。
【0022】
(2)上記実施形態では無電解メッキ層を導電性樹脂成形品の表面全体に亘って形成したが、本発明によれば、無電解メッキ層は、必要に応じて導電性樹脂成形品の表面における一部のみに形成することもできる。
(3)上記実施形態では遮蔽体を電気自動車のインバータ装置及びそこに接続されるコネクタに適用した例を説明したが、本発明は本実施形態以外の機器等にも適用することができる。
【0023】
(4)上記実施形態では導電性樹脂成形品を構成する合成樹脂をポリブチレンテレフタレートやポリアミドとしたが、本発明によれば、これに限らず、6−6ナイロン(登録商標)、ポリフェニレン・サルファイド(PPS)、ポリブチレンテレフタレートと6−6ナイロン(登録商標)のアロイ材等を用いることができる。
(5)上記実施形態では導電性繊維をカーボンファイバーとしたが、本発明によれば、カーボンファイバーに限らず、Fe繊維や黄銅繊維、カーボンファイバーに表面メッキを施したものを用いることができ、さらに、繊維に限らず、金属の粉体、金属の粒体を用いることもできる。
【0024】
(6)上記実施形態では導電性樹脂成形品を構成する合成樹脂を非導電性の樹脂としたが、本発明によれば導電性を有する合成樹脂を用いてもよい。
【図面の簡単な説明】
【図1】実施形態1においてコネクタ同士を離間させた状態をあらわす断面図
【図2】コネクタ同士を組み付けた状態をあらわす断面図
【図3】導電性樹脂成形品の断面構造を模式的にあらわした部分拡大断面図
【図4】遮蔽体(シールドケース)の断面構造を模式的にあらわした部分拡大断面図
【符号の説明】
14…シールドシェル(遮蔽体)
43…シールドケース(遮蔽体)
51…導電性樹脂成形品
52…合成樹脂
53…導電性繊維(導電材)
54…無電解メッキ層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shield for an electromagnetic shield.
[0002]
[Prior art]
For example, in a device requiring an electromagnetic shield such as an inverter device of an electric vehicle, a shield case made of metal (for example, aluminum die-cast) is used as a shield means. This metal shield case has the advantage of being able to conduct electricity on its surface, but has the disadvantage of being heavy. Therefore, as a light-weight shield, a shield using a resin molded product containing conductive fibers is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-332886
[Problems to be solved by the invention]
However, when injection-molding a resin molded product containing conductive fibers, there is a difference between the flow of the resin material and the conductive fibers. Only occupied. For this reason, there is a concern that in the case of a conductive resin shielding body, the contact becomes unstable even if conduction is attempted on the surface, and there is a problem that the smaller the contact area, the lower the contact reliability.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a shield having excellent contact reliability when conducting on the surface.
[0006]
[Means for Solving the Problems]
The invention of claim 1 is characterized by comprising a conductive resin molded product obtained by mixing a conductive material in a synthetic resin, and an electroless plating layer formed on the surface of the conductive resin molded product. I have.
In addition, as the conductive material, conductive fibers, conductive powder, granules, and the like can be used.
According to a second aspect of the present invention, in the first aspect of the present invention, the electroconductive material is made of metal, and the electroless plating layer is formed over the entire surface of the conductive resin molded article.
[0007]
Function and effect of the present invention
[Invention of claim 1]
Although the number of conductive materials is small at the surface layer of the conductive resin molded product, the few conductive materials are conducted to the electroless plating layer formed on the surface layer, and this electroless plating layer contacts other members. Then, conduction can be obtained. Therefore, by increasing the area of the electroless plating layer, it is possible to improve the contact reliability when conducting with other members.
[0008]
[Invention of claim 2]
When the conductive material is made of metal, a high shielding effect can be expected. Further, when the conductive material is made of metal, there is a concern that the conductive material exposed on the surface of the conductive resin molded product is corroded. However, according to the present invention, the conductive material exposed on the surface of the conductive resin molded product is exposed. Since the conductive material thus obtained is all protected by the electroless plating layer, there is no fear of corrosion.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
[0010]
In the present embodiment, an example in which the present invention is applied to a shield connector including the harness-side connector 10 and the device-side connector 40 will be described.
The harness-side connector 10 is assembled to the device-side connector 40 from below. As the assembling means, a cam groove (not shown) of the lever 11 provided on the harness-side connector 10 and a cam pin (not shown) provided on the device-side connector 40 are engaged with each other. A well-known structure is used in which the harness-side connector 10 approaches the device-side connector 40 by the cam action of the cam groove and the cam pin.
[0011]
The harness-side connector 10 accommodates three female terminal fittings 13 arranged in a line in a housing 12 made of an insulating resin material, and shields the housing 12 so as to surround the housing 12 with a shield shell 14 (according to the requirements of the present invention). (A certain shield). The shielded wire 15 connected to the lower end of the female terminal fitting 13 is led out below the housing 12, and the end of the cylindrical shield layer 16 (for example, braid) of the shielded wire 15 is connected to the lower end of the shield shell 14. The portion is conductively fixed to the portion by means such as ring caulking. The shield shell 14 has a cylindrical shape as a whole and surrounds the three female terminal fittings 13. A flange 17 projecting outward is formed at the upper end of the shield shell 14, and the upper surface of the flange 17 has a flat (horizontal) flat connection perpendicular to the mounting direction of the connectors 10, 40. Surface. The upper surface of the flange portion 17 contacts the lower surface of the connection portion 48 of the device-side connector 40 when the connectors 10 and 40 are assembled.
[0012]
The device-side connector 40 is provided, for example, on a device 41 such as an inverter case of an electric vehicle, and has a tubular portion 44 of a shield case 43 (a shield that is a constituent feature of the present invention) that houses a device body 42. Inside, a cylindrical housing 45 made of an insulating resin material is assembled, and three male terminal fittings 46 are housed in the housing 45 in a line. The male terminal fittings 46 are connected to the device main body 42, and portions of these male terminal fittings 46 housed in the housing 45 are surrounded by the shield case 43. In the shield case 43, a region surrounding the cylindrical portion 44 of the lower surface of the support portion 47, which is a base for forming the cylindrical portion 44, is a connecting portion 48, and the lower surface of the connecting portion is in the mounting direction of the connectors 10 and 40. The connection surface is a flat (horizontal) connection surface perpendicular to the connection surface. The lower surface of the connection portion 48 approaches the upper surface of the flange portion 17 of the harness-side connector 10 when the connectors 10 and 40 are assembled.
[0013]
In the process of assembling the two connectors 10 and 40, the flange portion 17 of the shield shell 14 approaches the connection portion 48 of the shield case 43 from below, and when the fitting of the two connectors 10 and 40 is completed, the upper surface of the flange portion 17 is formed. Contact the lower surface of the connection portion 48 in a surface contact state. By this contact, the shield shell 14 and the shield case 43 are electrically connected to each other, so that the shield function is exhibited.
[0014]
Next, the structure of the shield shell 14 and the shield case 43 will be described with reference to FIGS. Although the shield shell 14 and the shield case 43 of the present embodiment have different thickness dimensions and shapes, but have the same basic configuration, only the shield case 43 will be described for convenience, and description of the shield shell 14 will be omitted. I do.
The shield case 43 includes a conductive resin molded product 51 in which a conductive fiber 53 (a conductive material that is a constituent element of the present invention) is mixed in a non-conductive synthetic resin 52, and a conductive resin molded product 51. And an electroless plating layer 54 formed on the front and back surfaces. In this embodiment, polybutylene terephthalate (PBT), polyamide, or the like is used as the non-conductive synthetic resin 52, and carbon fiber is used as the conductive fiber 53. As the electroless plating layer 54, an electroless Ni-plated one, an electroless Ni-plated base having electric Sn plating on its surface, or the like is used, and its thickness is 5 to 8 μm. Have been.
[0015]
The conductive resin molded article 51 is molded into a predetermined shield case 43 shape by injecting a molten synthetic resin 52 mixed with conductive fibers 53 into a cavity of an injection molding machine (not shown). . In the injection molding, the distribution of the conductive fibers 53 in the synthetic resin 52 becomes uneven in the thickness direction. That is, the surface layer portion 51a (skin layer) of the conductive resin molded product 51 is a resin-rich layer composed of almost only the synthetic resin 52 with a small number of the conductive fibers 53. A part is exposed on the outer surface of the surface layer portion 51a (see FIG. 3). On the other hand, in the intermediate layer 51b between the two surface layers 51a, the conductive fibers 53 are present more densely than in the surface layer 51a, and are distributed almost uniformly in the thickness direction and the plane direction.
[0016]
In the intermediate layer 51b, the conductive fibers 53 are distributed so as to be in contact with each other, and the conductive fibers 53 distributed over the intermediate layer 51b and the surface layer portion 51a are electrically conductive in the intermediate layer 51b. The state is in contact with the fiber 53. Thereby, the conductive fibers 53 in the conductive resin molded product 51 can conduct with each other, and constitute one conductor as a whole. The conductive resin molded product 51 causes the shield case 43 to exhibit a shielding function. It is possible to do.
[0017]
Regarding the shielding performance of the conductive fiber 53, the density of the conductive fiber 53 is kept constant and the thickness of the conductive resin molded product is increased to increase the number of the conductive fiber 53, or The shielding performance can be enhanced by increasing the density of the conductive fibers 53.
An electroless plating layer 54 is formed on the surface of the conductive resin molded product 51 formed in this manner on the surface layer portion 51 a, and the electroless plating layer 54 is exposed on the surface (outer surface) of the shield case 43. State. The electroless plating layer 54 is formed over the entire surface of the surface layer portion 51a so that the thickness thereof is not uneven, and the conductive fibers 53 exposed on the surface layer portion 51a are formed in the electroless plating layer 54. Buried in Thus, despite the small number of conductive fibers 53 in the surface layer portion 51a, the small number of conductive fibers 53 are reliably connected to the surface layer portion 51a so as to be conductive, and as a result, in the conductive resin molded product 51 The entire conductive fiber 53 and the electroless plating layer 54 are electrically connected to each other. In addition, this electroless plating layer exhibits a shielding function similarly to the conductive fiber 53.
[0018]
A flat wide area on the outer surface of the electroless plating layer 54, which is the lower surface of the connection portion 48 of the shield case 43, serves as a means for contacting the upper surface (other members) of the flange portion 17 of the shield shell 14. Since the shield shell 14 has the same structure as the shield case 43, the upper surface of the flange portion 17 is the same as the lower surface of the connection portion 48, and the electroless plating layer 54 formed on the surface layer portion 51a of the conductive resin molded product 51 is formed. It is composed of That is, at the connection portion between the shield shell 14 and the shield case 43, the electroless plating layers 54 come into contact with each other in a surface contact state over a wide area.
[0019]
As described above, the shield case 43 and the shield shell 14 of the present embodiment are formed on the surface of the conductive resin molded product 51 obtained by mixing the conductive fibers 53 in the synthetic resin 52. Since it is composed of the electroless plating layer 54 formed as described above, the weight can be reduced as compared with the case where the whole is made of metal (for example, aluminum die cast).
In addition, when the conductive resin molded article 51 is used, the number of the conductive fibers 53 is reduced in the surface layer portion 51a. Therefore, when the surface layer portion 51a is brought into contact with a mating member, there is a concern that the conduction reliability is reduced. Is done. However, in the present embodiment, the conductive fibers 53 having few surface layers 51a are electrically connected to the electroless plating layer 54 having a predetermined thickness formed on the outer surface of the surface layer 51a. By functioning as a contact means with the counterpart member, conduction can be ensured.
[0020]
In particular, in the present embodiment, since the electroless plating layer 54 is formed over the entire surface layer portion 51a (including the entire contact surface with the mating member), the contact area is increased, and the contact reliability is further improved. Has been.
Furthermore, since the electroless plating layer 54 is formed over the entire surface portion 51a, there is a concern that the conductive fiber 53 is a metal fiber (for example, Fe fiber or the like) and is corroded by contact with the outside air. Even when the fibers are used, the conductive fibers 53 are prevented from contacting the outside air, and the corrosion of the metal conductive fibers 53 can be reliably prevented.
[0021]
[Other embodiments]
The present invention is not limited to the embodiments described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention. Can be implemented with various modifications.
(1) In the above embodiment, the electroless plating layer is formed on both the front and back surfaces of the conductive resin molded product. However, according to the present invention, the electroless plating layer is formed on only one of the front and back surfaces of the conductive resin molded product. It may be formed.
[0022]
(2) In the above embodiment, the electroless plating layer is formed over the entire surface of the conductive resin molded product. However, according to the present invention, the electroless plating layer may be formed on the surface of the conductive resin molded product as necessary. Can be formed only in a part of.
(3) In the above embodiment, the example in which the shield is applied to the inverter device of the electric vehicle and the connector connected thereto has been described. However, the present invention can be applied to devices other than the present embodiment.
[0023]
(4) In the above embodiment, the synthetic resin constituting the conductive resin molded product is polybutylene terephthalate or polyamide. However, according to the present invention, the synthetic resin is not limited to this, and 6-6 nylon (registered trademark), polyphenylene sulfide (PPS), an alloy material of polybutylene terephthalate and 6-6 nylon (registered trademark) or the like can be used.
(5) In the above embodiment, the conductive fibers are carbon fibers. However, according to the present invention, not only carbon fibers but also Fe fibers, brass fibers, and carbon fibers having surface plating can be used. Furthermore, not only fibers but also metal powders and metal granules can be used.
[0024]
(6) In the above embodiment, the synthetic resin forming the conductive resin molded product is a non-conductive resin. However, according to the present invention, a synthetic resin having conductivity may be used.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which connectors are separated from each other in Embodiment 1. FIG. 2 is a cross-sectional view showing a state in which connectors are assembled. FIG. 3 is a schematic view showing a cross-sectional structure of a conductive resin molded product. FIG. 4 is a partially enlarged cross-sectional view schematically showing a cross-sectional structure of a shield (shield case).
14 ... Shield shell (shield)
43 ... Shield case (shield)
51: Conductive resin molded product 52: Synthetic resin 53: Conductive fiber (conductive material)
54 ... Electroless plating layer

Claims (2)

合成樹脂内に導電材を混在させてなる導電性樹脂成形品と、この導電性樹脂成形品の表面に形成された無電解メッキ層とを備えることを特徴とする遮蔽体。A shielding body comprising: a conductive resin molded product obtained by mixing a conductive material in a synthetic resin; and an electroless plating layer formed on a surface of the conductive resin molded product. 前記導電材が金属製であるものにおいて、
前記無電解メッキ層が前記導電性樹脂成形品の表面全体に亘って形成されていることを特徴とする請求項1記載の遮蔽体。
Where the conductive material is made of metal,
The shield according to claim 1, wherein the electroless plating layer is formed over the entire surface of the conductive resin molded product.
JP2002308835A 2002-10-23 2002-10-23 Shield Pending JP2004146532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308835A JP2004146532A (en) 2002-10-23 2002-10-23 Shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308835A JP2004146532A (en) 2002-10-23 2002-10-23 Shield

Publications (1)

Publication Number Publication Date
JP2004146532A true JP2004146532A (en) 2004-05-20

Family

ID=32454866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308835A Pending JP2004146532A (en) 2002-10-23 2002-10-23 Shield

Country Status (1)

Country Link
JP (1) JP2004146532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546193A (en) * 2005-06-02 2008-12-18 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Polymer EMI housing containing conductive fibers
WO2013047892A1 (en) * 2011-09-27 2013-04-04 Yazaki Corporation Shielding structure and wire harness
EP2856572A1 (en) * 2012-05-30 2015-04-08 Delphi International Operations Luxembourg S.à r.l. Interconnection assembly for vehicle devices and method of interconnection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546193A (en) * 2005-06-02 2008-12-18 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Polymer EMI housing containing conductive fibers
WO2013047892A1 (en) * 2011-09-27 2013-04-04 Yazaki Corporation Shielding structure and wire harness
CN103843205A (en) * 2011-09-27 2014-06-04 矢崎总业株式会社 Shielding structure and wire harness
US9691527B2 (en) 2011-09-27 2017-06-27 Yazaki Corporation Shielding structure and wire harness using conductive resin mold and non-metallic fiber braid
EP2856572A1 (en) * 2012-05-30 2015-04-08 Delphi International Operations Luxembourg S.à r.l. Interconnection assembly for vehicle devices and method of interconnection

Similar Documents

Publication Publication Date Title
US20160036155A1 (en) Connector
US7510408B2 (en) Earthing structure and electrical connector using the same
CN109987038A (en) Wiring member connection structure
KR20130137026A (en) Shield connector
US20030171042A1 (en) Molded connector
CN110546823B (en) Assembly for a plug connector part having a contact insert and a grounding element
US9676284B2 (en) Charging connector
KR101544335B1 (en) Insulating member having a cruciform shield
JP6996838B2 (en) Connector and connector unit
CN104781998A (en) Insulating body comprising a shielding cross
CN111969353A (en) Electric connector and manufacturing method thereof
TW201935781A (en) Electrical connector
JP2011165428A (en) Connector device
JP6267892B2 (en) Connector batch shield structure and batch shield method
JP2004172009A (en) Connector for instrument
JP2008097875A (en) Connector assembly
JP2004146532A (en) Shield
CN111435777B (en) Electrical connector
JP4076201B2 (en) Shield connector
CN212934925U (en) Electrical connector
CN109672048B (en) Plug connector
US20230068157A1 (en) Female connector module and connector assembly
CN217692058U (en) Slip ring integrated groove wiring structure
CN217934263U (en) Male connector
JP3233847U (en) Small RF connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050112

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20070427

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A02