JP2004144090A - Valve cooling method and its device - Google Patents

Valve cooling method and its device Download PDF

Info

Publication number
JP2004144090A
JP2004144090A JP2003362077A JP2003362077A JP2004144090A JP 2004144090 A JP2004144090 A JP 2004144090A JP 2003362077 A JP2003362077 A JP 2003362077A JP 2003362077 A JP2003362077 A JP 2003362077A JP 2004144090 A JP2004144090 A JP 2004144090A
Authority
JP
Japan
Prior art keywords
valve
chamber
supply chamber
inlet
reciprocating stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003362077A
Other languages
Japanese (ja)
Other versions
JP4509529B2 (en
Inventor
Henning Hans Joergensen
へニング・ハンス・ヨーゲンセン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel AS
Original Assignee
MAN B&W Diesel AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN B&W Diesel AS filed Critical MAN B&W Diesel AS
Publication of JP2004144090A publication Critical patent/JP2004144090A/en
Application granted granted Critical
Publication of JP4509529B2 publication Critical patent/JP4509529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/16Cooling of valves by means of a fluid flowing through or along valve, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/06Valve members or valve-seats with means for guiding or deflecting the medium controlled thereby, e.g. producing a rotary motion of the drawn-in cylinder charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Details Of Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Lift Valve (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid the overcool of a valve by using cost advantageous means for improvement. <P>SOLUTION: During cooling at least one valve 6 which is reciprocated in the axial direction, preferably rotated at the same time, and in which cooling medium liquid passes, the passage of the cooling medium in the valve 6 is interrupted on the way of a reciprocating process each time the valve 6 operates its reciprocating process. Thereby, compact construction and reliable valve operation are achieved and the overcool of the valve is avoided. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、第1の発明思想によれば、軸線方向の往復行程運動を行い、好ましくは同時に回転もし、その中を冷媒液が通される少なくとも1つの弁、特に2サイクル大型ディーゼルエンジン用排出弁を冷却する方法に関する。 According to a first inventive concept, the invention provides an axial reciprocating stroke, preferably simultaneously rotating, through which at least one valve through which a refrigerant liquid is passed, in particular a two-cycle exhaust for large diesel engines. A method for cooling a valve.

 もう1つの発明思想は、対応する弁箱内において、それ自体の軸線で誘導され、また順流分管及び逆流分管を包含する軸線方向に延びる、冷媒液の供給可能な冷却導管を有する、この種類の弁を冷却するための装置に関する。なお、順流分管は放射状流入口を通じて、逆流分管は放射状流出口を通じて、弁軸線を取り巻くそれぞれ対応する給液チャンバまたは戻り液チャンバと連結することができる。 Another aspect of the invention is a cooling valve of this type, having a cooling conduit capable of supplying a coolant liquid, guided in its own axis in a corresponding valve housing and extending axially, including a downstream branch and a downstream branch. The invention relates to a device for cooling a valve. The downstream branch can be connected to the corresponding supply chamber or return chamber surrounding the valve axis through the radial inlet and the backward branch through the radial outlet.

 この種類の装置で公知タイプの場合、弁に間断なく冷媒が供給される。加えて、給液チャンバ及び戻り液チャンバの軸線方向の幅が、弁の往復行程に流入口または流出口の直径を加えた長さに相当することから、往復行程の全体を通して冷媒流動が行われる。給液チャンバ及び戻り液チャンバの幅が大きく、そのため構造体の高さも比較的高くなるので、船舶エンジンの場合では船倉空間が侵略されかねず、したがって好ましくない。この場合構造体の高さを低くすれば、必然的に誘導長も短縮されて、信頼性を損ないかねない。それとは別に、もう1つ非常に大きな欠点が認められる。それは、弁が絶えず冷媒に接触する結果として、弁表面では露点以下の温度になるほど弁が強く冷却されるという事態が起こり得ることである。それが、腐食原因になりかねない酸の発生を誘発する場合がある。 冷媒 In the case of a known type of this type of device, the refrigerant is supplied to the valve without interruption. In addition, since the axial width of the liquid supply chamber and the return liquid chamber corresponds to the length of the reciprocating stroke of the valve plus the diameter of the inlet or the outlet, the refrigerant flows through the entire reciprocating stroke. . In the case of a marine engine, the hold space can be invaded and is therefore not preferred because the widths of the supply and return chambers are large and the height of the structure is also relatively high. In this case, if the height of the structure is reduced, the length of the guide is inevitably reduced, which may impair the reliability. Apart from that, there is another very significant drawback. That is, as a result of the constant contact of the valve with the refrigerant, it is possible for the valve surface to cool more strongly at temperatures below the dew point on the valve surface. It can induce the generation of acids that can cause corrosion.

 上記の状況を出発点として、本発明は上記種類の方法を簡単で、コスト的に有利な手段により、弁の過剰冷却が回避されるように改良することを課題とする。 With the above situation as a starting point, the present invention seeks to improve a method of the above kind in such a way that overcooling of the valve is avoided by simple and cost-effective measures.

 本発明のもう1つの課題は、本発明による方法の実施に適しているだけでなく、コンパクトな構造様式及び同時に高い信頼性をも保証する、上記の種類の装置を創出することにある。 Another object of the invention is to create a device of the kind described which is not only suitable for carrying out the method according to the invention, but also guarantees a compact design and at the same time high reliability.

 方法に関する課題は、本発明によれば、弁の各往復運動毎に冷媒の弁内通過を往復行程の途中で中断させることによって解消される。 According to the present invention, the problem concerning the method is solved by interrupting the passage of the refrigerant through the valve in the middle of the reciprocating stroke for each reciprocating movement of the valve.

 装置に関する課題は、本発明によれば、流入口と給液チャンバの連結及び/又は流出口と戻り液チャンバの連結を、弁のなす軸線方向往復行程の途中で中断させることによって解消される。 According to the present invention, the problems with the device are solved by interrupting the connection between the inlet and the supply chamber and / or the connection between the outlet and the return chamber in the axial reciprocating stroke of the valve.

 以上の対策により、上に挙げた現状技術の欠点は、簡単でコスト的に有利な方法により完全に回避される。 に よ り With the above measures, the above mentioned disadvantages of the state of the art are completely avoided in a simple and cost-effective way.

 上位概念である基本対策に対する有利な実施形態及び合目的的な改良については従属請求項に記載されている。例えば、給液チャンバ及び/又は戻り液チャンバの軸線方向の幅をそれぞれ対応する流入口、流出口の直径に少なくとも接近させることができる。この対策は、一種のすべり弁構造様式を生み出すことになる。この場合弁軸線は軸線方向に移動可能な制御スライダとして機能し、それによって流入口又は流出口の開閉制御作用をすることができる。弁軸線を制御スライダとして使用すれば、有利には、簡単でコスト的に有利な自己制御が可能である。流入口と流出口の間、したがってまた給液チャンバと戻り液チャンバの間の軸線方向距離は、有利には、この場合では弁の行程よりもはるかに短くすることができる。したがって、比較的大きな誘導長さが設定され、それでいて構造体の高さは比較的低く抑えることができる。 Advantageous embodiments and expedient improvements over the basic concept, which is a generic concept, are described in the dependent claims. For example, the axial width of the supply chamber and / or the return chamber can be at least close to the diameter of the corresponding inlet and outlet, respectively. This measure creates a type of sliding valve construction. In this case, the valve axis functions as a control slider which can be moved in the axial direction, whereby the opening or closing of the inlet or outlet can be controlled. If the valve axis is used as a control slider, a simple and cost-effective self-control is advantageously possible. The axial distance between the inlet and the outlet, and thus also between the supply chamber and the return chamber, can advantageously be much shorter in this case than the stroke of the valve. Therefore, a relatively large guiding length is set, but the height of the structure can be kept relatively low.

 また別な有利な対策として、給液チャンバと戻り液チャンバの間の軸線方向距離を流入口の直径より小さくすることもできる。この対策により、有利なことに、流入口の閉鎖制御終了時及び開放制御開始時に給液チャンバと排液チャンバの間で短時間間隔の連結が達成される。したがって、冷却導管の冷媒誘導においては、それにより液流の衝撃的終了および衝撃的開始が回避される。 As another advantageous measure, the axial distance between the supply chamber and the return chamber can be smaller than the diameter of the inlet. This measure advantageously achieves a short-time connection between the supply chamber and the drain chamber at the end of the closing control of the inlet and at the beginning of the opening control. Thus, in the refrigerant guidance of the cooling conduit, a shock end and a shock start of the liquid flow are thereby avoided.

 上位概念である基本対策に対する、また別な有利な実施形態及び合目的的な改良がその他の従属請求項に記載されているが、その内容は図面を参照して以下に記載する例から知ることができる。 Further advantageous embodiments and expedient improvements to the generic concept of the basic measure are described in the other dependent claims, whose contents can be seen from the examples described below with reference to the drawings. Can be.

 以下では図面について説明する。 図 面 The drawings will be described below.

 本発明の主要適用領域は、例えば船舶原動機として使用されるような2サイクル大型ディーゼルエンジンの排出弁である。この種類のエンジンの構造および作用態様についてはそれ自体公知であり、したがって本発明の関係ではそれ以上詳しく説明する必要はない。 The main application area of the present invention is, for example, a discharge valve of a large-sized two-cycle diesel engine used as a ship motor. The construction and mode of operation of this type of engine is known per se and therefore does not need to be described in further detail in the context of the present invention.

 図1の基礎となるシリンダは、その上部境界がシリンダライナ2の上に配置されたシリンダカバー3によって形成される燃焼室1を有している。この燃焼室には中央廃ガス排出口4があって、それには弁座5と協働作用する排出弁6が付属しているが、これは廃ガス排出口4の開閉制御のために軸線方向で上下運動ができるようになっている。図1の排出弁6は、弁受盤7の密組織面が弁座5の対応する密組織面に接しているときの閉位置で描かれている。 The cylinder that forms the basis of FIG. 1 has a combustion chamber 1 whose upper boundary is formed by a cylinder cover 3 arranged on a cylinder liner 2. This combustion chamber has a central waste gas outlet 4, which is associated with a discharge valve 6, which cooperates with a valve seat 5, which axially controls the opening and closing of the waste gas outlet 4. You can do up and down movement. The discharge valve 6 of FIG. 1 is depicted in the closed position when the dense tissue surface of the valve receiver 7 is in contact with the corresponding dense tissue surface of the valve seat 5.

 排出弁6は、弁受盤7から上向きに同軸な関係にある方向に延び、またシリンダカバー3に設置された弁箱9と組み合う軸線8を有している。弁箱9には、廃ガス排出口4に接続する排出路10があり、その中を弁軸線8が通っている。弁軸線8は、排出路10の上部では弁箱9内で軸線方向に移動可能に案内される。そのため、弁箱には排出路10の上部領域に、弁軸線8と組み合わされる筒型案内装置11が備えられ、弁軸線8の上端は弁箱9から突き出ていて、弁6の軸線方向での往復行程運動を行う、弁箱9に設置された操縦装置12と協働作用をする。 The discharge valve 6 has an axis 8 extending upward from the valve receiving plate 7 in a coaxial relationship and engaging with a valve box 9 installed on the cylinder cover 3. The valve box 9 has a discharge path 10 connected to the waste gas discharge port 4, through which the valve axis 8 passes. The valve axis 8 is guided movably in the axial direction in the valve box 9 above the discharge path 10. For this purpose, the valve box is provided with a cylindrical guide device 11 in combination with the valve axis 8 in the upper region of the discharge path 10, the upper end of the valve axis 8 protruding from the valve box 9 and extending in the axial direction of the valve 6. It cooperates with a control device 12 mounted on the valve box 9 to perform a reciprocating stroke movement.

 弁6の回転運動を実施するために回転装置が装備されている。図示例では、その目的で弁軸線8の排出路10を通る部分に、放射方向に突き出たプロペラ羽根13が取り付けられていて、これが通過流動する廃ガスの作用下で回転運動を発生させる。 回 転 A rotary device is provided to perform the rotary movement of the valve 6. In the example shown, a radially protruding propeller blade 13 is mounted in the part of the valve axis 8 which passes through the discharge channel 10 for this purpose, which generates a rotary movement under the action of the flowing waste gas.

 弁6は、弁6内を通過させることのできる、好ましくは冷却水の形態を取る冷媒液によって冷却される。そのため、図2から最も良く分かるように、軸線8には軸線方向に冷却用中空部が設けられているが、それは筒状の隔壁14によりシリンダ状の中央領域とそれを取り巻くリング状領域とに区分されている。弁受盤7には、中央領域下端とそれを取り巻く領域の下端との間に液流連結部が設けられている。 The valve 6 is cooled by a coolant liquid, preferably in the form of cooling water, which can be passed through the valve 6. Therefore, as can be seen best from FIG. 2, the axis 8 is provided with a cooling hollow portion in the axial direction, which is formed by a cylindrical partition wall 14 into a cylindrical central region and a ring-shaped region surrounding it. It is classified. The valve receiving plate 7 is provided with a liquid flow connecting portion between the lower end of the central area and the lower end of the area surrounding the central area.

 隔壁14を形成する管の下端は、図3に見られるように、弁受盤7の領域に設けられた、リングにより冷却用中空部から分離されているチャンバ30に入り込んでいる。弁受盤7には、その外部周辺領域に、つまり弁座近くに環状冷却路31が設けられており、それは一方では、放射状導入管を介して、隔壁14を形成する管の内部空間と連通するチャンバ30と、他方ではまた別な導入管を介して、隔壁14を形成する管の外部にある環状領域と結合している。隔壁14を形成する管の下端はチャンバ30の底部と距離を置いて終端することができる。図示の例では、この管はチャンバ30の底部に設置されており、放射状の流出口32が設けられている。 (3) The lower end of the pipe forming the partition wall 14, as seen in FIG. 3, enters a chamber 30 provided in the area of the valve base 7 and separated from the cooling cavity by a ring. The valve disc 7 is provided with an annular cooling channel 31 in its outer peripheral area, i.e. near the valve seat, which on the one hand communicates via a radial inlet pipe with the internal space of the pipe forming the partition wall 14. Via a separate inlet tube, on the other hand, with an annular region outside the tube forming the septum 14. The lower end of the tube forming partition 14 may terminate at a distance from the bottom of chamber 30. In the example shown, this tube is located at the bottom of the chamber 30 and has a radial outlet 32.

 この場合、隔壁14内部の中央領域は液流が上部から下部へ通過できる順流分管15として、外側環状領域は液流が下部から上部へ通過できる逆流分管16として機能する。順流分管15の上端領域には、軸線8周辺部から、軸線8と組み合う径方向の流入管路17を通じて入り込めるようになっている。逆流分管16からは、軸線8と組み合う径方向の流出管路18が分岐している。 In this case, the central region inside the partition wall 14 functions as a forward branch pipe 15 through which the liquid flow can pass from above to below, and the outer annular region functions as a backflow branch tube 16 through which the liquid flow can pass from below to above. The upper end area of the downstream branch pipe 15 can be inserted from the periphery of the axis 8 through a radial inflow pipe 17 which is combined with the axis 8. From the backflow branch 16, a radial outflow conduit 18, which engages with the axis 8, branches off.

 特に好ましいものとして描かれたこの実施形態では、冷媒の弁6への供給又はそこからの排出のための手段は、弁箱9又はその筒型誘導装置11に組み込まれており、その結果、非常にコンパクトな構造様式になっている。その場合筒型誘導装置11には、弁軸線8を環状に取り巻く給液チャンバ19が付いているが、これが、弁箱9と組み合う導入管20を通じて冷媒供給装置に接続できるようになっており、弁6の閉鎖位置に対応する流入管路17の位置でこれと連通するようになっている。流出管路18は、筒型誘導装置11内に設けられた、弁軸線8をリング状に取り巻く戻り液チャンバ21に繋がっている。また、この戻り液チャンバは連結管22を通じて、弁箱9内に設けられた、排出路10を取り巻く冷却チャンバ23と連結しており、この冷却チャンバからは放出管24が分岐している。給液チャンバ19及び戻り液チャンバ21は、筒型誘導装置11の内側放射方向に開放された溝として構成されている。 In this embodiment, which is depicted as particularly preferred, the means for the supply of refrigerant to or from the valve 6 are integrated into the valve box 9 or its tubular guiding device 11 so that the emergency It has a compact structure. In that case, the cylindrical guide device 11 has a liquid supply chamber 19 surrounding the valve axis 8 in a ring shape, which can be connected to the refrigerant supply device through an introduction pipe 20 combined with the valve box 9. It communicates with the inlet line 17 at a position corresponding to the closed position of the valve 6. The outflow line 18 is connected to a return liquid chamber 21 provided in the cylindrical guide device 11 and surrounding the valve axis 8 in a ring shape. The return liquid chamber is connected through a connection pipe 22 to a cooling chamber 23 provided in the valve box 9 and surrounding the discharge path 10, and a discharge pipe 24 branches from the cooling chamber. The liquid supply chamber 19 and the return liquid chamber 21 are configured as grooves that are opened in the radial direction inside the tubular guiding device 11.

 冷媒は、流入矢印から分かるように、導入管20を通じて供給される。冷媒は、流出矢印から分かるように、放出管24を通じて送出される。弁6および弁箱9に充てられた冷却装置は、導入管20および放出管24を介して冷媒循環装置に接続している。 The refrigerant is supplied through the introduction pipe 20 as can be seen from the inflow arrow. The refrigerant is delivered through the discharge tube 24, as can be seen from the outflow arrows. The cooling device assigned to the valve 6 and the valve box 9 is connected to a refrigerant circulating device via an introduction pipe 20 and a discharge pipe 24.

 図1及び図2の基礎となる弁6位置では、冷媒は給液チャンバ19から流入管路17を経由して順流分管15に達する。冷媒は順流分管15の下端から、弁受盤7に設けられた管路系を経由して逆流分管16に入り、そこから冷媒は排出管路18を経由して戻り液チャンバ21に到り、そこから連結管22を通じて冷却チャンバ23に到達し、さらに放出管24を通じて送出される。弁6及び弁箱9を通過する冷媒の循環は上で概説した通りであるが、図2ではそれを液流矢印で明示した。 At the position of the valve 6 which is the basis of FIGS. 1 and 2, the refrigerant reaches the downstream branch pipe 15 from the liquid supply chamber 19 via the inflow line 17. From the lower end of the forward flow pipe 15, the refrigerant enters the reverse flow pipe 16 via a pipe system provided on the valve receiver 7, from which the refrigerant reaches the return liquid chamber 21 via the discharge pipe 18, From there, it reaches the cooling chamber 23 through the connecting pipe 22 and is further sent out through the discharge pipe 24. The circulation of the refrigerant through the valve 6 and the valve box 9 is as outlined above, but in FIG. 2 it is indicated by the liquid flow arrows.

 弁軸線8を環状に取り巻く給液チャンバ19の軸線方向の幅が、公知装置に比べて大きく縮小されており、流入管路17の直径に近似している。図1及び図2の基礎となる実施形態では、給液チャンバ19の軸線方向の幅は流入管路17の直径に一致している。それにより、流入管路17と対応する給液チャンバ19の接合部が完全に、または部分的に一致している場合に限り、冷媒の弁6内における上記通過流動が維持される。この場合給液チャンバは、既述の通り、図1及び図2の基礎となる弁6の閉位置では、流入管路17と連通するように位置設定されている。弁6が流入管路17の直径分だけ下向きに移動すると、給液チャンバ19は流入管路17から切り離され、それによって、弁6を通る冷媒循環が中断される。 軸 The axial width of the liquid supply chamber 19 surrounding the valve axis 8 in an annular shape is greatly reduced as compared with the known device, and is close to the diameter of the inflow line 17. 1 and 2, the axial width of the supply chamber 19 corresponds to the diameter of the inlet line 17. Thereby, the above-mentioned flow of the refrigerant in the valve 6 is maintained only when the joint between the inflow line 17 and the corresponding liquid supply chamber 19 is completely or partially coincident. In this case, as described above, the liquid supply chamber is positioned so as to communicate with the inflow pipe 17 at the closed position of the valve 6 which is the basis of FIGS. 1 and 2. When the valve 6 moves downward by the diameter of the inlet line 17, the supply chamber 19 is disconnected from the inlet line 17, whereby the refrigerant circulation through the valve 6 is interrupted.

 戻り液チャンバ21の軸線方向の幅は、図示例では弁6の行程に流出管路18の直径を加えた長さに相当するので、流出管路は弁の全往復行程を通じて対応する戻り液チャンバ21と連通している。しかし他方では、給液チャンバ19と流入管路17の間の結合は遮断されているので、弁6内での冷媒循環は起こらない。 The axial width of the return liquid chamber 21 corresponds in the example shown to the length of the stroke of the valve 6 plus the diameter of the outlet line 18, so that the outlet line corresponds to the return liquid chamber throughout the entire reciprocating stroke of the valve. It is in communication with 21. On the other hand, however, the connection between the supply chamber 19 and the inflow line 17 is interrupted, so that no refrigerant circulation in the valve 6 takes place.

 上記冷媒循環の中断には、戻り液チャンバ21が弁6の軸線方向往復行程運動における選択領域でしか流出管路18と連通しないように、戻り液チャンバを配置及び構成するという方法も考えられよう。さらにまた両チャンバ、すなわち給液チャンバ19及び戻り液チャンバ21が弁6の軸線方向往復行程運動における選択領域でしか対応する流入管路17又は流出管路18と通過せず、それ以外の場合では閉じるように、両チャンバを配置及び構成するという方法も考えられる。 In order to interrupt the refrigerant circulation, it is conceivable to arrange and configure the return liquid chamber such that the return liquid chamber 21 communicates with the outflow line 18 only in a selected region in the axial reciprocating stroke of the valve 6. . Furthermore, both chambers, namely the supply chamber 19 and the return chamber 21, pass only in selected areas in the axial reciprocating movement of the valve 6 with the corresponding inflow line 17 or outflow line 18; It is also conceivable to arrange and configure both chambers so that they are closed.

 弁箱9の構造体の高さをできる限り低く抑えるために、給液チャンバ19と戻り液チャンバ21を、両者間の軸線方向距離aが弁6の行程より短くなるところまで相互に接近させる。図1及び図2の基礎であるこの例では、この距離aは流入管路17の直径に僅かなパッキング幅を加えた長さに一致する。給液チャンバ19と戻り液チャンバ21の間の距離が短いこと、および給液チャンバ19及び/又は戻り液チャンバ21の軸線方向の幅が狭いことから、弁箱9の構造体の高さが比較的低くても、図2から分かるように、筒型誘導装置11の誘導領域25の長さは比較的大きく取ることができる。この場合誘導領域25は、この誘導領域25の上部位置に戻り液チャンバ21、さらにその上方に給液チャンバ19およびこれら両チャンバに充てられるパッキング装置を持つ筒型誘導装置11の実際上ほぼ半分以上の長さに及んでいる。 、 In order to keep the height of the structure of the valve box 9 as low as possible, the liquid supply chamber 19 and the return liquid chamber 21 are brought closer to each other until the axial distance a between them becomes shorter than the stroke of the valve 6. In this example, which is the basis of FIGS. 1 and 2, this distance a corresponds to the diameter of the inlet line 17 plus a small packing width. Since the distance between the liquid supply chamber 19 and the return liquid chamber 21 is short and the width of the liquid supply chamber 19 and / or the return liquid chamber 21 in the axial direction is small, the height of the structure of the valve box 9 is compared. Even if it is extremely low, as can be seen from FIG. 2, the length of the guiding region 25 of the tubular guiding device 11 can be relatively large. In this case, the guiding region 25 is substantially more than half of the cylindrical guiding device 11 having the returning liquid chamber 21 at the upper position of the guiding region 25 and the liquid supply chamber 19 above and the packing devices for the two chambers. Spanning the length of

 給液チャンバ19および戻り液チャンバ21は、チャンバ相互間の、および給液チャンバ19の上部、戻り液チャンバ21の下部の確実なパッキングを保証する、弁軸線8にはめ込まれたパッキンリング26で両側が固定されている。両チャンバの軸線方向距離が短いので、両チャンバ間の領域では両チャンバ共通のパッキンリング26が1つあれば十分である。さらに図2に示すように、誘導領域25が長く、下方のパッキンリング26が排出路10から比較的離れた位置にあるため、このパッキンリングにかかる温度負荷は僅かである。連結管22は、筒型誘導装置11の外側周辺部を取り巻くパッキンリング27により上下方向が固定されている。 The supply chamber 19 and the return liquid chamber 21 are on both sides with a packing ring 26 fitted in the valve axis 8 ensuring a reliable packing between the chambers and of the upper part of the supply chamber 19 and the lower part of the return liquid chamber 21. Has been fixed. Since the axial distance between both chambers is short, one packing ring 26 common to both chambers is sufficient in the region between the two chambers. Further, as shown in FIG. 2, since the guiding region 25 is long and the lower packing ring 26 is located relatively far from the discharge path 10, the temperature load applied to this packing ring is small. The connecting pipe 22 is fixed in the vertical direction by a packing ring 27 surrounding the outer peripheral portion of the tubular guiding device 11.

 パッキンリング27によって形成されるパッキング空間への異物の侵入を防止するために、弁軸線8と誘導領域25の間の隙間をオイルシールすることができる。この場合、オイルへの温度負荷も比較的僅かである。弁軸線8周囲の隙間に対するこの種類のオイルシールは、図2の非明示的供給管から推察されるように、パッキング空間の上端領域でも可能である。 隙間 In order to prevent foreign matter from entering the packing space formed by the packing ring 27, a gap between the valve axis 8 and the guide region 25 can be oil-sealed. In this case, the temperature load on the oil is relatively small. This type of oil seal for the gap around the valve axis 8 is also possible in the upper end region of the packing space, as can be inferred from the implicit supply pipe in FIG.

 図4に基づく装置は、基本構造面では図1及び図2の基礎となる装置に一致している。したがって、同部分には同じ符号を使用している。 装置 The device according to FIG. 4 is basically identical in structure to the device according to FIGS. 1 and 2. Therefore, the same reference numerals are used for the same parts.

 図4の基礎になる例の場合、図1及び図2に基づく装置とは異なり、給液チャンバ19と戻り液チャンバ21の間の軸線方向距離a′は流入管路17の直径より小さい。それにより、図4から分かるように、弁6の下降運動開始時及び上昇運動終了時には、流入管路17は給液チャンバ19とも戻り液チャンバ21とも連通する状況が生れる。このようにして、弁6内通過冷媒の循環における衝撃的な開閉制御は防止される。 4 differs from the arrangement according to FIGS. 1 and 2 in that the axial distance a ′ between the supply chamber 19 and the return liquid chamber 21 is smaller than the diameter of the inlet line 17. As a result, as can be seen from FIG. 4, at the start of the downward movement of the valve 6 and at the end of the upward movement, a situation arises in which the inflow conduit 17 communicates with both the liquid supply chamber 19 and the return liquid chamber 21. In this manner, the impact opening / closing control in the circulation of the refrigerant passing through the valve 6 is prevented.

 両実施形態いずれの場合も給液チャンバ19及び戻り液チャンバ21は環状に形成されているので、流入管路17又は流出管路18は弁の回転位置に関係なく対応チャンバと連通するようになっている。このように、適切な回転装置による弁6の回転運動が弁6内通過冷媒の循環に影響を及ぼすことはない。 In both of the embodiments, the liquid supply chamber 19 and the return liquid chamber 21 are formed in an annular shape, so that the inflow line 17 or the outflow line 18 communicates with the corresponding chamber regardless of the rotational position of the valve. ing. In this way, the rotational movement of the valve 6 by the appropriate rotating device does not affect the circulation of the refrigerant passing through the valve 6.

 図示例では、給液チャンバ19及び戻り液チャンバ21は、弁箱9に収容されている筒型誘導装置11内に組み込まれている。しかし、給液チャンバ19及び戻り液チャンバ21は弁箱9の上に配置することも考えられよう。そのためには、例えば、弁箱9と弁操縦装置12の間の位置に、両チャンバを収容するケーシングブロックを設けることができよう。その場合、給液チャンバと戻り液チャンバの軸線方向の幅は、上記例における幅に一致させることが可能であろう。もちろん、このような場合では弁サイドの流入口および流出口もそれに応じてより高い位置に配置しなければならなくなるであろう。 In the illustrated example, the liquid supply chamber 19 and the return liquid chamber 21 are incorporated in the cylindrical guiding device 11 housed in the valve box 9. However, it is also conceivable that the supply chamber 19 and the return chamber 21 are arranged above the valve box 9. To this end, for example, a casing block containing both chambers could be provided at a position between the valve box 9 and the valve operating device 12. In that case, the axial width of the liquid supply chamber and the return liquid chamber could match the width in the above example. Of course, in such a case, the inlet and outlet on the valve side would also have to be arranged correspondingly higher.

 本発明は、自明の通り、描かれた実施形態に限定されるものではない。 The invention is not, of course, limited to the embodiments illustrated.

付属の排出弁を備える2サイクル大型ディーゼルエンジンのシリンダ上部領域における断面図である。FIG. 2 is a cross-sectional view of a two-cycle large diesel engine having an attached discharge valve in an upper region of a cylinder. 弁箱の上部領域を含む、図1の部分拡大断面図である。FIG. 2 is a partial enlarged cross-sectional view of FIG. 1 including an upper region of a valve box. 弁下部領域の断面図である。It is sectional drawing of a valve lower part area. 短時間間隔の液流を実現する流入口についての実施形態を図2に準じて描いた図である。FIG. 3 is a diagram illustrating an embodiment of an inlet for realizing a liquid flow at short time intervals according to FIG. 2.

符号の説明Explanation of reference numerals

 6 弁
 8 弁軸線
 9 弁箱
 11 筒型誘導装置
 14 隔壁
 15 順流分管
 16 逆流分管
 17 放射状流入口
 18 放射状流出口
 19 給液チャンバ
 21 戻り液チャンバ
 25 誘導領域
 26 環状パッキンリング

6 Valve 8 Valve axis 9 Valve box 11 Cylindrical guiding device 14 Partition wall 15 Forward branch 16 Reverse branch 17 Radial inlet 18 Radial outlet 19 Liquid supply chamber 21 Return liquid chamber 25 Induction area 26 Annular packing ring

Claims (16)

 軸線方向に往復行程運動を行い、好ましくは同時に回転もし、その中を冷媒液が通る少なくとも1つの弁(6)、特に2サイクル大型ディーゼルエンジン用排出弁を冷却する方法であって、弁(6)の各往復行程運動毎に冷媒の弁(6)内の通過が往復行程の途中で中断されることを特徴とする方法。 A method for cooling at least one valve (6), in particular an exhaust valve for a two-cycle large diesel engine, which performs a reciprocating stroke movement in the axial direction, preferably simultaneously rotating, through which a refrigerant liquid passes, comprising a valve (6). B) the refrigerant passage through the valve (6) is interrupted in the middle of the reciprocating stroke for each reciprocating stroke movement.  弁(6)の往復行程運動による冷媒の通過が、往復行程の途中で中断されることを特徴とする、請求項1に記載の方法。 Method according to claim 1, characterized in that the passage of the refrigerant by the reciprocating stroke movement of the valve (6) is interrupted during the reciprocating stroke.  弁(6)の閉鎖位置に対応する往復行程運動の出発位置で冷媒の弁(6)内通過が起こり、これが往復行程運動の経過中に中断されることを特徴とする、請求項1または請求項2に記載の方法。 2. The method according to claim 1, wherein the passage of the refrigerant through the valve (6) takes place at the starting position of the reciprocating stroke corresponding to the closing position of the valve (6), which is interrupted during the course of the reciprocating stroke. Item 3. The method according to Item 2.  対応する弁箱(9)内において、それ自体の軸線(8)で誘導され、また順流分管(15)及び逆流分管(16)を包含しかつ軸線方向に延びる、冷媒液の供給可能な冷却導管を有しており、順流分管(15)が放射状流入口(17)を通じて、逆流分管(16)が放射状流出口(18)を通じて、弁軸線(8)を取り巻くそれぞれ対応する給液チャンバ(19)又は戻り液チャンバ(21)と連結することができる、軸線方向の往復行程運動を行い、好ましくは同時に回転もし、その中を冷媒液が通される少なくとも1つの弁(6)、特に2サイクル大型ディーゼルエンジン用排出弁を冷却するための装置であって、流入口(17)と給液チャンバ(19)の連結及び/又は流出口(18)と戻り液チャンバ(21)の連結が、弁(6)によってなされる軸線方向の往復行程の途中で中断されることを特徴とする装置。 In a corresponding valve housing (9), a cooling liquid supply-suppliable cooling conduit guided at its own axis (8) and including an axial branch (15) and a countercurrent branch (16) and extending axially. A downstream feed pipe (15) through a radial inlet (17) and a reverse flow pipe (16) through a radial outlet (18) a corresponding feed chamber (19) surrounding the valve axis (8). Or at least one valve (6) through which a refrigerant liquid is passed, preferably rotating at the same time, which can be connected to a return liquid chamber (21), preferably also rotating at the same time, in particular a two-cycle large A device for cooling an exhaust valve for a diesel engine, wherein the connection between the inlet (17) and the supply chamber (19) and / or the connection between the outlet (18) and the return liquid chamber (21) comprises a valve ( 6) Thus apparatus characterized by being interrupted in the middle of a reciprocating stroke in the axial direction is made.  流入口(17)及び/又は流出口(18)が、弁(6)の往復行程運動により、給液チャンバ(19)又は戻り液チャンバ(21)に対して往復行程の途中で閉鎖されることを特徴とする、請求項4に記載の装置。 The inlet (17) and / or the outlet (18) are closed in the course of the reciprocating stroke with respect to the supply chamber (19) or the return liquid chamber (21) by the reciprocating stroke movement of the valve (6). Device according to claim 4, characterized in that:  給液チャンバ(19)及び/又は戻り液チャンバ(21)の軸線方向の幅が、それぞれ対応する流入口(17)又は流出口(18)の直径に少なくとも近似していることを特徴とする、請求項3に記載の装置。 Characterized in that the axial width of the supply chamber (19) and / or the return liquid chamber (21) is at least approximate to the diameter of the corresponding inlet (17) or outlet (18), respectively. An apparatus according to claim 3.  給液チャンバ(19)と戻り液チャンバ(21)の間の軸線方向距離が弁(6)の軸線方向運動行程よりも短いことを特徴とする、請求項3または請求項4に記載の装置。 Device according to claim 3 or 4, characterized in that the axial distance between the supply chamber (19) and the return liquid chamber (21) is shorter than the axial movement stroke of the valve (6).  チャンバの軸線方向の幅が対応する出入口の直径に、好ましくは給液チャンバ(19)の軸線方向の幅が対応する流入口(17)の直径に一致していることを特徴とする、請求項3から請求項5までのいずれか1項に記載の装置。 The axial width of the chamber corresponds to the diameter of the corresponding inlet and outlet, preferably the axial width of the liquid supply chamber (19) corresponds to the diameter of the corresponding inlet (17). Apparatus according to any one of claims 3 to 5.  チャンバ、好ましくは戻り液チャンバ(21)の軸線方向の幅が、弁(6)の行程に対応する出入口の直径を加えた幅に一致していることを特徴とする、請求項3から請求項6までのいずれか1項に記載の装置。 4. The method according to claim 3, wherein the axial width of the chamber, preferably the return liquid chamber, is equal to the width of the inlet and outlet corresponding to the stroke of the valve. The device according to any one of the preceding claims.  弁(6)が閉鎖位置にあるとき、給液チャンバ(19)が、軸線方向に関して流入口(17)の領域に配置されていることを特徴とする、請求項3から請求項7までのいずれか1項に記載の装置。 8. The method as claimed in claim 3, wherein the supply chamber is arranged axially in the region of the inlet when the valve is in the closed position. The apparatus according to claim 1.  給液チャンバ(19)と戻り液チャンバ(21)の間の軸線方向距離が流入口(17)の直径より小さいことを特徴とする、請求項3から請求項8までのいずれか1項に記載の装置。 9. A method according to claim 3, wherein the axial distance between the supply chamber (19) and the return chamber (21) is smaller than the diameter of the inlet (17). Equipment.  給液チャンバ(19)と戻り液チャンバ(21)の両側が環状パッキンリング(26)で固定されており、中央位置のパッキンリング(26)が給液チャンバ(19)にも戻り液チャンバ(21)にも充てられていることを特徴とする、請求項3から請求項9までのいずれか1項に記載の装置。 Both sides of the liquid supply chamber (19) and the return liquid chamber (21) are fixed by annular packing rings (26), and the packing ring (26) at the center position is also provided in the liquid supply chamber (19). 10. Apparatus according to any one of claims 3 to 9, characterized in that:  給液チャンバ(19)及び戻り液チャンバ(21)が冷媒循環装置に接続されていることを特徴とする、請求項3から請求項10までのいずれか1項に記載の装置。 11. The device according to claim 3, wherein the liquid supply chamber (19) and the return liquid chamber (21) are connected to a refrigerant circulation device.  軸線(8)の中央に冷却用中空部が設けられており、それが筒状の隔壁(14)により、順流分管(15)を形成する中央領域と、それを取り巻き逆流分管(16)を形成する領域とに区分されていることを特徴とする、請求項3から請求項11までのいずれか1項に記載の装置。 A cooling hollow portion is provided at the center of the axis (8), which is formed by a cylindrical partition wall (14) to form a central region forming a forward branch pipe (15) and a central area surrounding the central section forming a backward branch pipe (16). The apparatus according to any one of claims 3 to 11, characterized in that the apparatus is divided into a region and a region to be scanned.  給液チャンバ(19)及び戻り液チャンバ(21)が弁箱(9)の筒型誘導装置(11)内で誘導領域(25)に隣接する領域に配置されていることを特徴とする、請求項1から請求項14までのいずれか1項に記載の装置。 The liquid supply chamber (19) and the return liquid chamber (21) are arranged in the tubular guidance device (11) of the valve box (9) in a region adjacent to the guidance region (25). Apparatus according to any one of the preceding claims.  戻り液チャンバ(21)が誘導領域(25)に隣接していることを特徴とする、請求項13に記載の装置。

Device according to claim 13, characterized in that the return liquid chamber (21) is adjacent to the guiding area (25).

JP2003362077A 2002-10-26 2003-10-22 Method and apparatus for cooling a valve Expired - Fee Related JP4509529B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10249941A DE10249941B4 (en) 2002-10-26 2002-10-26 Method and device for cooling a valve

Publications (2)

Publication Number Publication Date
JP2004144090A true JP2004144090A (en) 2004-05-20
JP4509529B2 JP4509529B2 (en) 2010-07-21

Family

ID=32114870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362077A Expired - Fee Related JP4509529B2 (en) 2002-10-26 2003-10-22 Method and apparatus for cooling a valve

Country Status (4)

Country Link
JP (1) JP4509529B2 (en)
KR (1) KR100998510B1 (en)
CN (1) CN100385094C (en)
DE (1) DE10249941B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286043A (en) * 2007-05-16 2008-11-27 Sgg Kenkyusho:Kk Exhaust valve cooling device for four stroke engine
JP2015098795A (en) * 2013-11-18 2015-05-28 三菱重工業株式会社 Diesel engine for use as ship main engine and exhaust valve cooling method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510126B2 (en) * 2008-05-13 2010-07-21 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド Exhaust valves for large two-cycle diesel engines, processes for reducing NOx formation in such engines, and such engines
DE102010011070B4 (en) 2010-03-11 2012-04-05 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland valve assembly
CN106246320B (en) * 2016-08-25 2019-02-15 国网山西省电力公司大同供电公司 A kind of device and its control method reducing engine breathing door temperature
RU2740832C1 (en) * 2020-03-12 2021-01-21 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" Device for thermal compensation of valve mechanism of gas distribution system with positive effect on characteristics of internal combustion engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS443124Y1 (en) * 1965-08-30 1969-02-05
JPS51146644A (en) * 1975-05-31 1976-12-16 Maschf Augsburg Nuernberg Ag Cooling valve for internal combustion engine
JPS59121410U (en) * 1983-02-07 1984-08-16 三菱重工業株式会社 Cooling system for supply and exhaust valves
JPS60195316A (en) * 1984-03-16 1985-10-03 Michio Ozawa Exhaust valve cooling method
JPS60152009U (en) * 1984-03-21 1985-10-09 小沢 理夫 exhaust valve device
JPS6210211U (en) * 1985-07-05 1987-01-22
JPS633124B2 (en) * 1982-12-14 1988-01-22 Ishikawajima Harima Heavy Ind
JPH07293212A (en) * 1994-04-28 1995-11-07 Nittan Valve Kk Exhaust valve cooler
JP2000087708A (en) * 1998-09-09 2000-03-28 Man B & W Diesel As Valve for internal combustion engine and cooling method for the same
JP2003184550A (en) * 2001-12-01 2003-07-03 Man B & W Diesel As Reciprocating piston engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE670900C (en) * 1937-01-23 1939-01-27 Motoraktieselskapet Av 1935 Cooling device for a valve for internal combustion engines provided with cavities for the passage of a gaseous coolant
DE4242398A1 (en) * 1992-12-09 1994-06-16 Siegfried Pusch Cooling device for intake and/or discharge device - has coolant channels in cylinder head and valve guide, and ring chambers around valve shaft
DE19527285A1 (en) * 1995-07-26 1997-01-30 Ruediger Ufermann Circulatory cooling for engine valve - has valve containing compression inlet and compression channel
DE19742111A1 (en) * 1997-09-24 1999-03-25 Motoren Werke Mannheim Ag Supercharged diesel internal combustion engine
DE19934780A1 (en) * 1999-07-23 2001-01-25 Man Nutzfahrzeuge Ag Valve stem guide with forced lubrication

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS443124Y1 (en) * 1965-08-30 1969-02-05
JPS51146644A (en) * 1975-05-31 1976-12-16 Maschf Augsburg Nuernberg Ag Cooling valve for internal combustion engine
JPS633124B2 (en) * 1982-12-14 1988-01-22 Ishikawajima Harima Heavy Ind
JPS59121410U (en) * 1983-02-07 1984-08-16 三菱重工業株式会社 Cooling system for supply and exhaust valves
JPS60195316A (en) * 1984-03-16 1985-10-03 Michio Ozawa Exhaust valve cooling method
JPS60152009U (en) * 1984-03-21 1985-10-09 小沢 理夫 exhaust valve device
JPS6210211U (en) * 1985-07-05 1987-01-22
JPH07293212A (en) * 1994-04-28 1995-11-07 Nittan Valve Kk Exhaust valve cooler
JP2000087708A (en) * 1998-09-09 2000-03-28 Man B & W Diesel As Valve for internal combustion engine and cooling method for the same
JP2003184550A (en) * 2001-12-01 2003-07-03 Man B & W Diesel As Reciprocating piston engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286043A (en) * 2007-05-16 2008-11-27 Sgg Kenkyusho:Kk Exhaust valve cooling device for four stroke engine
JP4583407B2 (en) * 2007-05-16 2010-11-17 有限会社Sgg研究所 Exhaust valve cooling system for 4-stroke engine
JP2015098795A (en) * 2013-11-18 2015-05-28 三菱重工業株式会社 Diesel engine for use as ship main engine and exhaust valve cooling method

Also Published As

Publication number Publication date
DE10249941A1 (en) 2004-05-19
JP4509529B2 (en) 2010-07-21
CN100385094C (en) 2008-04-30
KR100998510B1 (en) 2010-12-07
CN1499047A (en) 2004-05-26
DE10249941B4 (en) 2005-11-10
KR20040036668A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
KR101146837B1 (en) Internal combustion engine
JP4105739B2 (en) Piston internal combustion engine
US10030618B2 (en) Exhaust gas recirculation valve, thawing system of exhaust gas recirculation valve, and engine
JP2004144090A (en) Valve cooling method and its device
KR101776756B1 (en) Engine having water jacket
CN109154192B (en) Free piston device
US799013A (en) Muffler.
KR101760648B1 (en) Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism
JP2008215333A (en) Exhaust heat recovery device for internal combustion engine
JP2007162547A (en) Liquid-cooled fuel injection valve
US5163410A (en) Fuel circuit with thermostat-controlled fuel preheating for preferably air-compressing injection-type internal combustion engines
JP2015055246A (en) Cylinder liner device of reciprocating piston type internal combustion engine, and cooling method
KR101779555B1 (en) three way valve for control temperature
JP2006009635A (en) Cooling system of engine for small planing boat
KR20190022246A (en) Cooling system for engine
JP2010133313A (en) Internal combustion engine
KR100340103B1 (en) Temperature control device of exhaust gas
US722787A (en) Gas-engine.
KR101273145B1 (en) Oil pressure type egr valve device
KR100303516B1 (en) Water-cooled type cooling system
KR100303514B1 (en) Apparatus for circulating coolant in vehicle
CN105715357A (en) Cylinder assembly and throttle element for a cylinder liner
JP2005194884A (en) Engine cooling device
KR100218886B1 (en) Structure of increasing cooling for cylinder head
JP2005188370A (en) Engine cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees