JP2004141934A - Ferritic stainless steel welding wire - Google Patents

Ferritic stainless steel welding wire Download PDF

Info

Publication number
JP2004141934A
JP2004141934A JP2002310349A JP2002310349A JP2004141934A JP 2004141934 A JP2004141934 A JP 2004141934A JP 2002310349 A JP2002310349 A JP 2002310349A JP 2002310349 A JP2002310349 A JP 2002310349A JP 2004141934 A JP2004141934 A JP 2004141934A
Authority
JP
Japan
Prior art keywords
stainless steel
welding wire
ferritic stainless
steel welding
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002310349A
Other languages
Japanese (ja)
Inventor
Keigo Inui
乾 圭吾
Hirotaka Namikawa
南川 裕隆
Toshiharu Noda
野田 俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002310349A priority Critical patent/JP2004141934A/en
Publication of JP2004141934A publication Critical patent/JP2004141934A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel welding wire which is allowed to reduce the content of Cr as a high-cost additional element and, nevertheless, has a resistance to oxidation equal to that of the conventional ferric stainless steel welding wire having high Cr content. <P>SOLUTION: The ferritic stainless steel welding wire, in wt.%, consists of C ≤0.015%, Si 0.9∼1.5%, Mn ≤1.0%, P ≤0.030%, S ≤0.010%, Cr 9.0∼13.0%, N ≤0.02%, Ca ≤0.002%, Nb 0.10∼0.30%, Ti ≤0.20%, Al ≤0.20%, 20×C%≤Nb+Ti+Al and the remainder substantially comprising Fe. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、ミグ溶接,マグ溶接等のガスシールド溶接に用いて好適なフェライト系ステンレス鋼溶接ワイヤに関する。
【0002】
【従来の技術】
従来、例えば自動車排気系のコンバータには耐食性に優れた耐熱鋼材が使用されており、このような耐熱鋼材の溶接にはCrを16〜21%含有するフェライト系ステンレス鋼溶接ワイヤが使用されて来た。
例えば下記特許文献1にはCrを15〜25%含有するフェライト系ステンレス鋼溶接ワイヤが開示されている。
【0003】
【特許文献1】
特開平8−267271号公報
【0004】
【発明が解決しようとする課題】
このフェライト系ステンレス鋼溶接ワイヤにおいて、近年コスト低減の要求が強く、この場合において上記特許文献1に開示の溶接ワイヤでは高価なCrを15〜25%と高含有量で含有しているため、必然的にコストが高くなるといった問題がある。
この場合単にCrの含有量を低減しただけであると、溶接ワイヤとして必要な耐酸化性,高温強度が悪化してしまう。
【0005】
【課題を解決するための手段】
本発明のフェライト系ステンレス鋼溶接ワイヤはこのような課題を解決するために案出されたものである。
而して請求項1のものは、重量%でC:≦0.015%,Si:0.9〜1.5%,Mn:≦1.0%,P:≦0.030%,S:≦0.010%,Cr:9.0〜13.0%,N:≦0.02%,Ca:≦0.002%,Nb:0.10〜0.30%,Ti:≦0.20%,Al:≦0.20%,20×C%≦Nb+Ti+Al,残部実質的にFeから成ることを特徴とする。
【0006】
請求項2のものは、請求項1において、更にZr,B,Mo,Wの1種若しくは2種以上を、Zr:≦0.1%,B:≦0.1%,Mo:≦5.0%,W:≦5.0%の範囲で含有していることを特徴とする。
【0007】
【作用】
本発明は、Crの含有量を低減するとともに、これと併せてNb,Ti,Alを添加し、Cr含有量の低減に伴う耐酸化性,高温強度の低下をそれらNb,Ti,Alの添加によって補い、以ってCrの添加量抑制によりフェライト系ステンレス鋼溶接ワイヤのコストを低く抑えつつ、従来の高Cr含有量のフェライト系ステンレス鋼溶接ワイヤと同等の性能を有するフェライト系ステンレス鋼溶接ワイヤを提供し得たものである。
【0008】
フェライト系ステンレス鋼溶接ワイヤにおけるCrは、炭化物を形成することによって耐酸化性,高温強度等の特性が低下する。
一方においてNb,Ti,Alは鋼中のCを固定する働きがあり、従ってこれら成分を添加することによってCrの炭化物形成を抑制し、これによりCrの含有量低減に伴う耐酸化性,高温強度の低下を補う。
【0009】
本発明においては、Zr,B,Mo,W等合金成分を選択元素として1種若しくは2種以上含有させることができ(請求項2)、これにより鋼の強度を高強度化することができる。
【0010】
ここでZr,Bは炭化物,窒化物,酸化物等を分散析出し、その析出硬化によって鋼を強化する。
一方Mo,Wはマトリックス中に固溶して鋼を強化する働きを有する。
【0011】
次に本発明における各化学成分の限定理由を以下に詳述する。
C:≦0.015%
Cは溶接部の強度を向上させる作用を有するものの、C含有量が多過ぎると硬さが過大となり、溶接割れを発生する恐れが生ずるのでその上限値を0.015%とした。
【0012】
Si:0.9〜1.5%
SiはNbの炭,窒化物の粒界析出を抑制する作用を有し、従ってSiを適量添加することによって溶接割れの発生を抑えることができる。但しそのためには0.9%以上が必要である。
一方Siの含有量が多過ぎると靭性が劣化するため上限値を1.5%とした。
【0013】
Mn:≦1.0%
Mnはステンレス鋼の溶製時において脱酸剤として必要なものであるが、多過ぎると耐酸化性を劣化させるため、上限値を1.0%とした。
【0014】
P:≦0.030%
Pは不純物としてのものであって、Pの含有量が多いと溶接割れを生じ易くなるとともに溶接部の靭性を劣化させる。そこで本発明では上限値を0.030%とした。
【0015】
S:≦0.010%
S含有量が多いと溶接割れを生じ易くなるとともに溶接部の靭性を劣化させ、また耐食性を劣化させるため、0.010%以下とした。
【0016】
Cr:9.0〜13.0%
Crは耐酸化性,高温強度を与えるために必須の成分であって、その目的のため9.0%以上が必要である。但し13.0%より多くなるとコストの上昇をもたらすため上限値を13.0%とした。
【0017】
N:≦0.02%
N含有量が多いと耐溶接割れ性を低下させるとともに溶接部分の靭性を劣化させるため上限値を0.02%とした。
【0018】
Ca:≦0.002%
Caは溶製時の脱酸,脱窒を目的として通常添加するが、その量が多いとアーク安定性を低下させるので上限を0.002%とした。
【0019】
Nb:0.10〜0.30%
Nbは耐酸化性,高温強度を向上させるのに有用な元素であって、その目的のため0.10%以上が必要であるが、必要以上に多く含有させると耐溶接割れ性が大きく低下するため上限値を0.30%とした。
【0020】
Ti:≦0.20%
Tiは耐酸化性を改善する効果がある。但し過剰に添加しても更なる向上は期待できないだけでなく、アーク安定性を阻害するため上限値を0.20%とした。
【0021】
Al:≦0.20%
Alは耐酸化性を改善する効果がある。但し過剰に添加しても更なる向上は期待できないだけでなく、アーク安定性を阻害するため上限値を0.20%とした。
【0022】
20×C%≦Nb+Ti+Al
Cは溶接部の強度を向上させるために必要であるが、Cを固定する安定化元素であるAl,Ti,Nbの添加量以上に過剰に添加した場合、Crとの化合物として粒界に析出し、Cr欠乏層が形成されることによる耐酸化性劣化を招く。これを防ぐためにはNb,Ti,Alの総量を20×C%以上とする必要がある。
【0023】
Zr:≦0.1%
Zrは溶接金属の結晶粒の微細化を促進する効果があるため、必要に応じて添加する。但し多く含有させても更なる向上は期待できないので上限値を0.1%とした。
【0024】
B:≦0.1%
Bは溶接金属の結晶粒の微細化を促進する効果があるため、必要に応じて添加する。但し多く含有させても更なる向上は期待できないので上限値を0.1%とした。
【0025】
Mo:≦5.0%
Moは溶接部のマトリックスを強化するために有効な元素であり、必要に応じて添加する。但し多量に添加した場合、溶接部の延性を劣化させるので上限値を5.0%とした。
【0026】
W:≦5.0%
WはMoと同様に溶接部のマトリックスを強化するために有効な元素であり、必要に応じて添加する。但し多量に添加した場合、溶接部の延性を劣化させるので上限値を5.0%とした。
【0027】
【実施例】
次に本発明の実施例を以下に詳述する。
表1に示す化学組成のフェライト系ステンレス鋼溶接ワイヤを製造し、これを用いて以下の条件で溶接性(T型溶接割れ試験,スパッタ量測定試験),耐酸化性(酸化増量)を調べた。
【0028】
【表1】

Figure 2004141934
【0029】
<T型溶接割れ試験>
JIS Z 3153に準拠し、図1に示しているように板厚12mmの母材12,14を逆T型に配置して、先ず拘束用のすみ肉溶接1Sを行い、次いで試験用のすみ肉溶接2Sを行い、後から行ったすみ肉溶接2Sの際の溶接割れの有無を測定した。結果が表1に示してある。
尚表中、○が溶接割れ無しを、×が溶接割れ有りをそれぞれ表している。
【0030】
<耐スパッタ性(スパッタ量測定試験)>
WES2807に準拠して、ミグ溶接によって発生する全スパッタ量を測定した。結果が表1に示してある。
尚これらにおいて溶接条件は下記とした。
使用母材:SUS430
溶接電流:150A
アーク電圧:22V
溶接速度:60cm/min
シールドガス:97%Ar+3%O
【0031】
<耐酸化性>
JIS Z 2281に準拠して、950℃×500hrにおける全溶着金属の連続酸化試験後の酸化増量について測定した。結果が表1に示してある。
【0032】
表1の結果から、本発明例のものは比較例のものに比べて何れも良好な結果が得られている。
また本発明例のものは、Crを約19%含有する従来例のものに比べてCr含有量を少なくしているにも拘わらず、耐酸化性においてほぼ同等程度の特性が得られていることが分る。
【0033】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【0034】
【発明の効果】
かかる本発明によれば、低コストでしかも従来の高Cr含有量のフェライト系ステンレス鋼溶接ワイヤと同等の性能を有するフェライト系ステンレス鋼溶接ワイヤを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例において行った溶接割れ試験の方法を説明する説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ferritic stainless steel welding wire suitable for use in gas shield welding such as MIG welding and mag welding.
[0002]
[Prior art]
Conventionally, for example, a heat-resistant steel material having excellent corrosion resistance has been used for a converter in an automobile exhaust system, and a ferritic stainless steel welding wire containing 16 to 21% of Cr has been used for welding such a heat-resistant steel material. Was.
For example, Patent Literature 1 below discloses a ferritic stainless steel welding wire containing 15 to 25% of Cr.
[0003]
[Patent Document 1]
JP-A-8-267271
[Problems to be solved by the invention]
In the case of this ferritic stainless steel welding wire, there is a strong demand for cost reduction in recent years. In this case, the welding wire disclosed in Patent Document 1 contains expensive Cr at a high content of 15 to 25%. There is a problem that the cost is high.
In this case, if the content of Cr is simply reduced, the oxidation resistance and high-temperature strength required for the welding wire are deteriorated.
[0005]
[Means for Solving the Problems]
The ferritic stainless steel welding wire of the present invention has been devised to solve such a problem.
According to the first aspect, C: ≤ 0.015%, Si: 0.9 to 1.5%, Mn: ≤ 1.0%, P: ≤ 0.030%, and S: ≦ 0.010%, Cr: 9.0 to 13.0%, N: ≦ 0.02%, Ca: ≦ 0.002%, Nb: 0.10 to 0.30%, Ti: ≦ 0.20 %, Al: ≦ 0.20%, 20 × C% ≦ Nb + Ti + Al, with the balance substantially consisting of Fe.
[0006]
According to a second aspect, in the first aspect, one or more of Zr, B, Mo, and W are further added by Zr: ≦ 0.1%, B: ≦ 0.1%, and Mo: ≦ 5. 0%, W: ≤5.0%.
[0007]
[Action]
The present invention reduces the Cr content and simultaneously adds Nb, Ti, and Al to reduce the oxidation resistance and high-temperature strength accompanying the reduction in the Cr content by adding Nb, Ti, and Al. The ferrite stainless steel welding wire has the same performance as the conventional ferrite stainless steel welding wire with a high Cr content while keeping the cost of ferritic stainless steel welding wire low by suppressing the amount of Cr added. Was provided.
[0008]
Cr in a ferritic stainless steel welding wire deteriorates properties such as oxidation resistance and high-temperature strength by forming a carbide.
On the other hand, Nb, Ti, and Al have a function of fixing C in steel. Therefore, by adding these components, the formation of carbides of Cr is suppressed, and thereby, the oxidation resistance and the high-temperature strength accompanying the reduction of the Cr content are reduced. Make up for the decline.
[0009]
In the present invention, one or more alloy components such as Zr, B, Mo, and W can be contained as selective elements (claim 2), whereby the strength of steel can be increased.
[0010]
Here, Zr and B disperse and precipitate carbides, nitrides, oxides and the like, and strengthen the steel by the precipitation hardening.
On the other hand, Mo and W have a function of strengthening steel by forming a solid solution in the matrix.
[0011]
Next, the reasons for limiting each chemical component in the present invention will be described in detail below.
C: ≦ 0.015%
Although C has an effect of improving the strength of the welded portion, if the C content is too large, the hardness becomes excessively high, and there is a possibility that a weld crack may occur. Therefore, the upper limit was set to 0.015%.
[0012]
Si: 0.9-1.5%
Si has an effect of suppressing the grain boundary precipitation of Nb of carbon and nitride. Therefore, by adding an appropriate amount of Si, the occurrence of welding cracks can be suppressed. However, for that purpose, 0.9% or more is required.
On the other hand, if the content of Si is too large, the toughness deteriorates, so the upper limit is set to 1.5%.
[0013]
Mn: ≦ 1.0%
Mn is necessary as a deoxidizing agent when smelting stainless steel, but if too much, the oxidation resistance is deteriorated. Therefore, the upper limit is set to 1.0%.
[0014]
P: ≦ 0.030%
P is an impurity, and when the content of P is large, welding cracks are easily generated and the toughness of the welded portion is deteriorated. Therefore, in the present invention, the upper limit is set to 0.030%.
[0015]
S: ≦ 0.010%
If the S content is large, welding cracks are likely to occur, and the toughness of the welded portion is deteriorated, and the corrosion resistance is deteriorated.
[0016]
Cr: 9.0-13.0%
Cr is an essential component for providing oxidation resistance and high-temperature strength, and 9.0% or more is required for that purpose. However, if it exceeds 13.0%, the cost increases, so the upper limit is set to 13.0%.
[0017]
N: ≦ 0.02%
When the N content is large, the weld crack resistance is reduced and the toughness of the welded portion is deteriorated. Therefore, the upper limit is set to 0.02%.
[0018]
Ca: ≦ 0.002%
Ca is usually added for the purpose of deoxidation and denitrification at the time of smelting, but if the amount is large, the arc stability is reduced. Therefore, the upper limit was made 0.002%.
[0019]
Nb: 0.10 to 0.30%
Nb is an element useful for improving the oxidation resistance and high-temperature strength. For this purpose, 0.10% or more is necessary. However, if it is contained more than necessary, the weld cracking resistance is greatly reduced. Therefore, the upper limit was set to 0.30%.
[0020]
Ti: ≦ 0.20%
Ti has an effect of improving oxidation resistance. However, even if added excessively, further improvement cannot be expected, and the upper limit is set to 0.20% in order to impair the arc stability.
[0021]
Al: ≤0.20%
Al has the effect of improving oxidation resistance. However, even if added excessively, further improvement cannot be expected, and the upper limit is set to 0.20% in order to impair the arc stability.
[0022]
20 × C% ≦ Nb + Ti + Al
C is necessary to improve the strength of the welded portion, but when added in excess of the added amount of Al, Ti, and Nb, which are the stabilizing elements that fix C, precipitates at the grain boundaries as a compound with Cr. However, the formation of the Cr deficient layer causes deterioration of oxidation resistance. To prevent this, the total amount of Nb, Ti, and Al needs to be 20 × C% or more.
[0023]
Zr: ≦ 0.1%
Zr has an effect of accelerating the refinement of the crystal grains of the weld metal, and thus is added as necessary. However, even if a large amount is contained, further improvement cannot be expected, so the upper limit is set to 0.1%.
[0024]
B: ≦ 0.1%
B has an effect of accelerating the refinement of the crystal grains of the weld metal, and thus is added as necessary. However, even if a large amount is contained, further improvement cannot be expected, so the upper limit is set to 0.1%.
[0025]
Mo: ≦ 5.0%
Mo is an element effective for strengthening the matrix of the weld, and is added as necessary. However, when added in a large amount, the ductility of the welded portion is deteriorated, so the upper limit value is set to 5.0%.
[0026]
W: ≦ 5.0%
W is an element effective for strengthening the matrix of the welded portion like Mo, and is added as necessary. However, when added in a large amount, the ductility of the welded portion is deteriorated, so the upper limit value is set to 5.0%.
[0027]
【Example】
Next, examples of the present invention will be described in detail below.
A ferritic stainless steel welding wire having the chemical composition shown in Table 1 was manufactured, and the weldability (T-type welding crack test, spatter amount measurement test) and oxidation resistance (oxidation increase) were examined under the following conditions. .
[0028]
[Table 1]
Figure 2004141934
[0029]
<T-type weld cracking test>
According to JIS Z 3153, base materials 12 and 14 having a plate thickness of 12 mm are arranged in an inverted T-shape as shown in FIG. 1, first fillet welding 1S for restraint is performed, and then fillet for testing Welding 2S was performed, and the presence or absence of a weld crack in the fillet welding 2S performed later was measured. The results are shown in Table 1.
In the table, ○ indicates that there was no welding crack, and X indicates that there was welding crack.
[0030]
<Spatter resistance (spatter amount measurement test)>
According to WES2807, the total amount of spatter generated by MIG welding was measured. The results are shown in Table 1.
In these, the welding conditions were as follows.
Base material used: SUS430
Welding current: 150A
Arc voltage: 22V
Welding speed: 60cm / min
Shielding gas: 97% Ar + 3% O 2
[0031]
<Oxidation resistance>
In accordance with JIS Z 2281, the increase in oxidation after the continuous oxidation test of all the deposited metals at 950 ° C. × 500 hours was measured. The results are shown in Table 1.
[0032]
From the results in Table 1, all of the examples of the present invention obtained better results than those of the comparative examples.
Further, in the case of the present invention, although the Cr content is smaller than that of the conventional example containing about 19% of Cr, almost the same characteristics in oxidation resistance are obtained. I understand.
[0033]
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit thereof.
[0034]
【The invention's effect】
According to the present invention, it is possible to provide a ferritic stainless steel welding wire which is low in cost and has the same performance as a conventional ferritic stainless steel welding wire having a high Cr content.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating a method of a weld crack test performed in an example of the present invention.

Claims (2)

重量%で
C :≦0.015%
Si:0.9〜1.5%
Mn:≦1.0%
P :≦0.030%
S :≦0.010%
Cr:9.0〜13.0%
N :≦0.02%
Ca:≦0.002%
Nb:0.10〜0.30%
Ti:≦0.20%
Al:≦0.20%
20×C%≦Nb+Ti+Al
残部実質的にFeから成ることを特徴とするフェライト系ステンレス鋼溶接ワイヤ。
C in weight%: ≦ 0.015%
Si: 0.9-1.5%
Mn: ≦ 1.0%
P: ≦ 0.030%
S: ≦ 0.010%
Cr: 9.0-13.0%
N: ≦ 0.02%
Ca: ≦ 0.002%
Nb: 0.10 to 0.30%
Ti: ≦ 0.20%
Al: ≤0.20%
20 × C% ≦ Nb + Ti + Al
A ferritic stainless steel welding wire, the balance being substantially composed of Fe.
請求項1において、更にZr,B,Mo,Wの1種若しくは2種以上を
Zr:≦0.1%
B :≦0.1%
Mo:≦5.0%
W :≦5.0%
の範囲で含有していることを特徴とするフェライト系ステンレス鋼溶接ワイヤ。
2. The method according to claim 1, wherein one or more of Zr, B, Mo, and W is Zr: ≦ 0.1%.
B: ≦ 0.1%
Mo: ≦ 5.0%
W: ≦ 5.0%
A ferritic stainless steel welding wire characterized by containing in the range of
JP2002310349A 2002-10-24 2002-10-24 Ferritic stainless steel welding wire Pending JP2004141934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310349A JP2004141934A (en) 2002-10-24 2002-10-24 Ferritic stainless steel welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310349A JP2004141934A (en) 2002-10-24 2002-10-24 Ferritic stainless steel welding wire

Publications (1)

Publication Number Publication Date
JP2004141934A true JP2004141934A (en) 2004-05-20

Family

ID=32455867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310349A Pending JP2004141934A (en) 2002-10-24 2002-10-24 Ferritic stainless steel welding wire

Country Status (1)

Country Link
JP (1) JP2004141934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422617A (en) * 2005-01-26 2006-08-02 Nippon Welding Rod Co Ltd Ferritic stainless steel welding wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422617A (en) * 2005-01-26 2006-08-02 Nippon Welding Rod Co Ltd Ferritic stainless steel welding wire
US7732733B2 (en) 2005-01-26 2010-06-08 Nippon Welding Rod Co., Ltd. Ferritic stainless steel welding wire and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6829699B2 (en) Ultra-low silicon welding wire with excellent pore resistance and electrodeposition coating, and the weld metal obtained by this wire.
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
EP3037205A1 (en) Wire for gas shield arc welding
JPH09267190A (en) Welding wire for high crome ferrite wire
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP3481368B2 (en) Flux-cored wire for ferritic stainless steel
CN113001057A (en) High-strength pitting-resistant nitrogen-containing austenitic stainless steel flux-cored wire and preparation method thereof
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JP2014111265A (en) Cladding powder alloy
JP2001293596A (en) Flux-filled wire for welding ferritic stainless steel
WO1994020258A1 (en) Inert-gas arc welding wire for high-chromium ferritic heat-resisting steel
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
JP2004141934A (en) Ferritic stainless steel welding wire
JP2002167655A (en) Stainless cast steel having excellent heat resistance and machinability
JPH09225680A (en) Welding wire for ferritic stainless steel
JPH03204196A (en) Wire for welding two-phase stainless steel having excellent concentrated sulfuric acid corrosion resistance
JP2022155181A (en) austenitic stainless steel
JPH0796390A (en) Wire for welding 9cr-1mo steel
JP2660708B2 (en) Stainless steel gas shielded arc welding wire
WO2022124274A1 (en) Ferrite-based stainless steel welding wire
JP2001071145A (en) Method for welding ferritic stainless steel
JP2002035988A (en) Welding wire and welding methos using the same
JPH0596397A (en) Steel wire for high electric current mig welding
US20230398644A1 (en) Ferritic stainless steel welding wire and welded part