JP2004146517A - Forming apparatus and forming method for crystal thin film semiconductor - Google Patents

Forming apparatus and forming method for crystal thin film semiconductor Download PDF

Info

Publication number
JP2004146517A
JP2004146517A JP2002308541A JP2002308541A JP2004146517A JP 2004146517 A JP2004146517 A JP 2004146517A JP 2002308541 A JP2002308541 A JP 2002308541A JP 2002308541 A JP2002308541 A JP 2002308541A JP 2004146517 A JP2004146517 A JP 2004146517A
Authority
JP
Japan
Prior art keywords
thin film
irradiation
band
forming
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002308541A
Other languages
Japanese (ja)
Inventor
Shinichi Muramatsu
村松 信一
Fumito Oka
岡 史人
Tadashi Sasaki
佐々木 唯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002308541A priority Critical patent/JP2004146517A/en
Publication of JP2004146517A publication Critical patent/JP2004146517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a large area crystal thin film semiconductor device like a solar battery which can attain conversion efficiency exceeding 10% with high efficiency at a low cost. <P>SOLUTION: In equipment wherein a semiconductor thin film 04 formed on a substrate 01 is fused/crystallized or re-crystallized by continuous wave light and a crystal semiconductor thin film 04a is formed, a light source becoming a heating source of re-crystallization is constituted of a plurality of laser light sources. Further, a plurality of laser light sources which have strip-shaped exposure areas 20 are so arranged to a longitudinal direction of strips that the exposure areas may not break off, beam or the substrate is scanned in a right angle direction of the light sources, and batch processing of large area is performed. Exposure to light from the laser light sources is applied long enough also to a part corresponding to an end of a side surface, and reflow is performed. Crystals whose particle size is large can be formed at ends of both side surfaces, so that processing wherein large-sized crystals are formed over the whole region of large area is simply enabled in a short time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、結晶薄膜半導体装置を作製するための形成装置及び形成方法に関するものである。
【0002】
【従来の技術】
近年、非導電性の異種基板上、例えばガラス基板上等にシリコン結晶薄膜を形成する研究が盛んに行なわれている。このガラス基板上に形成したシリコン結晶薄膜の用途は広く、液晶デバイス用TFT、薄膜光電変換素子などに用いることができる。
【0003】
薄膜太陽光発電素子は、安価な基板上に低温プロセスで良好な結晶性をもつ結晶シリコン薄膜を形成し、これを光電変換装置に用いて、低コスト化と高性能化を図るものである。この結晶シリコン薄膜を光電変換素子に用いることによって、非晶質シリコン光電変換素子で問題となっている光劣化が観測されず、さらに非晶質光電変換素子では感度のない、長波長光をも電気的エネルギーに変換することができる。この技術は太陽光発電素子のみではなく、光センサ等の光電変換装置への応用も可能であると期待されている。
【0004】
このシリコン結晶光電変換素子は、一般的にプラズマCVDによって直接結晶シリコン薄膜を堆積させる手法が用いられている。この手法によって、基板上に低温で結晶シリコンが形成されうることが知られており、低コスト化に有効であるとされている。
【0005】
この手法においては、プラズマCVD形成条件としては、水素でシラン系原料ガスを15倍程度以上に希釈し、プラズマ反応室内圧力を10mTorr〜10Torr、基板温度を150℃〜550℃、望ましくは400℃以下の範囲内に制御して成膜する。これによって結晶性のシリコン薄膜が基板上に形成される。しかし、この方法では結晶粒径の大きなポリシリコンを形成することは困難であった。また、発電機能の根幹を担うi層は、素子構造最適化のためにドーピングを行なうと品質が急激に低下する。これらのことから、低コスト化に有利なシングルセルで10%を大きく上回る効率を達成することは困難であった。
【0006】
一方、TFT(Thin Film Transistor)の分野では、薄膜多結晶シリコンを得る方法として、主にレーザーの走査によって結晶化することが行われており、連続波を用いる方法も既に公開されている(例えば、特許文献1参照。)。この方法は異種基板上に非晶質シリコンを形成し、帯状の連続波光源を走査することで多結晶シリコン層に熔融・結晶化するもので、走査方向に長い結晶粒を成長させることを可能としている。
【0007】
また、下側をヒータで加熱し、上側の集光加熱型ヒータ又はガスレーザーで半導体膜を溶融させ、その溶融幅を1〜10mmとして、毎分1〜50mmで移動させ、半導体膜の溶融・再結晶化を行う技術も開示されている(例えば、特許文献2参照。)。
【0008】
【特許文献1】
特開平2001−351863号公報(段落番号0024、0030、図1、図2)
【特許文献2】
特開平2000−022183号公報(段落番号0026、図7)
【0009】
【発明が解決しようとする課題】
しかしながら、上記特許文献1の方法はTFT等の小面積半導体素子を形成する手段として考えられている。このため、10cm角のような、光電変換素子で必要とされるような大面積では、必ず、結晶化した際の走査領域の側面部分に結晶性の悪い部分が多く存在することになった。このことは、変換効率10%を大幅に越える結晶シリコン薄膜太陽電池を形成するためには致命的である。かかる点は、特許文献2の方法についても当てはまる。
【0010】
従って、高効率な太陽電池を形成するには、これまでの技術では不充分であった。
【0011】
そこで、本発明の目的は、上記課題を解決し、変換効率10%を超える変換効率を達成できる太陽電池等の大面積結晶薄膜半導体装置を、高効率、且つ低コストに作製することのできる形成装置及び形成方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0013】
請求項1の発明に係る結晶薄膜半導体形成装置は、基板上に形成した半導体薄膜を連続波光線によって熔融・結晶化もしくは再結晶化させて結晶半導体薄膜を形成する装置において、上記再結晶化の加熱源となる光源を複数のレーザー光源で構成し、且つ帯状の被照射領域を有する個々のレーザー光源を帯の長手方向に被照射領域が途切れることのないよう複数個並べ、その直角方向に光線もしくは基板を走査することにより大面積の一括処理を可能にしたことを特徴とする。
【0014】
請求項2の発明は、請求項1記載の結晶薄膜半導体形成装置において、帯の長手方向に複数個並べた被照射領域は、長手方向について同一線上に配置するのではなく、光線もしくは基板の走査方向に関して前後にずらして配置されてなることを特徴とする。
【0015】
請求項3の発明は、請求項2記載の結晶薄膜半導体形成装置において、帯の長手方向に複数個並べた被照射領域は、隣接する被照射領域と、走査方向から見て帯の幅以上の重なりがあることを特徴とする。
【0016】
この請求項3の発明には、第一群の被照射領域と第二群の被照射領域の相互間において、帯の長手方向に複数個並べた第一群の被照射領域が、隣接する第二群の被照射領域と、走査方向から見て帯の幅以上の長さで重なり合っている形態(図1参照)と、帯の長手方向に複数個並べた被照射領域が、隣接する被照射領域と走査方向から見て帯の幅以上の重なりを持って順次配列されている形態(図2参照)の双方が含まれる。
【0017】
請求項4の発明は、請求項2記載の結晶薄膜半導体形成装置において、帯の長手方向に複数個並べた被照射領域は、隣接する被照射領域との帯間の間隔が、走査により前方の被照射領域の照射が終了した後、半導体薄膜が固化するまでに後方の被照射領域の照射が始まる間隔以下であることを特徴とする。
【0018】
請求項5の発明に係る結晶薄膜半導体の形成方法は、基板上に半導体薄膜を形成し、連続波光線によって熔融・結晶化もしくは再結晶化させて結晶半導体薄膜を形成する方法において、上記再結晶化の加熱源となる光源をレーザー光源で構成し、且つ帯状の被照射領域を有する個々のレーザー光源を帯の長手方向に被照射領域が途切れることのないよう複数個並べ、その直角方向に光線もしくは基板を走査することにより大面積の一括処理を行うことを特徴とする。
【0019】
請求項6の発明は、請求項5に記載の結晶薄膜半導体の形成方法において、帯の長手方向に複数個並べた被照射領域は、同一線上に配置するのではなく、光線もしくは基板の走査方向に前後にずらして配置し、且つ走査後の照射領域同士が帯の幅以上の重なりを有するようにすることを特徴とする。
【0020】
<発明の要点>
本発明の形成装置および形成方法が適用される典型的な場面は、以下の基本的な構成からなる結晶薄膜半導体装置を形成する場合である。まず、必要に応じて電極層を形成された基板上に非単結晶シリコン層を形成し、連続的な光線によってエネルギーを与え、非単結晶シリコンを融解し冷却することによって結晶化させる。この結晶化には加熱源である光照射を帯状の連続波光源を走査することで行うが、帯状の被照射領域を帯の長手方向に複数個整列させることによって、大面積の一様な半導体薄膜を形成する。
【0021】
太陽電池を作製する場合、素子の全面で多結晶薄膜が均一なことが必要である。具体的には、帯状の光照射によって熔融・結晶化する際、たとえそのほぼ全域で単一結晶粒であっても、周辺部に粒径の小さな結晶が形成されては、太陽電池の特性はその部分のために極端に低いものになる。従って、このような極端に粒径の小さな領域をなくすることが重要となる。
【0022】
この光照射は、さまざまな方法で行うことができるが、シリコンを融解させるためには、非単結晶シリコンが十分に光を吸収することができる波長、すなわち850nm以下の波長である必要がある。この波長の連続波光としては、YAGレーザーの第二高調波(533nm)、Arイオンレーザー(514nm)や半導体レーザー(790nm〜850nm)がある。特に、YAGレーザーや半導体レーザーは固体レーザーであるために、気体レーザーと比べて扱いやすい。連続発振が可能であるために、冷却工程を制御しやすく結晶粒を拡大することが容易である。YAGレーザーを光源に用いて適切な速度で走査することによって走査方向に数百μm以上の粒径の結晶シリコンを得ることができる。この方法で形成した結晶シリコン薄膜は、表面が平坦であり、結晶粒と結晶粒との粒界が非常に少ないという、太陽電池として好適な性質を持っている。もちろん、他のレーザー光源でもこのような連続的、且つ850nm以下の波長であればYAGレーザーと同等の効果がある。
【0023】
この方法で形成した結晶シリコン薄膜はその大部分で結晶性が良い。しかしながら、先に指摘した様に、その両側面端部には粒径の小さな結晶部分が線状に形成されていた。高効率化のためにはこの部分の粒径を大きくする必要があった。もちろん、帯状の照射領域の長手方向長さを長くして行けば最終的には素子全面を単一の掃引で結晶できる。しかし、レーザーの出力はより大きくする必要があり、どこまでも大面積化できるものではない。両側面端部で粒径の小さな結晶が出来てしまう要因は熔融時間が短いためであり、このような問題を解決する方法として、複数の光照射源を用意し、側面端部に当る部分に隣接光照射源からの光照射を加えることにより烙融時間を長くする、あるいは再溶融することが考えられる。
【0024】
帯状の光照射領域を同一線上でオーバーラップさせ、同じ光強度に保つことができればそれが最も良い。しかし、そのような照射は、光学系の設計と、基板の平坦度や操作中の位置関係の変化に影響を受ける、など実際の均一性維持が難しいという問題がある。
【0025】
これを解決する方法は、隣接する帯状の光照射領域を前後にずらし、且つ走査した場合に、照射領域に重なる部分を設けることである。その場合、前後にずらす距離を短く取ることで、熔融部分が固化する前に次の光照射が始まり、熔融領域が連続的に移動して行くことが可能となる。しかし、オーバーラップによりあまり熔融時間が長くなると、基板が加熱されて変形することや、基板からの不純物拡散による汚染など、不都合が生じる。
【0026】
一方、前後列間の距離を長く取ることで、熔融部分が固化した後に次の光照射が始まり、熔融時間を一定時間以下に押さえることが可能となる。この場合には一度多結晶として固化した部分が再度熔融・再結晶化する。エキシマレーザーのような短波長光でないため、結晶薄膜でもこのような再結晶化が可能であり結晶粒径拡大に有効である。
【0027】
この方式のもう一つの利点は、走査に要する時間を大幅に短縮できることである。すなわち、通常は[全照射面幅]=[照射領域の幅]×[走査回数]であり、たとえば10cm幅を1cm幅の照射光で走査しようとすると、最低10回の走査が必要である。しかし本発明では、オーバーラップを設けた全照射幅を10cmにとれば1回の照射で済む。
【0028】
本方式で結晶化した結晶シリコン薄膜は、基板上のほぼ全面で均一、且つ高品質な結晶であり、TFTなどの素子を作製するにおいて作製位置の制限が非常に少ないという利点がある。さらに、本方式によって結晶化した結晶シリコン薄膜は、他の方法で形成される結晶シリコン薄膜と比較しても格段に大きな結晶粒であり、その上部に結晶シリコンをエピタキシャル成長させるには非常に有利な特性を持っていることにも我々は着目した。この着眼点に基づき実験を行なった結果、本発明のレーザー光照射によって形成した結晶シリコン薄膜を下地層として用い、その上部にエピタキシャル成長させた結晶シリコン層を形成することでエピタキシャル成長させた結晶シリコン層は、粒径が非常に大きく太陽電池形成に好適な結晶シリコン層となることを見出した。
【0029】
上記のエピタキシャル層の上部にさらに半導体層を形成する。この半導体層はエピタキシャル層と逆導電型となるドーパントを混入する。これによってエピタキシャル層と半導体層との間にpn接合が形成されることとなる。半導体層は必ずしもエピタキシャル成長させる必要はない。良く知られている様に、この部分を微結晶シリコンや非晶質のシリコン系合金(SiC、SiO、SiN)などにしてヘテロ接合とすることもできる。この場合には、ヘテロ接合部でのキャリヤ追返しの効果により、実効的に表面再結合が低減されることが確かめられた。
【0030】
この上部に透明電極層と取り出し電極となる電極層を形成することで、太陽電池とする。この透明電極層は透明性と導電性を有するものであればなんでもよく、例えばITO、ZnO、SnO等を用いることができる。取り出し電極層にはAl等の金属を用いると良い。また、場合によっては、直接取り出し電極を半導体層上に形成し、取り出し電極部以外の半導体層表面にはSiOやSi等のパッシベーション膜を形成することも効果的である。
【0031】
太陽電池活性層の導電型には上記にはpn型を記したが、場合によってはpin型としてもよい。これは、形成するシリコン薄膜の膜質等によって適宜決定することが望ましい。
【0032】
結晶シリコン薄膜層の形成方法は、エピタキシャル成長させることができる方法であればなんでもよい。一例として、熱CVD法、MBE(Molecular Beam Eqitaxy)法、プラズマCVD法、cat−CVD法、SPE(Solid Phase Eqitaxy)等を用いることができる。この様にして形成した結晶シリコン薄膜は、太陽電池素子として用いるに適していることはもちろんのことであるが、TFT用基板やMEMS、SOI基板の形成等、結晶シリコン薄膜を用いた半導体装置全般で用いることができる。
【0033】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0034】
図1に本発明の第一の実施形態を示す。この結晶薄膜半導体形成装置は、基板上に形成した半導体薄膜を連続波光線によって熔融・結晶化もしくは再結晶化させて結晶半導体薄膜を形成する装置であり、加熱源として複数のレーザー光源を図1のように配列したものから成る。ただし、図1では、それら複数のレーザー光源により照射される領域(被照射領域)20により示してある。Dは、この被照射領域20の配列方向と直角方向に、レーザー光線もしくは基板を走査する方向を示す。
【0035】
図示するように、加熱源としての光源は、帯状の被照射領域20を有する個々のレーザー光源(図示せず)を、その被照射領域20が帯の長手方向(図の左右方向)に途切れることのないよう複数個並べることで構成されている。
【0036】
図1の実施形態では、各被照射領域20は長さa×幅bの長方形(帯)から成り、帯の長手方向に一定間隔cを置いて複数個並べられている。そして、その帯の長手方向に複数個並べた被照射領域20は、長手方向について同一線上に配置されているのではなく、光線もしくは基板の走査方向Dに関して間隔(ライン間隔)dだけ前後にずらして配置され、第一群の被照射領域21と第二群の被照射領域22から成る二列配列とされている。
【0037】
そして、第一群の被照射領域21と第二群の被照射領域22の相互間において、帯の長手方向に複数個並べた第一群の被照射領域21の各々は、隣接する第二群の被照射領域22の各々と、走査方向から見て帯の幅b以上の長さ(重なり範囲e)にわたって重なり合っている。
【0038】
また、帯の長手方向に複数個並べた第一群の被照射領域21と、これに隣接する第二群の被照射領域22との帯間の間隔(ライン間隔)dは、走査により前方の被照射領域(第一群の被照射領域21)の照射が終了した後、半導体薄膜が固化するまでに後方の被照射領域(第二群の被照射領域22)の照射が始まる間隔以下に設定されている。
【0039】
この図1の帯及びその配設の代表的な寸法は、長さa=300μm、幅b=40μm、間隔c=200μm、ライン間隔d=120μm、重なり範囲e=50μmである。
【0040】
上記構成の結晶薄膜半導体形成装置において、被照射領域20の配列方向と直角方向に、レーザー光線もしくは基板を走査することにより大面積の一括処理を行うことができる。
【0041】
図2に本発明の第二の実施形態を示す。この結晶薄膜半導体形成装置においては、加熱源としての光源として、帯状の被照射領域20を有する個々のレーザー光源(図示せず)が、その被照射領域20が帯の長手方向(図の左右方向)に途切れることのないよう複数個並べられている点で図1と共通する。
【0042】
しかし、この実施形態では、長さa×幅bの長方形(帯)から成る各被照射領域20は、帯の長手方向に見て、先の帯の後端部に次の帯の先端部が、帯の幅b以上の長さ(重なり範囲e)で部分的に重なり合いながら、正確には走査方向から見て重なり合いながら、被照射領域20が順次にずらされて、帯の長手方向に複数個並べられている。
【0043】
この図2の帯及びその配設の代表的な寸法は、長さa=1000μm、幅b=20μm、間隔c’=(a−2e)=900μm、ライン間隔d=20μm、重なり範囲e=50μmである。
【0044】
【実施例】
以下、本発明の実施例について説明する。なお、以下の実施例は本発明の一例を示すものであり、本発明はこれらに限定されるものではない。
【0045】
[実施例1]
本実施例では、YAGレーザーで結晶化した結晶シリコン薄膜上に熱CVDを用いてエピタキシャル層を形成し、太陽電池を形成する試みを行なった。
【0046】
まず、図3(a)に示すように、石英基板01上にAg薄膜02、透明導電膜03としてのZnOを形成し、裏面電極構造を形成する。この上部にプラズマCVD法によって非単結晶シリコン層04を300nm形成した。この非単結晶シリコン層04には、シリコン中ではn型のドーパントとなる燐を高濃度にドープしておく。本実施例ではドーパントの混入にはプラズマCVD形成中にドーピングガスであるフォスフィン(PH)を用いた。この非単結晶シリコンの形成はプラズマCVD法のみならず、非単結晶シリコンが形成できる方法であればどのような方法を用いても良い。例えば、cat−CVD(触媒気相化学堆積法)、熱CVD、MBE(Molecular Beam Epitaxy:分子線エピタキシー)、スパッタリング等の方法が挙げられる。また、ドーピングの方法としては、ドーピングを施さない状態で形成し、その後、イオン打ち込みによってドーピングを行なっても良い。また、この後の結晶化後にドーピングをイオン打ち込みによって行なうことも有効である。
【0047】
この試料に対して、YAGレーザー(Nd:YAG)の第二高調波(532nm)を用いて結晶化を行なった。被照射領域20が図1に示すような位置になるよう各レーザー光を光学系で集め、照射した。レーザー光の被照射領域である帯及びその配設の寸法は、図1で、長さa=300μm、幅b=40μm、間隔c=200μm、ライン間隔d=120μm、重なり範囲e=50μmとした。照射光の走査は30cm/sで行ったが、図中、走査によって前列(第一群の被照射領域21)の照射光で熔融したシリコンは、後列(第二群の被照射領域22)の照射が始まる際にはすでに固化しており、再度熔融・結晶化される。
【0048】
上記の操作により図3(b)の高濃度n型の結晶シリコン薄膜04aを作製した。
【0049】
図3(c)に示す様に、この上部に熱CVDによって結晶シリコン薄膜05を3μm形成した。その際、エピタキシャル形成させる為に、YAGレーザーで結晶化した半導体層上には、フッ酸による自然酸化膜除去に加え、真空雰囲気中の熱処理によって酸化膜除去を行なった。また、この熱CVDによって形成したシリコン薄膜中には燐を低濃度にドープしてn型化させた。
【0050】
さらにこの上部にボロンをドープしp型化させた結晶シリコン薄膜06を100nm形成した。該シリコン薄膜についても熱CVDを用いた。この上部に透明導電膜07としてITO、その上部の一部に取り出し電極08としてAl薄膜を形成して太陽電池とした。なお、結晶シリコン薄膜部は全て(400)配向であることをX線回析測定により確認した。
【0051】
上記の方法によって形成した太陽電池の開放電圧は648mVであった。開放電圧は、結晶シリコン薄膜の結晶品質とpn接合品質を示している。本実験より、単結晶バルク太陽電池に匹敵する結晶シリコン薄膜太陽電池が、本発明より形成できることが見出された。
【0052】
なお、今回レーザーにより結晶化させた結晶シリコン薄膜を下地として形成した結晶シリコン薄膜は、熱CVDにより形成したが、その他の方法でも良質な結晶シリコン薄膜太陽電池が形成できた。一例として、プラズマCVD、cat−CVD、MBEなどの方法を用いてもよい。
【0053】
[実施例2]
本実施例では、図1(実施例1)のレーザー光照射配置を前列、後列の間隔dのみを変更し20μmとした。照射光の走査は40cm/sで行ったが、図中、走査によって前列の照射で熔融したシリコンは、後列の照射が始まる際にはまだ熔融しており、新たに熔融した部分と一体化した後結晶化される。
【0054】
この操作により図3(b)の高濃度n型の結晶シリコン薄膜04aを作製した。
【0055】
p型結晶シリコン層上にSiOを形成し、太陽電池の変換効率を向上させる試みを行なった。図4に示す様に、実施例1にて、p型の結晶シリコン層06を形成した後、TEOSによるp−CVDによって酸化シリコン膜09を形成した。その後、フォトリソグラフィによって取り出し電極のパターンニングを行なって酸化膜を部分的に除去し、酸化膜が除去された部分に取り出し電極としてAl電極10を形成し、太陽電池とした。
【0056】
この構造にすることによって実施例1で形成した太陽電池と比較して、開放電圧は655mVと向上し、短絡電流値も1.2倍に上昇した。
【0057】
[実施例3]
本実施例では、実施例1および2の構造においてレーザーによって結晶化する際のレーザー照射領域の配列を図2の配列とした。レーザー光の被照射領域である帯及びその配設の寸法は、図2で、長さa=1000μm、幅b=20μm、間隔c’=(a−2e)=900μm、ライン間隔d=20μm、重なり範囲e=50μmとした。この実施例3の特徴は、走査とともに熔融・結晶化領域が走査する方向Dに移動して行くだけでなく、図2の配置に対応して左から右に移動して行くことになる。
【0058】
これによって図1の配列よりさらに均一な結晶化が確認された。上記の方法によって形成した太陽電池の開放電圧は実施例2の場合よりさらに高く、658mVであった。
【0059】
隣接する照射領域の間隔dを本実施例の20μmからより広い間隔、たとえば100μmにしたところ、隣接した照射領域で重なる部分は一度固化し、改めて熔融・再結晶化された。この場合にも結晶性の改善は見られたが、間隔を狭くした場合ほどではなかった。
【0060】
[実施例4]
以上の検討から、本発明によって高品質な太陽電池が形成できることが確認できた。このことから、他の半導体デバイスについても本発明の適用を試みた。
【0061】
まず、ガラス基板上にシリコン酸化膜を1000nm形成し、その上部に非単結晶シリコン薄膜を50nm形成した。これを図1の配置のYAGレーザーによって結晶化し、非単結晶シリコン薄膜を結晶シリコン薄膜へと変換した。この結晶シリコン薄膜を用いてFET(Field Effect Transistor)を形成した場合でも良好な特性を示した。しかし、この場合には隣接する照射領域で重なる部分においては良好な特性は得られなかった。この部分では結晶粒が小さくなっていると考えられる。
【0062】
隣接領域の間隔dを120μmから30μmに変更し結晶化を行ったところ、熔融状態が持続するため、隣接部分の結晶性劣化を防ぐことができた。図2の配置ではさらに特性の均一性が向上した。そのTFTの電界効果移動度は、エキシマーレーザーで結晶化した場合に比べてはるかに高いものであった。
【0063】
当然のことであるが、上記の薄膜を用いて、さらに堆積法により結晶薄膜を形成し、縦型デバイスであるバイポーラトランジスタに用いることも有効である。上記の実施例において用いた非単結晶シリコン薄膜は、実際には、非晶質、微結晶質、粒径の小さな多結晶質、のいずれかである。いずれも良好に利用できたが、特に、非晶質と微結晶質は光照射による大粒径結晶化が顕著であった。
【0064】
【発明の効果】
以上説明したように本発明によれば、次のような優れた効果が得られる。
【0065】
本発明の結晶薄膜半導体形成装置および形成方法は、帯状の被照射領域を有する複数のレーザー光源を帯の長手方向に被照射領域が途切れることのないよう複数個並べ、その直角方向に光線もしくは基板を走査して大面積の一括処理を行う方式であるため、側面端部に当る部分に対してもレーザー光源からの光照射を十分に長く当てて再溶融し、両側面端部でも粒径の大きな結晶を形成することができる。このため粒径の大きな結晶を大面積全域にわたって形成する処理を、簡易、且つ短時間で行うことができる。
【0066】
従って、本発明によれば、太陽電池、TFT等の半導体装置において、高品質な結晶シリコン層を、高効率、且つ低コストに製造することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態に係る結晶薄膜半導体形成装置のレーザー照射領域の配置を示す図である。
【図2】本発明の第二の実施形態に係る結晶薄膜半導体形成装置のレーザー照射領域の配置を示す図である。
【図3】本発明の実施例1に係る結晶シリコン半導体装置の作製過程を示したもので、(a)は非晶質シリコン層までを形成した段階を示す模式図、(b)は光のエネルギーを与えて結晶シリコン層とした段階を示す図、(c)は完成図である。
【図4】本発明の実施例2に係る結晶シリコン半導体装置の完成模式図である。
【符号の説明】
20 被照射領域
21 第一群の被照射領域
22 第二群の被照射領域
a 長さ
b 幅
c 間隔
d 間隔(ライン間隔)
e 重なり範囲
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a forming apparatus and a forming method for manufacturing a crystalline thin film semiconductor device.
[0002]
[Prior art]
In recent years, research on forming a silicon crystal thin film on a nonconductive different kind of substrate, such as a glass substrate, has been actively conducted. The silicon crystal thin film formed on this glass substrate has a wide range of applications, and can be used for TFTs for liquid crystal devices, thin film photoelectric conversion elements, and the like.
[0003]
The thin film photovoltaic power generation device is a device in which a crystalline silicon thin film having good crystallinity is formed on an inexpensive substrate by a low-temperature process, and this is used for a photoelectric conversion device to achieve low cost and high performance. By using this crystalline silicon thin film for the photoelectric conversion element, light degradation, which is a problem in the amorphous silicon photoelectric conversion element, is not observed. It can be converted to electrical energy. This technology is expected to be applicable not only to photovoltaic elements but also to photoelectric conversion devices such as optical sensors.
[0004]
This silicon crystal photoelectric conversion element generally uses a technique of directly depositing a crystalline silicon thin film by plasma CVD. It is known that crystalline silicon can be formed on a substrate at a low temperature by this method, and is said to be effective in reducing costs.
[0005]
In this method, the conditions for forming the plasma CVD are as follows: the silane-based source gas is diluted about 15 times or more with hydrogen, the pressure in the plasma reaction chamber is 10 mTorr to 10 Torr, and the substrate temperature is 150 ° C. to 550 ° C., preferably 400 ° C. or less. The film is controlled within the range described above. As a result, a crystalline silicon thin film is formed on the substrate. However, it has been difficult to form polysilicon having a large crystal grain size by this method. In addition, the quality of the i-layer, which plays a fundamental role in the power generation function, is sharply reduced when doping is performed to optimize the element structure. For these reasons, it has been difficult to achieve an efficiency greatly exceeding 10% with a single cell advantageous for cost reduction.
[0006]
On the other hand, in the field of TFT (Thin Film Transistor), as a method of obtaining thin-film polycrystalline silicon, crystallization is mainly performed by laser scanning, and a method using a continuous wave has already been disclosed (for example, And Patent Document 1.). This method forms amorphous silicon on a heterogeneous substrate and melts and crystallizes it into a polycrystalline silicon layer by scanning with a continuous wave light source in the form of a strip.It is possible to grow long crystal grains in the scanning direction. And
[0007]
Further, the lower side is heated by a heater, and the semiconductor film is melted by the upper condensing heater or gas laser, and the melting width is set to 1 to 10 mm, and the semiconductor film is moved at a rate of 1 to 50 mm per minute. A technique for performing recrystallization is also disclosed (for example, see Patent Document 2).
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-351863 (paragraph numbers 0024 and 0030; FIGS. 1 and 2)
[Patent Document 2]
JP-A-2000-022183 (paragraph number 0026, FIG. 7)
[0009]
[Problems to be solved by the invention]
However, the method of Patent Document 1 is considered as a means for forming a small-area semiconductor element such as a TFT. For this reason, in a large area such as a 10 cm square area required by a photoelectric conversion element, a portion having poor crystallinity always exists on a side surface portion of a scanning region when crystallized. This is fatal for forming a crystalline silicon thin film solar cell having a conversion efficiency significantly exceeding 10%. This applies to the method of Patent Document 2.
[0010]
Therefore, to form a highly efficient solar cell, the conventional techniques have been insufficient.
[0011]
Therefore, an object of the present invention is to form a large-area crystalline thin-film semiconductor device such as a solar cell capable of achieving a conversion efficiency of more than 10% by solving the above-described problems and achieving high efficiency and low cost. An object is to provide an apparatus and a forming method.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0013]
The crystal thin film semiconductor forming apparatus according to the invention of claim 1 is an apparatus for forming a crystalline semiconductor thin film by melting, crystallizing or recrystallizing a semiconductor thin film formed on a substrate by continuous wave light. A light source serving as a heating source is composed of a plurality of laser light sources, and a plurality of individual laser light sources having a band-shaped irradiated region are arranged in the longitudinal direction of the band so that the irradiated region is not interrupted. Alternatively, a large area batch processing is enabled by scanning the substrate.
[0014]
According to a second aspect of the present invention, in the apparatus for forming a crystalline thin film semiconductor according to the first aspect, a plurality of irradiation regions arranged in the longitudinal direction of the band are not arranged on the same line in the longitudinal direction, but are scanned by a light beam or a substrate. It is characterized by being arranged to be shifted back and forth in the direction.
[0015]
According to a third aspect of the present invention, in the apparatus for forming a crystalline thin film semiconductor according to the second aspect, a plurality of irradiation regions arranged in the longitudinal direction of the band are equal to or larger than the width of the band when viewed from the adjacent irradiation region in the scanning direction. It is characterized by having overlap.
[0016]
In the invention of claim 3, between the first group of irradiated regions and the second group of irradiated regions, the first group of irradiated regions arranged in the longitudinal direction of the band is adjacent to the first group of irradiated regions. The two groups of irradiated areas overlap with each other with a length equal to or greater than the width of the band when viewed from the scanning direction (see FIG. 1), and the plurality of irradiated areas arranged in the longitudinal direction of the band are adjacent to each other. Both the region and the form (see FIG. 2) in which the regions are sequentially arranged so as to overlap each other with a width equal to or greater than the width of the band when viewed from the scanning direction are included.
[0017]
According to a fourth aspect of the present invention, in the apparatus for forming a crystalline thin film semiconductor according to the second aspect, a plurality of irradiation regions arranged in the longitudinal direction of the band have an interval between adjacent bands to be irradiated, and the interval between the bands is set forward by scanning. After the irradiation of the irradiated region is completed, the interval between the start of irradiation of the rear irradiated region and the solidification of the semiconductor thin film is not more than the interval.
[0018]
The method for forming a crystalline thin film semiconductor according to the invention of claim 5 is a method for forming a crystalline semiconductor thin film by forming a semiconductor thin film on a substrate and fusing / crystallizing or recrystallizing the continuous semiconductor light beam. A laser light source is used as a heating source for the laser irradiation, and a plurality of individual laser light sources having a band-shaped irradiated region are arranged in the longitudinal direction of the band so that the irradiated region is not interrupted, and the light beam is perpendicular to the direction. Alternatively, a large area batch process is performed by scanning a substrate.
[0019]
According to a sixth aspect of the present invention, in the method for forming a crystalline thin film semiconductor according to the fifth aspect, a plurality of irradiation regions arranged in the longitudinal direction of the band are not arranged on the same line but in the scanning direction of the light beam or the substrate. Are arranged so as to be shifted back and forth, and the irradiation areas after scanning have an overlap of the width of the band or more.
[0020]
<The gist of the invention>
A typical situation where the forming apparatus and the forming method of the present invention are applied is a case where a crystalline thin film semiconductor device having the following basic configuration is formed. First, if necessary, a non-single-crystal silicon layer is formed on a substrate on which an electrode layer is formed, energy is applied by continuous light, and the non-single-crystal silicon is melted and cooled to be crystallized. This crystallization is performed by scanning the light source, which is a heating source, with a strip-shaped continuous wave light source. By aligning a plurality of strip-shaped irradiated regions in the longitudinal direction of the strip, a large-area uniform semiconductor is irradiated. Form a thin film.
[0021]
When fabricating a solar cell, it is necessary that the polycrystalline thin film be uniform over the entire surface of the device. Specifically, when melting and crystallizing by irradiation with a band of light, even if a single crystal grain is formed in almost the entire area, if a crystal having a small grain size is formed in the peripheral portion, the characteristics of the solar cell are Extremely low for that part. Therefore, it is important to eliminate such an extremely small particle size region.
[0022]
This light irradiation can be performed by various methods. However, in order to melt silicon, the wavelength needs to be a wavelength at which non-single-crystal silicon can sufficiently absorb light, that is, a wavelength of 850 nm or less. As continuous wave light of this wavelength, the second harmonic (533 nm) of a YAG laser, Ar + There are an ion laser (514 nm) and a semiconductor laser (790 nm to 850 nm). In particular, YAG lasers and semiconductor lasers are solid-state lasers and are easier to handle than gas lasers. Since continuous oscillation is possible, it is easy to control the cooling step, and it is easy to enlarge crystal grains. By scanning at a suitable speed using a YAG laser as a light source, crystalline silicon having a grain size of several hundred μm or more can be obtained in the scanning direction. The crystalline silicon thin film formed by this method has a flat surface and very few grain boundaries between crystal grains, and has properties suitable for a solar cell. Of course, other laser light sources have the same effect as a YAG laser as long as they are continuous and have a wavelength of 850 nm or less.
[0023]
Most of the crystalline silicon thin film formed by this method has good crystallinity. However, as pointed out above, crystal parts having a small grain size were formed linearly at the end portions on both sides. In order to increase the efficiency, it was necessary to increase the particle size in this portion. Of course, if the length of the belt-shaped irradiation region in the longitudinal direction is increased, the entire surface of the element can be finally crystallized by a single sweep. However, the output of the laser needs to be higher, and the area cannot be increased to any extent. The reason that crystals with a small grain size are formed at the end portions on both sides is due to the short melting time.As a method for solving such a problem, a plurality of light irradiation sources are prepared and a portion corresponding to the end portion on the side surface is prepared. It is conceivable to increase the melting time or to re-melt by adding light irradiation from an adjacent light irradiation source.
[0024]
It is best if the belt-shaped light irradiation areas can be overlapped on the same line and maintained at the same light intensity. However, such irradiation has a problem that it is difficult to maintain the actual uniformity, for example, it is affected by the design of the optical system and the change in the flatness of the substrate and the positional relationship during the operation.
[0025]
A method for solving this problem is to shift the adjacent belt-shaped light irradiation area back and forth, and to provide a portion overlapping the irradiation area when scanning. In that case, by shortening the distance to be moved back and forth, the next light irradiation starts before the molten portion is solidified, and the molten region can move continuously. However, if the melting time is too long due to the overlap, disadvantages such as heating and deformation of the substrate and contamination due to impurity diffusion from the substrate occur.
[0026]
On the other hand, by increasing the distance between the front and rear rows, the next light irradiation starts after the melted portion is solidified, and the melting time can be suppressed to a certain time or less. In this case, the portion once solidified as polycrystal is melted and recrystallized again. Since the light is not short-wavelength light such as an excimer laser, such recrystallization can be performed even with a crystalline thin film, which is effective for expanding the crystal grain size.
[0027]
Another advantage of this method is that the time required for scanning can be greatly reduced. That is, normally, [total irradiation surface width] = [width of irradiation region] × [number of scans]. For example, when scanning a 10 cm width with irradiation light having a 1 cm width, at least 10 scans are required. However, in the present invention, if the total irradiation width including the overlap is set to 10 cm, only one irradiation is required.
[0028]
The crystalline silicon thin film crystallized by the present method is a uniform and high-quality crystal over almost the entire surface of the substrate, and has an advantage that there is very little restriction on a manufacturing position when manufacturing an element such as a TFT. Further, the crystalline silicon thin film crystallized by the present method has a much larger crystal grain than a crystalline silicon thin film formed by other methods, and is very advantageous for epitaxially growing crystalline silicon on the upper part. We also focused on having characteristics. As a result of conducting experiments based on this viewpoint, the crystalline silicon thin film formed by the laser light irradiation of the present invention was used as a base layer, and the crystalline silicon layer epitaxially grown by forming the epitaxial silicon layer thereon was It has been found that the crystalline silicon layer has a very large particle size and is suitable for forming a solar cell.
[0029]
A semiconductor layer is further formed on the epitaxial layer. This semiconductor layer is mixed with a dopant having a conductivity type opposite to that of the epitaxial layer. As a result, a pn junction is formed between the epitaxial layer and the semiconductor layer. The semiconductor layer does not necessarily need to be epitaxially grown. As is well known, this portion can be formed as a heterojunction by using microcrystalline silicon or an amorphous silicon-based alloy (SiC, SiO, SiN) or the like. In this case, it was confirmed that the surface recombination was effectively reduced by the effect of carrier repulsion at the heterojunction.
[0030]
By forming a transparent electrode layer and an electrode layer serving as an extraction electrode on the upper part, a solar cell is obtained. This transparent electrode layer may be anything as long as it has transparency and conductivity, for example, ITO, ZnO, SnO 2 Etc. can be used. It is preferable to use a metal such as Al for the extraction electrode layer. In some cases, a direct extraction electrode is formed on the semiconductor layer, and SiO 2 is formed on the surface of the semiconductor layer other than the extraction electrode portion. 2 And Si x N y Also, it is effective to form a passivation film.
[0031]
Although the pn type is described above as the conductivity type of the solar cell active layer, it may be a pin type in some cases. It is desirable to appropriately determine this depending on the film quality of the silicon thin film to be formed.
[0032]
The crystalline silicon thin film layer may be formed by any method as long as it can be epitaxially grown. As an example, a thermal CVD method, an MBE (Molecular Beam Equity) method, a plasma CVD method, a cat-CVD method, an SPE (Solid Phase Equity), or the like can be used. The crystalline silicon thin film formed in this way is, of course, suitable for use as a solar cell element, but is generally applicable to semiconductor devices using the crystalline silicon thin film, such as forming TFT substrates, MEMS, and SOI substrates. Can be used.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
[0034]
FIG. 1 shows a first embodiment of the present invention. This crystal thin film semiconductor forming apparatus is an apparatus for forming a crystalline semiconductor thin film by melting, crystallizing or recrystallizing a semiconductor thin film formed on a substrate by continuous wave light, and using a plurality of laser light sources as heating sources in FIG. It consists of what was arranged like this. However, in FIG. 1, the region (irradiated region) 20 irradiated by the plurality of laser light sources is shown. D indicates a direction in which the laser beam or the substrate is scanned in a direction perpendicular to the arrangement direction of the irradiated regions 20.
[0035]
As shown in the figure, the light source serving as a heating source is a laser light source (not shown) having a band-shaped irradiated area 20 in which the irradiated area 20 is interrupted in the longitudinal direction of the band (left-right direction in the figure). It is configured by arranging a plurality of them so that there is no
[0036]
In the embodiment of FIG. 1, each irradiation area 20 is formed of a rectangle (a band) having a length a × a width b, and a plurality of the irradiation regions 20 are arranged at regular intervals c in the longitudinal direction of the band. A plurality of irradiation regions 20 arranged in the longitudinal direction of the band are not arranged on the same line in the longitudinal direction, but are shifted back and forth by an interval (line interval) d in the scanning direction D of the light beam or the substrate. Are arranged in a two-row array including a first group of irradiated regions 21 and a second group of irradiated regions 22.
[0037]
Then, between the first group of irradiated regions 21 and the second group of irradiated regions 22, each of the first group of irradiated regions 21 arranged in the longitudinal direction of the band is adjacent to the second group of the second group. Are overlapped over the length (overlapping range e) of the band width b or more when viewed from the scanning direction.
[0038]
The interval (line interval) d between the first group of irradiated regions 21 arranged in the longitudinal direction of the band and the second group of irradiated regions 22 adjacent to the first group is determined by scanning. After the irradiation of the irradiated area (the first group of irradiated areas 21) is completed, the interval is set to be equal to or less than the interval at which the irradiation of the rear irradiated area (the second group of the irradiated areas 22) starts until the semiconductor thin film solidifies. Have been.
[0039]
Typical dimensions of the band and its arrangement in FIG. 1 are length a = 300 μm, width b = 40 μm, interval c = 200 μm, line interval d = 120 μm, and overlap range e = 50 μm.
[0040]
In the crystal thin film semiconductor forming apparatus having the above configuration, a large area batch processing can be performed by scanning a laser beam or a substrate in a direction perpendicular to the arrangement direction of the irradiation regions 20.
[0041]
FIG. 2 shows a second embodiment of the present invention. In this crystal thin film semiconductor forming apparatus, as a light source as a heating source, an individual laser light source (not shown) having a band-shaped irradiated region 20 is used. 1) are common to FIG. 1 in that a plurality of
[0042]
However, in this embodiment, each irradiation area 20 composed of a rectangle (a band) having a length a × a width b has a front end of the next band at a rear end of the previous band when viewed in the longitudinal direction of the band. The irradiated regions 20 are sequentially shifted while partially overlapping with each other with a length (overlapping range e) equal to or longer than the width b of the band, and more accurately overlapping with each other when viewed from the scanning direction. Are lined up.
[0043]
Typical dimensions of the band and its arrangement in FIG. 2 are length a = 1000 μm, width b = 20 μm, interval c ′ = (a−2e) = 900 μm, line interval d = 20 μm, and overlap range e = 50 μm It is.
[0044]
【Example】
Hereinafter, examples of the present invention will be described. The following examples are merely examples of the present invention, and the present invention is not limited to these examples.
[0045]
[Example 1]
In this example, an attempt was made to form a solar cell by forming an epitaxial layer on a crystalline silicon thin film crystallized by a YAG laser using thermal CVD.
[0046]
First, as shown in FIG. 3A, an Ag thin film 02 and ZnO as a transparent conductive film 03 are formed on a quartz substrate 01 to form a back electrode structure. A non-single-crystal silicon layer 04 having a thickness of 300 nm was formed thereon by a plasma CVD method. This non-single-crystal silicon layer 04 is heavily doped with phosphorus as an n-type dopant in silicon. In this embodiment, phosphine (PH) which is a doping gas during the plasma CVD formation is used for mixing the dopant. 3 ) Was used. The non-single-crystal silicon may be formed not only by the plasma CVD method but also by any other method capable of forming non-single-crystal silicon. For example, methods such as cat-CVD (catalytic vapor phase chemical deposition), thermal CVD, MBE (Molecular Beam Epitaxy), and sputtering are exemplified. As a doping method, doping may be performed in a state where doping is not performed, and then doping may be performed by ion implantation. It is also effective to perform the doping by ion implantation after the subsequent crystallization.
[0047]
This sample was crystallized using the second harmonic (532 nm) of a YAG laser (Nd: YAG). Each laser beam was collected by an optical system and irradiated so that the irradiated area 20 was located as shown in FIG. In FIG. 1, the dimensions of the band to be irradiated with the laser beam and the arrangement thereof were as follows: length a = 300 μm, width b = 40 μm, interval c = 200 μm, line interval d = 120 μm, and overlapping range e = 50 μm. . The scanning of the irradiation light was performed at 30 cm / s. In the drawing, the silicon melted by the irradiation light of the front row (the first group of the irradiated area 21) by the scanning was used in the rear row (the second group of the irradiated area 22). When irradiation starts, it has already been solidified and is again melted and crystallized.
[0048]
By the above operation, a high-concentration n-type crystalline silicon thin film 04a of FIG. 3B was produced.
[0049]
As shown in FIG. 3C, a 3 μm thick crystalline silicon thin film 05 was formed thereon by thermal CVD. At that time, in order to form the epitaxial layer, the oxide film was removed by heat treatment in a vacuum atmosphere on the semiconductor layer crystallized by the YAG laser, in addition to the removal of the natural oxide film by hydrofluoric acid. The silicon thin film formed by the thermal CVD was doped with phosphorus at a low concentration to be n-type.
[0050]
Further, a p-type crystalline silicon thin film 06 doped with boron and having a thickness of 100 nm was formed thereon. Thermal CVD was also used for the silicon thin film. A solar cell was formed by forming ITO as a transparent conductive film 07 on this upper part and forming an Al thin film as an extraction electrode 08 on a part of the upper part. In addition, it was confirmed by X-ray diffraction measurement that all the crystalline silicon thin film portions had the (400) orientation.
[0051]
The open voltage of the solar cell formed by the above method was 648 mV. The open circuit voltage indicates the crystal quality and pn junction quality of the crystalline silicon thin film. From this experiment, it was found that a crystalline silicon thin film solar cell comparable to a single crystal bulk solar cell can be formed by the present invention.
[0052]
Note that the crystalline silicon thin film formed using the crystalline silicon thin film crystallized by the laser as a base was formed by thermal CVD, but a high-quality crystalline silicon thin film solar cell could be formed by other methods. As an example, a method such as plasma CVD, cat-CVD, or MBE may be used.
[0053]
[Example 2]
In the present embodiment, the laser beam irradiation arrangement in FIG. 1 (Example 1) was changed to 20 μm by changing only the distance d between the front row and the rear row. The scanning of the irradiation light was performed at 40 cm / s, but in the figure, the silicon melted by the irradiation in the front row by the scanning was still molten when the irradiation in the rear row started, and was integrated with the newly melted portion. After crystallization.
[0054]
By this operation, a high-concentration n-type crystalline silicon thin film 04a of FIG. 3B was produced.
[0055]
SiO on p-type crystalline silicon layer 2 And tried to improve the conversion efficiency of the solar cell. As shown in FIG. 4, after forming the p-type crystalline silicon layer 06 in Example 1, a silicon oxide film 09 was formed by p-CVD using TEOS. Thereafter, the extraction electrode was patterned by photolithography to partially remove the oxide film, and an Al electrode 10 was formed as the extraction electrode on the portion where the oxide film was removed, to obtain a solar cell.
[0056]
By adopting this structure, the open-circuit voltage was improved to 655 mV and the short-circuit current value was also increased to 1.2 times as compared with the solar cell formed in Example 1.
[0057]
[Example 3]
In the present embodiment, the arrangement of the laser irradiation regions when crystallizing with the laser in the structures of the embodiments 1 and 2 is the arrangement of FIG. In FIG. 2, the dimensions of the band to be irradiated with the laser beam and the arrangement thereof are as follows: length a = 1000 μm, width b = 20 μm, interval c ′ = (a−2e) = 900 μm, line interval d = 20 μm, The overlapping range e = 50 μm. The feature of the third embodiment is that, not only does the melting / crystallization region move in the scanning direction D with scanning, but also moves from left to right in accordance with the arrangement of FIG.
[0058]
This confirmed a more uniform crystallization than the arrangement of FIG. The open-circuit voltage of the solar cell formed by the above method was 658 mV, higher than that of Example 2.
[0059]
When the distance d between the adjacent irradiation regions was increased from 20 μm in the present embodiment to a larger distance, for example, 100 μm, the portion overlapping in the adjacent irradiation regions was solidified once and melted and recrystallized again. Even in this case, the crystallinity was improved, but not so much as when the interval was narrowed.
[0060]
[Example 4]
From the above examination, it was confirmed that a high-quality solar cell can be formed by the present invention. For this reason, the present invention was applied to other semiconductor devices.
[0061]
First, a silicon oxide film was formed to a thickness of 1000 nm on a glass substrate, and a non-single-crystal silicon thin film was formed thereon to a thickness of 50 nm. This was crystallized by a YAG laser having the arrangement shown in FIG. 1 to convert a non-single-crystal silicon thin film into a crystalline silicon thin film. Good characteristics were exhibited even when an FET (Field Effect Transistor) was formed using this crystalline silicon thin film. However, in this case, good characteristics could not be obtained in a portion where adjacent irradiation regions overlap with each other. It is considered that the crystal grains are small in this portion.
[0062]
When the crystallization was performed with the distance d between the adjacent regions changed from 120 μm to 30 μm, the molten state was maintained, so that the crystallinity deterioration of the adjacent portions could be prevented. In the arrangement of FIG. 2, the uniformity of the characteristics is further improved. The field effect mobility of the TFT was much higher than that obtained by crystallization with an excimer laser.
[0063]
As a matter of course, it is also effective to use the above thin film and further form a crystalline thin film by a deposition method and use it for a bipolar transistor which is a vertical device. The non-single-crystal silicon thin film used in the above embodiment is actually any of amorphous, microcrystalline, and polycrystalline having a small particle size. Any of them could be used well, but in particular, amorphous and microcrystalline materials were remarkably crystallized by irradiation with light with a large particle size.
[0064]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
[0065]
The apparatus and method for forming a crystalline thin film semiconductor according to the present invention include a plurality of laser light sources having a band-shaped irradiated region arranged in such a manner that the irradiated region is not interrupted in the longitudinal direction of the band, and a light beam or a substrate is formed in a direction perpendicular thereto. Is a method of performing large-area batch processing by scanning, so that the light from the laser light source is applied for a sufficiently long time to re-melt the part that hits the side edge, Large crystals can be formed. Therefore, the process of forming a crystal having a large grain size over the entire large area can be performed easily and in a short time.
[0066]
Therefore, according to the present invention, in a semiconductor device such as a solar cell or a TFT, a high-quality crystalline silicon layer can be manufactured with high efficiency and low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing an arrangement of laser irradiation regions of a crystal thin film semiconductor forming apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an arrangement of a laser irradiation region of a crystal thin film semiconductor forming apparatus according to a second embodiment of the present invention.
FIGS. 3A and 3B show a manufacturing process of the crystalline silicon semiconductor device according to the first embodiment of the present invention, wherein FIG. 3A is a schematic diagram showing a stage in which an amorphous silicon layer is formed, and FIG. The figure which shows the stage which gave energy and turned into the crystalline silicon layer, (c) is a completion figure.
FIG. 4 is a schematic diagram showing a completed crystalline silicon semiconductor device according to a second embodiment of the present invention.
[Explanation of symbols]
20 Irradiated area
21 Irradiated area of the first group
22 Second Group Irradiated Area
a Length
b width
c interval
d interval (line interval)
e Overlap range

Claims (6)

基板上に形成した半導体薄膜を連続波光線によって熔融・結晶化もしくは再結晶化させて結晶半導体薄膜を形成する装置において、
上記再結晶化の加熱源となる光源を複数のレーザー光源で構成し、且つ帯状の被照射領域を有する個々のレーザー光源を帯の長手方向に被照射領域が途切れることのないよう複数個並べ、その直角方向に光線もしくは基板を走査することにより大面積の一括処理を可能にしたことを特徴とする結晶薄膜半導体形成装置。
In an apparatus for forming a crystalline semiconductor thin film by melting, crystallizing or recrystallizing a semiconductor thin film formed on a substrate by continuous wave light,
A light source serving as a heating source for the recrystallization is constituted by a plurality of laser light sources, and a plurality of individual laser light sources having a band-shaped irradiation region are arranged in such a manner that the irradiation region is not interrupted in the longitudinal direction of the band, An apparatus for forming a crystalline thin film semiconductor, wherein batch processing of a large area is enabled by scanning a light beam or a substrate in a direction perpendicular to the direction.
請求項1記載の結晶薄膜半導体形成装置において、
帯の長手方向に複数個並べた被照射領域は、長手方向について同一線上に配置するのではなく、光線もしくは基板の走査方向に関して前後にずらして配置されてなることを特徴とする結晶薄膜半導体形成装置。
The crystal thin film semiconductor forming apparatus according to claim 1,
A plurality of irradiation regions arranged in the longitudinal direction of the band are not arranged on the same line in the longitudinal direction, but are arranged to be shifted back and forth with respect to the scanning direction of the light beam or the substrate. apparatus.
請求項2記載の結晶薄膜半導体形成装置において、
帯の長手方向に複数個並べた被照射領域は、隣接する被照射領域と、走査方向から見て帯の幅以上の重なりがあることを特徴とする結晶薄膜半導体形成装置。
The crystal thin film semiconductor forming apparatus according to claim 2,
A crystal thin film semiconductor forming apparatus, wherein a plurality of irradiation regions arranged in the longitudinal direction of a band overlap an adjacent irradiation region by at least the width of the band when viewed from the scanning direction.
請求項2記載の結晶薄膜半導体形成装置において、
帯の長手方向に複数個並べた被照射領域は、隣接する被照射領域との帯間の間隔が、走査により前方の被照射領域の照射が終了した後、半導体薄膜が固化するまでに後方の被照射領域の照射が始まる間隔以下であることを特徴とする結晶薄膜半導体形成装置。
The crystal thin film semiconductor forming apparatus according to claim 2,
A plurality of irradiation regions arranged in the longitudinal direction of the band are arranged such that the interval between the bands with the adjacent irradiation region is changed after the irradiation of the front irradiation region is completed by scanning, and thereafter, until the semiconductor thin film solidifies. An apparatus for forming a crystalline thin film semiconductor, wherein the interval is equal to or less than an interval at which irradiation of an irradiation area starts.
基板上に半導体薄膜を形成し、連続波光線によって熔融・結晶化もしくは再結晶化させて結晶半導体薄膜を形成する方法において、
上記再結晶化の加熱源となる光源をレーザー光源で構成し、且つ帯状の被照射領域を有する個々のレーザー光源を帯の長手方向に被照射領域が途切れることのないよう複数個並べ、その直角方向に光線もしくは基板を走査することにより大面積の一括処理を行うことを特徴とする結晶薄膜半導体の形成方法。
In a method of forming a semiconductor thin film on a substrate and melting, crystallizing or recrystallizing by continuous wave light to form a crystalline semiconductor thin film,
A light source serving as a heating source for the recrystallization is constituted by a laser light source, and a plurality of individual laser light sources having a band-shaped irradiated region are arranged in the longitudinal direction of the band so that the irradiated region is not interrupted, and a right angle thereof. A method for forming a crystalline thin-film semiconductor, wherein a large area batch processing is performed by scanning a light beam or a substrate in a direction.
請求項5に記載の結晶薄膜半導体の形成方法において、
帯の長手方向に複数個並べた被照射領域は、同一線上に配置するのではなく、光線もしくは基板の走査方向に前後にずらして配置し、且つ走査後の照射領域同士が帯の幅以上の重なりを有するようにすることを特徴とする結晶薄膜半導体の形成方法。
The method for forming a crystalline thin film semiconductor according to claim 5,
A plurality of irradiation areas arranged in the longitudinal direction of the band are not arranged on the same line, but arranged to be shifted back and forth in the scanning direction of the light beam or the substrate, and the irradiation areas after scanning are equal to or larger than the width of the band. A method for forming a crystalline thin film semiconductor, characterized by having an overlap.
JP2002308541A 2002-10-23 2002-10-23 Forming apparatus and forming method for crystal thin film semiconductor Pending JP2004146517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308541A JP2004146517A (en) 2002-10-23 2002-10-23 Forming apparatus and forming method for crystal thin film semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308541A JP2004146517A (en) 2002-10-23 2002-10-23 Forming apparatus and forming method for crystal thin film semiconductor

Publications (1)

Publication Number Publication Date
JP2004146517A true JP2004146517A (en) 2004-05-20

Family

ID=32454654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308541A Pending JP2004146517A (en) 2002-10-23 2002-10-23 Forming apparatus and forming method for crystal thin film semiconductor

Country Status (1)

Country Link
JP (1) JP2004146517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351340B1 (en) * 2013-10-23 2014-01-16 주식회사 엘티에스 Method for manufacturing solar cell
WO2023171170A1 (en) * 2022-03-09 2023-09-14 株式会社ブイ・テクノロジー Laser annealing apparatus and laser annealing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351340B1 (en) * 2013-10-23 2014-01-16 주식회사 엘티에스 Method for manufacturing solar cell
WO2023171170A1 (en) * 2022-03-09 2023-09-14 株式会社ブイ・テクノロジー Laser annealing apparatus and laser annealing method

Similar Documents

Publication Publication Date Title
KR100224553B1 (en) Solar cell and its manufacture
US20080072953A1 (en) Back contact device for photovoltaic cells and method of manufacturing a back contact device
US8324498B2 (en) Method of forming crystalline layer, and thin film solar cell and method of fabricating the solar cell adopting the method of forming crystalline layer
JP2003298078A (en) Photoelectromotive element
EP0656664B1 (en) Polycrystalline silicon photoelectric transducer and process for its production
JP2004273886A (en) Crystalline thin film semiconductor device and photovoltaic device
US9356171B2 (en) Method of forming single-crystal semiconductor layers and photovaltaic cell thereon
KR100961757B1 (en) Polycrystalline Silicon Solar Cell Having High Efficiency and Method for Fabricating the Same
JP2004273887A (en) Crystalline thin film semiconductor device and solar cell element
JP4594601B2 (en) Method for manufacturing crystalline silicon-based thin film solar cell and solar cell formed using the same
JP2002270507A (en) Crystal silicon layer forming method and crystal silicon semiconductor device
JP2004134577A (en) Manufacturing method of semiconductor thin film, tft, semiconductor device, thin film solar cell and composite semiconductor device, photoelectric device and electronic device
JP2004087667A (en) Method of manufacturing crystalline silicon thin film semiconductor device
US8003423B2 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
JP2004146517A (en) Forming apparatus and forming method for crystal thin film semiconductor
JP2006093212A (en) Method of forming polycrystal layer, semiconductor device, and its manufacturing method
JP5177686B2 (en) Solar cell, sensor, diode and manufacturing method thereof
JP2004327578A (en) Crystal thin film semiconductor device and its manufacturing method
JP4729953B2 (en) Method for manufacturing thin film semiconductor device
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JP4534585B2 (en) Thin film semiconductor substrate and manufacturing method thereof
JP2720473B2 (en) Thin film transistor and method of manufacturing the same
JP2005064014A (en) Thin film crystal solar cell and its manufacturing method
KR20050100806A (en) Silicon thin film solar cell and method of fabricating the same
KR101490599B1 (en) Method for manufacturing amorphous silicon solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226