JP2004138228A - Differential pressure valve - Google Patents

Differential pressure valve Download PDF

Info

Publication number
JP2004138228A
JP2004138228A JP2002311564A JP2002311564A JP2004138228A JP 2004138228 A JP2004138228 A JP 2004138228A JP 2002311564 A JP2002311564 A JP 2002311564A JP 2002311564 A JP2002311564 A JP 2002311564A JP 2004138228 A JP2004138228 A JP 2004138228A
Authority
JP
Japan
Prior art keywords
pressure
valve
differential pressure
sensitive
outer frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002311564A
Other languages
Japanese (ja)
Other versions
JP4105525B2 (en
Inventor
Sadatake Ise
伊勢 貞武
Hide Yanagisawa
柳澤 秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2002311564A priority Critical patent/JP4105525B2/en
Publication of JP2004138228A publication Critical patent/JP2004138228A/en
Application granted granted Critical
Publication of JP4105525B2 publication Critical patent/JP4105525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)
  • Fluid-Driven Valves (AREA)
  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple structure, compact, and low-cost differential pressure valve. <P>SOLUTION: An outer frame pipe 10 has a fluid inlet port 11 at one end and a fluid outlet port 12 at the other end. Between the two ports, a pressure sensitive portion A for detecting a differential pressure of the fluid, a throttle portion B for controlling the flow of the fluid based on the differential pressure detected by the pressure sensitive portion, and an adjustment portion C for setting a given value for the degree of control by the throttle portion B are provided. The pressure sensitive portion, the throttle portion, and the adjustment portion are placed in a tubular valve seat 20 having a given length insertable into the outer frame pipe 10. The tubular valve seat is inserted into the outer frame pipe and caulking-fixed to the inside of the outer frame pipe. The both ends of the outer frame pipe are drawn to a joint shape to form a space at the high pressure fluid side and a space at the low pressure fluid side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、空調機の冷凍サイクル等において用いられる差圧弁に関する。
【0002】
【従来の技術】
空調機の冷凍サイクル等において用いられる冷媒圧力調整弁と同様に用いられている差圧弁は、流体の上流(高圧)側と下流(低圧)側との両流体間において、所定の圧力(バネ荷重相当圧分)以上の圧力差がある場合に限って流体を流すものである(特許文献1)が、従来の直動式として使用するものは、低圧側からのパイロット配管が必要となるなど、構造が複雑であるばかりでなく、長期稼動等に依ってパイロット配管の溶接部分の冷媒漏れなどトラブルが発生することがあった。
【特許文献1】
特開平09−113071号公報(特に「特許請求の範囲」及び図1参照)
【0003】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解消することにあり、空調機の冷凍サイクル等において用いる差圧弁において、構造が簡単・コンパクトで、しかも廉価な差圧弁を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決すべく、本発明は、以下の手段を採用した。即ち、
請求項1記載の差圧弁は、外枠パイプの一端に流体入口が形成され、同外枠パイプの他端に流体出口が形成され、両口の間に流体の差圧を感知する感圧部と、該感圧部で感知された差圧により流体の移動を制御する絞り部と、前記絞り部の制御の程度を任意の値に設定する調節部と、が設けられていることを特徴とする。
【0005】
請求項2記載の差圧弁は、請求項1記載の差圧弁において、外枠パイプ内に挿入可能な所定長さの筒状弁シートと、該筒状弁シート内に配置された上記感圧部と絞り部と調節部と、からなり、上記筒状弁シートは外枠パイプ内に挿入後、外枠パイプ内にカシメ固定されていると共に、上記外枠パイプの両端部は、継手形状に絞り成形されて高圧流体側の空間と低圧流体側の空間とが形成されていることを特徴とする。
【0006】
請求項3記載の差圧弁は、請求項1又は請求項2記載の差圧弁において、上記感圧部は、外枠パイプ内の流路内に該流路を横断するように配置されていることを特徴とする。
請求項4記載の差圧弁は、請求項3記載の差圧弁において、上記感圧部には、流体入口側に連通する高圧側空間部と、流体出口側に連通する低圧側空間と、両空間の間で摺動可能なピストンと、が形成されていることを特徴とする。
【0007】
請求項5記載の差圧弁は、請求項4記載の差圧弁において、上記筒状弁シート内で摺動可能に配置された弁体を備え、該弁体の一端部に上記ピストンが固定されると共にその中間部に上記絞り部が形成され、その他端部はバネにより高圧流体側の空間方向に弾圧されていることを特徴とする。
請求項6記載の差圧弁は、請求項4又は請求項5記載の差圧弁において、上記流体出口側と低圧側空間部とを連通する低圧導入孔は、弁体内に形成されていることを特徴とする。
【0008】
請求項7記載の差圧弁は、請求項5又は請求項6記載の差圧弁において、上記絞り部を構成する弁部は、上記筒状弁シートに形成される弁孔の流体下流側まで延設され、該延設部分は円錐形状で弁孔の下流側に配置されていることを特徴とする。
請求項8記載の差圧弁は、請求項7記載の差圧弁において、上記弁孔の流体下流側に該弁孔より径大の弁部形成部が形成され、該弁部形成部に位置する上記弁部の径大部に、一個もしくは複数個に下横孔を設けたことを特徴とする。
請求項9記載の差圧弁は、請求項7又は請求項8記載の差圧弁において、上記弁部形成部と上記弁体の径大部で形成される流路面積は、上記弁座部で形成される最大流路面積以上であり、かつ上記弁孔の流路面積より小さいことを特徴とする。
請求項10記載の差圧弁は、請求項7記載の差圧弁において、筒状弁シートによって支持される部分の弁体の外径と、絞り部の弁孔の内径と、を略同一としたことを特徴とする。
【0009】
請求項11記載の差圧弁は、請求項5記載の差圧弁において、弁体の一端部にピストンを装着後、カシメて端部が開くように円錐形状として、ピストンと弁体とを一体にしたことを特徴とする。
【0010】
請求項12記載の差圧弁は、請求項1記載の差圧弁において、上記流体入口側に上記調節部が設けられていることを特徴とする。
請求項13記載の差圧弁は、請求項10記載の差圧弁において、前記外枠パイプ内にシリンダ状筒体とバネケースとを装着し、上記シリンダ状筒体内には前記感圧部及び絞り部を配置し、上記バネケース内には上記調節部を配置する差圧弁であって、上記シリンダ状筒体内に前記感圧部及び絞り部を配置し、且つ、バネケース内に調節部を配置した後、シリンダ状筒体に対してバネケースを装着し、その後において、シリンダ状筒体とバネケースとを連結・固定し、該シリンダ状筒体とバネケースとの一体物を外枠パイプ内に嵌入させて、カシメることを特徴とする。
【0011】
請求項14記載の差圧弁は、請求項10又は請求項11記載の差圧弁において、上記感圧部及び絞り部は、シリンダ状筒体の筒内において摺動可能なピストンから形成され、該ピストンの感圧部の低圧側空間部側に高圧感圧室が形成され、高圧側空間部側に低圧感圧室が形成され、更に、上記感圧部の高圧感圧室側に、絞り部を構成する弁体が設けられていることを特徴とする。
請求項15記載の差圧弁は、請求項12記載の差圧弁において、上記シリンダ状筒体に複数個の低圧導入孔が軸方向に形成され、上記低圧側空間部と、上記低圧感圧室とを連通させることを特徴とする。
【0012】
請求項16記載の差圧弁は、請求項12又は請求項13記載の差圧弁において、前記ピストンに高圧導入孔を設け、高圧側空間部と高圧感圧室とを連通させることを特徴とする。
請求項17記載の差圧弁は、請求項12乃至請求項14記載のいずれか差圧弁において、上記弁体、及び、該弁体と対応する位置でシリンダ状筒体側に設けられた弁座は、共にステンレススチールを素材とされ、且つ、前記弁体はピストンに、弁座はシリンダ状筒体に形成された弁座支持部に各々圧入されていることを特徴とする。
【0013】
【発明の実施の形態】
【実施例1】
実施例1について、図面を用いて説明する。なお、図1はその縦断面図、図2は図1におけるD部詳細図である。なお、以下、図面に従って説明するが、上・下・左・右という表現は、図面の記載に伴うものであり、実際の位置関係とは、必ずしも一致するものではない。
【0014】
先ず、外枠パイプ10について説明する。
実施例1に係る差圧弁は、図1に示すように、全体として円筒状の外枠パイプ10と、外枠パイプ10より短く、外枠パイプ10の中に挿入・固定される筒状弁シート20と、該筒状弁シート20の中に配置される感圧部A、絞り部B及び調節部Cからなる。
また、外枠パイプ10の一端部の流体入口11近傍には、高圧側空間部Phが形成され、外枠パイプ10の他端部の流体出口12近傍には、低圧側空間部Plが形成される。なお、符号13はカシメ部である。
【0015】
次に、筒状弁シート20について説明する。
筒状弁シート20は、図2に示すように、全体として略円筒状となっており、その高圧側空間部Ph側の外径は、所定長さだけ径小部20aとして形成されており、該径小部20a以外の部分は、前記外枠パイプ10の内径より若干小さい外径となっている。また、前記外枠パイプ10の内径より若干小さい外径部分における径小部20a寄りには、カシメ受溝29が形成されている。そして、上記径小部20aと外枠パイプ10との隙間には流路14が形成され、高圧側空間部Phと後述の側孔24とを連通している。
【0016】
また、筒状弁シート20の内部には、ピストン40が内装・支持される径大部20bと、該径大部20bより若干小径の感圧部低圧空間21が形成される低圧空間形成部20cと、弁体支持部22a及び該弁体支持部22aにより形成される弁体支持孔22と、弁室20fと、弁孔23と、前記弁孔23より径大の弁部形成部20dと、更に、バネ室形成部20eと、が連続的に形成される。
【0017】
また、上記弁体支持部22aの下部には、複数の側孔24が形成され、側孔24は前記弁室20fに開口しており、したがって、高圧側空間部Ph、流路14、側孔24、弁室20f、及び弁孔23は順次連通している。また、弁孔23は、弁部35が「開」のときにその下部の低圧側空間部Plに連通する。
そして、径大部20bと低圧空間形成部20cでは感圧部Aが形成され、弁体支持孔22では弁体30が支持され、弁孔23では絞り部Bが形成され、バネ室形成部20eでは調節部Cが形成される。なお、側孔24は一個形成しても良いのは勿論である。
【0018】
次に、弁体30について説明する。
特に図2に示すように、上記筒状弁シート20の軸線部分の孔部に沿って棒状の弁体30が配置される。この弁体30は、上記筒状弁シート20の径大部20bから、低圧空間形成部20c、弁体支持部22a、弁室20f、弁孔23、弁部形成部20dを貫通してバネ室25まで延設されている。そして、筒状弁シート20の径大部20b部分では、ピストン40が弁体30に一体に装着されている。この装着に当たっては、弁体30にはカシメ部31が形成されている。
【0019】
また、筒状弁シート20の低圧空間形成部20c部分に連通する上横孔33が弁体30の直径方向に穿設され、弁体30の長さ方向の軸心部に形成されている低圧導入孔32に連通している。
また、弁体30の弁体支持部22aに対応する部分は平坦な柱状となっており、この部分の外径は弁孔23の内径と略同一径として形成される。これは弁体30に流体によるスラスト荷重を発生させないためである。また、弁体30の弁室20fから弁孔23に至る部分は径小部36として形成される。また、この径小部36から下方には下方が径大となるテーパー形状の弁部35が形成され、筒状弁シート20の弁部形成部20dに位置する。また、弁体30のバネ室25部分には、下横孔34が弁体30の直径方向に穿設され、バネ室25に開口していると共に低圧導入孔32に連通している。また、弁体30の下端部はバネ受け52に当接し、バネ受け52はバネ53により弾持されている。
したがって、低圧側空間部Plは、下横孔34、低圧導入孔32、及び上横孔33を通って感圧部低圧空間21に常時連通していることになる。
【0020】
次に、感圧部Aについて説明する。
筒状弁シート20の径大部20bの内には所定幅で上下に摺動可能にピストン40が配置されている。ピストン40は所定厚みの円盤からなり、その外周に形成されたリング溝にはシール用のOリング41が配置されている。また、その中心部に穿設された孔には、上記弁体30の上端部が嵌入されてカシメ部31が形成されている。
また、上記ピストン40の上面は、高圧側空間部Phに面しており、ピストン40の下面と弁体支持部22aとの間の低圧空間形成部20cに感圧部低圧空間21が形成されている。なお、前記のように、感圧部低圧空間21は、上横孔33、低圧導入孔32及び下横孔34を通じて低圧側空間部Plの流体圧が導かれている。
【0021】
そして、ピストン40は、
高圧側空間部Phの流体圧>感圧部低圧空間21の流体圧+バネ53のバネ荷重相当圧、のときは下動し、
高圧側空間部Phの流体圧<感圧部低圧空間21の流体圧+バネ53の荷重相当圧、のときは上動し、弁部35は開弁することになる。
この差圧によるピストン40の上下動によりピストン40と一体の弁体30も、弁体支持部22aに支持された状態で筒状弁シート20の弁体支持孔22内を摺動し、上下動することになる。
【0022】
絞り部Bは、弁体30の径小部36と弁部35、及び、筒状弁シート20側の弁孔23、弁座部23a及び弁部形成部20dにより構成され、弁部35と弁座部23aにて形成される開口面積が差圧に応答して増減し、流量が絞られて変化する。
【0023】
次に、調節部Cについて説明する。
弁体30の下端部は、バネ受け52のバネ受け孔52aに当接しており、バネ受け52は、バネ53により絞り部B側に弾持されている。またバネ53は、図1に示すように、筒状弁シート20の下部を構成するスカート部26の雌ネジ受部27に螺合され通孔51を有する調節ネジ50によって支持されている。したがって、調節ネジ50の回転によって、バネ受け52に対するバネ53の弾発力を調節することができる。この弾発力の調節は、差圧量の調節となる。
【0024】
上記実施例1の差圧弁を構成するに当たっては、先ず、筒状弁シート20の弁体支持部22aにOリング28を装着して、筒状弁シート20内に弁体30を挿入させ、Oリング41を装着したピストン40を、筒状弁シート20上端部に上方から弁体30と共に嵌合させ、弁体30の下端部を治具にて受けて、弁体30の上端部をかしめてピストン40と固定する。そして、バネ受け52を弁体30の下端部に当接した上、バネ受け52にバネ53をあてがい、調節ネジ50を雌ネジ受部27に螺合する。
【0025】
上記手段によれば、きわめて簡単で、コンパクトな差圧弁を得ることができる。
【0026】
かかる構成により、差圧によるピストン40の上下動に応じて弁体30が上下動し、弁部35と弁座部23aにて形成される開口面積が可変され、流量が絞られて変化することになる。
【0027】
また、所定量の差圧以上の差圧が発生した場合は、感圧部Aにおけるピストン40の下動により、絞り部Bにおいて弁体30は下動し、所定量の差圧になるまで絞り部Bで流量を増加させる。逆に、所定量の差圧以下の差圧が発生した場合は、感圧部Aにおけるピストン40の上動により、絞り部Bにおいて弁体30は上動し、所定量の差圧になるまで絞り部Bで流量を減少・停止させる。
なお、上記実施例1において、低圧側空間部Plと感圧部低圧空間21との連通手段として、下横孔34、低圧導入孔32及び上横孔33を形成したが、これら下横孔34、低圧導入孔32及び上横孔33を設けず、筒状弁シート20内に別途、低圧側空間部Plと感圧部低圧空間21とを直接結ぶ連通路(図示せず)を設けてもよい。
【0028】
【実施例2】
次に、本発明の実施例2について説明する。図3は、その縦断面図、図4は、図3のD’部の詳細図である。実施例2の説明に当たって、実施例1と同一の構成部分には、同一符号を付してその構成の説明を省略する。
実施例1は上記弁孔23の流体下流側に該弁孔23より径大の弁部形成部20dが形成されているが、実施例2においては、この弁部形成部20dに位置する上記弁部35の径大部37に、一個もしくは複数個の下横孔34aを弁部形成部20dと低圧導入孔32を連通するように設ける。
また、更に弁部形成部20dと弁体30の径大部37で形成される流路面積S(=弁部形成部20dの横断面積−径大部37の横断面積)を、弁座部23aと弁部35で形成される最大開口面積s以上とし、かつ、弁孔23の流路面積m(=弁孔23の横断面積−小径部36の横断面積)より小さく形成される。
通常、流出量が増加するにつれ弁部35前後の圧力差も大きくなると共に、設定差圧値に対する圧力変化量が増加する傾向にあるが、差圧弁に於いては、流量の変化に対する弁部35前後の圧力差の変化を最小限に抑える必要があることから、本実施例2においては、弁体30の径大部37に一個若しくは複数個の小径の下横孔34aを設け、更に、弁部形成部20dと弁体30の径大部37で形成される流路面積Sを、弁座部23aで形成される最大開口面積s以上で、かつ弁孔23の流路面積mよりも小さくすることにより、冷媒の流速を高め、ベルヌーイの原理により低圧空間形成部20c内の圧力が実際の圧力より低くなり、その結果、大流量流出時に於いても弁開度を大きく、圧力変化を小さくすることが可能となる。
【実施例3】
次に、本発明の実施例3について説明する。図5は、図1のD部に相当する実施例3の詳細図である。実施例3の説明に当たって、実施例1と同一の構成部分には、同一符号を付してその構成の説明を省略する。実施例3においても外枠パイプ10の形状は実施例1と略同一である。
【0029】
次に、筒状弁シート20’について説明する。
筒状弁シート20’は全体として円筒状となっており、その外形は、全長にわたって均一径であるが、その中央部にはカシメ受溝29が形成されている。また、筒状弁シート20’の内部には、ピストン40’を内装・支持させる径大部20’bと、該径大部20’bより若干小径の弁室20’fと、更に、バネ室形成部20’eと、が連続的に形成される。そして、径大部20’bでは感圧部A’が形成され、弁室20’fでは絞り部B’が形成され、バネ室形成部20’eでは調節部C’が形成される。
【0030】
また、筒状弁シート20’の上下方向の中間位置には支持筒25aが一体に設けられている。この支持筒25aは後述のピストン40’側の延伸軸部40’aを支持させるものである。また、この支持筒25aの内壁下部には、支持筒周溝25cが形成されると共に、この支持筒周溝25cと支持筒25aとの外面との間には支持筒側孔25bが形成されている。
【0031】
次に、感圧部A’について説明する。
筒状弁シート20’の径大部20’bの内壁には所定幅で上下に摺動可能にピストン40’が配置されている。ピストン40’は所定厚みの円盤からなり、その外周に形成されたリング溝にはOリング41が配置されている。また、その中心部は所定長さで下方に垂下する延伸軸部40’aが形成され、その下端はバネ受け52を介してバネ53で上方へ弾持されている。また、ピストン40’の筒状弁シート20’に対する上限位置は、筒状弁シート20’に固定されているストッパ60により制限されている。
【0032】
また、上記ピストン40’の上面は、高圧側空間部Phに面しており、ピストン40’の下面には、弁室20’fで低圧側空間部Plの流体圧が導かれている。
そして、ピストン40’は、実施例1と同様に、
高圧側空間部Phの流体圧>低圧側空間部Plの流体圧+バネ荷重相当圧、
のときは下動し、
高圧側空間部Phの流体圧<低圧側空間部Plの流体圧+バネ荷重相当圧、のときは上動することになる。このピストン40’の上下動はピストン40’と一体の延伸軸部40’aも支持筒25aに支持された状態で上下動することになる。
【0033】
上記延伸軸部40’a及び支持筒25aが絞り部B’を構成する。上記ピストン40’の中心部には、延伸軸部40’aの中心部まで連続して高圧導入孔42が形成され、この高圧導入孔42の下端部近傍には高圧側孔43が側方に開放されるように形成されている。したがって、高圧側空間部Phは、高圧導入孔42を介して、高圧側孔43まで常に連通していることになる。
また、上記支持筒25aには、前記のように支持筒側孔25bが形成されている。そして、高圧側孔43が支持筒周溝25cと重なり、流路が形成されたときのみ高圧側空間部Phから低圧側空間部Plに冷媒が流れることになる。
なお、バネ53を含む調節部C’の構成は、実施例1と略同一である。
【0034】
上記実施例3の差圧弁の使用手段は、実施例1と同じであるので、共通部分については説明を省略し、相違する部分のみ説明する。
実施例3の差圧弁において、先ず、差圧が所定量以下の場合は、ピストン40’は下動せず、高圧側孔43が支持筒25a側の支持筒周溝25cと重なることはない。したがって、冷媒が支持筒25aの内壁から弁室20’f内に流出することはない。
【0035】
また、所定量の差圧が発生した場合は、感圧部Aにおけるピストン40’の下動により、絞り部B’において、延伸軸部40’aは下動し、冷媒を弁室20’fに流す。また、所定差圧以下になった場合は、感圧部A’におけるピストン40’の上動により、絞り部B’において弁体30は上動し、所定量の差圧になるまで絞り部B’で流量を減少・停止させる。
したがって、ピストン40’が所定位置(差圧が少ない状態での位置)では、支持筒25aの内壁により弁室20’f内に流出することはないが、ピストン40’が所定位置より、差圧により下がってくると、高圧側孔43が支持筒周溝25cに重なり、支持筒側溝25bから流体は流出する。そして、その重なりが大きいほど流出量が増加する。
【0036】
【実施例4】
次に、実施例4について図面を用いて説明する。図6はその縦断面図、図7は図6におけるD”部詳細図である。
先ず、外枠パイプ110について説明する。
実施例3に係る差圧弁は、図6に示すように、全体として円筒状の金属製、例えば銅製の外枠パイプ110と、外枠パイプ110より短く、外枠パイプ110の中に挿入・固定されるシリンダ状筒体120及びバネケース130と、該シリンダ状筒体120及びバネケース130の中に配置される感圧部A”、絞り部B”及び調節部C”からなる。
また、外枠パイプ110の一端部の流体入口111近傍には、高圧側空間部Phが形成され、外枠パイプ110の他端部の流体出口112近傍には、低圧側空間部Plが形成される。更に、外枠パイプ110の中間部にはカシメ部113が形成される。
【0037】
次に、シリンダ状筒体120について説明する。
外枠パイプ110内に配置されるシリンダ状筒体120は、図6,7に示すように、全体として略円筒状に形成されており、上記カシメ部113の内面に相当するシリンダ状筒体120の外周面部分には、カシメ用凹部121が形成され、シリンダ状筒体120の内面は、後述のバネケース130を装着するためのバネケース装着部122が形成される。なお、該バネケース装着部122の上端部には、後述のバネケース130側の径小部131が嵌合された後、押し込むようにカシメることでカシメ部122aが形成されている。
【0038】
また、シリンダ状筒体120の下部は所定の厚みで形成され、該所定の厚み部分の内部には、上下に複数の低圧導入孔124が形成される。該低圧導入孔124の下部は低圧側空間部Plに連通しており、その上部は後述のシリンダ状筒体120内に形成される低圧感圧室128に連通している。
そして、シリンダ状筒体120の下端部には、弁座支持部125が形成され、該弁座支持部125の中心部には、例えばステンレススチール製の弁座126が圧入により装着される。該弁座126には弁座孔127が形成されている。
【0039】
バネケース130は、その下部の径小部131が前記シリンダ状筒体120のバネケース装着部122に嵌合される。上記径小部131の外周には、シリンダ状筒体120側との間に配置されるOリング123aを嵌合するリング状のリング溝123が形成される。また、この径小部131の内側は、Oリング133が介装されており、後述のピストン140を支持するピストン支持部132となる。
バネケース130の上部は外枠パイプ110の内周面に嵌合され、その内面にはバネ室134が形成される。また、バネケース130の上端部内周には、雌ネジ部135が形成され、該雌ネジ部135には調節ネジ150が螺合されている。
調節ネジ150は、その中心部に通孔151が形成され、上方の高圧側空間部Phとバネ室134とを連通している。
【0040】
次に、感圧部A”について説明する。感圧部A”は、ピストン140の下部に形成される。ピストン140は全体として上下に長い異径の円柱状体として形成され、上方部分は小径のピストン軸部141となり、下方は大径の感圧部142となる。ピストン軸部141は、前記ピストン支持部132に上下方向に摺動可能に支持され、また、感圧部142はシリンダ状筒体120の下部の内周面に上下方向に摺動可能に支持されている。また。感圧部142の外周とシリンダ状筒体120の内周面との間にはOリング143が介装されている。
【0041】
また、ピストン140の軸心部には、その長さ方向(軸心方向)に高圧導入縦孔147が形成され、該高圧導入縦孔147と連通してその上部には高圧導入横孔146が形成され、該高圧導入横孔146の端部はバネ室134に開口している。また、高圧導入縦孔147の下部には、高圧導入縦孔147と連通状態で高圧導入斜孔148が形成され、その端部は感圧部142の下部の空間に開口している。
【0042】
したがって、この感圧部142の上面の空間部は低圧導入孔124によって低圧側空間部Plと連通し、低圧感圧室128が形成され、感圧部142の下面の空間部は、高圧導入横孔146、高圧導入縦孔147及び高圧導入斜孔148によって、高圧側空間部Phと連通し、高圧感圧室129が形成される。
また、ピストン140の上端部には、内面が球面形状の受け凹部145が形成され、該受け凹部145の底部にバネ受突部152aがバネ153の弾発力により当接し、ユニバーサルジョイントを形成している。この当接状態により、バネ153の弾発力や高圧冷媒により、ピストン140に偏心荷重が負荷してもピストン140には円滑に上下圧として作用する。
【0043】
絞り部B”は、感圧部142の下部で上記高圧導入縦孔147に連続して形成された弁体装着孔144に装着されるステンレススチール製の弁体149と、前記弁座126によって構成される。即ち、弁体149は、弁体装着孔144への柱状の挿入部149aと、円盤状の径大部149bと、下端の倒立円錐状の突部149cとからなり、該突部149cと弁座126にて形成される開口面積が差圧に応答して、ピストン140が上下することで増減し、流量が絞られて変化する。
【0044】
ピストン140は、
高圧感圧室129の流体圧>低圧感圧室128の流体圧+バネ153のバネ荷重相当圧、のときは上動し、弁体149は開弁することになる。
高圧感圧室129の流体圧<低圧感圧室128の流体圧+バネ153のバネ荷重相当圧、のときは下動し、弁体149は閉弁することになる。
【0045】
次に、調節部C”について説明する。
上記調節ネジ150の下面(バネ室134側)とバネ室134の下部に配置されるバネ受け152との間にはバネ153が縮装され、該バネ153はバネ受け152を下方に押し圧している。該バネ受け152は、その上面にバネ受面が形成され、その下面には下端部が球面状となったバネ受突部152aが一体に形成される。この弾発力の調節は、差圧量の調節となる。
【0046】
上記実施例4の差圧弁の組み付けに当たっては、先ず、シリンダ状筒体120の弁座支持部125に弁座126を装着し、ピストン140の弁体装着孔144に弁体149を装着後、シリンダ状筒体120にピストン140を嵌合させる。次に、バネケース130内に、バネ受け152及びバネ153をこの順に内装し、調節ネジ150を雌ネジ部135に螺合する。
そして、前記受け凹部145に前記バネ受突部152aを遊嵌させながら、シリンダ状筒体120に対してバネケース130を装着・固定し一体化する。固定に当たっては、上述のようにバネケース装着部122に径小部131を嵌合後、カシメ部122aをカシメることで、確実に一体化することができる。
そして、このシリンダ状筒体120とバネケース130との一体物を外枠パイプ110内に嵌入させ、カシメ部113とカシメ用凹部121との位置を合わせた後、カシメる。上記手段によれば、きわめて簡単で、コンパクトな差圧弁を得ることができる。
【0047】
かかる構成により、差圧によるピストン140の上下動に応じて弁体149が上下動し、該弁体149と弁座126にて形成される開口面積が変更され、流量が絞られて変化することになる。
また、所定量の差圧以上の差圧が発生した場合は、感圧部A”におけるピストン140の上動により、絞り部B”において弁体149は上動し、所定量の差圧になるまで絞り部B”で流量を増加させる。逆に、所定量の差圧以下の差圧のときには、感圧部A”におけるピストン140の下動により、絞り部B”において弁体149は下動し、所定量の差圧になるまで絞り部B”で流量を減少又は停止させる。
【0048】
特に、実施例4においては、低圧感圧室128を高圧導入側に設けることにより、弁体149を正弁方向(高圧感圧室129側)に設置できるため、微少流量の流量制御が可能となる。
また、シリンダ状筒体120にピストン140及びバネケース130を装着後、シリンダ状筒体120上端部122aをカシメてカシメ部とし、バネケース130とシリンダ状筒体120を一体化することにより、ピストン140の上・下に低圧感圧室128と高圧感圧室129を形成することができ、更に、シリンダ状筒体120及びバネケース130を一体物とすることで、治具による組み付け作業が容易となり、又、最終組立工程の外枠パイプ110への組付けも容易となるため、工数低減を図れる。
【0049】
更に、実施例4によれば、部品点数を増やすことなく、シリンダ状筒体120に孔加工するだけで容易に低圧側空間部Plの圧力をピストンの感圧部上部の低圧感圧室128に導くことができ、また、部品点数を増やすことなく、ピストン140に孔加工するだけで、容易に高圧側空間部Phの圧力を感圧部142の下面及び高圧感圧室129の弁体149からなる絞り部B”に導くことができる。
また、弁体149及び弁座126の素材を、ステンレススチールにすることにより、弁体149及び弁座126の磨耗が軽減され、更に、弁体149及び弁座126はそれぞれピストン140及びシリンダ状筒体120に圧入して使用するために、ピストン140及びシリンダ状筒体120は安価な材料、例えば黄銅を使用でき経済的である。
【0050】
【発明の効果】
上記構成により、本発明によれば、構造が簡単・コンパクトで耐久性があり、製造・加工が容易で廉価な差圧弁とすることができる。
【図面の簡単な説明】
【図1】本発明に係る実施例1の縦断面図。
【図2】図1のD部の詳細図。
【図3】本発明に係る実施例2の縦断面図。
【図4】図3のD’部の詳細図。
【図5】図1のD部に相当する部分の実施例3の詳細図。
【図6】本発明に係る実施例4の縦断面図。
【図7】図6のD”部の詳細図。
【符号の説明】
Ph・・高圧側空間部  Pl・・低圧側空間部  A,A’,A”・・感圧部
B,B’,B”・・絞り部 C,C’,C”・・調節部
10・・外枠パイプ   11・・流体入口   12・・流体出口
13・・カシメ部    14・・流路
20,20’・・筒状弁シート    20a・・径小部
20b,20’b・・径大部     20c・・低圧空間形成部
20d・・弁部形成部         20e,20’e・・バネ室形成部
20f,20’f・・弁室      21・・感圧部低圧空間
22・・弁体支持孔             22a・・弁体支持部
23・・弁孔       23a・・弁座部   24・・側孔
25,25’・・バネ室  25a・・支持筒   25b・・支持筒側孔
25c・・支持筒周溝   26・・スカート部  27・・雌ネジ受部
28・・Oリング         29・・カシメ受溝
30・・弁体 31・・カシメ部  32・・低圧導入孔  33・・上横孔
34・・下横孔   34a・・下横孔  35・・弁部  36・・径小部
37・・径大部   40,40’・・ピストン   40’a・・延伸軸部
41・・Oリング   42・・高圧導入孔    43・・高圧側孔
50・・調節ネジ   51・・通孔              52・・バネ受け
52a・・バネ受け孔  53・バネ          60・・ストッパ
110・・外枠パイプ[実施例3]
111・・流体入口     112・・流体出口  113・・カシメ部
120・・シリンダ状筒体  121・・カシメ用凹部
122・・バネケース装着部 122a・・カシメ部
123・・リング溝      123a・・Oリング
124・・低圧導入孔   125・・弁座支持部  126・・弁座
127・・弁座孔     128・・低圧感圧室  129・・高圧感圧室
130・・バネケース   131・・径小部  132・・ピストン支持部
133・・Oリング  134・・バネ室     135・・雌ネジ部
140・・ピストン  141・・ピストン軸部  142・・感圧部
143・・Oリング  144・・弁体装着孔   145・・受け凹部
146・・高圧導入(横)孔   147・・高圧導入(縦)孔
148・・高圧導入(斜)孔
149・・弁体    149a・・挿入部    149b・・径大部
149c・・突部   150・・調節ネジ    151・・通孔
152・・バネ受け  152a・・バネ受突部  153・バネ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a differential pressure valve used in a refrigeration cycle of an air conditioner or the like.
[0002]
[Prior art]
A differential pressure valve, which is used in the same manner as a refrigerant pressure adjusting valve used in a refrigeration cycle of an air conditioner, has a predetermined pressure (spring load) between both the upstream (high pressure) side and the downstream (low pressure) side of the fluid. The fluid flows only when there is a pressure difference of (equivalent pressure) or more (Patent Literature 1). However, the conventional direct-acting type requires a pilot pipe from the low pressure side. Not only is the structure complicated, but also troubles such as refrigerant leakage at the welded portion of the pilot pipe may occur due to long-term operation and the like.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 09-113071 (especially, refer to “Claims” and FIG. 1)
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a differential pressure valve having a simple, compact, and inexpensive differential pressure valve used in a refrigeration cycle of an air conditioner or the like.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following solutions. That is,
2. The differential pressure valve according to claim 1, wherein a fluid inlet is formed at one end of the outer frame pipe, a fluid outlet is formed at the other end of the outer frame pipe, and a pressure sensing portion for sensing a differential pressure of the fluid between both ports. A throttle unit that controls the movement of the fluid based on the differential pressure sensed by the pressure-sensitive unit, and an adjustment unit that sets the degree of control of the throttle unit to an arbitrary value. I do.
[0005]
The differential pressure valve according to claim 2 is the differential pressure valve according to claim 1, wherein the cylindrical valve seat having a predetermined length that can be inserted into the outer frame pipe, and the pressure-sensitive portion disposed in the cylindrical valve seat. After the cylindrical valve seat is inserted into the outer frame pipe, it is fixed by caulking in the outer frame pipe, and both ends of the outer frame pipe are reduced to a joint shape. It is characterized in that a space on the high-pressure fluid side and a space on the low-pressure fluid side are formed by molding.
[0006]
According to a third aspect of the present invention, in the differential pressure valve according to the first or second aspect, the pressure-sensitive portion is disposed in a flow path in the outer frame pipe so as to cross the flow path. It is characterized.
A differential pressure valve according to a fourth aspect of the present invention is the differential pressure valve according to the third aspect, wherein the pressure sensitive portion has a high pressure side space communicating with a fluid inlet side, a low pressure side space communicating with a fluid outlet side, and both spaces. And a piston slidable therebetween.
[0007]
A differential pressure valve according to a fifth aspect is the differential pressure valve according to the fourth aspect, further comprising a valve body slidably disposed in the cylindrical valve seat, and the piston is fixed to one end of the valve body. At the same time, the throttle portion is formed at an intermediate portion thereof, and the other end portion is elastically pressed in the space direction on the high-pressure fluid side by a spring.
According to a sixth aspect of the present invention, in the differential pressure valve according to the fourth or fifth aspect, the low-pressure introduction hole communicating the fluid outlet side and the low-pressure side space is formed in the valve body. And
[0008]
A differential pressure valve according to a seventh aspect of the present invention is the differential pressure valve according to the fifth or sixth aspect, wherein the valve portion forming the throttle portion extends to a fluid downstream side of a valve hole formed in the cylindrical valve seat. The extended portion has a conical shape and is arranged downstream of the valve hole.
The differential pressure valve according to claim 8 is the differential pressure valve according to claim 7, wherein a valve portion forming portion having a diameter larger than the valve hole is formed downstream of the valve hole in the fluid, and the valve portion is located in the valve portion forming portion. One or more lower transverse holes are provided in the large diameter portion of the valve portion.
The differential pressure valve according to claim 9 is the differential pressure valve according to claim 7 or 8, wherein the flow path area formed by the valve portion forming portion and the large diameter portion of the valve body is formed by the valve seat portion. The flow path area is equal to or larger than the maximum flow path area to be used and smaller than the flow path area of the valve hole.
According to a tenth aspect of the present invention, in the differential pressure valve according to the seventh aspect, the outer diameter of the valve body of the portion supported by the cylindrical valve seat and the inner diameter of the valve hole of the throttle portion are substantially the same. It is characterized.
[0009]
In the differential pressure valve according to the eleventh aspect, in the differential pressure valve according to the fifth aspect, after the piston is mounted on one end of the valve body, the piston and the valve body are integrated into a conical shape so that the end is opened by caulking. It is characterized by the following.
[0010]
A differential pressure valve according to a twelfth aspect is the differential pressure valve according to the first aspect, wherein the adjusting portion is provided on the fluid inlet side.
The differential pressure valve according to claim 13 is the differential pressure valve according to claim 10, wherein a cylindrical cylinder and a spring case are mounted in the outer frame pipe, and the pressure-sensitive section and the throttle section are provided in the cylindrical cylinder. A differential pressure valve for arranging the adjusting portion in the spring case, arranging the pressure-sensitive portion and the throttle portion in the cylindrical cylinder, and arranging the adjusting portion in the spring case; A spring case is attached to the cylindrical body, and thereafter, the cylindrical cylindrical body and the spring case are connected and fixed, and an integral body of the cylindrical cylindrical body and the spring case is fitted into the outer frame pipe and caulked. It is characterized by the following.
[0011]
A differential pressure valve according to a fourteenth aspect is the differential pressure valve according to the tenth or the eleventh aspect, wherein the pressure-sensitive portion and the throttle portion are formed of a piston slidable in a cylindrical tubular body. A high-pressure pressure-sensitive chamber is formed on the low-pressure side space side of the pressure-sensitive section, a low-pressure pressure-sensitive chamber is formed on the high-pressure space section, and a throttle section is provided on the high-pressure pressure-sensitive chamber side of the pressure-sensitive section. It is characterized in that a constituent valve element is provided.
The differential pressure valve according to claim 15 is the differential pressure valve according to claim 12, wherein a plurality of low pressure introduction holes are formed in the cylindrical tubular body in the axial direction, and the low pressure side space portion, the low pressure pressure sensing chamber, Is communicated.
[0012]
According to a sixteenth aspect of the present invention, in the differential pressure valve according to the twelfth or thirteenth aspect, the piston is provided with a high-pressure introduction hole, so that the high-pressure side space and the high-pressure pressure-sensitive chamber communicate with each other.
The differential pressure valve according to claim 17 is the differential pressure valve according to any one of claims 12 to 14, wherein the valve body, and a valve seat provided on the cylinder body side at a position corresponding to the valve body, Both are made of stainless steel, and the valve body is press-fitted into a piston, and the valve seat is press-fitted into a valve seat support portion formed in a cylindrical tubular body.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
Example 1 will be described with reference to the drawings. 1 is a longitudinal sectional view, and FIG. 2 is a detailed view of a portion D in FIG. In the following, description will be given with reference to the drawings. However, the expressions “up”, “down”, “left”, and “right” are associated with the description of the drawings, and do not always correspond to actual positional relationships.
[0014]
First, the outer frame pipe 10 will be described.
As shown in FIG. 1, the differential pressure valve according to the first embodiment has a cylindrical outer frame pipe 10 as a whole, and a cylindrical valve seat shorter than the outer frame pipe 10 and inserted and fixed in the outer frame pipe 10. And a pressure sensing portion A, a throttle portion B, and an adjusting portion C arranged in the tubular valve seat 20.
A high pressure side space Ph is formed near the fluid inlet 11 at one end of the outer frame pipe 10, and a low pressure side space Pl is formed near the fluid outlet 12 at the other end of the outer frame pipe 10. You. Reference numeral 13 denotes a caulking portion.
[0015]
Next, the cylindrical valve seat 20 will be described.
As shown in FIG. 2, the cylindrical valve seat 20 has a substantially cylindrical shape as a whole, and the outer diameter of the high pressure side space portion Ph side is formed as a small diameter portion 20 a by a predetermined length. The portion other than the small diameter portion 20a has an outer diameter slightly smaller than the inner diameter of the outer frame pipe 10. A crimp receiving groove 29 is formed near the small diameter portion 20a in the outer diameter portion slightly smaller than the inner diameter of the outer frame pipe 10. A flow path 14 is formed in a gap between the small diameter portion 20a and the outer frame pipe 10, and communicates the high pressure side space Ph with a later-described side hole 24.
[0016]
Further, inside the cylindrical valve seat 20, a large-diameter portion 20b in which the piston 40 is housed and supported, and a low-pressure space forming portion 20c in which a pressure-sensitive portion low-pressure space 21 slightly smaller in diameter than the large-diameter portion 20b is formed. A valve body supporting portion 22a and a valve body supporting hole 22 formed by the valve body supporting portion 22a, a valve chamber 20f, a valve hole 23, and a valve portion forming portion 20d having a diameter larger than the valve hole 23; Further, the spring chamber forming portion 20e is formed continuously.
[0017]
Further, a plurality of side holes 24 are formed in the lower portion of the valve body support portion 22a, and the side holes 24 are open to the valve chamber 20f. Therefore, the high pressure side space Ph, the flow path 14, the side holes 24, the valve chamber 20f, and the valve hole 23 are sequentially connected. Further, the valve hole 23 communicates with the lower pressure side space Pl below the valve portion 35 when the valve portion 35 is “open”.
The large diameter portion 20b and the low pressure space forming portion 20c form a pressure sensing portion A, the valve body supporting hole 22 supports the valve body 30, the valve hole 23 forms the throttle portion B, and the spring chamber forming portion 20e. Thus, an adjusting portion C is formed. It is needless to say that one side hole 24 may be formed.
[0018]
Next, the valve element 30 will be described.
In particular, as shown in FIG. 2, a rod-shaped valve body 30 is disposed along a hole in the axial portion of the cylindrical valve seat 20. The valve body 30 extends from the large-diameter portion 20b of the tubular valve seat 20 through the low-pressure space forming portion 20c, the valve body supporting portion 22a, the valve chamber 20f, the valve hole 23, and the valve portion forming portion 20d to form a spring chamber. It extends to 25. In the large-diameter portion 20 b of the cylindrical valve seat 20, the piston 40 is integrally mounted on the valve body 30. In this mounting, the valve body 30 is formed with a swaged portion 31.
[0019]
An upper lateral hole 33 communicating with the low pressure space forming portion 20c of the cylindrical valve seat 20 is formed in the diametric direction of the valve body 30, and the low pressure hole formed in the axial center of the valve body 30 in the longitudinal direction. It communicates with the introduction hole 32.
Further, a portion of the valve body 30 corresponding to the valve body support portion 22 a has a flat columnar shape, and the outer diameter of this portion is formed to be substantially the same as the inner diameter of the valve hole 23. This is because a thrust load due to fluid is not generated in the valve body 30. The portion of the valve body 30 from the valve chamber 20f to the valve hole 23 is formed as a small diameter portion 36. Further, a tapered valve portion 35 whose diameter becomes larger downward is formed below the small diameter portion 36, and is located at the valve portion forming portion 20 d of the tubular valve seat 20. A lower lateral hole 34 is formed in the spring chamber 25 portion of the valve body 30 in the diametric direction of the valve body 30, opens to the spring chamber 25, and communicates with the low-pressure introduction hole 32. The lower end of the valve body 30 is in contact with a spring receiver 52, and the spring receiver 52 is held by a spring 53.
Therefore, the low-pressure side space Pl is always in communication with the pressure-sensitive unit low-pressure space 21 through the lower horizontal hole 34, the low-pressure introduction hole 32, and the upper horizontal hole 33.
[0020]
Next, the pressure-sensitive portion A will be described.
A piston 40 is disposed within the large-diameter portion 20b of the cylindrical valve seat 20 so as to be vertically slidable with a predetermined width. The piston 40 is formed of a disk having a predetermined thickness, and an O-ring 41 for sealing is disposed in a ring groove formed on an outer periphery thereof. The upper end of the valve body 30 is fitted into a hole formed in the center thereof to form a caulking portion 31.
The upper surface of the piston 40 faces the high pressure side space Ph, and the pressure sensitive portion low pressure space 21 is formed in the low pressure space forming portion 20c between the lower surface of the piston 40 and the valve body support portion 22a. I have. As described above, the fluid pressure in the low-pressure side space Pl is guided to the pressure-sensitive portion low-pressure space 21 through the upper horizontal hole 33, the low-pressure introduction hole 32, and the lower horizontal hole 34.
[0021]
And the piston 40
When the fluid pressure of the high-pressure side space Ph> the fluid pressure of the pressure-sensitive portion low-pressure space 21 + the pressure equivalent to the spring load of the spring 53, it moves downward.
When the fluid pressure in the high-pressure side space Ph <the fluid pressure in the pressure-sensitive portion low-pressure space 21 + the pressure equivalent to the load of the spring 53, the valve moves upward, and the valve portion 35 opens.
Due to the vertical movement of the piston 40 due to this differential pressure, the valve body 30 integrated with the piston 40 also slides in the valve body support hole 22 of the tubular valve seat 20 while being supported by the valve body support portion 22a, and moves up and down. Will be.
[0022]
The throttle portion B includes the small diameter portion 36 and the valve portion 35 of the valve body 30, the valve hole 23 on the cylindrical valve seat 20 side, the valve seat portion 23 a, and the valve portion forming portion 20 d. The opening area formed by the seat 23a increases or decreases in response to the differential pressure, and the flow rate is reduced and changed.
[0023]
Next, the adjusting section C will be described.
The lower end of the valve body 30 is in contact with a spring receiving hole 52 a of a spring receiver 52, and the spring receiver 52 is elastically held by a spring 53 toward the throttle portion B. As shown in FIG. 1, the spring 53 is screwed to the female screw receiving portion 27 of the skirt portion 26 constituting the lower portion of the tubular valve seat 20 and is supported by an adjusting screw 50 having a through hole 51. Therefore, the elasticity of the spring 53 with respect to the spring receiver 52 can be adjusted by the rotation of the adjustment screw 50. The adjustment of the resilience is an adjustment of the differential pressure.
[0024]
In constructing the differential pressure valve of the first embodiment, first, an O-ring 28 is attached to the valve element support portion 22a of the cylindrical valve sheet 20, and the valve element 30 is inserted into the cylindrical valve sheet 20. The piston 40 equipped with the ring 41 is fitted to the upper end of the cylindrical valve seat 20 together with the valve 30 from above, the lower end of the valve 30 is received by a jig, and the upper end of the valve 30 is swaged. It is fixed to the piston 40. Then, the spring receiver 52 is brought into contact with the lower end of the valve body 30, and the spring 53 is applied to the spring receiver 52, and the adjusting screw 50 is screwed into the female screw receiver 27.
[0025]
According to the above means, a very simple and compact differential pressure valve can be obtained.
[0026]
With this configuration, the valve element 30 moves up and down according to the up and down movement of the piston 40 due to the differential pressure, the opening area formed by the valve section 35 and the valve seat section 23a is changed, and the flow rate is reduced and changed. become.
[0027]
Further, when a differential pressure equal to or more than a predetermined amount of differential pressure is generated, the valve body 30 moves down in the throttle portion B due to the downward movement of the piston 40 in the pressure sensing portion A, and the throttle body is throttled until a predetermined amount of differential pressure is reached. In section B, the flow rate is increased. Conversely, when a differential pressure equal to or less than the predetermined amount of differential pressure is generated, the valve body 30 moves upward in the throttle portion B due to the upward movement of the piston 40 in the pressure-sensitive portion A, and becomes a predetermined amount of differential pressure. The flow rate is reduced and stopped at the throttle section B.
In the first embodiment, the lower horizontal hole 34, the low-pressure introduction hole 32, and the upper horizontal hole 33 are formed as communication means between the low-pressure side space P1 and the pressure-sensitive portion low-pressure space 21. Also, without providing the low-pressure introduction hole 32 and the upper horizontal hole 33, a communication path (not shown) for directly connecting the low-pressure side space portion P1 and the pressure-sensitive portion low-pressure space 21 may be separately provided in the cylindrical valve seat 20. Good.
[0028]
Embodiment 2
Next, a second embodiment of the present invention will be described. FIG. 3 is a longitudinal sectional view, and FIG. 4 is a detailed view of a D ′ part in FIG. In the description of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the description of the configuration will be omitted.
In the first embodiment, the valve portion forming portion 20d having a diameter larger than the valve hole 23 is formed on the downstream side of the fluid of the valve hole 23. In the second embodiment, the valve located in the valve portion forming portion 20d is formed. One or a plurality of lower horizontal holes 34a are provided in the large diameter portion 37 of the portion 35 so that the low pressure introduction hole 32 and the valve portion forming portion 20d communicate with each other.
Further, the flow path area S (= cross sectional area of the valve part forming part 20d−cross sectional area of the large diameter part 37) formed by the valve part forming part 20d and the large diameter part 37 of the valve element 30 is further reduced by the valve seat part 23a. And the maximum opening area s formed by the valve portion 35 and smaller than the flow passage area m of the valve hole 23 (= cross sectional area of the valve hole 23−cross sectional area of the small diameter portion 36).
Normally, as the outflow amount increases, the pressure difference before and after the valve portion 35 also increases, and the amount of pressure change relative to the set differential pressure value tends to increase. In the second embodiment, one or more small-diameter lower horizontal holes 34a are provided in the large-diameter portion 37 of the valve body 30 because it is necessary to minimize the change in the pressure difference before and after. The flow passage area S formed by the portion forming portion 20d and the large diameter portion 37 of the valve body 30 is not less than the maximum opening area s formed by the valve seat portion 23a and smaller than the flow passage area m of the valve hole 23. By doing so, the flow rate of the refrigerant is increased, and the pressure in the low-pressure space forming portion 20c becomes lower than the actual pressure by Bernoulli's principle. As a result, even at the time of a large flow outflow, the valve opening is increased and the pressure change is reduced. It is possible to do.
Embodiment 3
Next, a third embodiment of the present invention will be described. FIG. 5 is a detailed view of the third embodiment corresponding to the portion D in FIG. In the description of the third embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the description of the configuration will be omitted. Also in the third embodiment, the shape of the outer frame pipe 10 is substantially the same as in the first embodiment.
[0029]
Next, the cylindrical valve seat 20 'will be described.
The cylindrical valve seat 20 ′ has a cylindrical shape as a whole, and its outer shape has a uniform diameter over its entire length, but a crimp receiving groove 29 is formed at the center thereof. Further, inside the cylindrical valve seat 20 ', a large-diameter portion 20'b for housing and supporting the piston 40', a valve chamber 20'f having a slightly smaller diameter than the large-diameter portion 20'b, and a spring And the chamber forming portion 20'e are formed continuously. A pressure-sensitive portion A 'is formed in the large-diameter portion 20'b, a throttle portion B' is formed in the valve chamber 20'f, and an adjusting portion C 'is formed in the spring chamber forming portion 20'e.
[0030]
A support cylinder 25a is integrally provided at an intermediate position in the vertical direction of the cylindrical valve seat 20 '. The support cylinder 25a supports a later-described extension shaft portion 40'a on the piston 40 'side. A support cylinder peripheral groove 25c is formed in the lower portion of the inner wall of the support cylinder 25a, and a support cylinder side hole 25b is formed between the support cylinder peripheral groove 25c and the outer surface of the support cylinder 25a. I have.
[0031]
Next, the pressure-sensitive portion A 'will be described.
A piston 40 'is disposed on the inner wall of the large-diameter portion 20'b of the cylindrical valve seat 20' so as to be vertically slidable with a predetermined width. The piston 40 'is formed of a disk having a predetermined thickness, and an O-ring 41 is disposed in a ring groove formed on the outer periphery thereof. Further, an extension shaft portion 40'a is formed at a central portion thereof and hangs downward at a predetermined length, and a lower end thereof is elastically held upward by a spring 53 via a spring receiver 52. The upper limit position of the piston 40 'with respect to the cylindrical valve seat 20' is limited by a stopper 60 fixed to the cylindrical valve seat 20 '.
[0032]
The upper surface of the piston 40 'faces the high-pressure space Ph, and the fluid pressure of the low-pressure space Pl is guided to the lower surface of the piston 40' by the valve chamber 20'f.
And the piston 40 'is, as in the first embodiment,
Fluid pressure of high pressure side space Ph> fluid pressure of low pressure side space Pl + pressure equivalent to spring load,
Moves down when
When the fluid pressure in the high-pressure side space Ph <the fluid pressure in the low-pressure side space Pl + the pressure corresponding to the spring load, the pressure increases. The vertical movement of the piston 40 'moves up and down while the extension shaft portion 40'a integrated with the piston 40' is also supported by the support cylinder 25a.
[0033]
The stretching shaft portion 40'a and the support cylinder 25a constitute a drawing portion B '. At the center of the piston 40 ', a high-pressure introduction hole 42 is formed continuously to the center of the extension shaft portion 40'a. Near the lower end of the high-pressure introduction hole 42, a high-pressure side hole 43 is formed laterally. It is formed to be open. Therefore, the high pressure side space Ph always communicates with the high pressure side hole 43 via the high pressure introduction hole 42.
The support cylinder 25a is provided with the support cylinder side hole 25b as described above. Then, the high-pressure side hole 43 overlaps with the support cylinder circumferential groove 25c, and the refrigerant flows from the high-pressure side space Ph to the low-pressure side space Pl only when the flow path is formed.
The configuration of the adjusting section C ′ including the spring 53 is substantially the same as that of the first embodiment.
[0034]
Since the means for using the differential pressure valve of the third embodiment is the same as that of the first embodiment, description of common parts will be omitted, and only different parts will be described.
In the differential pressure valve according to the third embodiment, first, when the differential pressure is equal to or less than a predetermined amount, the piston 40 'does not move downward, and the high-pressure side hole 43 does not overlap the support cylinder peripheral groove 25c on the support cylinder 25a side. Therefore, the refrigerant does not flow out of the inner wall of the support cylinder 25a into the valve chamber 20'f.
[0035]
Further, when a predetermined amount of differential pressure is generated, the downward movement of the piston 40 'in the pressure-sensitive portion A causes the stretching shaft portion 40'a to move downward in the throttle portion B', and the refrigerant flows into the valve chamber 20'f. Pour When the pressure difference becomes equal to or less than the predetermined differential pressure, the valve element 30 moves upward in the throttle portion B 'due to the upward movement of the piston 40' in the pressure sensing portion A ', and the throttle portion B reaches a predetermined amount of differential pressure. 'To decrease / stop the flow.
Therefore, when the piston 40 'is at the predetermined position (the position where the differential pressure is small), the piston 40' does not flow into the valve chamber 20'f due to the inner wall of the support cylinder 25a. As a result, the high-pressure side hole 43 overlaps the support cylinder peripheral groove 25c, and the fluid flows out from the support cylinder side groove 25b. The larger the overlap, the greater the outflow.
[0036]
Embodiment 4
Next, a fourth embodiment will be described with reference to the drawings. FIG. 6 is a longitudinal sectional view, and FIG. 7 is a detailed view of a D ″ portion in FIG.
First, the outer frame pipe 110 will be described.
As shown in FIG. 6, the differential pressure valve according to the third embodiment has a cylindrical outer frame pipe 110 made of metal as a whole, for example, copper, and is shorter than the outer frame pipe 110 and is inserted and fixed in the outer frame pipe 110. And a pressure-sensitive portion A ", a throttle portion B", and an adjustment portion C "disposed in the cylindrical tube 120 and the spring case 130.
A high pressure side space Ph is formed near the fluid inlet 111 at one end of the outer frame pipe 110, and a low pressure side space Pl is formed near the fluid outlet 112 at the other end of the outer frame pipe 110. You. Further, a caulking portion 113 is formed at an intermediate portion of the outer frame pipe 110.
[0037]
Next, the cylindrical tubular body 120 will be described.
As shown in FIGS. 6 and 7, the cylindrical tubular body 120 disposed in the outer frame pipe 110 is formed in a substantially cylindrical shape as a whole, and corresponds to the inner surface of the caulking portion 113. A concave portion 121 for caulking is formed on an outer peripheral surface portion of the cylindrical member 120, and a spring case mounting portion 122 for mounting a spring case 130 described later is formed on an inner surface of the cylindrical tubular body 120. A crimping portion 122a is formed at the upper end of the spring case mounting portion 122 by fitting a small-diameter portion 131 on the spring case 130 side, which will be described later, and then crimping it.
[0038]
The lower part of the cylindrical body 120 is formed with a predetermined thickness, and a plurality of low pressure introduction holes 124 are formed vertically inside the predetermined thickness portion. The lower part of the low-pressure introduction hole 124 communicates with the low-pressure side space Pl, and the upper part communicates with a low-pressure pressure-sensitive chamber 128 formed in a cylindrical body 120 described later.
A valve seat support 125 is formed at the lower end of the cylindrical tubular body 120, and a valve seat 126 made of, for example, stainless steel is press-fitted to the center of the valve seat support 125. The valve seat 126 has a valve seat hole 127 formed therein.
[0039]
The small diameter portion 131 of the lower part of the spring case 130 is fitted to the spring case mounting part 122 of the cylindrical tubular body 120. On the outer periphery of the small diameter portion 131, a ring-shaped ring groove 123 for fitting an O-ring 123a disposed between the small-diameter portion 131 and the cylindrical tubular body 120 is formed. Further, an O-ring 133 is interposed inside the small diameter portion 131, and serves as a piston support portion 132 that supports a piston 140 described later.
The upper part of the spring case 130 is fitted to the inner peripheral surface of the outer frame pipe 110, and a spring chamber 134 is formed on the inner surface. A female screw 135 is formed on the inner periphery of the upper end of the spring case 130, and an adjusting screw 150 is screwed into the female screw 135.
The adjusting screw 150 has a through hole 151 formed at the center thereof, and communicates the upper high pressure side space Ph with the spring chamber 134.
[0040]
Next, the pressure-sensitive portion A "will be described. The pressure-sensitive portion A" is formed below the piston 140. The piston 140 as a whole is formed as a columnar body having a different diameter in the vertical direction, the upper part becomes a small-diameter piston shaft part 141, and the lower part becomes a large-diameter pressure-sensitive part 142. The piston shaft 141 is vertically slidably supported by the piston support 132, and the pressure-sensitive portion 142 is vertically slidably supported by the lower inner peripheral surface of the cylindrical body 120. ing. Also. An O-ring 143 is interposed between the outer periphery of the pressure sensing part 142 and the inner periphery of the cylindrical tubular body 120.
[0041]
A high-pressure introduction vertical hole 147 is formed in the axial portion of the piston 140 in the length direction (axial direction), and communicates with the high-pressure introduction vertical hole 147, and a high-pressure introduction horizontal hole 146 is provided at an upper portion thereof. An end of the high-pressure introduction lateral hole 146 is formed in the spring chamber 134. Further, a high-pressure introduction oblique hole 148 is formed below the high-pressure introduction vertical hole 147 in communication with the high-pressure introduction vertical hole 147, and an end of the oblique hole 148 is opened to a space below the pressure-sensitive portion 142.
[0042]
Therefore, the space on the upper surface of the pressure sensing part 142 communicates with the low pressure side space Pl through the low pressure introduction hole 124 to form a low pressure sensing chamber 128, and the space on the lower surface of the pressure sensing part 142 is connected to the high pressure introduction side. The high pressure side pressure chamber 129 is formed by communicating with the high pressure side space Ph by the hole 146, the high pressure introduction vertical hole 147, and the high pressure introduction oblique hole 148.
A receiving recess 145 having a spherical inner surface is formed at the upper end of the piston 140, and a spring receiving projection 152 a abuts against the bottom of the receiving recess 145 by the elastic force of the spring 153 to form a universal joint. ing. Due to this contact state, even if an eccentric load is applied to the piston 140 due to the elastic force of the spring 153 or the high-pressure refrigerant, the piston 140 smoothly acts as a vertical pressure.
[0043]
The throttle portion B ″ is constituted by a stainless steel valve body 149 mounted in a valve body mounting hole 144 formed below the pressure-sensitive portion 142 and connected to the high-pressure introduction vertical hole 147, and the valve seat 126. That is, the valve element 149 includes a columnar insertion portion 149a into the valve element mounting hole 144, a large disk-shaped portion 149b, and an inverted conical projection 149c at the lower end. In response to the pressure difference, the opening area formed by the valve seat 126 increases and decreases as the piston 140 moves up and down, and the flow rate is reduced and changed.
[0044]
The piston 140 is
When the fluid pressure in the high pressure sensing chamber 129> the fluid pressure in the low pressure sensing chamber 128 + the pressure corresponding to the spring load of the spring 153, the valve body 149 is opened.
When the fluid pressure of the high-pressure sensing chamber 129 <the fluid pressure of the low-pressure sensing chamber 128 + the pressure corresponding to the spring load of the spring 153, the valve moves downward and the valve 149 closes.
[0045]
Next, the adjustment unit C ″ will be described.
A spring 153 is contracted between a lower surface of the adjusting screw 150 (on the side of the spring chamber 134) and a spring receiver 152 disposed below the spring chamber 134, and the spring 153 presses the spring receiver 152 downward to press the spring receiver 152 downward. I have. The spring receiver 152 has a spring receiving surface formed on an upper surface thereof, and a spring receiving protrusion 152a having a spherical lower end formed integrally with the lower surface thereof. The adjustment of the resilience is an adjustment of the differential pressure.
[0046]
In assembling the differential pressure valve according to the fourth embodiment, first, the valve seat 126 is mounted on the valve seat support portion 125 of the cylindrical tubular body 120, and the valve body 149 is mounted on the valve body mounting hole 144 of the piston 140. The piston 140 is fitted to the cylindrical body 120. Next, the spring receiver 152 and the spring 153 are provided inside the spring case 130 in this order, and the adjusting screw 150 is screwed into the female screw portion 135.
Then, the spring case 130 is attached to and fixed to the cylindrical tubular body 120 while the spring receiving projection 152a is loosely fitted in the receiving recess 145 and integrated. In fixing, the small-diameter portion 131 is fitted to the spring case mounting portion 122 as described above, and then the caulking portion 122a is caulked, whereby reliable integration can be achieved.
Then, the integrated body of the cylindrical tubular body 120 and the spring case 130 is fitted into the outer frame pipe 110, and the caulking portion 113 and the caulking recess 121 are aligned, and then caulked. According to the above means, a very simple and compact differential pressure valve can be obtained.
[0047]
With this configuration, the valve element 149 moves up and down in response to the vertical movement of the piston 140 due to the differential pressure, the opening area formed by the valve element 149 and the valve seat 126 is changed, and the flow rate is reduced and changed. become.
Further, when a differential pressure equal to or more than a predetermined amount of differential pressure is generated, the valve body 149 moves upward in the throttle portion B "due to the upward movement of the piston 140 in the pressure sensing portion A", and becomes a predetermined amount of differential pressure. The flow rate is increased at the throttle portion B ″. Conversely, when the pressure difference is equal to or less than the predetermined amount of the differential pressure, the valve body 149 moves downward at the throttle portion B ″ due to the downward movement of the piston 140 in the pressure-sensitive portion A ″. Then, the flow rate is reduced or stopped at the throttle portion B ″ until the pressure difference reaches a predetermined amount.
[0048]
In particular, in the fourth embodiment, by providing the low-pressure sensing chamber 128 on the high-pressure introduction side, the valve element 149 can be installed in the positive valve direction (the high-pressure sensing chamber 129 side). Become.
After attaching the piston 140 and the spring case 130 to the cylinder 120, the upper end 122a of the cylinder 120 is swaged to form a swaged portion, and the spring case 130 and the cylinder 120 are integrated to form the piston 140. A low pressure sensing chamber 128 and a high pressure sensing chamber 129 can be formed on the upper and lower sides. Further, by integrating the cylindrical tubular body 120 and the spring case 130, the assembling work with a jig becomes easy, and In addition, assembling to the outer frame pipe 110 in the final assembling process becomes easy, so that the number of steps can be reduced.
[0049]
Further, according to the fourth embodiment, the pressure of the low-pressure side space Pl can be easily transferred to the low-pressure pressure-sensitive chamber 128 above the pressure-sensitive portion of the piston simply by drilling holes in the cylindrical tubular body 120 without increasing the number of parts. The pressure in the high-pressure side space Ph can be easily changed from the lower surface of the pressure-sensitive portion 142 and the valve element 149 of the high-pressure pressure-sensitive chamber 129 by merely drilling a hole in the piston 140 without increasing the number of parts. Can be guided to the narrowed portion B ″.
Further, by using stainless steel for the material of the valve body 149 and the valve seat 126, the wear of the valve body 149 and the valve seat 126 is reduced. Since the piston 140 and the cylindrical tubular body 120 are press-fitted into the body 120 and used, inexpensive materials, for example, brass, can be used, which is economical.
[0050]
【The invention's effect】
According to the above configuration, according to the present invention, an inexpensive differential pressure valve having a simple structure, being compact and durable, being easily manufactured and processed, can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first embodiment according to the present invention.
FIG. 2 is a detailed view of a part D in FIG. 1;
FIG. 3 is a longitudinal sectional view of a second embodiment according to the present invention.
FIG. 4 is a detailed view of a D ′ part in FIG. 3;
FIG. 5 is a detailed view of a portion corresponding to a portion D in FIG. 1 according to a third embodiment.
FIG. 6 is a longitudinal sectional view of a fourth embodiment according to the present invention.
FIG. 7 is a detailed view of a D ″ part in FIG. 6;
[Explanation of symbols]
Ph high pressure side space Pl low pressure side space A, A ', A "
B, B ', B "... throttle section C, C', C" ... adjustment section
10. Outer frame pipe 11. Fluid inlet 12. Fluid outlet
13. Caulking part 14. Flow path
20, 20 '... tubular valve seat 20a ... small diameter part
20b, 20'b: large diameter section 20c: low pressure space forming section
20d ・ ・ Valve part forming part 20e, 20′e ・ ・ Spring chamber forming part
20f, 20'f… Valve room 21… Pressure-sensitive part low pressure space
22 Valve support hole 22a Valve support portion
23 .. Valve hole 23a .. Valve seat 24 .. Side hole
25, 25 ': Spring chamber 25a: Support cylinder 25b: Support cylinder side hole
25c ··· Circumferential groove of support cylinder 26 ··· Skirt part 27 ··· Female screw receiving part
28 O-ring 29 Crimping groove
30 ・ ・ Valve element 31 ・ ・ Caulking part 32 ・ ・ Low pressure introduction hole 33 ・ ・ Upper horizontal hole
34 ・ ・ Lower horizontal hole 34a ・ ・ Lower horizontal hole 35 ・ ・ Valve 36 ・ ・ Small diameter part
37 ··· Large diameter part 40, 40 '· · · Piston 40'a · · · Extension shaft part
41 O-ring 42 High-pressure inlet hole 43 High-pressure side hole
50 Adjustment screw 51 Through hole 52
52a spring receiving hole 53 spring 60 stopper
110 ··· Outer frame pipe [Example 3]
111 fluid inlet 112 fluid outlet 113 caulking section
120 ··· Cylindrical tubular body 121 · · · Crevice recess
122 ··· Spring case mounting part 122a ··· Caulking part
123 ring groove 123a O-ring
124 low-pressure introduction hole 125 valve seat support part 126 valve seat
127 ・ ・ Valve seat hole 128 ・ ・ Low pressure sensing chamber 129 ・ ・ High pressure sensing chamber
130 ・ ・ Spring case 131 ・ ・ Small diameter part 132 ・ ・ Piston support part
133 O-ring 134 Spring chamber 135 Female thread
140 ・ ・ Piston 141 ・ ・ Piston shaft part 142 ・ ・ Pressure-sensitive part
143 ··· O-ring 144 ··· Valve mounting hole 145 ··· Recessed recess
146 ・ ・ High pressure introduction (horizontal) hole 147 ・ ・ High pressure introduction (vertical) hole
148 ・ ・ High pressure introduction (oblique) hole
149 ・ ・ Valve 149a ・ ・ Insertion part 149b ・ ・ Large diameter part
149c ・ ・ Protrusion 150 ・ ・ Adjustment screw 151 ・ ・ Hole
152 ··· Spring receiving 152a · · · Spring receiving projection 153 · Spring

Claims (17)

外枠パイプの一端に流体入口が形成され、同外枠パイプの他端に流体出口が形成され、両口の間に流体の差圧を感知する感圧部と、該感圧部で感知された差圧により流体の移動を制御する絞り部と、前記絞り部の制御の程度を任意の値に設定する調節部と、が設けられていることを特徴とする差圧弁。A fluid inlet is formed at one end of the outer frame pipe, a fluid outlet is formed at the other end of the outer frame pipe, and a pressure-sensitive part that senses a differential pressure of fluid between the two ports, and is sensed by the pressure-sensitive part. A differential pressure valve, comprising: a restrictor that controls the movement of a fluid by the differential pressure; and an adjuster that sets the degree of control of the restrictor to an arbitrary value. 上記外枠パイプ内に挿入可能な所定長さの筒状弁シートと、該筒状弁シート内に配置された上記感圧部と絞り部と調節部と、からなり、上記筒状弁シートは外枠パイプ内に挿入後、外枠パイプ内にカシメ固定されていると共に、上記外枠パイプの両端部は、継手形状に絞り成形されて高圧流体側の空間と低圧流体側の空間とが形成されていることを特徴とする請求項1記載の差圧弁。A cylindrical valve seat having a predetermined length that can be inserted into the outer frame pipe, and the pressure-sensitive portion, the throttle portion, and the adjusting portion disposed in the cylindrical valve seat; After being inserted into the outer frame pipe, it is caulked and fixed inside the outer frame pipe, and both ends of the outer frame pipe are formed by drawing into a joint shape to form a space on the high-pressure fluid side and a space on the low-pressure fluid side. The differential pressure valve according to claim 1, wherein 上記感圧部は、外枠パイプ内の流路内に該流路を横断するように配置されていることを特徴とする請求項1又は請求項2記載の差圧弁。The differential pressure valve according to claim 1, wherein the pressure-sensitive portion is disposed in a flow path in the outer frame pipe so as to cross the flow path. 上記感圧部には、流体入口側に連通する高圧側空間部と、流体出口側に連通する低圧側空間と、両空間の間で摺動可能なピストンと、が形成されていることを特徴とする請求項3記載の差圧弁。The pressure-sensitive part is characterized in that a high-pressure side space communicating with the fluid inlet side, a low-pressure side space communicating with the fluid outlet side, and a piston slidable between the two spaces are formed. The differential pressure valve according to claim 3, wherein 上記筒状弁シート内で摺動可能に配置された弁体を備え、該弁体の一端部に上記ピストンが固定されると共にその中間部に上記絞り部が形成され、その他端部はバネにより高圧流体側の空間方向に弾圧されていることを特徴とする請求項4記載の差圧弁。A valve body slidably disposed within the tubular valve seat, wherein the piston is fixed to one end of the valve body and the throttle portion is formed at an intermediate portion thereof, and the other end is formed by a spring. The differential pressure valve according to claim 4, wherein the pressure is resiliently pressed in a space direction on a high-pressure fluid side. 上記流体出口側と低圧側空間部とを連通する低圧導入孔は、弁体内に形成されていることを特徴とする請求項4又は請求項5記載の差圧弁。The differential pressure valve according to claim 4, wherein the low-pressure introduction hole communicating the fluid outlet side and the low-pressure side space is formed in a valve body. 上記絞り部を構成する弁部は、上記筒状弁シートに形成される弁孔の流体下流側まで延設され、該延設部分は円錐形状で弁孔の下流側に配置されていることを特徴とする請求項5又は請求項6記載の差圧弁。The valve portion constituting the throttle portion extends to a fluid downstream side of a valve hole formed in the cylindrical valve seat, and the extended portion is conical and disposed downstream of the valve hole. The differential pressure valve according to claim 5 or 6, wherein 上記弁孔の流体下流側に該弁孔より径大の弁部形成部が形成され、該弁部形成部に位置する上記弁部の径大部に、一個もしくは複数個に下横孔を設けたことを特徴とする請求項7記載の差圧弁。A valve portion forming portion having a diameter larger than the valve hole is formed on the downstream side of the valve hole, and one or more lower horizontal holes are provided in the large diameter portion of the valve portion located in the valve portion forming portion. The differential pressure valve according to claim 7, wherein: 上記弁部形成部と上記弁体の径大部で形成される流路面積は、上記弁座部で形成される最大流路面積以上であり、かつ上記弁孔の流路面積より小さいことを特徴とする請求項7又は請求項8記載の差圧弁。The flow passage area formed by the valve portion forming portion and the large diameter portion of the valve body is equal to or larger than the maximum flow passage area formed by the valve seat portion, and smaller than the flow passage area of the valve hole. The differential pressure valve according to claim 7 or 8, wherein 筒状弁シートによって支持される部分の弁体の外径と、絞り部の弁孔の内径と、を略同一としたことを特徴とする請求項7記載の差圧弁。8. The differential pressure valve according to claim 7, wherein an outer diameter of the valve body at a portion supported by the cylindrical valve seat and an inner diameter of a valve hole of the throttle portion are substantially the same. 弁体の一端部にピストンを装着後、カシメて端部が開くように円錐形状として、ピストンと弁体とを一体にしたことを特徴とする請求項5記載の差圧弁。6. The differential pressure valve according to claim 5, wherein the piston and the valve element are formed in a conical shape so that the piston is attached to one end of the valve element and then opened by caulking. 上記流体入口側に上記調節部が設けられていることを特徴とする請求項1記載の差圧弁。2. The differential pressure valve according to claim 1, wherein the adjusting section is provided on the fluid inlet side. 外枠パイプ内にシリンダ状筒体とバネケースとを装着し、上記シリンダ状筒体内には前記感圧部及び絞り部を配置し、上記バネケース内には上記調節部を配置する差圧弁であって、
上記シリンダ状筒体内に前記感圧部及び絞り部を配置し、且つ、バネケース内に調節部を配置した後、シリンダ状筒体に対してバネケースを装着し、その後において、シリンダ状筒体とバネケースとを連結・固定し、該シリンダ状筒体とバネケースとの一体物を外枠パイプ内に嵌入させて、カシメることを特徴とする請求項12記載の差圧弁。
A differential pressure valve in which a cylindrical tubular body and a spring case are mounted in an outer frame pipe, the pressure-sensitive section and the throttle section are arranged in the cylindrical tubular body, and the adjusting section is arranged in the spring case. ,
After arranging the pressure-sensitive part and the throttle part in the cylindrical body, and arranging the adjusting part in the spring case, the spring case is attached to the cylindrical body, and thereafter, the cylindrical body and the spring case are mounted. 13. The differential pressure valve according to claim 12, wherein the valve is connected and fixed, and an integral body of the cylindrical tubular body and the spring case is fitted into the outer frame pipe and caulked.
上記感圧部及び絞り部は、シリンダ状筒体の筒内において摺動可能なピストンから形成され、該ピストンの感圧部の低圧側空間部側に高圧感圧室が形成され、高圧側空間部側に低圧感圧室が形成され、更に、上記感圧部の高圧感圧室側に、絞り部を構成する弁体が設けられていることを特徴とする請求項12又は請求項13記載の差圧弁。The pressure-sensitive portion and the throttle portion are formed of a piston slidable in the cylinder of the cylindrical tubular body, and a high-pressure pressure-sensitive chamber is formed on a low-pressure side space side of the pressure-sensitive portion of the piston, and a high-pressure side space is formed. 14. A low-pressure pressure-sensitive chamber is formed on the side of the pressure-sensitive section, and a valve element constituting a throttle section is provided on the high-pressure pressure-sensitive chamber side of the pressure-sensitive section. Differential pressure valve. 上記シリンダ状筒体に複数個の低圧導入孔が軸方向に形成され、上記低圧側空間部と、上記低圧感圧室とを連通させることを特徴とする請求項14記載の差圧弁。15. The differential pressure valve according to claim 14, wherein a plurality of low pressure introduction holes are formed in the cylindrical body in the axial direction, and the low pressure side space communicates with the low pressure pressure sensing chamber. ピストンに高圧導入孔を設け、高圧側空間部と高圧感圧室とを連通させることを特徴とする請求項14又は請求項15記載の差圧弁。16. The differential pressure valve according to claim 14, wherein a high-pressure introduction hole is provided in the piston, and the high-pressure side space communicates with the high-pressure pressure-sensitive chamber. 上記弁体、及び、該弁体と対応する位置でシリンダ状筒体側に設けられた弁座は、共にステンレススチールを素材とされ、且つ、前記弁体はピストンに、弁座はシリンダ状筒体に形成された弁座支持部に各々圧入されていることを特徴とする請求項14乃至請求項16記載のいずれかの記載差圧弁。The valve body, and a valve seat provided on the cylinder body side at a position corresponding to the valve body are both made of stainless steel, and the valve body is a piston, and the valve seat is a cylinder body. 17. The differential pressure valve according to any one of claims 14 to 16, wherein each of the pressure differential valves is press-fitted into a valve seat support portion formed at the same.
JP2002311564A 2002-08-01 2002-10-25 Differential pressure valve Expired - Fee Related JP4105525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311564A JP4105525B2 (en) 2002-08-01 2002-10-25 Differential pressure valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002225184 2002-08-01
JP2002241355 2002-08-22
JP2002311564A JP4105525B2 (en) 2002-08-01 2002-10-25 Differential pressure valve

Publications (2)

Publication Number Publication Date
JP2004138228A true JP2004138228A (en) 2004-05-13
JP4105525B2 JP4105525B2 (en) 2008-06-25

Family

ID=32475173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311564A Expired - Fee Related JP4105525B2 (en) 2002-08-01 2002-10-25 Differential pressure valve

Country Status (1)

Country Link
JP (1) JP4105525B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225210A (en) * 2006-02-24 2007-09-06 Pacific Ind Co Ltd Bidirectional constant pressure expansion valve and its manufacturing method
JP2010096307A (en) * 2008-10-17 2010-04-30 Maruyama Mfg Co Ltd Differential pressure type pressure control valve
JP2015218812A (en) * 2014-05-16 2015-12-07 株式会社鷺宮製作所 Throttle device, refrigeration cycle system including the same, and manufacturing method of throttle device
JP2020143690A (en) * 2019-03-04 2020-09-10 株式会社不二工機 Valve device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225210A (en) * 2006-02-24 2007-09-06 Pacific Ind Co Ltd Bidirectional constant pressure expansion valve and its manufacturing method
JP4563945B2 (en) * 2006-02-24 2010-10-20 太平洋工業株式会社 Bidirectional constant pressure expansion valve and manufacturing method thereof
JP2010096307A (en) * 2008-10-17 2010-04-30 Maruyama Mfg Co Ltd Differential pressure type pressure control valve
JP2015218812A (en) * 2014-05-16 2015-12-07 株式会社鷺宮製作所 Throttle device, refrigeration cycle system including the same, and manufacturing method of throttle device
JP2020143690A (en) * 2019-03-04 2020-09-10 株式会社不二工機 Valve device
JP7266283B2 (en) 2019-03-04 2023-04-28 株式会社不二工機 valve device

Also Published As

Publication number Publication date
JP4105525B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
US9200716B2 (en) Self aligning valve plug
WO2017024795A1 (en) Electronic expansion valve
US6866242B2 (en) Proportional valve
KR20060041893A (en) Expansion valve
EP1394646B1 (en) Differential pressure control valve
JP3949417B2 (en) Expansion valve
CA2885747C (en) Self-aligning valve plug
JP2004138228A (en) Differential pressure valve
JP2012031966A (en) Three-way valve
US20020179724A1 (en) Regulating insert to be placed in valves, and valve unit
JP6031078B2 (en) Throttle device and refrigeration cycle system including the same
JP4545031B2 (en) Control valve, variable capacity compressor and refrigeration cycle apparatus
JP2002350010A (en) Expansion valve
JP4147211B2 (en) Pressure regulating valve
JP4335713B2 (en) Thermal expansion valve
JP3584973B2 (en) Hot water mixing valve
EP0962726A3 (en) Right angle thermally responsive expansion valve
JPH0755355Y2 (en) Pump discharge characteristic control device
JP4053846B2 (en) Electric expansion valve
JPH0413581Y2 (en)
WO2024135843A1 (en) Linkage-type constant-pressure valve
JP2004278582A (en) Constant flow valve
CN104251325A (en) Pressure operating valve and pressure setting method of pressure operating valve
JPH0628442U (en) Constant flow valve
JPH10299934A (en) Solenoid proportional control valve

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Ref document number: 4105525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees