JP2004143229A - Latent heat-storing agent composition - Google Patents

Latent heat-storing agent composition Download PDF

Info

Publication number
JP2004143229A
JP2004143229A JP2002307612A JP2002307612A JP2004143229A JP 2004143229 A JP2004143229 A JP 2004143229A JP 2002307612 A JP2002307612 A JP 2002307612A JP 2002307612 A JP2002307612 A JP 2002307612A JP 2004143229 A JP2004143229 A JP 2004143229A
Authority
JP
Japan
Prior art keywords
weight
latent heat
higher alcohol
heat storage
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002307612A
Other languages
Japanese (ja)
Inventor
Toshiichi Nabeshima
鍋島 敏一
Yoshiori Sugiyama
杉山 佳織
Hitoshi Niike
新池 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2002307612A priority Critical patent/JP2004143229A/en
Publication of JP2004143229A publication Critical patent/JP2004143229A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a latent heat-storing agent composition which is a heat-transporting medium capable of retaining stability for a long period. <P>SOLUTION: This latent heat-storing agent composition comprises 100 pts. wt. of a 12 to 20C normal paraffin, 50 to 200 pts. wt. of water, and 0.1 to 20 pts. wt. of a higher alcohol-based nonionic surfactant having an average HLB of 8 to 12 and represented by general formula (1) : R-O-(PO)m-(EO)n-H (1) [R is a 10 to 22C straight chain or branched alkyl or alkenyl; PO is propylene oxide; EO is ethylene oxide; (m) is the average addition molar number within 0≤(m)≤5; (n) is the average addition molar number within 0<(n)≤20; -(PO)m-(EO)n- may be either of block and random; either of PO and EO may be bonded to R-O-]. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ノルマルパラフィンの相変化に伴って発生する融解潜熱を利用する潜熱蓄熱剤組成物に関する。さらに詳しくは、特定の界面活性剤を用い、ノルマルパラフィンと水を水中油滴型エマルジョン化した冷熱搬送媒体にて蓄熱を行う、空調システムに好適に用いられる潜熱蓄熱剤組成物に関するものである。
【0002】
【従来の技術】
近年、都市のヒートアイランド現象により、冷房、冷凍需要が増大し、一方、OA機器の普及に伴い電力需要が増加しており、昼夜間の電力需給格差の解消策として、夜間電力を利用して冷房用の冷熱を蓄積する蓄熱剤の開発が盛んになってきている。
【0003】
従来より冷房空調などの冷熱搬送媒体としては、取扱いの容易さから低温水や氷スラリーの顕熱が利用されてきたが、更に効率の良い伝熱システムが要望されている。
【0004】
一般に、物質の相変化に伴う潜熱を利用して蓄熱を行う方法は、相変化を伴わない顕熱のみを利用した方法に比べ、融点を含む狭い温度範囲に大量の熱エネルギーを高密度に貯蔵できるため、蓄熱剤容量の縮小化が可能であり、蓄熱量が大きい割には大きな温度差が生じないため、熱損失を少量に抑えられるなどの利点がある。
【0005】
このような潜熱蓄熱剤として、パラフィンやワックスなどの炭化水素化合物や、塩化ナトリウム、塩化アンモニウム、塩化カリウム、塩化カルシウム、炭酸水素カリウム、炭酸ナトリウム、酢酸ナトリウム、硫酸ナトリウム、リン酸水素ナトリウム、チオ硫酸ナトリウム、硝酸ニッケルなどの多量の結晶水を含む無機物などの相変化(融解、凝固)に伴う、吸熱、発熱現象を利用した蓄熱剤が、現在、多方面で広く用いられている。
【0006】
但し、冷房用として潜熱蓄熱剤の保冷対象温度を考えた場合、適度な皮膚感触を実感する温度としては約20℃以下が必要と判断され、また、生鮮食料品等の鮮度維持及び凍結防止からすると2〜15℃を保冷対象温度とすることが最も効果的であると判断される。
【0007】
この場合、炭化水素化合物としては、ノルマルトリデカン、ノルマルテトラデカン、ノルマルペンタデカン、ノルマルヘキサデカンなどの、ノルマルパラフィンが単独で2〜20℃付近に融点を有するが、2種以上の炭化水素化合物を配合して融点を調整することも有効である。上記無機物などの潜熱蓄熱剤では、2〜20℃域に融点を有するものがないため、本用途では実用的でない。
【0008】
上記炭化水素化合物などの潜熱蓄熱剤では、熱交換率を高めるため、蓄熱剤を微小カプセルに封入し、熱伝導性の良い液体中に入れて用いる方法(例えば、特許文献1,2参照)や、乳化剤を用い、炭化水素化合物蓄熱剤と水のエマルジョンを調製して使用する方法(例えば、特許文献3参照)が提案されている。このようにすると、炭化水素化合物蓄熱剤の固化時においても、熱搬送媒体となる蓄熱剤分散液の流動性を保持させて、蓄熱剤の潜熱を負荷側に効率よく供給することができる。
【0009】
【特許文献1】
特開昭63−217196号公報
【0010】
【特許文献2】
特開平5−163486号公報
【0011】
【特許文献3】
特開平6−9950号公報
【0012】
【発明が解決しようとする課題】
しかしながら、上記のように炭化水素化合物をマイクロカプセル化する方法は、製造工程が複雑でコストの大幅な増大を免れない。また、マイクロカプセルを構成する材料としてメラミン重合体やアクリル重合体などの有機化合物が用いられるために、良好な熱伝導が行われないという問題が生じる。
【0013】
一方、エマルジョン化する方法は、炭化水素化合物の分散相と水の連続相が直接接触しているため熱伝導効率がよいものの、長期間の使用において分散相が凝集し、相分離を起こすという問題がある。
【0014】
本発明はこのような従来の問題点に着目してなされたものであって、特定のノルマルパラフィンと界面活性剤を用いることにより、2〜20℃付近に融点を有し、かつエマルジョンの長期安定性が保たれる熱搬送媒体となる、潜熱蓄熱剤組成物を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の潜熱蓄熱剤組成物は、上記の課題を解決するために、炭素数12〜20のノルマルパラフィン100重量部に対し、水50〜200重量部、及び下記一般式(1)で表され、平均HLBが8〜12の高級アルコール系非イオン性界面活性剤0.1〜20重量部が配合されてなるものとする。
【0016】
R−O−(PO)m−(EO)n−H   (1)
(式中、Rは炭素数10〜22の直鎖または分岐のアルキル基またはアルケニル基を示し、POはプロピレンオキサイド、EOはエチレンオキサイドを示し、m、nは平均付加モル数であって、mは0≦m≦5の範囲の数であり、nは0<n≦20の範囲の数である。−(PO)m−(EO)n−は、ブロック及びランダムのいずれでもよく、POとEOのいずれがR−O−に結合していてもよい。)上記において、高級アルコール系非イオン性界面活性剤としては、一般式(1)のRが炭素数16〜22の直鎖または分岐のアルキル基であり、mは0であり、nは3≦n≦15の範囲の数であり、平均HLBが9〜11のものが好適に用いられる(請求項2)。
【0017】
本発明の潜熱蓄熱剤組成物には、炭素数10〜20の高級アルコールをさらに配合することができ、その場合、上記高級アルコール系非イオン性界面活性剤とこの高級アルコールとの配合比率が重量比で99/1〜50/50であり、これら高級アルコール系非イオン性界面活性剤と高級アルコールのトータルの配合量が上記ノルマルパラフィン100重量部に対して0.1〜20重量部であることが好ましい(請求項3)。
【0018】
また、本発明の潜熱蓄熱剤組成物には、ソルビタン脂肪酸エステルをさらに配合することもでき、その場合、上記高級アルコール系非イオン性界面活性剤とこのソルビタン脂肪酸エステルとの配合比率が重量比で99/1〜50/50であり、これら高級アルコール系非イオン性界面活性剤とソルビタン脂肪酸エステルのトータルの配合量が上記ノルマルパラフィン100重量部に対して0.1〜20重量部であることが好ましい(請求項4)。
【0019】
本発明の潜熱蓄熱剤組成物は、エマルジョン化して、空調システム用の冷熱搬送媒体に用いることができる(請求項5)。
【0020】
【発明の実施の形態】
本発明に用いられる炭素数12〜20のノルマルパラフィンとは、ノルマルドデカン、ノルマルトリデカン、ノルマルテトラデカン、ノルマルペンタデカン、ノルマルヘキサデカン、ノルマルヘプタデカン、ノルマルオクタデカン、ノルマルノナデカン、ノルマルエイコサンである。この中で、2〜20℃域で融点を有するものとしては、ノルマルトリデカン、ノルマルテトラデカン、ノルマルペンタデカン、ノルマルヘキサデカンが挙げられる。これらのノルマルパラフィンは、単独で使用してもよいが、2種以上併用してもよく、2種以上併用することにより容易に融点の調整ができる。従って、2〜20℃域以外に融点を有するノルマルパラフィンも他と組み合わせることによって使用可能である。また、一般的に、エマルジョン化したノルマルパラフィン系潜熱蓄熱剤組成物では過冷却現象が生じるが、これを防止するためには、核発生剤として相変化温度よりも高い融点を有するノルマルパラフィンを併用することが有効である。
【0021】
本発明で用いられる平均HLBが8〜12の高級アルコール系非イオン性界面活性剤は、炭素数10〜22の高級アルコールに、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加したものである。本発明では、特にエチレンオキサイドの平均付加モル数nが0<n≦20の範囲のものを使用し、好ましくは、3≦n≦15の範囲のものを使用する。nが20を超えると親水性が増し、ノルマルパラフィンへの溶解性が低下する。また、プロピレンオキサイドの平均付加モル数mは0≦m≦5の範囲が好ましく、mが5を超えても乳化性の低下は少ないが、経済的に不利である。非イオン性界面活性剤が特定の平均HLBを有する場合には、mが0でもよい。
【0022】
また、一般式(1)のRは、炭素数10〜22の直鎖または分岐のアルキル基またはアルケニル基であるが、好ましくは、炭素数16〜22の直鎖または分岐のアルキル基である。Rの炭素数が10より小さい場合や、22より大きい場合は、上記炭素数10〜20のノルマルパラフィンの乳化が困難であり、エマルジョンの乳化安定性がない。また、Rの炭素数が16より小さい場合は、エマルジョンの凝固点が降下するので、融点の高いノルマルパラフィンを使用したり、Rの炭素数の高い活性剤と併用するなどの工夫が必要である。
【0023】
高級アルコール系非イオン性界面活性剤のHLBは、アルキレンオキサイドの付加モル数と一般式(1)のRの炭素数で決定されるが、好ましくはHLB8〜12の範囲であり、より好ましくはHLB9〜11の範囲である。HLBが8より低い場合は、エマルジョンの長期安定性が悪くなり、HLBが12より高い場合は、親水性が増し、ノルマルパラフィンへの溶解性が低下する。なお、2種類以上の高級アルコール系非イオン性界面活性剤を用い、平均HLBを8〜12に調整し、使用することも可能である。
【0024】
本発明の潜熱蓄熱剤組成物は、上記ノルマルパラフィン100重量部に対し、水50〜200重量部、及び上記界面活性剤0.1〜20重量部を配合することにより構成される。水が50重量部より少ない場合は、ノルマルパラフィンの凝固点以下で流動性がなくなり、冷熱搬送媒体として空調システムに供給することができない。また、水が200重量部より多い場合は、蓄熱量が小さくなり、蓄熱効率が悪くなる。界面活性剤は数種類を併用してもよいが、トータル配合量で0.1重量部よりも少ない場合は、安定なエマルジョンが得られない。一方、20重量部より多い場合は、凝固点や蓄熱効率に支障をきたす場合があり、経済的にも不利である。
【0025】
本発明においては、炭素数10〜20の高級アルコール及び/又はソルビタン脂肪酸エステルをさらに配合することにより、蓄熱剤組成物の乳化安定性をさらに向上させることができる。
【0026】
炭素数10〜20の高級アルコールの例としては、動物性油脂やロウからつくられる天然アルコール類である、デカノール、ウンデカン−2−オール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、14−メチルヘキサデカン−1−オール、ステアリルアルコール、16−メチルオクタデカノール、イコサノールなどの飽和高級アルコールや、ドデセノール、フィセテリルアルコール、ゾーマリルアルコール、オレイルアルコール、ガドレイルアルコール、11−イコセノールなどの不飽和高級アルコールや、石油からつくられる合成アルコール類であるイソステアリルアルコール、イソペンタデカノール、セカンダリーラウリルアルコール等の分岐型の第一級、第二級アルコールが挙げられる。
【0027】
炭素数10〜20の高級アルコールの好ましい配合量は、上記高級アルコール系非イオン性界面活性剤とこの高級アルコールとの使用比率が99/1〜50/50(重量比)の範囲内で、両者のトータル配合量としてノルマルパラフィン100重量部に対して0.1〜20重量部の範囲である。この併用比率外では、乳化性向上効果はほとんど得られず、高級アルコール系非イオン性界面活性剤単独使用の場合と同等か、或いはそれ以下となる。また、トータル配合量が0.1重量部よりも少ない場合は、安定なエマルジョンが得られない。一方、20重量部より多い場合は、凝固点や蓄熱効率に支障をきたす場合があり、経済的にも不利である。
【0028】
ソルビタン脂肪酸エステルは、ソルビトールおよび/またはソルビタンと脂肪酸のエステル化反応により得られ、原料のソルビトールとしては、グルコースの高圧水素還元によって得られる市販のものが使用できる。また、ソルビトールの脱水還化によって得られるソルビタンを使用してもよい。エステル化反応用の原料脂肪酸としては、炭素数6〜22の飽和または不飽和の脂肪酸、或いは、これらを主成分とする混合脂肪酸、或いは、炭素数8〜36の分岐脂肪酸を用いることができる。具体的には、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ヤシ脂肪酸、牛脂脂肪酸などが挙げられる。
【0029】
ソルビタン脂肪酸エステルの好ましい配合量は、高級アルコール系非イオン性界面活性剤とソルビタン脂肪酸エステルとの使用比率が99/1〜50/50(重量比)の範囲内で、両者のトータル配合量としてノルマルパラフィン100重量部に対して0.1〜20重量部である。この併用比率外では、乳化性向上効果はほとんど得られず、高級アルコール系非イオン性界面活性剤の単独使用の場合と同等か、或いはそれ以下となる。また、トータル配合量が0.1重量部よりも少ない場合は、安定なエマルジョンが得られない。一方、20重量部より多い場合は、凝固点や蓄熱効率に支障をきたす場合があり、経済的にも不利である。
【0030】
本発明の潜熱蓄熱剤組成物には、さらに、必要に応じて各種の添加補助剤を配合することもできる。そのような添加補助剤の例としては、アニオン性界面活性剤(例えばアルキルスルホン酸塩、アルキル硫酸塩、アシル化アミノ酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、高級脂肪酸エステルスルホン酸塩、脂肪酸石鹸、α−スルホン化脂肪酸塩、イセチオン酸脂肪酸エステル塩、ジ−Na−モノポリオキシエチレンアルキルエーテルスルホサクシネート、アシロイルメチルタウレート、N−メチル−N−アシルアミドプロピオン酸塩、モノアルキルビフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩−ホルマリン縮合物、脂肪酸モノエタノールアミド硫酸塩、アシルグルタミン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、フッ素系アニオン性界面活性剤、スルホコハク酸モノエステル塩、スルホコハク酸ジアルキル塩、アルキルリン酸エステルまたはその塩、ポリオキシエチレンアルキルエーテルリン酸エステルまたはその塩など)、水溶性高分子(例えばポリビニルアルコール、ポリメチルビニルエーテル、ポリアクリル酸塩、ポリメタクリル酸塩、アクリル酸−メタクリル酸共重合体、ポリスチレンスルホン酸塩、アルキルビニルエーテル−マレイン酸共重合体、酢酸ビニル−マレイン酸共重合体、スチレン−無水マレイン酸共重合体、ジイソブチレン−マレイン酸共重合体、アルキルビニルエーテル−マレイン酸ジエチル共重合体、マレイン化ポリブテン、マレイン化ポリブタジエン、ポリアクリルアミド、ポリエチレンイミン、ポリエチレングリコール、ポリエチレングリコール−ポリプロピレングリコール共重合体、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、可溶性デンプン、カルボキシメチルデンプン、ジアルデヒドデンプン、コーンスターチ、アルギン酸ナトリウム、デキストラン、ゼラチン、カゼイン、コラーゲン、キサンタンガム、アルギン酸、キトサンなど)、防錆剤(例えばノナン酸、p−t−ブチル安息香酸、ドデカン二酸などカルボン酸系化合物およびその塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン系化合物)、非鉄金属用防食剤(例えばベンゾトリアゾール系化合物など)、防腐剤、防黴剤(例えば有機臭素化合物、有機ロダン系化合物、有機窒素系化合物、有機硫黄系化合物、チアゾール系化合物、イソチアゾール系化合物、有機ヨウ素系化合物、第4級アンモニウム塩系化合物、フェノール系化合物、ベンゾイミダゾール系化合物、デヒドロ酢酸およびその塩など)等が挙げられる。
【0031】
【実施例】
次に、本発明の実施例および比較例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
【0032】
[実施例1〜22、比較例1〜12]
ノルマルパラフィン、界面活性剤、高級アルコール、ソルビタン脂肪酸エステル及び水を表1〜3に記載した割合で配合し、下記の操作によりエマルジョンを得て、得られたエマルジョンの乳化安定性を調べた。結果を表1〜3に示す。
【0033】
(エマルジョンの調製)
ノルマルパラフィン100gに対し、表1〜3に記載した割合の界面活性剤、高級アルコール、ソルビタン脂肪酸エステルを配合し、室温(25℃)にてホモミキサー(ディスパー羽根、回転速度1000rpm)で攪拌しながら、表に記載した割合の水を配合し、エマルジョンを得た。
【0034】
(乳化安定性)
上記により得られたエマルジョンを室温(25℃)で静置し、乳化状態を観察し、以下のような基準で評価した。
【0035】
◎・・3ヶ月以上安定な乳化状態を持続した
○・・安定な乳化状態が1〜3ヶ月間持続した
△・・1ヶ月以内で油層と水層とに分離した
×・・乳化できなかった
【0036】
【表1】

Figure 2004143229
【0037】
【表2】
Figure 2004143229
【0038】
【表3】
Figure 2004143229
【0039】
上記により得られたエマルジョンのうち、ノルマルパラフィンの凝固点を6℃に調整した実施例12〜22及び比較例7〜12のエマルジョンについて、以下の通り、凝固点・潜熱量、及び凝固−融解の繰り返し試験における乳化安定性を調べた。
【0040】
(凝固点・潜熱量)
示差走査熱量計(DSC)を用いて凝固点と潜熱量を測定した。
【0041】
(凝固−融解の繰り返し試験における乳化安定性)
5℃で12時間静置後、続いて15℃で12時間静置した。この操作を毎日繰り返し、ノルマルパラフィンが凝固・融解する中での乳化安定性を確認し、均一な乳化状態を保持した日数で表現した。日数が長い程、乳化安定性に優れることを示す。
【0042】
【表4】
Figure 2004143229
【0043】
表1〜3から明らかなように、各実施例の潜熱蓄熱剤組成物から得られるエマルジョンは、比較例のものと比較して乳化安定性が顕著に優れる。
【0044】
また、表4に示されたように、実施例12〜22の潜熱蓄熱剤組成物は6℃付近で凝固し、潜熱として80J/g以上の蓄熱量が得られる。水の場合は、その温度帯で蓄熱量が20J/gであり、実施例のものが大量の熱エネルギーを高密度に貯蔵できることが分かる。これに対し、比較例9,11,12の組成物の場合、凝固点降下により6℃付近の温度帯では潜熱が得られないため、蓄熱剤として使用できない。比較例7,8,10のものは、凝固点が6℃付近であるが、潜熱量は実施例のものより低く、かつ、乳化安定性がないため使用できない。
【0045】
さらに、表4に示されたように、比較例7〜12の組成物は凝固・融解を繰り返すとすぐに乳化が破壊されたのに対し、実施例12〜22のものは顕著に乳化安定性が優れている。
【0046】
【発明の効果】
本発明の潜熱蓄熱剤組成物は、特定のノルマルパラフィンと界面活性剤を用いることで、2〜20℃付近に凝固点及び融点を持ち、熱量の大きい融解潜熱が得られ、かつ長期安定性に優れた水中油滴型エマルジョンとなる。従って、ノルマルパラフィンの凝固点以下でも搬送が可能な、熱効率に優れた冷熱搬送媒体として、冷房用空調システム等の用途に好適に利用できる。
【0047】
請求項2〜4のものは、乳化安定性に特に優れている。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a latent heat storage agent composition that utilizes latent heat of fusion generated due to a phase change of normal paraffin. More specifically, the present invention relates to a latent heat storage agent composition suitable for use in an air conditioning system, in which a specific surfactant is used to store heat in a cold transfer medium in which normal paraffin and water are made into an oil-in-water emulsion.
[0002]
[Prior art]
In recent years, the demand for cooling and refrigeration has increased due to the urban heat island phenomenon, while the demand for power has increased along with the spread of OA equipment. The development of heat storage agents that accumulate cold heat for use has become active.
[0003]
Conventionally, sensible heat of low-temperature water or ice slurry has been used as a cold transfer medium for cooling air conditioning or the like because of easy handling, but a more efficient heat transfer system is demanded.
[0004]
Generally, the method of storing heat using latent heat due to the phase change of a substance stores a large amount of heat energy in a narrow temperature range including the melting point at a higher density than the method using only sensible heat without phase change. Therefore, the capacity of the heat storage agent can be reduced, and there is an advantage that a large temperature difference does not occur for a large amount of heat storage, so that heat loss can be suppressed to a small amount.
[0005]
Examples of such latent heat storage agents include hydrocarbon compounds such as paraffin and wax, sodium chloride, ammonium chloride, potassium chloride, calcium chloride, potassium hydrogen carbonate, sodium carbonate, sodium acetate, sodium sulfate, sodium hydrogen phosphate, and thiosulfate. At present, heat storage agents utilizing heat absorption and heat generation associated with a phase change (melting and solidification) of inorganic substances including a large amount of water of crystallization such as sodium and nickel nitrate are widely used in various fields.
[0006]
However, when considering the temperature of the cold storage of the latent heat storage agent for cooling, it is determined that the temperature at which a proper skin feel is required is about 20 ° C. or less, and in order to maintain the freshness of fresh food products and prevent freezing. Then, it is determined that setting the temperature to be kept cool at 2 to 15 ° C. is most effective.
[0007]
In this case, as the hydrocarbon compound, normal paraffin alone such as normal tridecane, normal tetradecane, normal pentadecane, and normal hexadecane has a melting point around 2 to 20 ° C., but two or more hydrocarbon compounds are compounded. It is also effective to adjust the melting point. Among the latent heat storage agents such as the above-mentioned inorganic substances, there is no one having a melting point in the range of 2 to 20 ° C., so that it is not practical for this use.
[0008]
In the case of the latent heat storage agent such as the above-mentioned hydrocarbon compound, in order to increase the heat exchange rate, a method of encapsulating the heat storage agent in a microcapsule and using it in a liquid having good heat conductivity (for example, see Patent Documents 1 and 2) A method has been proposed in which an emulsion of a hydrocarbon compound heat storage agent and water is prepared and used using an emulsifier (for example, see Patent Document 3). By doing so, even when the hydrocarbon compound heat storage agent is solidified, the fluidity of the heat storage agent dispersion liquid serving as the heat transfer medium can be maintained, and the latent heat of the heat storage agent can be efficiently supplied to the load side.
[0009]
[Patent Document 1]
JP-A-63-217196 [0010]
[Patent Document 2]
JP-A-5-163486
[Patent Document 3]
JP-A-6-9950
[Problems to be solved by the invention]
However, the method of microencapsulating a hydrocarbon compound as described above requires a complicated manufacturing process and inevitably increases the cost. In addition, since an organic compound such as a melamine polymer or an acrylic polymer is used as a material constituting the microcapsules, there is a problem that good heat conduction is not performed.
[0013]
On the other hand, the emulsification method has a high heat transfer efficiency because the dispersed phase of the hydrocarbon compound and the continuous phase of water are in direct contact with each other, but the dispersed phase aggregates during long-term use and causes phase separation. There is.
[0014]
The present invention has been made in view of such conventional problems, and has a melting point of about 2 to 20 ° C. by using a specific normal paraffin and a surfactant, and has a long-term stability of the emulsion. It is an object of the present invention to provide a latent heat storage agent composition that serves as a heat transfer medium that maintains its properties.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the latent heat storage agent composition of the present invention is represented by the following general formula (1) and 50 to 200 parts by weight of water with respect to 100 parts by weight of normal paraffin having 12 to 20 carbon atoms. And 0.1 to 20 parts by weight of a higher alcohol nonionic surfactant having an average HLB of 8 to 12.
[0016]
RO- (PO) m- (EO) n-H (1)
(Wherein, R represents a linear or branched alkyl group or alkenyl group having 10 to 22 carbon atoms, PO represents propylene oxide, EO represents ethylene oxide, m and n are average addition moles, Is a number in the range of 0 ≦ m ≦ 5, and n is a number in the range of 0 <n ≦ 20 .- (PO) m- (EO) n- may be any of block and random, Any of EO may be bonded to R-O-.) In the above, as the higher alcohol-based nonionic surfactant, R in the general formula (1) is a straight-chain or branched chain having 16 to 22 carbon atoms. Wherein m is 0, n is a number in the range of 3 ≦ n ≦ 15, and those having an average HLB of 9 to 11 are preferably used (Claim 2).
[0017]
The latent heat storage agent composition of the present invention may further contain a higher alcohol having 10 to 20 carbon atoms. In this case, the mixing ratio of the higher alcohol-based nonionic surfactant to the higher alcohol is determined by weight. In a ratio of 99/1 to 50/50, and the total blending amount of the higher alcohol-based nonionic surfactant and the higher alcohol is 0.1 to 20 parts by weight based on 100 parts by weight of the normal paraffin. Is preferable (claim 3).
[0018]
In addition, the latent heat storage agent composition of the present invention may further contain a sorbitan fatty acid ester, in which case, the mixing ratio of the higher alcohol nonionic surfactant and the sorbitan fatty acid ester is in a weight ratio. 99/1 to 50/50, and the total amount of the higher alcohol-based nonionic surfactant and the sorbitan fatty acid ester is 0.1 to 20 parts by weight based on 100 parts by weight of the normal paraffin. Preferred (claim 4).
[0019]
The latent heat storage agent composition of the present invention can be emulsified and used as a cold transport medium for an air conditioning system (Claim 5).
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The normal paraffin having 12 to 20 carbon atoms used in the present invention is normal dodecane, normal tridecane, normal tetradecane, normal pentadecane, normal hexadecane, normal heptadecane, normal octadecane, normal nonadecane, and normal eicosane. Among these, normal tridecane, normal tetradecane, normal pentadecane, and normal hexadecane are mentioned as those having a melting point in the range of 2 to 20 ° C. These normal paraffins may be used alone, or two or more kinds may be used in combination, and the melting point can be easily adjusted by using two or more kinds in combination. Therefore, normal paraffin having a melting point other than the range of 2 to 20 ° C. can be used in combination with other components. In general, a supercooling phenomenon occurs in an emulsified normal paraffin-based latent heat storage agent composition, but in order to prevent this, normal paraffin having a melting point higher than the phase change temperature is used in combination as a nucleating agent. It is effective to do.
[0021]
The higher alcohol nonionic surfactant having an average HLB of 8 to 12 used in the present invention is obtained by adding an alkylene oxide such as ethylene oxide or propylene oxide to a higher alcohol having 10 to 22 carbon atoms. In the present invention, those having an average addition mole number n of ethylene oxide in the range of 0 <n ≦ 20 are used, and preferably those having the range of 3 ≦ n ≦ 15 are used. When n exceeds 20, hydrophilicity increases and solubility in normal paraffin decreases. The average number of moles of propylene oxide added, m, is preferably in the range of 0 ≦ m ≦ 5. Even if m exceeds 5, the emulsifiability is not significantly reduced, but is economically disadvantageous. M may be 0 if the nonionic surfactant has a particular average HLB.
[0022]
R in the general formula (1) is a linear or branched alkyl group or alkenyl group having 10 to 22 carbon atoms, preferably a linear or branched alkyl group having 16 to 22 carbon atoms. When the carbon number of R is smaller than 10 or larger than 22, it is difficult to emulsify the normal paraffin having 10 to 20 carbon atoms, and there is no emulsion stability of the emulsion. When the carbon number of R is less than 16, the freezing point of the emulsion is lowered. Therefore, it is necessary to use a normal paraffin having a high melting point or to use a combination with an activator having a high carbon number of R.
[0023]
The HLB of the higher alcohol nonionic surfactant is determined by the number of moles of the alkylene oxide added and the number of carbon atoms of R in the general formula (1), and is preferably in the range of HLB 8 to 12, more preferably HLB 9 ~ 11. When the HLB is lower than 8, the long-term stability of the emulsion becomes poor, and when the HLB is higher than 12, the hydrophilicity increases and the solubility in normal paraffin decreases. It is also possible to use two or more kinds of higher alcohol-based nonionic surfactants and adjust the average HLB to 8 to 12 before use.
[0024]
The latent heat storage agent composition of the present invention is constituted by mixing 50 to 200 parts by weight of water and 0.1 to 20 parts by weight of the surfactant with respect to 100 parts by weight of the normal paraffin. When the amount of water is less than 50 parts by weight, fluidity is lost below the freezing point of normal paraffin, and it cannot be supplied to the air conditioning system as a cold carrier medium. If the amount of water is more than 200 parts by weight, the amount of heat storage becomes small, and the heat storage efficiency becomes poor. Several kinds of surfactants may be used in combination, but if the total amount is less than 0.1 part by weight, a stable emulsion cannot be obtained. On the other hand, if the amount is more than 20 parts by weight, the solidification point and the heat storage efficiency may be affected, which is economically disadvantageous.
[0025]
In the present invention, the emulsification stability of the heat storage agent composition can be further improved by further blending a higher alcohol having 10 to 20 carbon atoms and / or a sorbitan fatty acid ester.
[0026]
Examples of higher alcohols having 10 to 20 carbon atoms include decanol, undecane-2-ol, lauryl alcohol, myristyl alcohol, cetyl alcohol, and 14-methylhexadecane-1, natural alcohols made from animal fats and oils and waxes. -All, stearyl alcohol, 16-methyloctadecanol, saturated higher alcohols such as icosanol, and unsaturated higher alcohols such as dodecenol, fiseteryl alcohol, somalyl alcohol, oleyl alcohol, gadreyl alcohol, 11-icosenol, Examples include branched primary and secondary alcohols such as isostearyl alcohol, isopentadecanol, and secondary lauryl alcohol, which are synthetic alcohols produced from petroleum.
[0027]
The preferred blending amount of the higher alcohol having 10 to 20 carbon atoms is such that the use ratio of the higher alcohol-based nonionic surfactant to the higher alcohol is within the range of 99/1 to 50/50 (weight ratio). Is in the range of 0.1 to 20 parts by weight based on 100 parts by weight of normal paraffin. Outside this combination ratio, the effect of improving the emulsifying property is hardly obtained, and is equal to or lower than the case where the higher alcohol-based nonionic surfactant is used alone. If the total amount is less than 0.1 part by weight, a stable emulsion cannot be obtained. On the other hand, if the amount is more than 20 parts by weight, the solidification point and the heat storage efficiency may be affected, which is economically disadvantageous.
[0028]
The sorbitan fatty acid ester is obtained by an esterification reaction between sorbitol and / or sorbitan and a fatty acid, and a commercially available sorbitol obtained by high-pressure hydrogen reduction of glucose can be used as a raw material. Also, sorbitan obtained by dehydration and reduction of sorbitol may be used. As the raw fatty acid for the esterification reaction, a saturated or unsaturated fatty acid having 6 to 22 carbon atoms, a mixed fatty acid containing these as a main component, or a branched fatty acid having 8 to 36 carbon atoms can be used. Specific examples include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, coconut fatty acid, and tallow fatty acid.
[0029]
The preferred blending amount of the sorbitan fatty acid ester is such that the usage ratio of the higher alcohol-based nonionic surfactant to the sorbitan fatty acid ester is within the range of 99/1 to 50/50 (weight ratio), and the total blending amount of both is normal. 0.1 to 20 parts by weight based on 100 parts by weight of paraffin. Outside this combination ratio, the effect of improving emulsifiability is scarcely obtained, and is equal to or lower than the case where the higher alcohol-based nonionic surfactant is used alone. If the total amount is less than 0.1 part by weight, a stable emulsion cannot be obtained. On the other hand, if the amount is more than 20 parts by weight, the solidification point and the heat storage efficiency may be affected, which is economically disadvantageous.
[0030]
The latent heat storage agent composition of the present invention may further contain various additives as required. Examples of such additives include anionic surfactants (eg, alkyl sulfonates, alkyl sulfates, acylated amino acid salts, polyoxyethylene alkyl ether sulfates, alkyl benzene sulfonates, α-olefin sulfonic acids) Salt, higher fatty acid ester sulfonate, fatty acid soap, α-sulfonated fatty acid salt, isethionic acid fatty acid ester salt, di-Na-monopolyoxyethylene alkyl ether sulfosuccinate, acyloylmethyl taurate, N-methyl-N- Acylamide propionate, monoalkyl biphenyl ether disulfonate, alkyl naphthalene sulfonate, naphthalene sulfonate-formalin condensate, fatty acid monoethanolamide sulfate, acyl glutamate, polyoxyethylene alkyl ether Carboxylate, fluorinated anionic surfactant, sulfosuccinic acid monoester salt, dialkyl sulfosuccinate, alkyl phosphate or salt thereof, polyoxyethylene alkyl ether phosphate or salt thereof, water-soluble polymer ( For example, polyvinyl alcohol, polymethyl vinyl ether, polyacrylate, polymethacrylate, acrylic acid-methacrylic acid copolymer, polystyrene sulfonate, alkyl vinyl ether-maleic acid copolymer, vinyl acetate-maleic acid copolymer, Styrene-maleic anhydride copolymer, diisobutylene-maleic acid copolymer, alkyl vinyl ether-diethyl maleate copolymer, maleated polybutene, maleated polybutadiene, polyacrylamide, polyethyleneimine, polyethylene Glycol, polyethylene glycol-polypropylene glycol copolymer, polyvinyl pyrrolidone, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, soluble starch, carboxymethyl starch, dialdehyde starch, corn starch, sodium alginate, dextran, gelatin, casein, collagen, xanthan gum , Alginic acid, chitosan, etc.), rust inhibitors (for example, carboxylic acid compounds such as nonanoic acid, pt-butylbenzoic acid, dodecanedioic acid and salts thereof, amine compounds such as monoethanolamine, diethanolamine, triethanolamine) Anticorrosives for non-ferrous metals (such as benzotriazole compounds), preservatives and fungicides (such as organic bromine compounds, organic rods) Compounds, organic nitrogen compounds, organic sulfur compounds, thiazole compounds, isothiazole compounds, organic iodine compounds, quaternary ammonium salt compounds, phenol compounds, benzimidazole compounds, dehydroacetic acid and its salts, etc. ) And the like.
[0031]
【Example】
Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to these examples.
[0032]
[Examples 1 to 22, Comparative Examples 1 to 12]
Normal paraffin, a surfactant, a higher alcohol, a sorbitan fatty acid ester and water were blended in the proportions shown in Tables 1 to 3, an emulsion was obtained by the following operation, and the emulsion stability of the obtained emulsion was examined. The results are shown in Tables 1 to 3.
[0033]
(Preparation of emulsion)
A surfactant, a higher alcohol, and a sorbitan fatty acid ester in the proportions shown in Tables 1 to 3 were added to 100 g of normal paraffin, and the mixture was stirred at room temperature (25 ° C.) with a homomixer (disper blade, rotation speed 1000 rpm). And water in the proportions shown in the table were blended to obtain an emulsion.
[0034]
(Emulsion stability)
The emulsion obtained as described above was allowed to stand at room temperature (25 ° C.), the emulsified state was observed, and the evaluation was made according to the following criteria.
[0035]
◎ ・ ・ Stable emulsified state lasted for 3 months or more ○ ・ ・ Stable emulsified state lasted for 1 to 3 months △ ・ ・ Separated into oil layer and aqueous layer within 1 month × ・ ・ Emulsification failed [0036]
[Table 1]
Figure 2004143229
[0037]
[Table 2]
Figure 2004143229
[0038]
[Table 3]
Figure 2004143229
[0039]
Among the emulsions obtained above, the emulsions of Examples 12 to 22 and Comparative Examples 7 to 12 in which the solidification point of normal paraffin was adjusted to 6 ° C, the solidification point / latent heat amount, and the repeated coagulation-melting test as described below. Was examined for emulsion stability.
[0040]
(Freezing point / latent heat)
The freezing point and the latent heat were measured using a differential scanning calorimeter (DSC).
[0041]
(Emulsion stability in repeated coagulation-melting test)
After standing at 5 ° C. for 12 hours, it was left standing at 15 ° C. for 12 hours. This operation was repeated every day to confirm the emulsification stability of the normal paraffin during coagulation and melting, and expressed by the number of days that a uniform emulsified state was maintained. The longer the number of days, the better the emulsion stability.
[0042]
[Table 4]
Figure 2004143229
[0043]
As is clear from Tables 1 to 3, the emulsions obtained from the latent heat storage agent compositions of the respective examples have remarkably excellent emulsification stability as compared with those of the comparative examples.
[0044]
Further, as shown in Table 4, the latent heat storage agent compositions of Examples 12 to 22 solidified at around 6 ° C., and a heat storage amount of 80 J / g or more was obtained as latent heat. In the case of water, the heat storage amount is 20 J / g in that temperature range, and it can be seen that the embodiment can store a large amount of heat energy at high density. In contrast, the compositions of Comparative Examples 9, 11, and 12 cannot be used as a heat storage agent because latent heat cannot be obtained in a temperature range around 6 ° C. due to a freezing point drop. Although those of Comparative Examples 7, 8, and 10 have a freezing point of around 6 ° C., they cannot be used because the latent heat is lower than that of Examples and there is no emulsion stability.
[0045]
Furthermore, as shown in Table 4, the compositions of Comparative Examples 7 to 12 were destroyed immediately after repeated solidification and melting, whereas those of Examples 12 to 22 were significantly emulsified. Is better.
[0046]
【The invention's effect】
The latent heat storage agent composition of the present invention has a solidifying point and a melting point around 2 to 20 ° C. by using a specific normal paraffin and a surfactant, and a large latent heat of fusion is obtained, and is excellent in long-term stability. Oil-in-water emulsion. Therefore, it can be suitably used as an air conditioning system for cooling or the like as a cooling medium with excellent thermal efficiency, which can be conveyed even below the freezing point of normal paraffin.
[0047]
Claims 2 to 4 are particularly excellent in emulsion stability.

Claims (5)

炭素数12〜20のノルマルパラフィン100重量部に対し、水50〜200重量部、及び下記一般式(1)で表され、平均HLBが8〜12の高級アルコール系非イオン性界面活性剤0.1〜20重量部が配合されてなる潜熱蓄熱剤組成物。
R−O−(PO)m−(EO)n−H   (1)
(式中、Rは炭素数10〜22の直鎖または分岐のアルキル基またはアルケニル基を示し、POはプロピレンオキサイド、EOはエチレンオキサイドを示し、m、nは平均付加モル数であって、mは0≦m≦5の範囲の数であり、nは0<n≦20の範囲の数である。−(PO)m−(EO)n−は、ブロック及びランダムのいずれでもよく、POとEOのいずれがR−O−に結合していてもよい。)
With respect to 100 parts by weight of normal paraffin having 12 to 20 carbon atoms, 50 to 200 parts by weight of water and higher alcohol nonionic surfactant represented by the following general formula (1) and having an average HLB of 8 to 12 are used. A latent heat storage agent composition containing 1 to 20 parts by weight.
RO- (PO) m- (EO) n-H (1)
(Wherein, R represents a linear or branched alkyl group or alkenyl group having 10 to 22 carbon atoms, PO represents propylene oxide, EO represents ethylene oxide, m and n are average addition moles, Is a number in the range of 0 ≦ m ≦ 5, and n is a number in the range of 0 <n ≦ 20 .- (PO) m- (EO) n- may be any of block and random, Any of EO may be bonded to RO-.)
前記高級アルコール系非イオン性界面活性剤として、一般式(1)のRが炭素数16〜22の直鎖または分岐のアルキル基であり、mは0であり、nは3≦n≦15の範囲の数であり、平均HLBが9〜11のものを用いたことを特徴とする、請求項1に記載の潜熱蓄熱剤組成物。As the higher alcohol nonionic surfactant, R in the general formula (1) is a linear or branched alkyl group having 16 to 22 carbon atoms, m is 0, and n is 3 ≦ n ≦ 15. The latent heat storage agent composition according to claim 1, wherein the composition has a number in a range and has an average HLB of 9 to 11. 炭素数10〜20の高級アルコールがさらに配合され、前記高級アルコール系非イオン性界面活性剤とこの高級アルコールとの配合比率が重量比で99/1〜50/50であり、これら高級アルコール系非イオン性界面活性剤と高級アルコールのトータルの配合量が前記ノルマルパラフィン100重量部に対して0.1〜20重量部であることを特徴とする、請求項1又は2に記載の潜熱蓄熱剤組成物。A higher alcohol having 10 to 20 carbon atoms is further blended, and the blending ratio of the higher alcohol nonionic surfactant to the higher alcohol is 99/1 to 50/50 by weight. 3. The latent heat storage agent composition according to claim 1, wherein the total amount of the ionic surfactant and the higher alcohol is 0.1 to 20 parts by weight based on 100 parts by weight of the normal paraffin. 4. object. ソルビタン脂肪酸エステルがさらに配合され、前記高級アルコール系非イオン性界面活性剤とこのソルビタン脂肪酸エステルとの配合比率が重量比で99/1〜50/50であり、これら高級アルコール系非イオン性界面活性剤とソルビタン脂肪酸エステルのトータルの配合量が前記ノルマルパラフィン100重量部に対して0.1〜20重量部であることを特徴とする、請求項1〜3のいずれか1項に記載の潜熱蓄熱剤組成物。A sorbitan fatty acid ester is further blended, and the blending ratio of the higher alcohol nonionic surfactant and the sorbitan fatty acid ester is 99/1 to 50/50 by weight, and these higher alcohol nonionic surfactants are used. The latent heat storage according to any one of claims 1 to 3, wherein the total amount of the agent and the sorbitan fatty acid ester is 0.1 to 20 parts by weight based on 100 parts by weight of the normal paraffin. Composition. エマルジョン化され、空調システム用の冷熱搬送媒体に用いられることを特徴とする、請求項1〜4のいずれか1項に記載の潜熱蓄熱剤組成物。The latent heat storage agent composition according to any one of claims 1 to 4, which is emulsified and used as a cold transport medium for an air conditioning system.
JP2002307612A 2002-10-22 2002-10-22 Latent heat-storing agent composition Pending JP2004143229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307612A JP2004143229A (en) 2002-10-22 2002-10-22 Latent heat-storing agent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307612A JP2004143229A (en) 2002-10-22 2002-10-22 Latent heat-storing agent composition

Publications (1)

Publication Number Publication Date
JP2004143229A true JP2004143229A (en) 2004-05-20

Family

ID=32454019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307612A Pending JP2004143229A (en) 2002-10-22 2002-10-22 Latent heat-storing agent composition

Country Status (1)

Country Link
JP (1) JP2004143229A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168792A (en) * 2002-11-15 2004-06-17 Nippon Shokubai Co Ltd Heat transport medium and method for producing the same and air conditioning system using the same
JP2006045391A (en) * 2004-08-05 2006-02-16 Toho Chem Ind Co Ltd Emulsion composition for latent heat storage
WO2012176708A1 (en) * 2011-06-21 2012-12-27 シャープ株式会社 Heat storage member and heat storage container
WO2014025070A1 (en) * 2012-08-10 2014-02-13 Jsr株式会社 Composition for heat storage material
WO2014092093A1 (en) * 2012-12-11 2014-06-19 株式会社カネカ Heat storage material composition, heat storage material and transport container
WO2014199716A1 (en) 2013-06-14 2014-12-18 Jx日鉱日石エネルギー株式会社 Paraffin latent heat storage material composition and use of paraffin composition as latent heat storage material
WO2015170779A1 (en) * 2014-05-09 2015-11-12 Jx日鉱日石エネルギー株式会社 Production method for n-paraffin latent heat storage material composition, and microcapsule heat storage material
JP2021080368A (en) * 2019-11-19 2021-05-27 アイシン化工株式会社 Heat storage material composition
CN115247050A (en) * 2021-04-27 2022-10-28 协同油脂株式会社 Cold and heat storage agent composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168792A (en) * 2002-11-15 2004-06-17 Nippon Shokubai Co Ltd Heat transport medium and method for producing the same and air conditioning system using the same
JP2006045391A (en) * 2004-08-05 2006-02-16 Toho Chem Ind Co Ltd Emulsion composition for latent heat storage
JP4653438B2 (en) * 2004-08-05 2011-03-16 東邦化学工業株式会社 Emulsion composition for latent heat storage material
WO2012176708A1 (en) * 2011-06-21 2012-12-27 シャープ株式会社 Heat storage member and heat storage container
JPWO2014025070A1 (en) * 2012-08-10 2016-07-25 Jsr株式会社 Thermal storage material composition
WO2014025070A1 (en) * 2012-08-10 2014-02-13 Jsr株式会社 Composition for heat storage material
CN104937065B (en) * 2012-12-11 2018-08-31 株式会社钟化 Heat-storing material composition, heat-storing material and transport box
CN104937065A (en) * 2012-12-11 2015-09-23 株式会社钟化 Heat storage material composition, heat storage material and transport container
JPWO2014092093A1 (en) * 2012-12-11 2017-01-12 株式会社カネカ Thermal storage material composition, thermal storage material and transport container
WO2014092093A1 (en) * 2012-12-11 2014-06-19 株式会社カネカ Heat storage material composition, heat storage material and transport container
US10662358B2 (en) 2012-12-11 2020-05-26 Kaneka Corporation Heat storage material composition, heat storage material and transport container
WO2014199716A1 (en) 2013-06-14 2014-12-18 Jx日鉱日石エネルギー株式会社 Paraffin latent heat storage material composition and use of paraffin composition as latent heat storage material
WO2015170779A1 (en) * 2014-05-09 2015-11-12 Jx日鉱日石エネルギー株式会社 Production method for n-paraffin latent heat storage material composition, and microcapsule heat storage material
JPWO2015170779A1 (en) * 2014-05-09 2017-04-27 Jxエネルギー株式会社 Method for producing n-paraffin-based latent heat storage material composition and microcapsule heat storage material
JP2021080368A (en) * 2019-11-19 2021-05-27 アイシン化工株式会社 Heat storage material composition
JP7191803B2 (en) 2019-11-19 2022-12-19 アイシン化工株式会社 Heat storage material composition
CN115247050A (en) * 2021-04-27 2022-10-28 协同油脂株式会社 Cold and heat storage agent composition

Similar Documents

Publication Publication Date Title
JP3751028B2 (en) Microcapsules for heat storage materials
KR860001895B1 (en) Reversible phase change composition for storing thermal energy
Fauzi et al. Sodium laurate enhancements the thermal properties and thermal conductivity of eutectic fatty acid as phase change material (PCM)
CN101434833B (en) Nano refrigerant hydrate phase change cold-storage working substance and preparation thereof
JP2004143229A (en) Latent heat-storing agent composition
JP2006241285A (en) Latent heat thermal storage medium composition
US20040046147A1 (en) Thermal storage medium, process for producing the same and thermal storage system using the same
JP4824346B2 (en) Method for producing emulsion-type heat storage material
JP4417768B2 (en) Latent heat storage agent composition
AU710196B2 (en) Thermal energy storage composition
JP2009287025A (en) Paraffin/water-emulsion as refrigerant and heat-storage medium, and method for producing the same
JP5584395B2 (en) Paraffin heat storage material composition
JPH07126614A (en) Latent heat type heat storage material
JP2016188349A (en) Emulsion-type heat storage material and production method thereof
JP2007051250A (en) Gel-like heat-accumulating agent composition and heat-accumulating medium
JP4653438B2 (en) Emulsion composition for latent heat storage material
JP3739114B2 (en) Thermal storage material and thermal storage material dispersion
TW201509907A (en) Paraffin latent heat storage material composition and use of paraffin composition as latent heat storage material
JP2006008760A (en) Latent heat storage material composition
JP2003321674A (en) Heat reservoir
JP2004518009A (en) Drag reduction of heat distribution water-based liquid containing large amount of antifreeze
AU669739B2 (en) Phase change material formulations for low temperature heat storage applications
JP2004067986A (en) Latent heat accumulating material and its preparation
JP2000336350A (en) Heat-storing material
JP2004211056A (en) Heat storage material and heat storage system using heat storage material