JP2004144612A - Surface defect inspection method and surface defect inspection apparatus using the same - Google Patents

Surface defect inspection method and surface defect inspection apparatus using the same Download PDF

Info

Publication number
JP2004144612A
JP2004144612A JP2002309889A JP2002309889A JP2004144612A JP 2004144612 A JP2004144612 A JP 2004144612A JP 2002309889 A JP2002309889 A JP 2002309889A JP 2002309889 A JP2002309889 A JP 2002309889A JP 2004144612 A JP2004144612 A JP 2004144612A
Authority
JP
Japan
Prior art keywords
light
lens
inspected
surface defect
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002309889A
Other languages
Japanese (ja)
Other versions
JP4238010B2 (en
Inventor
Sukeaki Ishiura
石浦 資昭
Kunihiko Miyazaki
宮▲崎▼ 邦彦
Katsumi Ichifuji
一藤 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAMAMATSU METRIX KK
Ricoh Co Ltd
Original Assignee
HAMAMATSU METRIX KK
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAMAMATSU METRIX KK, Ricoh Co Ltd filed Critical HAMAMATSU METRIX KK
Priority to JP2002309889A priority Critical patent/JP4238010B2/en
Publication of JP2004144612A publication Critical patent/JP2004144612A/en
Application granted granted Critical
Publication of JP4238010B2 publication Critical patent/JP4238010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for accurately inspecting moderate irregular defects on a surface of a subject by using a simple constitution and a simple adjustment method. <P>SOLUTION: In the surface defect inspection method for inspecting the defects on the surface of the subject 1 as a cylindrical element or a column element having the smooth surface, a parallel light is obliquely radiated at an angle of 5-25° to an axis line in the axial direction of the subject 1, a reflection light 4a from the subject 1 passes through a lens for transmitting only a light parallel to an axis line of the lens and is received by an optoelectronic conversion sensor, a signal from the optoelectronic sensor is processed and the defects of the subject 1 are detected. The parallel light is radiated at an acute angle in the axial direction of the subject 1. The reflection light from the subject passes through a telecentric lens 13 and is received by the optoelectronic conversion sensor. The moderate irregular defects on the surface of the subject are captured as a contrast difference of the light and determined as the defects by processing the signal from the optoelectronic conversion sensor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状、円柱状の被検査物の表面の緩やかな凹凸状欠陥を検査する方法および、それを用いた装置に関する。例えば、複写機、レーザープリンタ等の画像出力装置で使用される電子写真用感光体ドラム、または、定着装置の定着ローラー等の表面の欠陥を検査する際に使用することができる。
【0002】
【従来の技術】
複写機、レーザープリンタ等に用いられる電子写真用感光体ドラムを浸漬塗布により製造する場合、塗膜の厚さは塗液中に浸漬した電子写真用感光体ドラムの支持基体を塗液から引き出す速度によって調整される。
塗液中から支持基体を引き上げる際に支持基体内に溜まっていた空気が支持基体下部より泡となって液中に出たり、塗工槽周辺の装置の振動が塗工槽に伝わったりすることにより塗液の液面が揺れると部分的に支持基体と液面の相対速度が変わり塗膜のムラとなる。この塗膜のムラが電子写真用感光体ドラムの表面層で発生すると膜厚差約1μmの緩やかな表面凹凸状の欠陥となることがある。
【0003】
表面凹凸状の欠陥の検査方法としては、図1のような斜入射照明光学系や、図2のような同軸落射照明光学系による検査方法が知られている。
図1の斜入射照明光学系を用いる方法は、被検査物(1)の垂線方向から傾いた位置に設けた光源(2)から被検査物(1)の表面に光を照射し、被検査物(1)の表面で反射した光を受光手段(3)で受光する方法であり、平滑な正常面では被検査物(1)の表面からの正反射光を受光せず凹凸状欠陥(16)があった場合に正反射光を受光する位置に受光手段(3)を設置する方法(図1(a))と、正常面で被検査物(1)の表面からの正反射光を受光し、凹凸状欠陥(16)があった場合に正反射光を受光しない位置に受光手段(3)を設置する方法(図1(b))とがあり、凹凸状欠陥があった場合に正常面と受光状態が変化することによって欠陥を検出する。
【0004】
図2の同軸落射照明光学系を用いる方法では、被検査物の接線方向あるいは、軸線方向から光源(2)、レンズ(6)からなる投光手段により光を投光し、ハーフミラー(5)で光を反射し、被検査物(1)に垂直に光を照射する。平滑な正常面では垂直に光が反射し、ハーフミラー(5)を透過して受光手段(3)に受光される(図2(a))。凹凸状の欠陥(16)があった場合には被検査物(1)の表面で反射した光は垂直には反射せず、ハーフミラー(5)および受光手段(3)以外の方向に逃げることにより、正常面と受光状態が変化することによって欠陥を検出する。
しかし、どちらの方法も緩やかな凹凸状の欠陥においては光路の変化が少ないため、正常面と凹凸状欠陥との受光光量の差が現れ難くこの様な欠陥を検出することが困難であった。
【0005】
そこで、この様な緩やかな凹凸状の欠陥を検出するためには目視検査にて、図3の様に検査照明(7)の光を被検査物(1)に対して軸方向から鋭角に照射し、検査員(8)が軸方向の反対側から鋭角に覗き込み、被検査物(1)の表面に写り込んだ光源(2)の輝線の歪みや明暗の差の微妙な変化によって検査している。
この様な緩やかな凹凸状の欠陥を装置により検出する方法として、被検査物に所定のパターンを照射し、そのパターンの境界部が凹凸状欠陥によって歪んで撮影されることにより、欠陥を検出する方法が考案されている(例えば、特許文献1参照。)。
【0006】
また、被検査物表面に平行光を照射し、その反射光をCCDカメラで受光し、正常面と比較して暗い部分の有無で欠陥を検出する方法が考案されている(例えば、特許文献2参照。)。
【0007】
更に、平行光束を被検査物の表面に軸方向から鋭角に照射する投光光学系と、平凸型シリンドリカルレンズの拡大光学系、スリットを有する受光マスク板、受光器のCCDラインセンサの受光素子列で構成される受光光学系を持ち、受光マスク板のスリット及び受光素子列の長手方向を受光光学系の光軸に垂直な平面内で感光体ドラムの中心軸の射影成分と平行に配するとともに、平凸シリンドリカルレンズが感光体ドラムの中心軸方向の正反射光を拡大することにより緩やかな凹凸状の欠陥を検出する方法が考案されている(例えば、特許文献3参照。)。
【0008】
また、これに近いものとして、被検査物での回転軸と光の照射方向との角度を鋭角にし、その被検査物に断面が長方形で実質的に均一なレーザー光を照射し、正反射の反射光軸上に位置する平凸型シリンドリカルレンズで拡散した光を収束させ、半透明スクリーン上に反射光による像を投影し、CCDカメラでこの半透明スクリーンの背面から像を撮影することにより欠陥を検出する方法が考案されている(例えば、特許文献4参照。)。
【0009】
しかしながら、目視にて緩やかな凹凸状の欠陥を検査する作業は被検査物の表面に写り込んだ光源の輝線の歪みや明暗の差の微妙な変化にを注視するため、神経を使う過酷な作業で、検査員に大きな負担を与えており、疲労により欠陥を見逃す可能性があった。
また、前述の特許文献1に記載の方法では、被検査物表面に照射されたパターンを評価するため、受光光学系は被検査物表面に常に焦点を合わせる必要があり、被検査物の歪や振れにより被検査物の表面位置が変化すると検査精度が落ちてしまう問題があった。
また、特許文献2に記載の方法では、被検査物に照射された平行光が表面の凹凸により光路が変わり、受光手段に受光される光の量が減少することを利用しているが、緩やかな凹凸状の欠陥では光路の変化が非常に小さいため、受光手段に受光される光の量の変化は微少であり、正常部と欠陥部の判別が困難であった。また、特許文献3に記載の方法は被検査物の軸方向から鋭角に平行光を照射し、被検査物の表面で反射した光を平凸シリンドリカルレンズで拡大し、光電ラインセンサで受光しているため、平凸シリンドリカルレンズと光電変換センサの位置を合わせることが重要な要素となり、この位置精度の維持管理が非常に難しかった。
また、光電変換センサへの乱反射光の入射を防止し、中心軸と平行な正反射成分の光のみを光電変換センサで受光するためにスリットを設けているが、スリットの長手方向では開口幅が広いため、乱反射光を充分遮ることができず、中心軸と平行な正反射成分以外の光も光電変換センサが受光し、S/N比を低下させることがあった。
また、特許文献4に記載の装置は、被検査物からの反射光を半透明スクリーンに投影し、その半透明スクリーンの裏面からCCDカメラで撮影するため、撮影するのに充分な光量で、半透明スクリーンに反射光の像を結ぶために被検査物に多くの光を照射しなければならない。そのため、被検査物が電子写真用感光体ドラムの様な光によるダメージを受けやすいものであった場合は、必然的に被検査物への照射光量を抑えなくてはならず、反射光の少ない被検査物などでは、撮影に充分な明るさを持った像を半透明スクリーンに結ぶことができなかった。
【0010】
【特許文献1】
特開平7−63687号公報
【特許文献2】
特開平9−105618号公報
【特許文献3】
特開平11−118449号公報
【特許文献4】
特開平9−304029号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記の欠点に対応すべくなされたものであり、簡単な構成および調整方法でも、被検査物表面の緩やかな表面凹凸状の欠陥を精度良く検査できる方法および装置を提供することをその課題とするものである。
【0012】
【課題を解決するための手段】
電子写真用感光体ドラムの表面に発生する緩やかな表面凹凸状欠陥は、目視にて確認する場合は、前記のとおり、被検査物に対し光源をほぼ並行に近い状態まで入射角を大きくとって照射し、被検査物からの正反射光を観測すれば比較的容易にその存在を確認することが可能である。
入射角を大きくとって目視観測することで緩やかな表面凹凸状欠陥が見やすくなることは、透過率の極めて高い塗布表面において、入射角を大きくとれば内部に透過することなく、塗布表面で全反射となり、緩やかな表面凹凸状欠陥によって発生する光散乱が見やすくなるためである。
【0013】
光が密な媒質、n=n1から疎の媒質n=n2<n1に伝搬するとき、入射角が大きくなると屈折角θtが大きくなるため、入射角が大きくなると屈折角θtが先に90°に達する。そのときの入射角θi=θcは、
屈折の法則:n1sinθi=n2sinθtより、θ=sin−1(n2/n1)で表わされ、入射角θiがθcより大きくなると入射角は、透過することなく、全反射となって返ってくることになる(図4参照)。
また、フレネルの公式による反射率は、反射面に平行なP偏向成分、反射面に垂直なS偏向成分の偏向に依存して、同様に、
屈折の法則:n1sinθi=n2sinθtを整理して、
S偏向成分反射率:
【0014】
【数1】

Figure 2004144612
P偏向成分反射率:
【0015】
【数2】
Figure 2004144612
で表わされる(図5)。
【0016】
上記のように、目視による検査方法を分析した結果、入射角を大きくとるとほぼ全反射となり、透過率が高い鏡面における表面の外観状況の様子が、塗布膜下部の内部状況に影響されることなく、緩やかな表面凹凸状欠陥が顕著に反射光に重鎮され、目視によって視認しやすくなった結果であると判断できる。
透過率の高い鏡面状の塗布膜を有する電子写真用感光体ドラム表面の緩やかな表面凹凸状欠陥を検査する場合は、これらの光学現象を目視検査同様に画像視認できるような光学系として組み立てることが、最も重要となる。
【0017】
目視検査を分析した結果、透過率の高い鏡面状の塗布膜を有する感光体ドラム表面の緩やかな表面凹凸状欠陥を検査する装置を構成しようとする場合の光学系は、
1.精度の高い視野幅を持つ平行光源をコリメートレンズで生成する。
2.平行光を入射角を大きくとって、全反射に近い状態で照射する。
3.入射角と同角の正反射光をレンズの軸線に対して略平行な光のみを通す光学系、例えばテレセントリック光学系で正反射光のみ選択的に受光する。
4.レンズあおりによる被写界深度の影響を受けないようにするため、および欠陥による光拡散減光現象のみを選択的に受光するためにフォーカス位置を、表面の正反射光から近い空間に位置するように調整する。
等とする必要がある。
【0018】
そこで本発明では、コリメートレンズにより平行光を生成し、目視による検査と同様に円筒体もしくは円柱体の被検査物の軸方向から被検査物の軸線に対して5〜25°の角度で照射する。被検査物表面に照射された光は照射された角度と同じ角度で反射する正反射光とあらゆる方向に向って広がる散乱光として反射される。本発明においては、平行光を照射するため、正反射光の幅は入射光とほぼ同じ幅となり照射した角度と同じ方向に反射する。このとき、被検査物表面に凹凸があると正反射光の反射する角度が変化する(図6参照)。
【0019】
被検査物表面で反射した光を、レンズの光軸とほぼ平行な光だけを通過させる性質のレンズを通すことにより、正常面で反射した正反射光のみを通過させ、表面の凹凸により反射する角度の変わった光はほとんど通過させない。その結果、レンズを通過した光に明暗差が生じるので、その明暗差を捉えることで、表面の緩やかな凹凸を検査することが可能となる。受光光学系のレンズのフォーカス位置は、被検査物表面に合わせるのではなく、被検査物と受光光学系の間の空間に位置させる。これにより、被検査物表面の表面や塗膜内部の粗さや、点状欠陥等による明暗差の影響をが受光されにくくなり、S/N比を向上することができる。
【0020】
被検査物が電子写真用感光体ドラムの場合、アルミニウムの基体に表面加工を施した上に塗膜を塗布している。このアルミニウム基体の表面加工はアルミニウム基体表面を鏡面状にしたり、逆に光を拡散させるために切削加工等により粗面状にしたりする。基体表面を粗面にした場合、その上に塗布される塗膜の厚さによっては、塗膜の形状が基体表面の粗面形状にならい、塗膜の表面においても、鏡面状ではなく粗面状になってしまう。この場合は、被検査物への入射角度と反射角度が必ずしも一致しなくなるため、投光光学系を設置する角度と受光光学系を設置する角度を変えた方が明暗差を捉えやすくなる。
【0021】
【発明の実施の形態】
図7(a)〜(c)に本発明の第一の実施形態を示す。
図7において、(1)は被検査物である電子写真用感光体ドラム、(2)は光源、(3)は受光手段であるカメラ、(9)は集光レンズ、(10)はピンホール、(11)はコリメートレンズ、(12)はスリット、(13)はテレセントリックレンズ、(14)はカメラ(3)内に納められた受光センサである。θiは入射角、θrは反射角である。
【0022】
光源(2)から出た光は集光レンズ(9)で集光されピンホール(10)を通過する。ピンホール(10)を通過した光はコリメートレンズ(11)によって平行光となり、スリット(12)によって光の幅が整形される。スリット(12)で整形された光は入射角θiで被検査物(1)の表面に照射され、入射角θiとほぼ同じ角度の反射角θrで反射する。反射した光は被検査物(1)表面から反射角θr傾いた方向に合わせて設けられたテレセントリックレンズ(13)に入光し、カメラ(3)内に納められた受光センサ(14)により受光され、電気信号に変換され図示されていない演算装置に送られ信号処理される。
【0023】
光源(2)はハロゲン光源、メタルハライド光源、検査用蛍光灯等の光源が使用可能である。被検査物の性質によってはある特定の波長によりダメージを受けることがあるため、光源にバンドパスフィルターを装着し、有害な波長をカットしたり、LED、レーザー等の波長域の狭い光源を利用したりすることで、ダメージを抑制できる。
スリットは、必ずしも設ける必要はないが、スリットを設けることで余分な光を削減でき、S/N比を改善することができるので、設置する方が好ましい。
【0024】
入射角θiを小さくすることによって、入射角θiとほぼ同じ角度の反射角θrで反射した反射光は全反射に近い正反射光となり、テレセントリックレンズ(13)に入光する。入射角θiおよび反射角θrは5〜25°が良く、更に好ましくは10〜20°が良い。5°より小さいと投受光光学系と被検査物(1)が物理的に干渉し易くなったり、被検査物(1)に光束が遮れたりして機器を構成することが困難になる。また、25°を超えると緩やかな表面凹凸状欠陥による光路変化が顕著に表われなくなり表面凹凸状欠陥を捉えることができなくなる。
【0025】
テレセントリックレンズ(13)はテレセントリックレンズの軸線と平行な光のみを選択的に受光し、表面欠陥がある場合に光拡散された拡散光は、ほぼ受光されることはない。また、テレセントリックレンズ(13)の焦点距離であるフォーカス位置は、正反射光の通過位置の空間に位置させ、レンズあおりによる被写界深度差を無視できるようにする。
表面に結像させないため、表面や塗膜内部の粗さなどの影響を避けることができ、同様にS/N比を改善できる。等の大きな特徴を有する。
【0026】
電子写真用感光体ドラムに発生する外観上の欠陥は多種多様であり、全ての欠陥をインラインで効率よく検出しようとした場合は、従来からの同軸落射照明光学系や斜入射照明光学系を用いて欠陥を捕らえる方式を本発明の方式と併用することが必要となる。
例えば、従来の検査方式の受光手段として、CCDカメラを配し、検査視野を50mm程度とした場合、本方式においてもこれに合わせて検査視野を50mm程度とすることが、連続的検査ステージ構成を考慮する場合、重要となる。
また、検査視野のみならず、カメラの分解能、動作仕様を同じにすれば欠陥検出分解能、検査タクトタイムにおいても全く同等となり、連続的な同期運転が可能となるなどのメリットがある。
【0027】
図8に本発明の第二の実施形態を示す。
第一の実施形態は投光手段および受光手段を被検査物(1)の軸方向に対して鋭角になる様に設置するため、機器の幅が被検査物(1)の軸方向に大きくなってしまう。そこで、図8に示す様に投光手段と被検査物(1)の間、および受光手段と被検査物(1)の間に全反射ミラー(15)を設けて光路を屈折させることにより被検査物(1)の軸方向の光学系の幅を短くすることができ、機器を小さくまとめることができる。
【0028】
図9(a)〜(b)に本発明の第三の実施形態を示す。
第一の実施形態から、受光手段であるテレセントリックレンズ(13)およびカメラ(3)の設置角度を正反射光の反射角度θrからθdだけずらしたものである。このθdは−10°〜10°が良く、更に好ましくは−5°〜5°が良い。
【0029】
図10(a)〜(b)に本発明の第四の実施形態を示す。
第一の実施形態から、受光手段であるテレセントリックレンズ(13)およびカメラ(3)の設置位置を被検査物(1)の周方向にθlだけずらしたものである。このθlは−10°〜10°が良く、更に好ましくは−5°〜5°が良い。
【0030】
【実施例】
以下、本発明の実施例及び比較例の説明を行なうが、まず、実施例及び比較例で評価対象とする電子写真感光体ドラムの製造方法を述べる。
以下に記す%は重量基準である。
実施例に使用する電子写真用感光体ドラムの導電性の基体は、外径:φ30mm、長さ:340mmの円筒状のアルミニウム製のものを使用する。
下引き層は酸化チタン20部とアルキッド樹脂40部とメラミン樹脂20部とからなる塗膜であり、その乾燥膜厚は6μmとした。また、下引き層は前記組成の混合物をメチルエチルケトン100部中に分散させた液を基体に塗工して製作したが、この塗工液は原材料をボールミル中で24時間分散結合させて調整したものであり、塗液は塗工後に130〜140℃で0.5時間熱処理して有機溶剤不溶性としたものである。
電荷発生層および電荷輸送層は両者とも下記塗工液を塗工する方法で形成させたが、電荷発生層は乾燥膜厚が1μm、電荷輸送層は乾燥膜厚30μmとなるように乾燥後の塗膜に順次塗工する方法で積層した。電荷発生層形成用塗工液はブチラール樹脂(UCC社製:XYHL)1部をシクロヘキサン−テトラヒドロフラン混合溶液(混合比7:3)98部に溶かし、これに下記式で示されるジスアゾ顔料10部を加えてボールミルで72時間分散して調整した。
【0031】
【化1】
Figure 2004144612
【0032】
また、電荷輸送層形成用塗工液はポリカーボネート樹脂(帝人社製:パンライトK−1300)と下記式で示される電荷移動剤(ヒドラゾン化合物)10部をジクロロメタン80部に溶解混合して調整した。
【0033】
【化2】
Figure 2004144612
【0034】
アルミニウム製基体上に下引き層、電荷発生層、電荷輸送層と順番に浸漬塗布方法にて製膜し、電荷発生層の塗布時に部分的に塗工速度を変化させることにより緩やかな表面凹凸を形成した。この表面凹凸を触針式の表面粗さ形状測定器で測定したところ、約0.5μmの差があった。
【0035】
実施例1
図7(a)〜(c)に示す第一の実施形態の装置を用いた。光源(2)としてハロゲン光源を用い、光源(2)から出た光は集光レンズ(9)を通過し、ピンホール(10)で集光される。次いで2群構成のφ40mm程度のコリメートレンズで平行光となり、幅10μm、長さ15mm程度のスリット(12)を通過することで帯状平行光となる。帯状平行光は、被検査物(1)の軸線に対して入射角θi=15°で照射する様にした。帯状平行光は被検査物(1)の表面で約50mmよりやや長めに照射され、この幅が検査視野となる。被検査物(1)表面で反射した光は、入射角θiと同じ反射角度θrで反射し、テレセントリックレンズ(13)に導かれる。テレセントリックレンズは、被検査物からの正反射光のみを選択的に受光し、検査視野50mmをθr=15°の角度で観測するため、実際には約13mm幅で受光する。13mm幅で受光した光はテレセントリックレンズで2.7倍にエキスパンドされ、カメラ(13)内に納められた受光センサ(14)である一次元CCDセンサ(分解能7μm、5150dots、素子長36mm)に結像される。結果、検査分解能は10μm程度となった。テレセントリックレンズ(13)のフォーカス位置は、被検査物(1)とテレセントリックレンズ(13)の間の空間に位置する様にし、受光センサ(14)には像を結ばず、光の明暗だけを受光するようにした。
【0036】
実施例2
図9(a)〜(b)に示す第三の実施形態の装置を用いた。光の反射角度θrに対するテレセントリックレンズ(13)およびカメラ(3)のずらし角θdを5°とし、それ以外は実施例1と同じとした。
【0037】
実施例3
ずらし角θdを10°とした以外は実施例2と同じとした。
【0038】
実施例4
ずらし角θdを−10°とした以外は実施例2と同じとした。
【0039】
実施例5
図10(a)〜(b)に示す第四の実施形態の装置を用いた。被検査物(1)の周方向へのテレセントリックレンズ(13)およびカメラ(3)のずらし角θlを5°とし、それ以外は実施例1と同じとした。
【0040】
実施例6
ずらし角θlを10°とした以外は実施例5と同じとした。
【0041】
比較例1
入射角度θiおよび反射角度θrを30°とした以外は実施例1と同じとした。
【0042】
比較例2
図11に示す同軸落射照明光学系の装置を用いた。被検査物(1)の接線方向に平行な位置に光源(2)(ハロゲン光源)を設け、光源(2)から出た光がハーフミラー(5)で反射され被検査物(1)の法線方向から被検査物(1)に照射される。被検査物(1)表面で反射した光はハーフミラー(5)を通過してテレセントリックレンズ(13)を経てカメラ(3)(1次元CCDカメラ)に入光し、カメラ(3)内の光電変換センサ(1次元CCD)で受光し、ここで光量に応じた電気信号に変換され図示していない演算装置に送られる様にした。
【0043】
比較例3
図12に示す斜入射照明光学系の装置を用いた。被検査物(1)の法線方向から40°傾いた方向に設けた光源(2)(ハロゲン光源)から被検査物(1)に光を照射し、被検査物(1)表面で反射した光を光源(2)が設けれている方とは反対側に被検査物(1)の法線方向から40°傾いた位置に設けたテレセントリックレンズ(13)を経てカメラ(3)(1次元CCDカメラ)に入光する。カメラ(3)内の光電変換センサ(1次元CCD)で受光し、ここで光量に応じた電気信号に変換され図示していない演算装置に送られる様にした。
【0044】
【表1】
Figure 2004144612
◎:欠陥部の明暗差大
○:欠陥部の明暗差中
△:欠陥部の明暗差小
□:欠陥部の明暗差微小、信号処理困難
×:欠陥部の明暗差ほとんどなし
【0045】
表1から明らかな様に、本発明によれば円筒体表面の緩やかな表面凹凸状欠陥を受光光量の明暗差として捉えることができ、受光した明暗差によって欠陥として検査することができる。
【0046】
【発明の効果】
以上、詳細且つ具体的な説明より明らかなように、本発明の請求項1に記載の発明においては、平行光を被検査物の軸方向から鋭角に照射するとともに、被検査物からの反射光をテレセントリックレンズを通して光電変換センサで受光し、該光電変換センサからの信号を処理することによって、被検査物表面の緩やかな表面凹凸状欠陥を光の明暗差として捉え、欠陥として判定することができる。
請求項2に記載の発明においては、該被検査物からの反射光を受光する角度を、正反射光の入射角度に対して所定角度ずらすことにより、光電変換センサが受光する光の明暗差を大きくでき、検出感度を上げることができる。
請求項3に記載の発明においては、テレセントリックレンズの焦点位置を被検査物からの反射光の通過位置の空間に位置させることにより、表面や塗膜内部の粗さなどの影響を避けることができS/N比を向上することができる。
請求項4に記載の発明においては、照射光をマスク板によりスリット光に整形し、スリット光を被検査物の軸線より被検査物周方向に所定角度ずらして照射することにより、光電変換センサが受光する光の明暗差を大きくでき、検出感度を上げることができる。
請求項5に記載の発明においては、被検査物の軸方向から鋭角に平行光を照射する投光光学系と、被検査物表面からの反射光を受光するテレセントリックレンズおよび光電変換センサとを具備する受光光学系と、該光電変換センサからの信号を処理する手段から構成されることで、被検査物表面の緩やかな表面凹凸状欠陥を光の明暗差として捉え、欠陥として判定することができる表面欠陥検査装置が提供される。
請求項6に記載の発明においては、該受光光学系を平行光の入射角度に対して所定角度ずらした位置に設けることによって、光電変換センサが受光する光の明暗差を大きくでき、検出感度を上げることができ、精度良く検査することができる表面欠陥検査装置が提供される。
請求項7に記載の発明においては、受光光学系のレンズの焦点位置を検査物からの反射光の通過位置の空間になるように設定することによって、表面や塗膜内部の粗さなどの影響を避けることができS/N比の良い表面欠陥検査装置が提供される。
請求項8に記載の発明においては、投光光学系が平行光を生成する機構と、生成された平行光をスリット状に整形するスリット板により構成され、該スリット光を被検査物の軸線より被検査物州方向に所定角度ずらして照射する様に設置することにより、光電変換センサが受光する光の明暗差を大きくでき、検出感度の良い表面欠陥検査装置が提供される。
【図面の簡単な説明】
【図1】斜入射照明光学系の概略図であり、(a)は斜入射照明光学系での表面凹凸状欠陥の検出方法、(b)は斜入射照明光学系での表面凹凸状欠陥の検出方法を示す。
【図2】同軸落射照明光学系の概略図であり、(a)は同軸落射照明光学系で表面凹凸状欠陥の検出方法を示す。
【図3】目視による緩やかな表面凹凸状欠陥の検査方法の概略図である。
【図4】屈折の法則を説明する図である。
【図5】透明膜における反射を説明する図である。
【図6】被検査物表面の光の説明図である。
【図7】本発明の実施形態の一例を示す図である。
【図8】本発明の実施形態の他の例を示す図である。
【図9】本発明の実施形態の他の例を示す図である。
【図10】本発明の実施形態の他の例を示す図である。
【図11】比較例2で用いた装置の概略図である。
【図12】比較例3で用いた装置の概略図である。
【符号の説明】
1・・・被検査物(電子写真用感光体ドラム)
2・・・光源(ハロゲンランプ)
3・・・受光手段(カメラ)
4a・・・照射光
4b・・・反射光
5・・・ハーフミラー
6・・・レンズ
7・・・検査照明
8・・・検査員
9・・・集光レンズ
10・・・ピンホール
11・・・コリメートレンズ
12・・・スリット
13・・・テレセントリックレンズ
14・・・受光センサ
15・・・全反射ミラー
16・・・表面の凸状欠陥[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for inspecting a gently uneven defect on the surface of a cylindrical or columnar object to be inspected, and an apparatus using the same. For example, it can be used when inspecting a surface defect of an electrophotographic photosensitive drum used in an image output device such as a copying machine or a laser printer, or a fixing roller of a fixing device.
[0002]
[Prior art]
When an electrophotographic photosensitive drum used in a copier, a laser printer, or the like is manufactured by dip coating, the thickness of the coating film is determined by the speed at which the supporting substrate of the electrophotographic photosensitive drum immersed in the coating liquid is drawn out of the coating liquid. Will be adjusted by
When the support base is pulled up from the coating liquid, air accumulated in the support base becomes bubbles from the lower part of the support base and flows into the liquid, or vibrations of devices around the coating tank are transmitted to the coating tank. When the liquid level of the coating liquid fluctuates, the relative speed between the support base and the liquid level changes partially, resulting in unevenness of the coating film. If the unevenness of the coating film occurs on the surface layer of the electrophotographic photosensitive drum, a gradual surface unevenness having a thickness difference of about 1 μm may occur.
[0003]
As a method for inspecting a defect having a surface unevenness, an inspection method using an oblique incidence illumination optical system as shown in FIG. 1 and a coaxial incident illumination optical system as shown in FIG. 2 are known.
In the method using the oblique incidence illumination optical system shown in FIG. 1, the surface of the object (1) is irradiated with light from a light source (2) provided at a position inclined from a perpendicular direction of the object (1), and the surface of the object (1) is inspected. This is a method in which light reflected by the surface of the object (1) is received by the light receiving means (3). On a smooth normal surface, regular reflection light from the surface of the object (1) is not received, and the uneven defect (16) is not received. ), A method of installing the light receiving means (3) at a position for receiving the regular reflection light (FIG. 1 (a)), and receiving the regular reflection light from the surface of the inspection object (1) on the normal surface In addition, there is a method (FIG. 1B) of installing the light receiving means (3) at a position where the regular reflection light is not received when there is an uneven defect (16). A defect is detected by a change in the surface and the light receiving state.
[0004]
In the method using the coaxial epi-illumination optical system shown in FIG. 2, light is projected from a tangential direction or an axial direction of an object to be inspected by a light projecting means including a light source (2) and a lens (6), and a half mirror (5). To irradiate the light to the inspection object (1) vertically. Light is reflected vertically on the smooth normal surface, passes through the half mirror (5), and is received by the light receiving means (3) (FIG. 2A). If there is an irregular defect (16), the light reflected on the surface of the inspection object (1) does not reflect vertically but escapes in a direction other than the half mirror (5) and the light receiving means (3). As a result, a defect is detected by changing the light receiving state from the normal surface.
However, in both methods, since the change in the optical path is small in the case of a gently uneven defect, a difference in the amount of received light between the normal surface and the uneven defect hardly appears, making it difficult to detect such a defect.
[0005]
Therefore, in order to detect such a gently uneven defect, the light of the inspection illumination (7) is radiated to the inspection object (1) at an acute angle from the axial direction as shown in FIG. Then, the inspector (8) looks into the inspection object (1) at an acute angle from the opposite side in the axial direction, and inspects the light source (2) reflected on the surface of the inspection object (1) by distortion of a bright line and a subtle change in difference in brightness. ing.
As a method of detecting such a gently uneven defect by an apparatus, a defect is detected by irradiating a predetermined pattern on an object to be inspected and photographing the boundary portion of the pattern with the uneven defect being distorted. A method has been devised (for example, see Patent Document 1).
[0006]
Further, a method has been devised in which a surface of an inspection object is irradiated with parallel light, the reflected light is received by a CCD camera, and a defect is detected based on the presence or absence of a dark portion as compared with a normal surface (for example, Patent Document 2). reference.).
[0007]
Further, a light projecting optical system for irradiating a parallel light beam to the surface of the inspection object at an acute angle from the axial direction, a magnifying optical system of a plano-convex cylindrical lens, a light receiving mask plate having a slit, and a light receiving element of a CCD line sensor of a light receiving device It has a light receiving optical system composed of rows and arranges the slits of the light receiving mask plate and the longitudinal direction of the light receiving element row in a plane perpendicular to the optical axis of the light receiving optical system in parallel with the projected component of the central axis of the photosensitive drum. In addition, a method has been devised in which a plano-convex cylindrical lens expands specularly reflected light in the central axis direction of the photosensitive drum to detect a gently uneven defect (for example, see Patent Document 3).
[0008]
In addition, as an approximation of this, the angle between the rotation axis and the light irradiation direction on the object to be inspected is made acute, and the object to be inspected is irradiated with a laser beam having a rectangular cross section and a substantially uniform laser beam. The diffused light is converged by a plano-convex cylindrical lens located on the reflected optical axis, an image is projected on the translucent screen by the reflected light, and an image is taken from the back of the translucent screen by a CCD camera to cause a defect. Has been devised (for example, see Patent Document 4).
[0009]
However, the work of inspecting gently uneven defects by visual inspection is a severe work that uses nerves to pay attention to the distortion of the bright line of the light source reflected on the surface of the inspection object and the subtle change in the difference in brightness. In addition, it puts a heavy burden on the inspector, and there is a possibility that the defect may be overlooked due to fatigue.
Further, in the method described in Patent Document 1 described above, in order to evaluate the pattern irradiated on the surface of the inspection object, the light receiving optical system needs to always focus on the surface of the inspection object, and the distortion and the distortion of the inspection object are required. When the surface position of the inspection object changes due to the shake, there is a problem that the inspection accuracy is lowered.
Further, the method described in Patent Document 2 utilizes the fact that the parallel light applied to the object to be inspected changes its optical path due to surface irregularities and the amount of light received by the light receiving means decreases. Since the change in the optical path is very small in the case of the uneven defect, the change in the amount of light received by the light receiving means is very small, and it is difficult to distinguish the normal portion from the defective portion. Further, the method described in Patent Document 3 irradiates parallel light at an acute angle from the axial direction of the test object, enlarges the light reflected on the surface of the test object with a plano-convex cylindrical lens, and receives the light with a photoelectric line sensor. Therefore, it is important to align the position of the plano-convex cylindrical lens and the photoelectric conversion sensor, and it has been extremely difficult to maintain and manage this positional accuracy.
In addition, a slit is provided to prevent irregularly reflected light from entering the photoelectric conversion sensor and to allow the photoelectric conversion sensor to receive only light having a specular reflection component parallel to the central axis. Due to the large size, diffused light cannot be sufficiently blocked, and light other than the specular reflection component parallel to the central axis may be received by the photoelectric conversion sensor, and the S / N ratio may be reduced.
Further, the device described in Patent Document 4 projects reflected light from an object to be inspected onto a translucent screen, and photographs with a CCD camera from the back surface of the translucent screen. In order to form an image of reflected light on a transparent screen, a large amount of light must be irradiated to the inspection object. Therefore, when the object to be inspected is easily damaged by light such as a photosensitive drum for electrophotography, it is necessary to suppress the amount of light irradiated to the object to be inspected, and the reflected light is small. For an object to be inspected, an image having sufficient brightness for photographing could not be formed on a translucent screen.
[0010]
[Patent Document 1]
JP-A-7-63687
[Patent Document 2]
JP-A-9-105618
[Patent Document 3]
JP-A-11-118449
[Patent Document 4]
JP-A-9-304029
[0011]
[Problems to be solved by the invention]
The present invention has been made in order to address the above-described drawbacks, and provides a method and an apparatus capable of accurately inspecting a gently uneven surface defect on the surface of an inspection object even with a simple configuration and adjustment method. That is the subject.
[0012]
[Means for Solving the Problems]
When the gradual surface unevenness defect generated on the surface of the electrophotographic photosensitive drum is visually confirmed, as described above, the incident angle is increased to a state where the light source is almost parallel to the inspection object, as described above. By irradiating and observing the specularly reflected light from the inspection object, the existence thereof can be relatively easily confirmed.
By observing the incident angle at a large angle and visually observing it, it becomes easier to see the gradual surface irregularity defects. This is because light scattering generated by a gradual surface irregularity defect becomes easy to see.
[0013]
When light propagates from a dense medium, n = n1, to a sparse medium, n = n2 <n1, the refraction angle θt increases as the incident angle increases, and the refraction angle θt first increases to 90 ° when the incident angle increases. Reach. The incident angle θi = θc at that time is
Law of refraction: From n1 sin θi = n2 sin θt, θ = sin -1 When the incident angle θi is larger than θc, the incident angle returns as total reflection without transmission (see FIG. 4).
In addition, the reflectance according to the Fresnel's formula depends on the deflection of the P deflection component parallel to the reflection surface and the S deflection component perpendicular to the reflection surface, and similarly,
Law of refraction: n1 sin θi = n2 sin θt
S-polarized component reflectance:
[0014]
(Equation 1)
Figure 2004144612
P deflection component reflectance:
[0015]
(Equation 2)
Figure 2004144612
(FIG. 5).
[0016]
As described above, as a result of analyzing the visual inspection method, when the incident angle is large, almost total reflection occurs, and the appearance of the surface on a mirror surface with high transmittance is affected by the internal condition at the bottom of the coating film. In other words, it can be determined that the result is that the gradual surface irregularity defect is remarkably emphasized by the reflected light, and is easily visually recognized.
When inspecting the surface of the photosensitive drum for electrophotography that has a mirror-like coating film with high transmittance for gradual surface unevenness defects, assemble the optical system so that these optical phenomena can be visually recognized as in the visual inspection. Is the most important.
[0017]
As a result of analyzing the visual inspection, the optical system in the case of configuring an apparatus for inspecting a gradual surface irregularity defect on the surface of the photoconductor drum having a mirror-like coating film having a high transmittance,
1. A collimated lens is used to generate a parallel light source with a highly accurate field width.
2. The parallel light is emitted at a large incident angle and in a state close to total reflection.
3. An optical system that transmits only the specularly reflected light having the same angle as the incident angle and substantially parallel to the axis of the lens, for example, a telecentric optical system, selectively receives only the specularly reflected light.
4. The focus position should be located in a space close to the specular light on the surface to avoid the influence of the depth of field due to lens tilt and to selectively receive only the light diffusion extinction phenomenon due to defects. Adjust to
And so on.
[0018]
Therefore, in the present invention, parallel light is generated by a collimating lens and irradiated at an angle of 5 to 25 ° from the axial direction of the cylindrical or cylindrical object to be inspected in the same manner as the visual inspection. . The light applied to the surface of the inspection object is reflected as specular reflection light reflected at the same angle as the irradiation angle and scattered light spreading in all directions. In the present invention, since the parallel light is applied, the width of the regular reflected light is substantially the same as the width of the incident light, and the light is reflected in the same direction as the irradiated angle. At this time, if the surface of the inspection object has irregularities, the angle at which the regular reflection light is reflected changes (see FIG. 6).
[0019]
By passing the light reflected on the surface of the inspection object through a lens that allows only light that is substantially parallel to the optical axis of the lens to pass, only the regular reflection light reflected on the normal surface is passed, and the light is reflected by surface irregularities. The light whose angle is changed is hardly passed. As a result, a light-dark difference is generated in the light passing through the lens. By capturing the light-dark difference, it is possible to inspect a gentle unevenness on the surface. The focus position of the lens of the light receiving optical system is not adjusted to the surface of the object to be inspected, but is positioned in a space between the object to be inspected and the light receiving optical system. This makes it difficult to receive the influence of the difference in brightness due to the roughness of the surface of the object to be inspected or the inside of the coating film, a point defect, or the like, and can improve the S / N ratio.
[0020]
When the object to be inspected is a photosensitive drum for electrophotography, an aluminum substrate is subjected to surface processing and then a coating film is applied. The surface processing of the aluminum substrate is performed by making the surface of the aluminum substrate a mirror surface, or conversely, by making a rough surface by cutting or the like to diffuse light. If the surface of the substrate is roughened, the shape of the coating will follow that of the surface of the substrate, depending on the thickness of the coating applied on it. It becomes a state. In this case, since the angle of incidence on the object to be inspected and the angle of reflection do not always match, it is easier to capture the difference in brightness by changing the angle at which the light projecting optical system is installed and the angle at which the light receiving optical system is installed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 7A to 7C show a first embodiment of the present invention.
In FIG. 7, (1) is a photosensitive drum for electrophotography as an inspection object, (2) is a light source, (3) is a camera as light receiving means, (9) is a condenser lens, and (10) is a pinhole. , (11) are a collimating lens, (12) is a slit, (13) is a telecentric lens, and (14) is a light receiving sensor housed in the camera (3). θi is an incident angle, and θr is a reflection angle.
[0022]
Light emitted from the light source (2) is condensed by the condenser lens (9) and passes through the pinhole (10). The light passing through the pinhole (10) becomes parallel light by the collimating lens (11), and the width of the light is shaped by the slit (12). The light shaped by the slit (12) is applied to the surface of the inspection object (1) at an incident angle θi, and is reflected at a reflection angle θr substantially equal to the incident angle θi. The reflected light enters a telecentric lens (13) provided in a direction inclined from the surface of the test object (1) by a reflection angle θr, and is received by a light receiving sensor (14) housed in a camera (3). Then, it is converted into an electric signal, sent to an arithmetic unit (not shown), and subjected to signal processing.
[0023]
As the light source (2), a light source such as a halogen light source, a metal halide light source, and a fluorescent lamp for inspection can be used. Depending on the properties of the test object, damage may be caused by a specific wavelength.Install a bandpass filter on the light source to cut off harmful wavelengths, or use a light source with a narrow wavelength range, such as an LED or laser. By doing so, the damage can be suppressed.
It is not always necessary to provide a slit, but it is preferable to provide a slit because providing a slit can reduce extra light and improve the S / N ratio.
[0024]
By reducing the incident angle θi, the reflected light reflected at the reflection angle θr substantially equal to the incident angle θi becomes specular reflected light close to total reflection and enters the telecentric lens (13). The incident angle θi and the reflection angle θr are preferably 5 to 25 °, more preferably 10 to 20 °. If the angle is smaller than 5 °, it becomes easy for the light projecting / receiving optical system and the test object (1) to physically interfere with each other, or the light beam is blocked by the test object (1), making it difficult to configure the device. On the other hand, if the angle exceeds 25 °, a change in the optical path due to a gradual surface irregularity defect will not be noticeable, and the surface irregularity defect cannot be captured.
[0025]
The telecentric lens (13) selectively receives only light parallel to the axis of the telecentric lens, and when there is a surface defect, almost no diffused light is received. The focus position, which is the focal length of the telecentric lens (13), is located in the space where the specularly reflected light passes, so that the difference in depth of field due to lens tilt can be ignored.
Since no image is formed on the surface, it is possible to avoid the influence of the roughness of the surface or the inside of the coating film, and similarly to improve the S / N ratio. And so on.
[0026]
There are a wide variety of defects on the appearance of electrophotographic photoreceptor drums.If all defects are to be detected efficiently in-line, conventional coaxial epi-illumination optics and oblique incidence illumination optics must be used. It is necessary to use a method for catching defects by using the method of the present invention.
For example, when a CCD camera is arranged as a light receiving means of the conventional inspection method and the inspection field of view is about 50 mm, the inspection field of view is also set to about 50 mm in this method. It is important when considering.
Further, if the resolution and operation specifications of the camera are the same, not only the inspection field of view, but also the defect detection resolution and the inspection tact time are completely the same, and there is an advantage that continuous synchronous operation becomes possible.
[0027]
FIG. 8 shows a second embodiment of the present invention.
In the first embodiment, since the light projecting unit and the light receiving unit are installed at an acute angle with respect to the axial direction of the inspection object (1), the width of the device increases in the axial direction of the inspection object (1). Would. Therefore, as shown in FIG. 8, a total reflection mirror (15) is provided between the light projecting means and the object to be inspected (1) and between the light receiving means and the object to be inspected (1) to refract the optical path. The width of the optical system in the axial direction of the inspection object (1) can be reduced, and the device can be reduced in size.
[0028]
FIGS. 9A and 9B show a third embodiment of the present invention.
The arrangement angle of the telecentric lens (13) and the camera (3), which are light receiving means, is shifted from the reflection angle θr of specular reflection light by θd from the first embodiment. This θd is preferably −10 ° to 10 °, more preferably −5 ° to 5 °.
[0029]
FIGS. 10A and 10B show a fourth embodiment of the present invention.
The first embodiment is different from the first embodiment in that the installation positions of the telecentric lens (13) and the camera (3) as light receiving means are shifted by θl in the circumferential direction of the inspection object (1). This θl is preferably −10 ° to 10 °, more preferably −5 ° to 5 °.
[0030]
【Example】
Hereinafter, Examples and Comparative Examples of the present invention will be described. First, a method for manufacturing an electrophotographic photosensitive drum to be evaluated in Examples and Comparative Examples will be described.
The percentages given below are based on weight.
As the conductive substrate of the electrophotographic photosensitive drum used in the examples, a cylindrical aluminum-made one having an outer diameter of φ30 mm and a length of 340 mm is used.
The undercoat layer was a coating film composed of 20 parts of titanium oxide, 40 parts of alkyd resin, and 20 parts of melamine resin, and had a dry film thickness of 6 μm. The undercoat layer was prepared by applying a liquid obtained by dispersing a mixture of the above composition in 100 parts of methyl ethyl ketone to a substrate, and this coating liquid was prepared by dispersing and bonding the raw materials in a ball mill for 24 hours. The coating liquid is obtained by heat-treating at 130 to 140 ° C. for 0.5 hour after coating to make the organic solvent insoluble.
The charge generation layer and the charge transport layer were both formed by a method of applying the following coating solution. The charge generation layer had a dry thickness of 1 μm, and the charge transport layer had a dry thickness of 30 μm. The layers were laminated by a method of sequentially coating the coating films. The coating solution for forming a charge generation layer is prepared by dissolving 1 part of butyral resin (XYHL, manufactured by UCC) in 98 parts of a cyclohexane-tetrahydrofuran mixed solution (mixing ratio: 7: 3), and adding 10 parts of a disazo pigment represented by the following formula to this. In addition, the dispersion was adjusted by a ball mill for 72 hours.
[0031]
Embedded image
Figure 2004144612
[0032]
The coating liquid for forming a charge transport layer was prepared by dissolving and mixing a polycarbonate resin (manufactured by Teijin Limited: Panlite K-1300) and 10 parts of a charge transfer agent (hydrazone compound) represented by the following formula in 80 parts of dichloromethane. .
[0033]
Embedded image
Figure 2004144612
[0034]
An undercoat layer, a charge generation layer, and a charge transport layer are sequentially formed on an aluminum substrate by a dip coating method, and gradual surface irregularities are obtained by partially changing the coating speed when coating the charge generation layer. Formed. When the surface roughness was measured with a stylus type surface roughness measuring instrument, there was a difference of about 0.5 μm.
[0035]
Example 1
The apparatus of the first embodiment shown in FIGS. 7A to 7C was used. A halogen light source is used as the light source (2), and light emitted from the light source (2) passes through a condenser lens (9) and is condensed by a pinhole (10). Next, the light is converted into parallel light by a collimating lens having a diameter of about 40 mm in a two-group configuration. The light passes through a slit (12) having a width of about 10 μm and a length of about 15 mm to become a band-shaped parallel light. The belt-shaped parallel light was irradiated at an incident angle θi = 15 ° with respect to the axis of the test object (1). The belt-shaped parallel light is irradiated on the surface of the inspection object (1) slightly longer than about 50 mm, and this width becomes the inspection visual field. The light reflected on the surface of the inspection object (1) is reflected at the same reflection angle θr as the incident angle θi, and is guided to the telecentric lens (13). The telecentric lens selectively receives only the specularly reflected light from the object to be inspected and observes the inspection visual field of 50 mm at an angle of θr = 15 °. The light received with a width of 13 mm is expanded 2.7 times by a telecentric lens and connected to a one-dimensional CCD sensor (resolution: 7 μm, 5150 dots, element length: 36 mm) which is a light receiving sensor (14) housed in a camera (13). Imaged. As a result, the inspection resolution was about 10 μm. The focus position of the telecentric lens (13) is located in the space between the object (1) to be inspected and the telecentric lens (13), and an image is not formed on the light receiving sensor (14). I did it.
[0036]
Example 2
The device of the third embodiment shown in FIGS. 9A and 9B was used. The shift angle θd of the telecentric lens (13) and the camera (3) with respect to the light reflection angle θr was set to 5 °, and the other conditions were the same as in the first embodiment.
[0037]
Example 3
Example 2 was the same as Example 2 except that the shift angle θd was 10 °.
[0038]
Example 4
Example 2 was the same as Example 2 except that the shift angle θd was −10 °.
[0039]
Example 5
The apparatus of the fourth embodiment shown in FIGS. 10A and 10B was used. The shift angle θl of the telecentric lens (13) and the camera (3) in the circumferential direction of the test object (1) was set to 5 °, and the other conditions were the same as those in the first embodiment.
[0040]
Example 6
Example 5 was the same as Example 5 except that the shift angle θl was 10 °.
[0041]
Comparative Example 1
Example 1 was the same as Example 1 except that the incident angle θi and the reflection angle θr were 30 °.
[0042]
Comparative Example 2
The coaxial epi-illumination optical system shown in FIG. 11 was used. A light source (2) (halogen light source) is provided at a position parallel to the tangential direction of the object to be inspected (1), and light emitted from the light source (2) is reflected by a half mirror (5) and the method of the object to be inspected (1) is performed. The object (1) is irradiated from the line direction. The light reflected on the surface of the inspection object (1) passes through the half mirror (5), passes through the telecentric lens (13), enters the camera (3) (one-dimensional CCD camera), and receives light from the camera (3). The light was received by a conversion sensor (one-dimensional CCD), converted into an electric signal corresponding to the amount of light, and sent to an arithmetic unit (not shown).
[0043]
Comparative Example 3
The apparatus of the oblique incidence illumination optical system shown in FIG. 12 was used. A light source (2) (halogen light source) provided in a direction inclined by 40 ° from the normal direction of the inspection object (1) irradiates the inspection object (1) with light, and reflected on the surface of the inspection object (1). The light passes through a telecentric lens (13) provided at a position inclined by 40 ° from the normal direction of the inspection object (1) to the side opposite to the side where the light source (2) is provided. (CCD camera). The light was received by a photoelectric conversion sensor (one-dimensional CCD) in the camera (3), converted into an electric signal corresponding to the amount of light, and sent to an arithmetic unit (not shown).
[0044]
[Table 1]
Figure 2004144612
:: Large difference in brightness of defective part
:: Difference in brightness of defective part
Δ: Small difference in brightness of defective part
□: Small difference in brightness at defect, signal processing difficult
×: Almost no difference in brightness at the defective part
[0045]
As is clear from Table 1, according to the present invention, a gradual surface irregularity defect on the surface of the cylindrical body can be regarded as a difference in the amount of received light, and can be inspected as a defect based on the difference in received light.
[0046]
【The invention's effect】
As is apparent from the detailed and specific description above, in the invention according to claim 1 of the present invention, parallel light is radiated at an acute angle from the axial direction of the test object, and reflected light from the test object is irradiated. Is received by a photoelectric conversion sensor through a telecentric lens, and a signal from the photoelectric conversion sensor is processed, whereby a gradual surface irregularity defect on the surface of the inspection object can be grasped as a light-dark difference of light, and the defect can be determined as a defect. .
In the invention described in claim 2, the angle at which the reflected light from the inspection object is received is shifted by a predetermined angle with respect to the incident angle of the specularly reflected light, so that the brightness difference of the light received by the photoelectric conversion sensor is reduced. It is possible to increase the detection sensitivity.
According to the third aspect of the invention, the focal position of the telecentric lens is located in the space where the reflected light from the inspection object passes, so that the influence of the roughness of the surface or the inside of the coating film can be avoided. The S / N ratio can be improved.
In the invention according to claim 4, the photoelectric conversion sensor is configured such that the irradiation light is shaped into slit light by the mask plate, and the slit light is irradiated at a predetermined angle from the axis of the inspection object in the circumferential direction of the inspection object. The difference in brightness of the received light can be increased, and the detection sensitivity can be increased.
According to a fifth aspect of the present invention, there is provided a light projecting optical system that irradiates parallel light at an acute angle from the axial direction of the object to be inspected, a telecentric lens and a photoelectric conversion sensor that receives light reflected from the surface of the object to be inspected. And a means for processing a signal from the photoelectric conversion sensor, a gradual surface irregularity defect on the surface of the object to be inspected can be grasped as a difference in light and darkness and determined as a defect. A surface defect inspection device is provided.
In the invention according to claim 6, by providing the light receiving optical system at a position shifted by a predetermined angle with respect to the incident angle of the parallel light, the difference in brightness of light received by the photoelectric conversion sensor can be increased, and the detection sensitivity can be improved. A surface defect inspection apparatus which can be inspected with high accuracy can be provided.
In the invention according to claim 7, by setting the focal position of the lens of the light receiving optical system so as to be in the space where the reflected light from the inspection object passes, the influence of the roughness of the surface or the inside of the coating film or the like is obtained. And a surface defect inspection apparatus having a good S / N ratio can be provided.
In the invention according to claim 8, the light projecting optical system is constituted by a mechanism for generating parallel light and a slit plate for shaping the generated parallel light into a slit shape, and the slit light is converted from the axis of the inspection object. By arranging the device so as to be shifted by a predetermined angle in the inspection object state direction, the difference in brightness of light received by the photoelectric conversion sensor can be increased, and a surface defect inspection device with good detection sensitivity is provided.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic diagrams of an oblique incidence illumination optical system, wherein FIG. 1A is a method for detecting a surface irregularity defect in an oblique incidence illumination optical system, and FIG. The detection method will be described.
FIG. 2 is a schematic view of a coaxial epi-illumination optical system, and FIG. 2 (a) shows a method of detecting a surface irregularity defect in the co-axial epi-illumination optical system.
FIG. 3 is a schematic view of a method for visually inspecting a gently uneven surface defect.
FIG. 4 is a diagram illustrating the law of refraction.
FIG. 5 is a diagram illustrating reflection on a transparent film.
FIG. 6 is an explanatory diagram of light on the surface of the inspection object.
FIG. 7 is a diagram showing an example of an embodiment of the present invention.
FIG. 8 is a diagram showing another example of the embodiment of the present invention.
FIG. 9 is a diagram showing another example of the embodiment of the present invention.
FIG. 10 is a diagram showing another example of the embodiment of the present invention.
FIG. 11 is a schematic view of an apparatus used in Comparative Example 2.
FIG. 12 is a schematic diagram of an apparatus used in Comparative Example 3.
[Explanation of symbols]
1. Inspection object (photosensitive drum for electrophotography)
2. Light source (halogen lamp)
3 ... Light receiving means (camera)
4a: Irradiation light
4b: reflected light
5 Half mirror
6 ... Lens
7 ... Inspection lighting
8 ... inspector
9 ... Condensing lens
10 Pinhole
11 ・ ・ ・ Collimating lens
12 ... Slit
13 ・ ・ ・ Telecentric lens
14 ・ ・ ・ Light receiving sensor
15 ... Total reflection mirror
16: Surface convex defect

Claims (8)

表面の滑らかな円筒体もしくは円柱体の被検査物の表面の欠陥を検査する検査方法において、平行光を被検査物の軸方向から軸線に対して5〜25°の角度で、斜めに照射するとともに、該被検査物からの反射光を、レンズの軸線に対して略平行な光のみを通すレンズを通して光電変換センサで受光し、該光電変換センサからの信号を処理して前記被検査物の欠陥を検出することを特徴とする表面欠陥検査方法。In an inspection method for inspecting a surface defect of a cylindrical or cylindrical object to be inspected having a smooth surface, parallel light is applied obliquely at an angle of 5 to 25 ° with respect to an axis from an axis direction of the object to be inspected. At the same time, the reflected light from the object to be inspected is received by a photoelectric conversion sensor through a lens that transmits only light substantially parallel to the axis of the lens, and a signal from the photoelectric conversion sensor is processed to process the object to be inspected. A surface defect inspection method characterized by detecting a defect. 前記被検査物からの反射光を受光する角度を、正反射光の入射角度に対して−10〜10°ずらすことを特徴とする請求項1に記載の表面欠陥検査方法。The surface defect inspection method according to claim 1, wherein an angle at which the reflected light from the inspection object is received is shifted by −10 ° to 10 ° with respect to an incident angle of the specularly reflected light. テレセントリックレンズの焦点位置を被検査物からの反射光の通過位置の空間に位置させることを特徴とする請求項1又は2に記載の表面欠陥検査方法。3. The surface defect inspection method according to claim 1, wherein the focal position of the telecentric lens is located in a space where the reflected light from the inspection object passes. 照射光をマスク板によりスリット光に整形し、スリット光を被検査物の軸線方向から照射し、反射光を被検査物の軸線方向から周方向に−10〜10°ずれた位置で受光することを特徴とする請求項1乃至3の何れかに記載の表面欠陥検査方法。The irradiation light is shaped into slit light by a mask plate, the slit light is irradiated from the axial direction of the inspection object, and the reflected light is received at a position shifted from the axis direction of the inspection object by -10 to 10 degrees in the circumferential direction. The surface defect inspection method according to any one of claims 1 to 3, wherein 表面の滑らかな円筒体もしくは円柱体の被検査物の表面の欠陥を検査する装置において、被検査物の軸方向から鋭角に平行光を照射する投光光学系と、被検査物表面からの反射光を受光するレンズの軸線に対して略平行な光のみを通すレンズおよび光電変換センサとを具備する受光光学系と、該光電変換センサからの信号を処理する手段から構成されることを特徴とする表面欠陥検査装置。In a device for inspecting defects on the surface of a cylindrical or cylindrical object to be inspected that has a smooth surface, a projection optical system that irradiates parallel light at an acute angle from the axis of the object to be inspected, and reflection from the surface of the object to be inspected A light-receiving optical system including a lens and a photoelectric conversion sensor that pass only light substantially parallel to the axis of the lens that receives light; and a unit that processes a signal from the photoelectric conversion sensor. Surface defect inspection equipment. 前記受光光学系を平行光の入射角度に対して−10〜10°ずらした位置に設けることを特徴とする請求項5に記載の表面欠陥検査装置。The surface defect inspection apparatus according to claim 5, wherein the light receiving optical system is provided at a position shifted by −10 to 10 ° with respect to an incident angle of the parallel light. 前記受光光学系のレンズの焦点位置を検査物からの反射光の通過位置の空間になるように設定することを特徴とする請求項5又は6に記載の表面欠陥検査装置。7. The surface defect inspection apparatus according to claim 5, wherein a focal position of a lens of the light receiving optical system is set to be a space where a reflected light from an inspection object passes. 前記投光光学系が平行光を生成する機構と、生成された平行光をスリット状に整形するスリット板により構成され、該スリット光を被検査物の軸線方向より照射し、反射光を被検査物周方向に−10〜10°ずれた位置に設置した受光手段で受光することを特徴とする請求項5乃至7の何れかに記載の表面欠陥検査装置。The light projecting optical system is constituted by a mechanism for generating parallel light, and a slit plate for shaping the generated parallel light into a slit shape, irradiating the slit light from the axial direction of the inspection object, and inspecting the reflected light. The surface defect inspection apparatus according to any one of claims 5 to 7, wherein the light is received by a light receiving unit disposed at a position shifted by -10 to 10 degrees in the object circumferential direction.
JP2002309889A 2002-10-24 2002-10-24 Surface defect inspection method and surface defect inspection apparatus using the same Expired - Fee Related JP4238010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309889A JP4238010B2 (en) 2002-10-24 2002-10-24 Surface defect inspection method and surface defect inspection apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309889A JP4238010B2 (en) 2002-10-24 2002-10-24 Surface defect inspection method and surface defect inspection apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004144612A true JP2004144612A (en) 2004-05-20
JP4238010B2 JP4238010B2 (en) 2009-03-11

Family

ID=32455571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309889A Expired - Fee Related JP4238010B2 (en) 2002-10-24 2002-10-24 Surface defect inspection method and surface defect inspection apparatus using the same

Country Status (1)

Country Link
JP (1) JP4238010B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208371A (en) * 2004-12-28 2006-08-10 Showa Denko Kk Cylinder inspecting apparatus and cylinder inspecting method
JP2008185356A (en) * 2007-01-26 2008-08-14 Some System Kk Round rod inspection device and round rod inspection method
JP2009258215A (en) * 2008-04-14 2009-11-05 Canon Inc Manufacturing method of electrophotographic photoreceptor including inspection process
JP2010190834A (en) * 2009-02-20 2010-09-02 Nsk Ltd Torque sensor and power steering device
JP2011008254A (en) * 2009-06-24 2011-01-13 Xerox Corp Apparatus and method for sensing photoreceptor failure in electrophotographic printing apparatus
JP2011031370A (en) * 2009-08-06 2011-02-17 Tokushima Prefecture Surface finish determining device
JP2011064953A (en) * 2009-09-17 2011-03-31 Canon Inc Method of manufacturing electrophotographic photoreceptor
EP2743685A1 (en) * 2012-12-11 2014-06-18 Ricoh Company Ltd. Inspection Method, Inspection Apparatus and Computer Program
JP2015081838A (en) * 2013-10-23 2015-04-27 東洋製罐株式会社 Inspection apparatus for can with dent or buckling
CN105980837A (en) * 2014-02-04 2016-09-28 Nsk美国有限公司 Apparatus and method for inspection of an end region supported steering column assembly
WO2020065850A1 (en) * 2018-09-27 2020-04-02 ヤマハ発動機株式会社 Three-dimensional measuring device
CN112557415A (en) * 2020-12-11 2021-03-26 中电科信息产业有限公司 Cigarette quality inspection device and cigarette quality control equipment
JP2023075014A (en) * 2021-11-18 2023-05-30 株式会社クボタ Defect determination device of steel pipe outer surface

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208371A (en) * 2004-12-28 2006-08-10 Showa Denko Kk Cylinder inspecting apparatus and cylinder inspecting method
JP2008185356A (en) * 2007-01-26 2008-08-14 Some System Kk Round rod inspection device and round rod inspection method
JP2009258215A (en) * 2008-04-14 2009-11-05 Canon Inc Manufacturing method of electrophotographic photoreceptor including inspection process
JP2010190834A (en) * 2009-02-20 2010-09-02 Nsk Ltd Torque sensor and power steering device
JP2011008254A (en) * 2009-06-24 2011-01-13 Xerox Corp Apparatus and method for sensing photoreceptor failure in electrophotographic printing apparatus
JP2011031370A (en) * 2009-08-06 2011-02-17 Tokushima Prefecture Surface finish determining device
JP2011064953A (en) * 2009-09-17 2011-03-31 Canon Inc Method of manufacturing electrophotographic photoreceptor
EP2743685A1 (en) * 2012-12-11 2014-06-18 Ricoh Company Ltd. Inspection Method, Inspection Apparatus and Computer Program
JP2015081838A (en) * 2013-10-23 2015-04-27 東洋製罐株式会社 Inspection apparatus for can with dent or buckling
CN105980837A (en) * 2014-02-04 2016-09-28 Nsk美国有限公司 Apparatus and method for inspection of an end region supported steering column assembly
WO2020065850A1 (en) * 2018-09-27 2020-04-02 ヤマハ発動機株式会社 Three-dimensional measuring device
CN112639395A (en) * 2018-09-27 2021-04-09 雅马哈发动机株式会社 Three-dimensional measuring apparatus
JPWO2020065850A1 (en) * 2018-09-27 2021-08-30 ヤマハ発動機株式会社 3D measuring device
JP7174768B2 (en) 2018-09-27 2022-11-17 ヤマハ発動機株式会社 3D measuring device
US11982522B2 (en) 2018-09-27 2024-05-14 Yamaha Hatsudoki Kabushiki Kaisha Three-dimensional measuring device
CN112557415A (en) * 2020-12-11 2021-03-26 中电科信息产业有限公司 Cigarette quality inspection device and cigarette quality control equipment
JP2023075014A (en) * 2021-11-18 2023-05-30 株式会社クボタ Defect determination device of steel pipe outer surface
JP7299388B2 (en) 2021-11-18 2023-06-27 株式会社クボタ Defect judgment device for the outer surface of iron pipes

Also Published As

Publication number Publication date
JP4238010B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP3379805B2 (en) Surface defect inspection equipment
JP4238010B2 (en) Surface defect inspection method and surface defect inspection apparatus using the same
CN101382257B (en) Illuminating apparatus for detecting cylinder defect
JP2010112786A (en) Illumination apparatus and appearance inspection apparatus having the same
JP7508659B2 (en) Highly sensitive particle detection using spatially varying polarization rotators and polarizers.
JP2008157788A (en) Surface inspection method and device
JP2000097873A (en) Surface defect inspecting device
JP2007114125A (en) Method for inspecting film thickness irregularities
TWI817991B (en) Optical system, illumination module and automated optical inspection system
JPH11316195A (en) Surface defect detecting device of transparent plate
JP2008002891A (en) Surface state inspection device and surface state inspection method
JP3659952B2 (en) Surface defect inspection equipment
JP2011203201A (en) Metal defect detection method
KR102248379B1 (en) Defect inspection equipment for semiconductor devices
JPH11326236A (en) Surface layer defect-detection device
JP3981895B2 (en) Automatic macro inspection device
JP2005043229A (en) Device for inspecting defect of transparent plate
JP3780292B2 (en) Surface defect inspection equipment
JP3659954B2 (en) Substrate defect inspection system
JP3410231B2 (en) Target plate for camera light receiving position correction and camera position correction device
JP4521548B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP4056399B2 (en) Appearance defect inspection system
JP4883817B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP3583772B2 (en) Surface defect inspection equipment
JP3659953B2 (en) Surface defect inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees