JP2004137967A - Method and device for rotation generation - Google Patents

Method and device for rotation generation Download PDF

Info

Publication number
JP2004137967A
JP2004137967A JP2002303175A JP2002303175A JP2004137967A JP 2004137967 A JP2004137967 A JP 2004137967A JP 2002303175 A JP2002303175 A JP 2002303175A JP 2002303175 A JP2002303175 A JP 2002303175A JP 2004137967 A JP2004137967 A JP 2004137967A
Authority
JP
Japan
Prior art keywords
electromagnet
reciprocating
permanent magnet
crankshaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002303175A
Other languages
Japanese (ja)
Inventor
Yohee Kitayoshi
北吉 与兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002303175A priority Critical patent/JP2004137967A/en
Priority to KR1020030009721A priority patent/KR20040034323A/en
Publication of JP2004137967A publication Critical patent/JP2004137967A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3667Golf stance aids, e.g. means for positioning a golfer's feet
    • A63B69/3673Foot inclining aids; Foot wobbling devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2210/00Space saving
    • A63B2210/50Size reducing arrangements for stowing or transport
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotation generation device having small power consumption, a slight generation of noise and vibration during operation capable of obtaining high output power with a compact size. <P>SOLUTION: A plurality of advancing/retracting shaft 5 are connected to a crank pin 4 of a crank shaft 2 rotatably supported through a connecting rod 7 respectively, and a permanent magnet 9 where an electromagnet 8 approaches and separates by axially advancing and retracting the advancing/retracting shaft 5 is fixedly disposed at the position facing to the electromagnet 8 mounted to the each advancing/retracting shaft 5. By allowing a magnetic pole by excitation of the electromagnet 8 to be the same pole as the permanent magnet 9, and by setting the timing of the excitation between the most approaching time of the opposing electromagnet 8 and the separation, the electromagnet 8 approaching the permanent magnet 9 is allowed to retract by the repulsive force of the same magnetic pole, and the rotation can be generated to the crank shaft 2 with the linear motion of the advancing/retracting shaft 5 by the repulsive force. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、回転発生方法と装置、更に詳しくは、クランクシャフトを用いて直線運動を回転運動に変換する機構に永久磁石と電磁石を組み合わせ、永久磁石と電磁石の磁極の同極による反発力を利用してクランクシャフトに連続的な回転を取り出すようにした回転発生方法と装置に関する。
【0002】
【従来の技術】
従来の一般的な回転発生装置としては、電力を用いるモータや燃料を用いるエンジンが汎用されている。
【0003】
前者のモータは、主回転子が、固定子内の電磁コイルが作りだす磁場の中で回転するように構成され、また、後者のエンジンは、シリンダ内で往復運動するピストンとクランクシャフトのクランクピンを連動し、シリンダ内での燃料の爆発によるピストンの往復運動を、クランクシャフトの回転運動に変換するようになっている。
【0004】
【発明が解決しようとする課題】
ところで、前者のモータは、要求される出力に応じて大型化するだけでなく、消費電力も増大し、稼働コストが高く付くと共に、高出力を得るためには付帯設備も大型化するという問題がある。
【0005】
また、後者のエンジンは、シリンダの数を増やすことによって高出力を得ることはできるが、燃料費が高いだけでなく、運転時には燃料の爆発による騒音や振動の発生が激しいという問題がある。
【0006】
そこで、この発明の課題は、電力の消費だけでなく、運転時の騒音及び振動の発生が少なく、小型で高出力が得られる回転発生方法と装置を提供することにある。
【0007】
【課題を解決するための手段】
上記のような課題を解決するため、方法の発明は、複数の進退軸の直線運動をクランクシャフトの回転運動に変換する機構を用い、進退軸に取り付けた磁石と固定配置した磁石を対面状に配置し、上記対面する磁石の一方を永久磁石、他方を電磁石とし、励磁した電磁石の磁極と永久磁石の磁極を同極に設定し、両磁石の同極による反発力を利用して進退軸に直線運動を与えることで、クランクシャフトを回転させる構成を採用したものである。
【0008】
また、装置の発明は、回転可能に支持されたクランクシャフトと、このクランクシャフトに設けたクランクピンにそれぞれコンロッドを介して連結され、軸方向への進退動によってクランクシャフトに回転を付与する複数の進退軸と、各進退軸に取り付けた磁石と、各進退軸の磁石と対面する位置に固定配置され、進退軸の軸方向への進退動によって上記磁石が接近離反動する磁石とを有し、上記した対面する磁石の一方を永久磁石、他方を電磁石とし、この電磁石の励磁による磁極を永久磁石と同極とし、電磁石の励磁のタイミングを電磁石と永久磁石の接近時から離反行程の間に設定した構成を採用したものである。
【0009】
上記進退軸とそれに取り付けた磁石及び対向する磁石が、進退軸の軸方向に直列の配置となり、進退軸に電磁石を取り付けると共に、永久磁石を固定配置とし、クランクシャフトを挟んで両側に配置した一対の進退軸を、同一軸心状の配置で同一のクランクピンに結合した構造とすることができる。
【0010】
上記永久磁石と電磁石は、永久磁石に対する電磁石の最接近時に、例えば、10mm程度の間隔を保って対面するように配置され、クランクシャフトには、一端側にセルモータを連動したり、フライホイルを取り付け、回転の取り出しとなる他端側に発電機や各種産業機械等の被駆動機器を接続する。
【0011】
始動開始時にセルモータを起動してクランクシャフトに回転を与えると、クランクピンにコンロッドを介して連結された複数の進退軸が、固定配置した永久磁石に対して一定ストロークを軸方向に進退動し、各進退軸に取り付けた電磁石が対応する永久磁石に対して接近と離反動をする。
【0012】
前進行程にある進退軸の電磁石が永久磁石に最接近動すると、電磁石に通電となって励磁し、対面した永久磁石と電磁石の磁極は同極となるので互いに反発し合うことになり、この反発力で電磁石とこれを取り付けた進退軸は永久磁石から離反する方向に押されるので、進退軸は離反行程に移行し、この進退軸の離反運動がコンロッドを介してクランクピンを回し、クランクシャフトに回転を与えることになり、電磁石が離反位置に戻る途中で通電が切れる。
【0013】
このように、永久磁石と電磁石の同極の反発力を利用して進退軸の離反運動でクランクシャフトに略半回転を与え、他の進退軸の進退動のタイミングを上記と丁度逆に設定することにより、装置全体として離反行程が連続して発生することになり、各進退軸の上記した離反行程の繰り返しによってクランクシャフトに連続的な回転を与えることになる。
【0014】
上記のようにクランクシャフトが回転すると、セルモータでの駆動を解き、電磁石への通電をオン、オフ制御するだけでクランクシャフトの回転が持続され、このクランクシャフトの回転出力で発電機や産業機器等を駆動する。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態を図示例と共に説明する。
【0016】
図示のように、回転発生装置(原動機)は、ベース1上の中央にクランクシャフト2を軸受3での支持により回転可能に配置し、このクランクシャフト2の途中に二つのクランクピン4、4が設けられている。
【0017】
上記ベース1上で、クランクシャフト2に設けた各クランクピン4、4を挟む両側の位置に、クランクシャフト2の軸心と平面的に直角となる一対の進退軸5、5が配置され、各進退軸5、5はベース1上に設けたスラスト軸受6での支持によって、それぞれ軸方向へ直線的に移動自在となっている。
【0018】
一対の関係にある進退軸5、5は、軸方向に同軸心の配置となり、同じクランクピン4にコンロッド7とピンを介して連結され、クランクピン4が回転した場合に発生する軸方向の移動が同一方向になるように配置され、その軸方向の進退動ストロークは、クランクピン4の回転半径の2倍になる。
【0019】
各進退軸5、5のコンロッド7と反対側の先端部には電磁石8が固定され、ベース1上で、各進退軸5、5の電磁石8と対面する位置に、進退軸5、5の軸方向への進退動によって電磁石8が接近離反動する永久磁石9が固定配置されている。
【0020】
上記進退軸5、5とそれに取り付けた電磁石8及び対向する永久磁石9は、進退軸5、5の軸方向に直列の配置となり、電磁石8の鉄心8aと永久磁石9はその対向面の磁極が、電磁石8への通電による励磁時の磁極と永久磁石9の磁極が同極、例えば、S極となって対向するように設定されている。
【0021】
上記進退軸5、5のクランクピン4が回転した場合に発生する軸方向の移動は、永久磁石9に対して電磁石8が接近する前進行程と、永久磁石9に対して電磁石8が離れる離反行程とからなり、電磁石8と永久磁石9の位置関係は、進退軸5、5の前進行程における最終点で永久磁石9に電磁石8が最接近した時に、電磁石8の鉄心8aと永久磁石9の対向面間に例えば、10mm程度の間隔を保つように永久磁石9が配置されている。
【0022】
回転発生装置は、上記クランクシャフト2に設けた複数のクランクピン4、4にそれぞれ一つの進退軸5を結合した構造を採用してもよいが、図示のように、クランクシャフト2に設けた一つのクランクピン4に一対の進退軸5、5を結合すると、相反する前進行程と離反行程を行い、一方進退軸5の離反行程でクランクピン4を半回転させ、他方進退軸5の離反行程で残りの半回転をさせることで、クランクピン4の全回転が得られることになり、図示のように、クランクシャフト2に二つのクランクピン4、4を設け、各クランクピン4、4にそれぞれ一対の進退軸5、5を結合すると、円滑な回転が取り出せるだけでなく、回転出力の増加が図れる。
【0023】
なお、上記各進退軸5、5をクランクピン4にコンロッド7を介して連結し、進退軸5、5の軸方向の運動をコンロッド7とクランクピン4でクランクシャフト2の回転運動に変換する場合、クランクシャフト2の軸心とクランクピン4の軸心及びコンロッド7と進退軸5の枢止点の三者が同一直線上に並ぶ位相が、クランクピン4の1回転中に二箇所で発生し、このような位相の位置が前進行程の思案点と後退行程の思案点となり、円滑な回転の取り出しには、これらの思案点を超えるようにするのが望ましく、図示のように、クランクシャフト2に設けた二つのクランクピン4、4の回転方向の間隔を、回転方向に一方へ片寄らせた配置として思案点を超えるようにしたり、クランクシャフト2にフライホイル10を取り付け、その回転の勢いで思案点を超えるようにすればよい。
【0024】
また、電磁石8に対する通電のタイミングは、クランクシャフト2に取り付け又はクランクシャフト2と連動した配電器を用いるほか、進退軸5の移動をセンサーで検出したり、進退軸5の途中に設けた電極とこれに接触する接点のオン、オフすることによって行えばよい。
【0025】
この発明の回転発生装置は、上記のような構成であり、クランクシャフト2の回転の取り出しとなる端部に発電機や各種機器を直接又は回転伝達機構を介して接続した状態で、セルモータ11を所定時間だけ起動してクランクシャフト2に回転を与えると、クランクピン4にコンロッド7を介して連結された複数の進退軸5、5が、固定配置した永久磁石9に対して一定ストロークを軸方向へ直線的に進退動し、各進退軸5、5に取り付けた電磁石8が対応する永久磁石9に対して接近と離反動をする。
【0026】
なお、クランクシャフト2の始動のための回転付与は、フライホイル10に取り付けたハンドルで手動回転させるようにしてもよい。
【0027】
上記進退軸5、5の進退動において、前進行程にある進退軸5、5の電磁石8が永久磁石9に最接近動すると、電磁石8に通電となって励磁し、対面した永久磁石9と電磁石8は同極となるので互いに反発し合い、この反発力で電磁石8と進退軸5は永久磁石9から離反する方向に押されるので、進退軸5は離反行程に移行し、この進退軸5の離反運動がコンロッド7を介してクランクピン4を回し、クランクシャフト2に回転を与えることになり、電磁石8が離反する行程の途中で電磁石8への通電が切れる。
【0028】
上記のように、永久磁石9と電磁石8の同極による反発力を利用して、進退軸5に強制的な直線の離反運動を与えることで、クランクシャフト2を半回転させ、他の進退軸5の前進行程と離反行程のタイミングが上記と丁度逆に設定されているので、装置全体として進退軸5、5の離反行程が連続して発生することになり、各進退軸5、5の上記した運動の繰り返しによって、クランクシャフト2に連続的な回転を生じさせることができ、クランクシャフト2の回転を各種機器や車両、発電機等の動力源として有効に使用することができる。
【0029】
上記回転発生装置は、クランクシャフト2の連続的な回転の取り出しが、電磁石8に対して間歇的に給電するだけでよいので、消費電力が少なくてすみ、電磁石8と永久磁石9の反発力を大きく設定することにより、各進退軸5、5の離反運動が高速になり、クランクシャフト2に高出力で高速の回転を取り出すことができ、クランクシャフト2に対する負荷に合わせ、電磁石8に供給する電力の電圧を変えて発生する反発力を変動させることで、クランクシャフト2の回転出力を制御することができる。
【0030】
なお、進退軸5、5の前進行程時に、電磁石8への通電が切れているので、電磁石8と永久磁石9の接近時に磁気の反発による抵抗の発生がなく、進退軸5、5に電磁石8を取り付け、離反行程の途中で通電を切るようにすれば、隣接する電磁石8の磁力が互いに干渉するのを防ぐことができ、クランクシャフト2の回転取り出しに対する負荷を軽減できると共に、複数組みの進退軸5、5を接近して配置できるので、全体の小型化が可能になる。
【0031】
また、これとは別に、電磁石8と永久磁石9の配置を図示例とは逆にして、進退軸5、5に永久磁石9を取り付けるようにしてもよく、このような構造にすると、電磁石8に対する給電用配線の処理が簡単になる。
【0032】
【発明の効果】
以上のように、この発明によると、複数の進退軸の直線運動をクランクシャフトの回転運動に変換する機構を用い、進退軸に取り付けた磁石と固定配置した磁石の一方を電磁石、他方を永久磁石とし、両磁石の同極による反発力を利用して進退軸に直線運動を与えるようにしたので、電磁石に対して間歇的に給電するだけでクランクシャフトに回転を取り出すことができ、全体の構造及び回転速度の制御が簡単で消費電力も少なくてすみ、運転経費が安価で経済的に回転を発生させることができる。
【0033】
また、回転可能に支持されたクランクシャフトのクランクピンにそれぞれコンロッドを介して複数の進退軸を連結し、各進退軸に取り付けた磁石と対面する位置に、進退軸の軸方向への進退動によって上記磁石が接近離反動する磁石を配置し、両磁石の一方を電磁石、他方を永久磁石とし、上記電磁石の励磁による磁極を永久磁石と同極とし、励磁のタイミングを対向する両磁石の接近時から離反動の間に設定したので、電磁石と永久磁石の同極による反発力で進退軸を離反動させることにより、クランクシャフトに回転を生じさせることができ、これによって、クランクシャフトが連続的に回転する原動機となり、運転時の騒音及び振動の発生が少なく、小型で高出力の回転が得られるので、各種機器や車両、発電機等の動力源として有効に使用することができる。
【図面の簡単な説明】
【図1】回転発生装置の縦断正面図
【図2】回転発生装置の平面図
【図3】回転発生装置の電磁石と永久磁石の構造を示す拡大した縦断正面図
【符号の説明】
1  ベース
2  クランクシャフト
3  軸受
4  クランクピン
5  進退軸
6  軸受
7  コンロッド
8  電磁石
9  永久磁石
10 フライホイル
11 セルモータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for generating rotation, more specifically, a combination of a permanent magnet and an electromagnet in a mechanism for converting a linear motion into a rotary motion using a crankshaft, and utilizing the repulsive force of the same polarity of the magnetic poles of the permanent magnet and the electromagnet. The present invention relates to a rotation generating method and apparatus for extracting continuous rotation to a crankshaft.
[0002]
[Prior art]
As a conventional general rotation generator, a motor using electric power and an engine using fuel are widely used.
[0003]
In the former motor, the main rotor is configured to rotate in a magnetic field created by an electromagnetic coil in the stator, and in the latter engine, a piston reciprocating in a cylinder and a crankpin of a crankshaft are used. In conjunction therewith, the reciprocating motion of the piston due to the explosion of fuel in the cylinder is converted into the rotational motion of the crankshaft.
[0004]
[Problems to be solved by the invention]
By the way, the former motor not only increases in size according to the required output, but also increases power consumption, increases operating costs, and has the problem of increasing the size of incidental equipment in order to obtain high output. is there.
[0005]
Although the latter engine can obtain high output by increasing the number of cylinders, it has a problem that not only fuel cost is high but also noise and vibration due to explosion of fuel during operation are severe.
[0006]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a rotation generating method and apparatus which are small in size and high in output, in which not only power consumption but also noise and vibration during operation are small.
[0007]
[Means for Solving the Problems]
In order to solve the problems described above, the invention of the method uses a mechanism that converts a linear motion of a plurality of reciprocating shafts into a rotational motion of a crankshaft, and a magnet attached to the reciprocating shaft and a magnet arranged fixedly face to face. It is arranged, one of the facing magnets is a permanent magnet, the other is an electromagnet, the magnetic pole of the excited electromagnet and the magnetic pole of the permanent magnet are set to the same polarity, and the repulsive force by the same polarity of both magnets is used to advance and retreat the axis. The configuration in which the crankshaft is rotated by giving a linear motion is adopted.
[0008]
In addition, the invention of the apparatus includes a plurality of crankshafts rotatably supported, and a plurality of crankpins provided on the crankshaft, each of which is connected via a connecting rod to apply rotation to the crankshaft by advancing and retreating in the axial direction. A reciprocating axis, a magnet attached to each reciprocating axis, and a magnet fixed and disposed at a position facing the magnet of each reciprocating axis, wherein the magnet moves toward and away from and reciprocates by an axial reciprocation of the reciprocating axis, One of the above facing magnets is a permanent magnet, the other is an electromagnet, the magnetic pole by excitation of this electromagnet is made the same polarity as the permanent magnet, and the excitation timing of the electromagnet is set between the approaching time of the electromagnet and the permanent magnet and the separation stroke. It adopts the configuration described above.
[0009]
The above-mentioned reciprocating shaft, the magnet attached thereto, and the opposing magnet are arranged in series in the axial direction of the reciprocating shaft, and the electromagnet is mounted on the reciprocating shaft, the permanent magnet is fixedly arranged, and a pair of magnets are arranged on both sides of the crankshaft. Can be configured to be coupled to the same crank pin in the same axial center arrangement.
[0010]
The permanent magnet and the electromagnet are arranged so as to face each other at an interval of, for example, about 10 mm when the electromagnet approaches the permanent magnet, and a crank motor is linked to one end of the crankshaft or a flywheel is attached to the crankshaft. A driven device such as a generator or various industrial machines is connected to the other end from which the rotation is taken out.
[0011]
When the starter starts the starter motor to apply rotation to the crankshaft, a plurality of reciprocating shafts connected to the crankpin via a connecting rod advance and retreat in a fixed stroke with respect to a fixedly arranged permanent magnet in the axial direction. The electromagnets attached to the respective reciprocating shafts move toward and away from the corresponding permanent magnets.
[0012]
When the electromagnet of the forward / backward axis that is in the forward movement moves closest to the permanent magnet, the electromagnet is energized and excited, and the facing permanent magnet and the electromagnet have the same polarity, so they repel each other, and this repulsion Since the electromagnet and the reciprocating shaft attached with it are pushed in the direction away from the permanent magnet by force, the reciprocating shaft moves to the retreating stroke, and the reciprocating motion of the reciprocating shaft turns the crank pin via the connecting rod, When the electromagnet returns to the separated position, the power is cut off.
[0013]
In this way, using the repulsive force of the same polarity of the permanent magnet and the electromagnet, the reciprocating motion of the reciprocating shaft gives the crankshaft approximately half a rotation, and the timing of the reciprocating motion of the other reciprocating shaft is set just opposite to the above. As a result, the separation stroke occurs continuously in the entire apparatus, and continuous rotation is given to the crankshaft by repeating the above-described separation stroke of each advance / retreat shaft.
[0014]
When the crankshaft rotates as described above, the drive by the cell motor is released and the rotation of the crankshaft is continued by simply turning on and off the energization of the electromagnet, and the rotation output of the crankshaft allows the generator, industrial equipment, etc. Drive.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
As shown in the figure, the rotation generating device (motor) has a crankshaft 2 disposed at the center on a base 1 so as to be rotatable by support of a bearing 3, and two crank pins 4, 4 are provided in the middle of the crankshaft 2. Is provided.
[0017]
On the base 1, a pair of reciprocating shafts 5, 5 which are perpendicular to the axis of the crankshaft 2 in a plane, are arranged at positions on both sides of the crankpins 4, 4 provided on the crankshaft 2. The reciprocating shafts 5, 5 are each linearly movable in the axial direction by being supported by a thrust bearing 6 provided on the base 1.
[0018]
The pair of reciprocating shafts 5, 5 are coaxially arranged in the axial direction, are connected to the same crank pin 4 via a connecting rod 7 and a pin, and move axially when the crank pin 4 rotates. Are arranged in the same direction, and the forward / backward stroke in the axial direction is twice the rotation radius of the crank pin 4.
[0019]
An electromagnet 8 is fixed to the distal end of each of the reciprocating shafts 5 and 5 on the side opposite to the connecting rod 7, and the axes of the reciprocating shafts 5 and 5 are positioned on the base 1 at positions facing the electromagnets 8 of the respective reciprocating shafts 5 and 5. A permanent magnet 9 is fixedly arranged so that the electromagnet 8 approaches and separates from each other by moving forward and backward in the direction.
[0020]
The reciprocating shafts 5 and 5, the electromagnet 8 attached thereto, and the opposing permanent magnets 9 are arranged in series in the axial direction of the reciprocating shafts 5 and 5, and the iron core 8a of the electromagnet 8 and the permanent magnet 9 have magnetic poles on their opposing surfaces. The magnetic pole at the time of excitation by energizing the electromagnet 8 and the magnetic pole of the permanent magnet 9 are set to have the same polarity, for example, the S pole, and face each other.
[0021]
The axial movement that occurs when the crankpins 4 of the advancing and retreating shafts 5 and 5 are rotated includes a forward stroke in which the electromagnet 8 approaches the permanent magnet 9 and a separation stroke in which the electromagnet 8 separates from the permanent magnet 9. When the electromagnet 8 comes closest to the permanent magnet 9 at the last point in the forward movement of the reciprocating shafts 5 and 5, the core 8a of the electromagnet 8 and the permanent magnet 9 face each other. The permanent magnets 9 are arranged so as to keep an interval of, for example, about 10 mm between the surfaces.
[0022]
The rotation generating device may adopt a structure in which one advancing and retreating shaft 5 is connected to each of a plurality of crankpins 4 provided on the crankshaft 2, but as shown in FIG. When a pair of reciprocating shafts 5 and 5 are coupled to one crankpin 4, the crankshaft 4 makes a half turn in the reciprocating stroke of the reciprocating shaft 5 while performing a reciprocating forward traveling process and a reciprocating stroke. By performing the remaining half rotation, full rotation of the crankpin 4 is obtained. As shown in the figure, two crankpins 4 and 4 are provided on the crankshaft 2, and one pair is provided for each of the crankpins 4 and 4. When the reciprocating shafts 5, 5 are connected, not only can smooth rotation be taken out, but also the rotation output can be increased.
[0023]
In the case where the above-described reciprocating shafts 5 and 5 are connected to the crankpin 4 via the connecting rod 7, and the axial movement of the reciprocating shafts 5 and 5 is converted into the rotational motion of the crankshaft 2 by the connecting rod 7 and the crankpin 4. Phases in which the three axes of the axis of the crankshaft 2 and the axis of the crankpin 4 and the pivot point of the connecting rod 7 and the reciprocating shaft 5 are aligned on the same straight line occur at two places during one rotation of the crankpin 4. The position of such a phase becomes a thought point of the forward travel and a thought point of the reverse stroke, and it is desirable to exceed these thought points for smooth rotation extraction. The distance between the two crank pins 4, 4 provided in the direction of rotation is shifted to one side in the direction of rotation so as to exceed a conceivable point, or the flywheel 10 is attached to the crankshaft 2, and the rotation is performed. It is sufficient to exceed the change point in momentum.
[0024]
In addition, the timing of energizing the electromagnet 8 is determined by using a power distribution device attached to the crankshaft 2 or linked to the crankshaft 2, detecting the movement of the reciprocating shaft 5 with a sensor, or using an electrode provided in the middle of the reciprocating shaft 5. What is necessary is just to turn on and off the contact which contacts this.
[0025]
The rotation generator of the present invention is configured as described above, and the generator 11 and various devices are connected to the end of the crankshaft 2 from which rotation is taken out, directly or via a rotation transmission mechanism, and the cell motor 11 is connected to the rotation generator. When the crankshaft 2 is turned on for a predetermined time to rotate the crankshaft 2, the plurality of reciprocating shafts 5, 5 connected to the crankpin 4 via the connecting rod 7 move a fixed stroke with respect to the fixedly arranged permanent magnet 9 in the axial direction. The electromagnets 8 attached to the respective reciprocating shafts 5 approach and separate from the corresponding permanent magnets 9.
[0026]
The rotation for starting the crankshaft 2 may be manually rotated by a handle attached to the flywheel 10.
[0027]
When the electromagnets 8 of the reciprocating shafts 5 and 5 which are in the forward movement move closest to the permanent magnets 9 in the reciprocating motions of the reciprocating shafts 5 and 5, the electromagnets 8 are energized and excited, and the facing permanent magnets 9 and electromagnets are moved. 8 have the same polarity and repel each other, and the repulsive force pushes the electromagnet 8 and the reciprocating shaft 5 in a direction away from the permanent magnet 9, so that the reciprocating shaft 5 shifts to a retreating stroke, and the reciprocating shaft 5 The separating motion turns the crank pin 4 via the connecting rod 7 to give rotation to the crankshaft 2, and the energization to the electromagnet 8 is cut off in the course of the separation of the electromagnet 8.
[0028]
As described above, the repulsive force of the same polarity of the permanent magnet 9 and the electromagnet 8 is used to give the rectilinear movement to the reciprocating shaft 5 so that the crankshaft 2 rotates half a turn, and the other reciprocating shafts. Since the timings of the forward travel and the retraction stroke of 5 are set just opposite to the above, the retraction stroke of the reciprocating shafts 5 and 5 occurs continuously as a whole of the apparatus, and By repeating the motion described above, continuous rotation of the crankshaft 2 can be generated, and the rotation of the crankshaft 2 can be effectively used as a power source for various devices, vehicles, generators, and the like.
[0029]
The above-mentioned rotation generating device only needs to intermittently supply power to the electromagnet 8 to take out the continuous rotation of the crankshaft 2, so that the power consumption is small and the repulsive force between the electromagnet 8 and the permanent magnet 9 is reduced. By setting it large, the reciprocating motion of each of the reciprocating shafts 5, 5 becomes high speed, and high-speed and high-speed rotation can be taken out to the crankshaft 2, and the power supplied to the electromagnet 8 according to the load on the crankshaft 2 The rotational output of the crankshaft 2 can be controlled by changing the repulsive force generated by changing the voltage of the crankshaft 2.
[0030]
Since the power to the electromagnet 8 is cut off during the forward movement of the advancing / retreating shafts 5 and 5, there is no resistance due to the repulsion of magnetism when the electromagnet 8 and the permanent magnet 9 approach each other. If the power is cut off in the middle of the separation stroke, the magnetic forces of the adjacent electromagnets 8 can be prevented from interfering with each other, and the load on the rotary shaft of the crankshaft 2 can be reduced. Since the shafts 5 and 5 can be arranged close to each other, the overall size can be reduced.
[0031]
Alternatively, the arrangement of the electromagnet 8 and the permanent magnet 9 may be reversed from that in the illustrated example, and the permanent magnet 9 may be attached to the reciprocating shafts 5, 5. , The processing of the power supply wiring is simplified.
[0032]
【The invention's effect】
As described above, according to the present invention, a mechanism that converts the linear motion of a plurality of reciprocating shafts into a rotational motion of a crankshaft is used, one of a magnet attached to the reciprocating shaft and a fixedly arranged magnet is an electromagnet, and the other is a permanent magnet. By using the repulsive force of the same polarity of both magnets to apply linear motion to the reciprocating axis, rotation can be taken out to the crankshaft just by intermittently supplying power to the electromagnet, and the entire structure In addition, the control of the rotation speed is simple, the power consumption is small, the operation cost is low, and the rotation can be generated economically.
[0033]
In addition, a plurality of reciprocating shafts are connected to the crank pins of the rotatably supported crankshaft via connecting rods respectively, and at positions facing the magnets attached to the respective reciprocating shafts, the reciprocating shafts are reciprocated in the axial direction. A magnet is arranged so that the magnets move toward and away from each other, one of the two magnets is an electromagnet, the other is a permanent magnet, and the magnetized pole of the electromagnet is the same as the permanent magnet. , The rotation of the crankshaft can be generated by reciprocating the reciprocating axis by the repulsive force of the same polarity of the electromagnet and the permanent magnet, thereby continuously rotating the crankshaft. It is a rotating prime mover, generates little noise and vibration during operation, and is small and capable of high-power rotation, so it is effective as a power source for various devices, vehicles, generators, etc. It can be used.
[Brief description of the drawings]
FIG. 1 is a vertical front view of a rotation generator. FIG. 2 is a plan view of a rotation generator. FIG. 3 is an enlarged vertical front view showing the structure of electromagnets and permanent magnets of the rotation generator.
DESCRIPTION OF SYMBOLS 1 Base 2 Crankshaft 3 Bearing 4 Crank pin 5 Reciprocating shaft 6 Bearing 7 Connecting rod 8 Electromagnet 9 Permanent magnet 10 Flywheel 11 Cell motor

Claims (2)

複数の進退軸の直線運動をクランクシャフトの回転運動に変換する機構を用い、進退軸に取り付けた磁石と固定配置した磁石を対面状に配置し、上記対面する磁石の一方を永久磁石、他方を電磁石とし、励磁した電磁石の磁極と永久磁石の磁極を同極に設定し、両磁石の同極による反発力を利用して進退軸に直線運動を与えることで、クランクシャフトを回転させる回転発生方法。Using a mechanism that converts the linear motion of the plurality of reciprocating shafts into rotational motion of the crankshaft, a magnet attached to the reciprocating shaft and a fixedly arranged magnet are arranged face-to-face, one of the facing magnets is a permanent magnet, the other is a permanent magnet. A rotation generating method that rotates the crankshaft by setting the magnetic pole of the excited electromagnet and the magnetic pole of the permanent magnet to the same polarity as an electromagnet, and applying linear motion to the reciprocating axis using the repulsive force of the same polarity of both magnets . 回転可能に支持されたクランクシャフトと、このクランクシャフトに設けたクランクピンにそれぞれコンロッドを介して連結され、軸方向への進退動によってクランクシャフトに回転を付与する複数の進退軸と、各進退軸に取り付けた磁石と、各進退軸の磁石と対面する位置に固定配置され、進退軸の軸方向への進退動によって上記磁石が接近離反動する磁石とを有し、上記した対面する磁石の一方を永久磁石、他方を電磁石とし、この電磁石の励磁による磁極を永久磁石と同極とし、電磁石の励磁のタイミングを電磁石と永久磁石の接近時から離反行程の間に設定した回転発生装置。A crank shaft rotatably supported, a plurality of reciprocating shafts connected to a crank pin provided on the crank shaft via connecting rods, and imparting rotation to the crankshaft by reciprocating in an axial direction; And a magnet which is fixedly arranged at a position facing the magnets of the respective reciprocating shafts, and wherein the magnets move toward and away from each other by the reciprocating motion of the reciprocating shafts in the axial direction. A permanent magnet, the other being an electromagnet, the magnetic pole by excitation of this electromagnet being made the same pole as the permanent magnet, and the excitation timing of the electromagnet being set between the time when the electromagnet approaches the permanent magnet and the time of the separation stroke.
JP2002303175A 2002-10-17 2002-10-17 Method and device for rotation generation Pending JP2004137967A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002303175A JP2004137967A (en) 2002-10-17 2002-10-17 Method and device for rotation generation
KR1020030009721A KR20040034323A (en) 2002-10-17 2003-02-17 Revolution generating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303175A JP2004137967A (en) 2002-10-17 2002-10-17 Method and device for rotation generation

Publications (1)

Publication Number Publication Date
JP2004137967A true JP2004137967A (en) 2004-05-13

Family

ID=32451047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303175A Pending JP2004137967A (en) 2002-10-17 2002-10-17 Method and device for rotation generation

Country Status (2)

Country Link
JP (1) JP2004137967A (en)
KR (1) KR20040034323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070030010A (en) * 2005-09-12 2007-03-15 최호중 Rotary power generating machine with magnetic
WO2015029782A1 (en) * 2013-08-26 2015-03-05 YAMANO Katsushito Rotational power production device and power generation device
JP5692768B1 (en) * 2013-12-26 2015-04-01 勝臣 山野 Rotational power generator and power generator
WO2015174321A1 (en) * 2014-05-13 2015-11-19 勝臣 山野 Rotary power generation device and electricity generation device
JP2015233398A (en) * 2014-05-13 2015-12-24 勝臣 山野 Rotational power producing device and electric power generator
CN108233599A (en) * 2018-03-10 2018-06-29 余建华 A kind of novel reciprocating type magnet pulse motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070030010A (en) * 2005-09-12 2007-03-15 최호중 Rotary power generating machine with magnetic
WO2015029782A1 (en) * 2013-08-26 2015-03-05 YAMANO Katsushito Rotational power production device and power generation device
JP5692768B1 (en) * 2013-12-26 2015-04-01 勝臣 山野 Rotational power generator and power generator
WO2015174321A1 (en) * 2014-05-13 2015-11-19 勝臣 山野 Rotary power generation device and electricity generation device
JP2015233398A (en) * 2014-05-13 2015-12-24 勝臣 山野 Rotational power producing device and electric power generator
JP2015232315A (en) * 2014-05-13 2015-12-24 勝臣 山野 Rotational power generation device and power generation device
CN108233599A (en) * 2018-03-10 2018-06-29 余建华 A kind of novel reciprocating type magnet pulse motor

Also Published As

Publication number Publication date
KR20040034323A (en) 2004-04-28

Similar Documents

Publication Publication Date Title
KR950005358B1 (en) Electromagnetically powered engine apparatus and method
US8786143B2 (en) Magnetically actuated reciprocating motor and process using reverse magnetic switching
KR100622890B1 (en) Electromagnetic piston engine
US20140117786A1 (en) Magnetically Actuated Reciprocating Motor and Process Using Reverse Magnetic Switching
US4207773A (en) Magnetic piston machine
US20120119594A1 (en) Magnetically Charged Solenoid for Use in Magnetically Actuated Reciprocating Devices
US5637936A (en) Electromagnetically powered engine
US20100148610A1 (en) Magnetic piston apparatus and method
US10050511B2 (en) Magnetic drive system and method
US10141827B2 (en) Electromagnetic toroidal motor
JP2000152558A (en) Motor
JP2004137967A (en) Method and device for rotation generation
US5341055A (en) Combination reciprocating motor and inverter
CN1028823C (en) Electromagnetically powered rotary engine apparatus and method
US20020047411A1 (en) Series of force-enhancing powerful magnetic energy engine with high-speed
JPH0223077A (en) Magnet power engine
CN113890299B (en) Engine system for generating power based on electrified coil and permanent magnet
WO2008116258A1 (en) Magnetic motor
JP2002027734A (en) Electric engine
JP2001501074A (en) High-speed intensified magnetic energy engine
CN1120759A (en) Energy saving magnetic driver
JPH07177726A (en) Motor generator and its magnetic power engine
BG113022A (en) Permanent magnet dynamo electric motor
JPH0236780A (en) Magnet accelerating motion engine
BG3589U1 (en) Permanent magnet dynamo electric motor