JP2004137173A - Method for starting unsaturated carboxylate synthesis reaction - Google Patents

Method for starting unsaturated carboxylate synthesis reaction Download PDF

Info

Publication number
JP2004137173A
JP2004137173A JP2002301912A JP2002301912A JP2004137173A JP 2004137173 A JP2004137173 A JP 2004137173A JP 2002301912 A JP2002301912 A JP 2002301912A JP 2002301912 A JP2002301912 A JP 2002301912A JP 2004137173 A JP2004137173 A JP 2004137173A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
alcohol
unsaturated
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301912A
Other languages
Japanese (ja)
Other versions
JP4145621B2 (en
Inventor
Toru Watabe
渡部 徹
Tatsuo Yamaguchi
山口 辰男
Koushirou Yokota
横田 耕史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Original Assignee
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Asahi Chemical Co Ltd filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002301912A priority Critical patent/JP4145621B2/en
Publication of JP2004137173A publication Critical patent/JP2004137173A/en
Application granted granted Critical
Publication of JP4145621B2 publication Critical patent/JP4145621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an unsaturated carboxylate by reacting an unsaturated aldehyde with an alcohol in the presence of oxygen, by which the realization of high unsaturated aldehyde conversion and high unsaturated carboxylate selectivity just after the start of the reaction, the prevention of reactor corrosion caused just after the start of the reaction, the depression of the production of a polymer, and the stable continuous production of the unsaturated carboxylate over a long period are achieved. <P>SOLUTION: This method for producing the unsaturated carboxylate, comprising reacting the unsaturated aldehyde with the alcohol in the presence of oxygen and a catalyst, is characterized by replacing an aqueous solution containing the catalyst with the alcohol to be used in the reaction or by the unsaturated aldehyde and the alcohol to be used in the reaction to lower the concentration of the water to ≤10 wt. % before the start of the reaction, and then starting the reaction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、酸素の存在下で不飽和アルデヒドとアルコールを反応させて不飽和カルボン酸エステルを製造する方法に関し、高い不飽和アルデヒド転化率と高い不飽和カルボン酸エステル選択率を示す定常状態に速やかに到達せしめ、かつ、反応初期の触媒の品質劣化を防ぎ、長期にわたり安定して連続的に不飽和カルボン酸エステルの製造を行うことのできる反応開始方法を提供する。
【0002】
【従来の技術】
工業的に有用なメタクリル酸メチル又はアクリル酸メチルを製造する方法として、メタクロレイン又はアクロレインをメタノールと反応させて直接、メタクリル酸メチル又はアクリル酸メチルを製造する酸化エステル化法が提案されている。この製法ではメタクロレイン又はアクロレインをメタノール中で分子状酸素と反応させることによって行われ、パラジウムと鉛、ビスマス、タリウム、水銀を含む触媒を用いた例が、特公昭57−35856〜35861号各公報に、また、パラジウムとこれら金属との金属間化合物を触媒とする例が、特公昭62−7902号公報に開示されている。
【0003】
また、特開平9−216850号公報他には、パラジウムとビスマスを用いた触媒が、特開2001−220367にはルテニウムと鉛を用いた触媒が例示されている。これらの開示例に示される触媒は全て、炭酸カルシウム、シリカ、アルミナなどの担体に担持された固体触媒であり、反応は、これらの固体触媒をアルコールと不飽和アルデヒドの溶液中に分散させて(以下、場合により触媒スラリーと略記する)酸素を含むガスを吹き込んで行われている。
【0004】
反応には、攪拌槽反応器、気泡塔反応器などが用いられるが、本発明者らは気泡塔反応器を用いてメタクロレインとメタノールからメタクリル酸メチルを製造する実験を行った。同一の触媒を用いて反応を何度か実施したところ、定常になった際の活性やメタクリル酸メチルの選択率にバラツキが生じることが判った。そして、活性が低くメタクリル酸メチルの選択率が低い反応液中には、反応器の構成成分である鉄等の金属成分の溶出が認められた。これは工業的実施に際して反応器の腐食という大きな問題が生じる危険性がある。
【0005】
さらに、反応停止後の反応器内にポリマーがあり、そのポリマー中に触媒が含まれていることが判った。長期間運転を実施する際には、ポリマーが成長し触媒が取り込まれて活性が低下したり、反応器を閉塞させてしまうことが判明し、致命的な問題であることが判った。これらの問題の原因は明らかではないが、反応開始時に水濃度が高いとカルボン酸類が多量に生成し、触媒構成成分が溶出することによって触媒性能が低下すること。また生成するカルボン酸類によって反応器材質からの鉄等の金属成分が溶出し、溶出した金属成分が触媒に吸着して触媒性能を低下させていることを推定している。
【0006】
【発明が解決しようとする課題】
本発明は、このような問題点に鑑みてなされたものであって、高い不飽和アルデヒド転化率と高い不飽和カルボン酸エステル選択率を示す定常状態に速やかに到達せしめ、かつ、触媒構成成分の溶出を防ぎ、反応器材質の腐食を防ぎ、反応器内のポリマーの副生を抑制して反応器の長期にわたり安定して連続的に不飽和カルボン酸エステルの製造を行うことのできる反応開始方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
これらの課題を解決するために、筆者らは反応を開始する際に、触媒を含む水溶液を置換する際の溶媒や、反応液の水濃度等に関する条件について鋭意検討した結果、反応開始前の反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールで触媒を含む水溶液を置換して水濃度を10重量%以下に低下させてから酸素の供給を開始することで触媒成分の溶出を抑制し、触媒品質の低下の防止とポリマー生成の抑制を見いだし本件発明の端緒を得た。さらに、この方法で反応を開始した場合には、定常状態に到達した際の不飽和アルデヒド転化率と不飽和カルボン酸選択率が高いことも判明し、本発明を完成させるに至った。
【0008】
すなわち、本件発明は、
1.酸素の存在下で不飽和アルデヒドとアルコールを触媒と反応させて不飽和カルボン酸エステルを製造する方法において、反応開始前に触媒を含んだ水溶液を反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールで置換して水濃度を10重量%以下に低下させてから酸素の供給を開始することを特徴とする不飽和カルボン酸エステルの反応開始方法に係る。
2.該触媒がパラジウムおよび/またはルテニウムとX(Xは鉛、ビスマス、水銀、タリウムから選ばれる少なくとも1種類以上の金属を示す)を含む触媒であることを特徴とする上記1.記載の不飽和カルボン酸エステルの反応開始方法に係る。
3.不飽和アルデヒドがアクロレイン又はメタクロレインで、アルコールがメタノールである上記1および2記載の不飽和カルボン酸エステルの反応開始方法に係る。
【0009】
以下に本発明を詳細に説明する。
本発明において、反応の開始とは、温度、圧力、酸素濃度が所定の値になった時点を指し、これらの条件を合わせ込む順番、組合わせは任意所定に定めれば良い。一例を挙げるならば、反応器に反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールで置換して、反応溶液中の水濃度を10wt%にした触媒を含む反応溶液を仕込み、反応に不活性なガスを主として含むガスを吹き込みながら触媒を流動させ、次いで圧力を所定の値まで上げる。
【0010】
引き続き温度を所定の値まで上げた後、吹き込むガスを酸素を含むガスに切り替えて、反応器出口酸素濃度が所定の値になるように調整し、出口酸素濃度が所定の値に到達した時点を反応の開始とする。また、触媒を流動化させる際には本発明の目的を損なわない範囲で不活性ガス中に酸素を含んでも良い。
本発明における触媒のみならず、一般に金属状態まで還元された金属触媒では、空気中で有機物の蒸気と共存すると発火する危険性があり、水溶液中で保存することが好ましい。
【0011】
従って、反応器に触媒を投入する際には水溶液と一緒に触媒を反応器に投入することが一般的である。本発明における触媒を含む水溶液とは、主に安全上の理由から水を含む溶液中に触媒が存在している混合物を指し、混合状態は任意所定に定めれば良い。一般的な状態を例示すれば、触媒が沈殿し静置している状態、ガスや溶液を吹き込んだり攪拌することにより触媒が水溶液中に分散している状態などが挙げられる。水溶液を用いる主たる理由は安全の確保であり、触媒やプラントが安全な状態に置かれている範囲で水溶液の組成は任意所定に定めれば良い。安全な状態とは、燃焼の3要素である可燃物、酸素、着火源のすくなくとも一つが避けられている状態である。
【0012】
たとえば、可燃物を避ける手段としては水のみ、あるいは低濃度の可燃物しか含まない水溶液が例示され、酸素を避ける手段としては、低濃度の可燃物しか含まない水溶液中や、仮に高濃度の可燃物を含む場合あるいは可燃物のみを含む場合であっても触媒が溶液中に分散あるいは沈殿静置されていて実質的に空気に触れていない状態が例示され、着火源を避ける手段としては、触媒が水溶液や反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールなどの液体で濡れていて、万が一触媒が何らかのエネルギーを含んだとしても、液体の良好な熱伝導により速やかに最小着火エネルギーより低い状態に置かれることが例示される。これらの組み合わせも好ましく例示される。
【0013】
本発明における水溶液の置換の方法については任意所定に定めれば良く、触媒スラリーに反応に用いるアルコールまたは反応で使用する不飽和アルデヒドとアルコールを供給しながら連続的に置換する方法、触媒と水溶液を一般的な分離方法、たとえば、ろ過、デカンテーション、フィルター分離などで一旦おおよそ分離し、次に反応に使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコール中に分散させることを繰り返す方法、不活性雰囲気下で水溶液を蒸発させて後反応に使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコール中に分散させる方法などが例示される。
【0014】
実際のプラント運転での簡便性を考慮するならば、触媒スラリーに反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールを供給しながら連続的に置換する方法が好ましく例示される。置換操作を行う条件は任意所定に定めれば良い。
また、置換操作にも拠るため一義的には決められないが、触媒スラリーに反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールを供給しながら連続的に置換する方法で例示するならば、完全混合槽の一般的な性質として、滞留時間の3から4倍時間を目安に流す液量を決めればよい。温度と圧力についても、所定の値にする前でも後でも、また、それらの操作の途中でもよい。ここで述べている滞留時間(θ)は、F/V=θ(F=供給液量、V=反応器中の実溶液保有量)を示している。
【0015】
本発明における水濃度とは、触媒を含む反応溶液のうち、触媒を除いた反応溶液中の水濃度を示す。
本発明における置換操作と反応の開始操作の順番は任意所定に定めれば良く、まずアルコールまたは不飽和アルデヒドとアルコールの置換操作を済ませて反応の開始操作に入る方法でも、反応条件を整えてから置換操作に入る方法でも構わない。アルコールまたは不飽和アルデヒドとアルコールで置換する操作と反応条件を整える操作を同時並行で進める方法も好ましく例示される。
【0016】
本発明においては、反応開始前に触媒を含んだ水溶液を、反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールで置換して水濃度を10重量%以下とし、好ましくは5重量%以下とし、さらに好ましくは3重量%以下とする。該水濃度が10重量%を越えると、不飽和カルボン酸(メタクリル酸)の副生が多くなり、触媒を構成する元素の溶出が起こる。さらに反応速度の低下や副生物の選択率が増加し、メタクリル酸メチル選択率の低下を招き、ポリマーの発生が起こり好ましくない。また反応に用いるアルコールまたは不飽和アルデヒドとアルコール以外の有機物を用いると目的成分以外の副生成物が増加し好ましくない。
【0017】
本発明において使用する不飽和アルデヒドとしては、アクロレイン、メタクロレイン、クロトンアルデヒドなどの脂肪族不飽和アルデヒド並びにこれらアルデヒドの誘導体;ベンズアルデヒド、トルイルアルデヒド、ベンジルアルデヒド、フタルアルデヒドなどのC6−C20芳香族アルデヒド並びにこれらのアルデヒドの誘導体などがあげられる。本発明では、アクロレインとメタクロレインが好ましく用いられる。これらの不飽和アルデヒドは単独もしくは任意の二種以上の混合物として用いることができる。特に、イソブチレン、プロピレンから触媒存在下酸素で部分酸化されて製造されるアクロレインとメタクロレインはさらに好ましく用いられる。
【0018】
本発明において使用するアルコールとしては、炭素数1〜12脂肪族飽和アルコール、ジオール、脂肪族不飽和アルコール、芳香族アルコールなどがあげられる。例えば、脂肪族飽和アルコールとしてはメタノール、エタノール、イソプロパノール、オクタノールなどがあげられる。ジオールとしてはエチレングリコール、ブタンジオールなどがあげられる。脂肪族不飽和アルコールとしてはアリルアルコール、メタリルアルコールなどがあげられる。芳香族アルコールとしてはベンジルアルコールなどがあげられる。特にメチルアルコール、エチルアルコールなどの低級アルコールの反応が速やかで好ましい。これらのアルコールは単独もしくは任意の二種以上の混合物として用いることができる。
【0019】
本発明反応における不飽和アルデヒドとアルコールとの使用量比は任意所定に定めれば良く、例えば不飽和アルデヒド/アルコールのモル比で10〜1/1000のような広い範囲で実施できるが、一般には不飽和アルデヒドの量が少ない方が好ましく、1/2〜1/50の範囲にするのが好ましい。
本発明で使用する酸素は分子状酸素、すなわち酸素ガス自体又は酸素ガスを反応に不活性な希釈剤、例えば窒素、炭酸ガスなどで希釈した混合ガスの形とすることができ、空気を用いることもできる。反応系に存在させる酸素の量は、反応に必要な化学量論量以上、好ましくは化学量論量の1.2倍以上あれば充分である。反応の全圧は減圧から加圧下の任意の広い圧力範囲で実施することができるが、通常は1〜20kg/cmの圧力で実施される。反応系に供給する酸素の分圧は、反応器出口側の酸素分圧が0.8kg/cm以下となるように管理するのが好ましく、より好ましくは0.4kg/cm以下である。一方、反応器流出ガスの酸素濃度が爆発範囲(8vol%)を越えないように全圧を設定するとよい。
【0020】
本発明反応は、気相反応、液相反応、潅液反応などの任意の従来公知の方法で実施できる。反応器形式も固定床式、流動床式、撹拌槽式などの従来公知の任意の形式によることができる。例えば液相で実施する際には気泡塔反応器、ドラフトチューブ型反応器、撹拌槽反応器などの任意の反応器形式によることができる。反応は、無溶媒でも実施できるが、反応成分に対して不活性かつ触媒と殆ど反応しない溶媒、例えば、ヘキサン、デカン、ベンゼン、ジオキサンなどを用いて実施することができる。
【0021】
本発明に用いる触媒はパラジウムおよび/またはルテニウムと、X(Xは鉛、ビスマス、水銀、タリウムから選ばれる少なくとも1種類以上の金属)を含むことが必須である。パラジウムおよび/またはルテニウムとXが合金、金属間化合物を形成しても良い。また、異種元素として3B族元素で好ましくはYであり、ランタノイド元素で好ましくはLa、Ce、Pr、Nd、Sm、Ybであり、4B族元素で好ましくはTi、Zrであり、5B族元素では好ましくはNb、Taであり、6B族元素では好ましくはWであり、7B属元素では好ましくはMn、Reであり、8属元素では好ましくはCo、Rh、Ir、Ptであり、1B属元素では好ましくはAg、Auであり、2B属元素であり、3A属元素では好ましくはAl、Ga、Inであり、4A属元素では好ましくはSi、Ge、Snであり、5A属元素では好ましくはSbであり、6A属元素では好ましくはSe、Teであり、これらの元素等を含んでもよい。
【0022】
これらの異種元素は通常、5重量%、好ましくは1重量%を超えない範囲で含むことができる。さらにはアルカリ金属元素及びアルカリ土類金属元素から選ばれる少なくとも一員を含むものは反応活性が高くなるなどの利点がある。アルカリ金属元素、アルカリ土類金属元素は通常0.0 1〜30重量%、好ましくは0.01〜5重量%の範囲から選ばれる。これらの異種元素、アルカリ金属元素、アルカリ土類金属元素などは結晶格子間に少量、侵入したり、結晶格子金属の一部と置換していてもよい。
【0023】
また、アルカリ金属元素及び/又はアルカリ土類金属元素は、触媒調製時にパラジウム化合物、ルテニウム化合物、あるいはXの化合物を含む溶液に加えておき担体に吸着あるいは付着させてもよいし、あらかじめこれらを担持した担体を利用して触媒を調製することもできる。また、反応条件下に反応系に添加することも可能である。これらの触媒構成要素は単独にあるいはシリカ、アルミナ、シリカアルミナ、チタン、炭酸塩、水酸化物、活性炭、ジルコニアなどの担体に担持されたものがよい。
【0024】
本発明におけるパラジウムおよび/またはルテニウム担持触媒の担持量は、特に限定はないが、通常0.1〜20重量%、好ましくは1〜10重量%であり、アルカリ金属元素もしくはアルカリ土類金属元素を使用する場合、担持量は、通常、0.01〜30重量%、好ましくは0.01〜15重量%である。
本発明の触媒は公知の調製方法で準備することができる。代表的な触媒調製方法について説明すれば、たとえば、可溶性の鉛化合物および塩化パラジウムなどの可溶性のパラジウム塩を含む水溶液に担体を加えて加温含浸させ、パラジウム、鉛を含浸する。ついでホルマリン、ギ酸、ヒドラジンあるいは水素ガスなどで還元する。この例で示すならば、パラジウムを担持する前に鉛を担持してもよいし、パラジウムと鉛を同時に担持してもよい。
【0025】
触媒調製のために用いられるパラジウム化合物及びルテニウム化合物は、例えば蟻酸塩、酢酸塩などの有機酸塩、硫酸塩、塩酸塩、硝酸塩のごとき無機酸塩、アンミン錯体、ベンゾニトリル錯体、アセチルアセトナート錯体、カルボニル錯体などの有機金属錯体、酸化物、水酸化物などのなかから適宜選ばれるが、パラジウム化合物としては塩化パラジウム、酢酸パラジウムなどが、ルテニウム化合物としては塩化ルテニウムなどが好ましい。Xの化合物としては硝酸塩、酢酸塩などの無機塩、ホスフィン錯体など有機金属錯体を用いることができ、硝酸塩、酢酸塩などが好適である。またアルカリ金属化合物、アルカリ土類金属化合物についても有機酸塩、無機酸塩、水酸化物などから選ばれる。
【0026】
触媒の使用量は、反応原料の種類、触媒の組成や調製法、反応条件、反応形式などによって大巾に変更することができ、触媒をスラリー状態で反応させる場合には反応液1リットル中に0.04〜0.5kg使用するのが好ましい。
本発明の反応は、反応系にアルカリ金属もしくはアルカリ土類金属の化合物(例えば、酸化物、水酸化物、炭酸塩、カルボン酸塩など)を添加して反応系のpHを6〜9に保持することが好ましい。特にpHを6以上にすることで触媒中のX成分の溶解を防ぐ効果がある。これらのアルカリ金属もしくはアルカリ土類金属の化合物は単独もしくは二種以上組み合わせて使用することができる。
本発明反応は、100℃以上の高温でも実施できるが、好ましくは30〜100℃、さらに好ましくは60〜90℃である。反応時間は、設定した条件により異なるが 通常1〜20時間である。
【0027】
【発明の実施の形態】
以下、実施例をもって本発明の実施の形態を具体的に説明する。
担体として富士シリシア社製のシリカゲル(キャリアクト10 商品名 平均粒子径 50μm)にパラジウム5重量%、鉛5重量%、マグネシウム4重量%を担持した触媒150gを、触媒分離器を備え液相部が1.2リットルのステンレス製外部循環型気泡塔反応器に仕込んだ。この時、反応器内は水で満たされている。反応器内を不活性ガスを含むガスで触媒を循環させながらメタノールを0.10リットル/hrで供給し置換操作を行った。水濃度の分析は、水溶液を適宜一部抜き出し通常のガスクロマトグラム法にて、島津製作所製GC−14BT型機にガラスカラムにGLサイエンス社製の商品名ガスクロパック56充填材を充填し、恒温槽をプログラム昇温させて、熱伝導度検出器(TCD)を用いて行った。次いで所望の水濃度に置換が行われたことを確認した。水濃度を確認後、34重量%のメタクロレイン/メタノールを0.54リットル/hr、NaOH/メタノールを0.06リットル/hrで供給し、温度80℃、圧力5.0kg/cmで空気を供給しながら反応開始した。反応液のpHが7.1となるようにNaOH濃度調製し、また、供給原料液中の鉛濃度が20ppmとなるように酢酸鉛をメタクロレイン/メタノールに溶かして連続的に供給した。一方、反応器出口酸素濃度は、4vol%(酸素分圧0.20kg/cm)となるように空気量を調整しながら反応器に空気を供給した。
【0028】
反応成績は以下のように評価した。
(1)アルデヒド転化率、カルボン酸エステル選択率
反応液ならびに反応器出口ガスの分析は、通常のガスクロマトグラム法にて、島津製作所製GC−8A型機に化学品検査協会製G−100カラム(ほぼ沸点順に溶出する)を装着し、恒温槽をプログラム昇温させて、水素炎検出器(FID)を用いて行った。また、実施例及び比較例において反応成績を表すために用いた転化率と収率は次式で定義される。

Figure 2004137173
【0029】
(2)高沸生成物の分析
高沸点化合物、低重合度化合物などのいわゆる高沸成分は、ガスクロマトグラフ法でカルボン酸より高沸点の化合物をもってし、FID検出ピークのうち、不飽和カルボン酸(メタクリル酸)が溶出する保持時間よりも後ろで溶出する成分のピーク面積を合計し、カルボン酸エステルの面積で割った割合として標記することとする。
反応液中の金属成分は以下のように分析した。
測定は島津製作所製AA−6400F型原子吸光光度計およびリガク製JY−138誘導結合高周波プラズマ発光分光分析計を併用して行った。分析は、触媒成分のPbと、反応器材質であるFe、Ni、Cr、Moについて行い、原料との差を以って溶出量と見なし、分析下限は0.1ppmであった。ステンレス由来のFe、Ni、Cr、Moの濃度の合計も反応器腐食の目安として示した。
【0030】
【実施例1】
スタート前の反応器の水濃度は5重量%で反応を開始した。その後、上記反応条件にて、反応を50時間まで継続した。反応器出口での分析結果を、表1に経時的に示す。また、原料液および反応開始10時間後の反応出口液中の金属成分を分析した結果を表4に示す。
【0031】
【実施例2】
スタート前の反応器の水濃度は10重量%で反応を開始した。その後、上記反応条件にて、反応を50時間まで継続した。反応器出口での分析結果を、表2に経時的に示す。また、原料液および反応開始10時間後の反応出口液中の金属成分を分析した結果を表4に示す。
【0032】
【比較例1】
スタート前の反応器の水濃度は20重量%で反応を開始した。その後、実施例1と同様の反応操作を行った。結果を表3に経時的に示す。
また、原料液および反応開始10時間後の反応出口液中の金属成分を分析した結果を表4に示す。10時間後の溶出元素(ppm)、メタクロレイン転化率、メタクリル酸メチル選択率ともに、実施例1,2に比べて低く、触媒が劣化していることがわかった。
さらに、反応開始10時間後の高沸成分の顕著な悪化が見られ、さらに反応時間が経過しても高沸成分の悪化は改善されていないことから、重合が進んでしまったことを示唆している。定常状態に到達する時間も長い。50時間反応後、反応器を開放点検したところ、白色固形物があり、白色固形物中に触媒が含まれていることが認められた。
【0033】
【表1】
Figure 2004137173
【0034】
【表2】
Figure 2004137173
【0035】
【表3】
Figure 2004137173
【0036】
【表4】
Figure 2004137173
【0037】
【発明の効果】
本発明の製造方法によれば、反応開始してから定常になるまでの時間が短くでき、かつ、定常時のメタクロレイン転化率、MMA選択率が高く維持できる。さらに、反応開始直後のカルボン酸類の生成を抑制し、触媒から触媒構成元素が溶出して触媒品質の低下を防止でき、かつ、カルボン酸類によって反応器材質の腐食をおこることを防止できる。また、反応開始してから定常になるまでのポリマー生成を抑制して長期運転を可能とできる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an unsaturated carboxylic acid ester by reacting an unsaturated aldehyde and an alcohol in the presence of oxygen, and quickly to a steady state showing a high unsaturated aldehyde conversion and a high unsaturated carboxylic acid ester selectivity. And a method for initiating a reaction which can stably and continuously produce an unsaturated carboxylic acid ester for a long period of time while preventing deterioration of the catalyst quality at the beginning of the reaction.
[0002]
[Prior art]
As a method for producing industrially useful methyl methacrylate or methyl acrylate, an oxidative esterification method has been proposed in which methacrolein or acrolein is reacted with methanol to directly produce methyl methacrylate or methyl acrylate. This production method is carried out by reacting methacrolein or acrolein with molecular oxygen in methanol. An example using a catalyst containing palladium and lead, bismuth, thallium, and mercury is disclosed in JP-B-57-35856-35861. An example using palladium and an intermetallic compound of these metals as a catalyst is disclosed in Japanese Patent Publication No. 62-7902.
[0003]
JP-A-9-216850 and others disclose catalysts using palladium and bismuth, and JP-A-2001-220267 exemplifies catalysts using ruthenium and lead. All of the catalysts shown in these disclosure examples are solid catalysts supported on a support such as calcium carbonate, silica, and alumina. The reaction is performed by dispersing these solid catalysts in a solution of an alcohol and an unsaturated aldehyde ( Hereinafter, the catalyst slurry is abbreviated as a catalyst slurry (in some cases).
[0004]
For the reaction, a stirred tank reactor, a bubble column reactor, and the like are used. The present inventors conducted an experiment for producing methyl methacrylate from methacrolein and methanol using the bubble column reactor. When the reaction was carried out several times using the same catalyst, it was found that the activity at the steady state and the selectivity of methyl methacrylate varied. In the reaction solution having low activity and low selectivity for methyl methacrylate, elution of metal components such as iron, which is a component of the reactor, was observed. This poses a major risk of reactor corrosion in industrial practice.
[0005]
Furthermore, it was found that there was a polymer in the reactor after the reaction was stopped, and the polymer contained a catalyst. When the operation was carried out for a long period of time, it was found that the polymer grew and the catalyst was taken in, resulting in a decrease in activity or clogging of the reactor, which proved to be a fatal problem. Although the cause of these problems is not clear, if the water concentration is high at the start of the reaction, a large amount of carboxylic acids are generated, and the catalyst constituents are eluted to lower the catalyst performance. It is also presumed that metal components such as iron from the reactor material are eluted by the generated carboxylic acids, and the eluted metal components are adsorbed by the catalyst to lower the catalyst performance.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such a problem, and quickly reaches a steady state showing a high conversion rate of unsaturated aldehyde and a high selectivity of unsaturated carboxylic acid ester, and the catalyst component. A reaction initiation method that can prevent elution, prevent corrosion of reactor materials, suppress polymer by-products in the reactor, and stably and continuously produce unsaturated carboxylic esters over a long period of time in the reactor. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to solve these problems, the authors conducted intensive studies on the conditions for replacing the aqueous solution containing the catalyst and the water concentration of the reaction solution when starting the reaction. The elution of the catalyst component is suppressed by replacing the aqueous solution containing the catalyst with the alcohol used in the reaction or the unsaturated aldehyde used in the reaction and the alcohol to lower the water concentration to 10% by weight or less and then starting the supply of oxygen. The present inventors have found that prevention of deterioration of the catalyst quality and suppression of polymer production have led to the present invention. Furthermore, when the reaction was started by this method, it was also found that the unsaturated aldehyde conversion and the unsaturated carboxylic acid selectivity at the time of reaching the steady state were high, and the present invention was completed.
[0008]
That is, the present invention
1. In a process for producing an unsaturated carboxylic acid ester by reacting an unsaturated aldehyde and an alcohol with a catalyst in the presence of oxygen, an alcohol containing an aqueous solution containing the catalyst in the reaction before starting the reaction or an unsaturated aldehyde used in the reaction And a method of initiating the reaction of an unsaturated carboxylic acid ester, wherein the supply of oxygen is started after the water concentration is reduced to 10% by weight or less by substituting with an alcohol.
2. (1) The catalyst according to (1), wherein the catalyst contains palladium and / or ruthenium and X (X represents at least one metal selected from lead, bismuth, mercury, and thallium). The present invention relates to a method for initiating the reaction of an unsaturated carboxylic acid ester described above.
3. The present invention relates to the method for initiating the reaction of an unsaturated carboxylic acid ester according to the above 1 or 2, wherein the unsaturated aldehyde is acrolein or methacrolein and the alcohol is methanol.
[0009]
Hereinafter, the present invention will be described in detail.
In the present invention, the start of the reaction refers to a point in time when the temperature, pressure, and oxygen concentration have reached predetermined values, and the order and combination of these conditions may be arbitrarily determined. As an example, a reaction solution containing a catalyst in which the alcohol used in the reaction or the unsaturated aldehyde used in the reaction is replaced with the alcohol to make the water concentration in the reaction solution 10 wt% is charged into the reactor, and the reaction is carried out. The catalyst is caused to flow while blowing a gas mainly containing an inert gas, and then the pressure is increased to a predetermined value.
[0010]
Subsequently, after the temperature is raised to a predetermined value, the gas to be blown is switched to a gas containing oxygen, the oxygen concentration at the outlet of the reactor is adjusted to a predetermined value, and the time when the oxygen concentration at the outlet reaches the predetermined value is determined. The reaction starts. Further, when fluidizing the catalyst, oxygen may be contained in the inert gas as long as the object of the present invention is not impaired.
Not only the catalyst according to the present invention but also a metal catalyst which is generally reduced to a metal state may be ignited when coexisting with an organic vapor in the air, and is preferably stored in an aqueous solution.
[0011]
Therefore, when charging the catalyst into the reactor, it is common to charge the catalyst into the reactor together with the aqueous solution. The aqueous solution containing a catalyst in the present invention refers to a mixture in which a catalyst is present in a solution containing water mainly for safety reasons, and the mixing state may be arbitrarily determined. Examples of a general state include a state in which the catalyst is precipitated and allowed to stand, and a state in which the catalyst is dispersed in an aqueous solution by blowing or stirring a gas or a solution. The main reason for using the aqueous solution is to ensure safety, and the composition of the aqueous solution may be arbitrarily determined as long as the catalyst and the plant are in a safe state. The safe state is a state in which at least one of the three components of combustion, that is, combustibles, oxygen, and an ignition source is avoided.
[0012]
For example, means for avoiding combustibles include aqueous solutions containing only water or low-concentration combustibles. Examples of means for avoiding oxygen include solutions containing only low-concentration combustibles, or provisions containing high-concentration combustibles. Even when containing substances or only containing combustibles, the catalyst is dispersed or settled in a solution and is in a state where the catalyst is not substantially in contact with air.Examples of means for avoiding an ignition source include: Even if the catalyst is wet with a liquid such as an aqueous solution or an alcohol used in the reaction or an unsaturated aldehyde and an alcohol used in the reaction, and even if the catalyst contains any energy, the minimum ignition energy is quickly achieved by good heat conduction of the liquid. It is exemplified to be placed in a lower state. These combinations are also preferably exemplified.
[0013]
The method of replacing the aqueous solution in the present invention may be arbitrarily determined, a method of continuously replacing the alcohol used for the reaction or the unsaturated aldehyde used in the reaction with the alcohol while supplying the catalyst slurry, General separation methods, such as, for example, a method of once separating roughly by filtration, decantation, filter separation, etc., and then repeatedly dispersing in alcohol used in the reaction or the unsaturated aldehyde used in the reaction and alcohol, inert Examples thereof include a method of evaporating an aqueous solution in an atmosphere and dispersing the resultant in alcohol and an alcohol used in the subsequent reaction or an unsaturated aldehyde used in the reaction.
[0014]
Considering the simplicity in actual plant operation, a preferred example is a method in which the catalyst slurry is continuously replaced while supplying the alcohol used in the reaction or the unsaturated aldehyde used in the reaction with the alcohol. The condition for performing the replacement operation may be arbitrarily determined.
In addition, although it cannot be uniquely determined because it depends on the substitution operation, if it is exemplified by a method of continuously replacing the alcohol used in the reaction or the unsaturated aldehyde used in the reaction with the alcohol, the catalyst slurry is used. As a general property of the complete mixing tank, it is sufficient to determine the amount of the liquid to be flowed at about three to four times the residence time. The temperature and the pressure may be set before or after the predetermined values, or during the operation thereof. The residence time (θ) described here indicates F / V = θ (F = feed liquid amount, V = actual solution holding amount in the reactor).
[0015]
The water concentration in the present invention indicates the water concentration in the reaction solution excluding the catalyst among the reaction solutions containing the catalyst.
The order of the substitution operation and the reaction start operation in the present invention may be determined arbitrarily, and even after the substitution operation of the alcohol or the unsaturated aldehyde and the alcohol is completed and the reaction start operation is started, the reaction conditions are adjusted. A method of starting the replacement operation may be used. A preferred example is a method in which the operation of replacing the alcohol or the unsaturated aldehyde with the alcohol and the operation of adjusting the reaction conditions are simultaneously performed.
[0016]
In the present invention, before starting the reaction, the aqueous solution containing the catalyst is replaced with the alcohol used for the reaction or the unsaturated aldehyde used for the reaction to make the water concentration 10% by weight or less, preferably 5% by weight or less. And more preferably at most 3% by weight. If the water concentration exceeds 10% by weight, the amount of unsaturated carboxylic acid (methacrylic acid) by-produced increases, and the elements constituting the catalyst are eluted. Further, the reaction rate decreases and the selectivity of by-products increases, which leads to a decrease in the selectivity of methyl methacrylate, which is not preferable because a polymer is generated. Also, if an alcohol or an unsaturated aldehyde used in the reaction and an organic substance other than the alcohol are used, by-products other than the target component increase, which is not preferable.
[0017]
Examples of the unsaturated aldehyde used in the present invention include aliphatic unsaturated aldehydes such as acrolein, methacrolein and crotonaldehyde and derivatives of these aldehydes; C6-C20 aromatic aldehydes such as benzaldehyde, toluyl aldehyde, benzyl aldehyde and phthalaldehyde Derivatives of these aldehydes and the like can be mentioned. In the present invention, acrolein and methacrolein are preferably used. These unsaturated aldehydes can be used alone or as a mixture of two or more kinds. In particular, acrolein and methacrolein produced by partially oxidizing isobutylene and propylene with oxygen in the presence of a catalyst are more preferably used.
[0018]
Examples of the alcohol used in the present invention include an aliphatic saturated alcohol having 1 to 12 carbon atoms, a diol, an aliphatic unsaturated alcohol, and an aromatic alcohol. For example, examples of the aliphatic saturated alcohol include methanol, ethanol, isopropanol, and octanol. Examples of the diol include ethylene glycol and butanediol. Examples of the aliphatic unsaturated alcohol include allyl alcohol and methallyl alcohol. Examples of the aromatic alcohol include benzyl alcohol and the like. Particularly, a reaction with a lower alcohol such as methyl alcohol or ethyl alcohol is quick and preferable. These alcohols can be used alone or as a mixture of two or more kinds.
[0019]
The ratio between the amounts of the unsaturated aldehyde and the alcohol used in the reaction of the present invention may be arbitrarily determined. For example, the reaction can be carried out in a wide range such as a molar ratio of unsaturated aldehyde / alcohol of 10 to 1/1000. It is preferable that the amount of the unsaturated aldehyde is small, and it is preferable that the amount be in the range of 1/2 to 1/50.
The oxygen used in the present invention may be molecular oxygen, that is, oxygen gas itself or a mixed gas obtained by diluting oxygen gas with a diluent inert to the reaction, for example, nitrogen or carbon dioxide gas, and using air. You can also. It is sufficient that the amount of oxygen to be present in the reaction system is not less than the stoichiometric amount necessary for the reaction, preferably not less than 1.2 times the stoichiometric amount. Although the total pressure of the reaction can be carried out in a wide range of pressure from reduced pressure to increased pressure, it is usually carried out at a pressure of 1 to 20 kg / cm 2 . The partial pressure of oxygen supplied to the reaction system is preferably controlled so that the oxygen partial pressure at the outlet of the reactor is 0.8 kg / cm 2 or less, more preferably 0.4 kg / cm 2 or less. On the other hand, the total pressure is preferably set so that the oxygen concentration of the gas flowing out of the reactor does not exceed the explosion range (8 vol%).
[0020]
The reaction of the present invention can be carried out by any conventionally known method such as a gas phase reaction, a liquid phase reaction, and a perfusion reaction. The reactor may be of any type known in the art, such as a fixed bed type, a fluidized bed type, or a stirred tank type. For example, when the reaction is carried out in a liquid phase, any reactor type such as a bubble column reactor, a draft tube reactor, a stirred tank reactor, etc. can be used. The reaction can be carried out without solvent, but can be carried out using a solvent which is inert to the reaction components and hardly reacts with the catalyst, for example, hexane, decane, benzene, dioxane and the like.
[0021]
It is essential that the catalyst used in the present invention contains palladium and / or ruthenium and X (X is at least one metal selected from lead, bismuth, mercury, and thallium). Palladium and / or ruthenium and X may form an alloy or an intermetallic compound. In addition, as a different element, a group 3B element is preferably Y, a lanthanoid element is preferably La, Ce, Pr, Nd, Sm or Yb, a group 4B element is preferably Ti or Zr, and a group 5B element is Preferably, they are Nb and Ta, preferably W for Group 6B elements, preferably Mn and Re for Group 7B elements, preferably Co, Rh, Ir, Pt for Group 8 elements, and for Group 1B elements. Preferably, they are Ag and Au, a 2B element, preferably 3 Al element, preferably Al, Ga, In, 4A element, preferably Si, Ge, Sn, and 5A element, preferably Sb. Yes, Se and Te are preferable among the elements of Group 6A, and these elements may be included.
[0022]
These different elements can usually be contained in an amount not exceeding 5% by weight, preferably not exceeding 1% by weight. Further, those containing at least one member selected from the group consisting of an alkali metal element and an alkaline earth metal element have the advantage that the reaction activity is increased. The alkali metal element and alkaline earth metal element are usually selected from the range of 0.01 to 30% by weight, preferably 0.01 to 5% by weight. These dissimilar elements, alkali metal elements, alkaline earth metal elements, and the like may penetrate a small amount between crystal lattices, or may be substituted with some of the crystal lattice metals.
[0023]
The alkali metal element and / or the alkaline earth metal element may be added to a solution containing a palladium compound, a ruthenium compound, or a compound of X at the time of preparing the catalyst, and may be adsorbed or adhered to a carrier, or may be pre-supported. The catalyst can also be prepared using the support thus prepared. It is also possible to add to the reaction system under the reaction conditions. These catalyst components are preferably used alone or supported on a carrier such as silica, alumina, silica-alumina, titanium, carbonate, hydroxide, activated carbon and zirconia.
[0024]
The supported amount of the palladium and / or ruthenium supported catalyst in the present invention is not particularly limited, but is usually 0.1 to 20% by weight, preferably 1 to 10% by weight, and contains an alkali metal element or an alkaline earth metal element. When used, the loading amount is usually 0.01 to 30% by weight, preferably 0.01 to 15% by weight.
The catalyst of the present invention can be prepared by a known preparation method. A typical method for preparing a catalyst will be described. For example, a carrier is added to an aqueous solution containing a soluble lead compound and a soluble palladium salt such as palladium chloride and the mixture is heated and impregnated to impregnate palladium and lead. Next, reduction is carried out with formalin, formic acid, hydrazine or hydrogen gas. As shown in this example, lead may be loaded before loading palladium, or palladium and lead may be loaded simultaneously.
[0025]
Palladium compounds and ruthenium compounds used for catalyst preparation include, for example, organic acid salts such as formate and acetate, sulfates, hydrochlorides, inorganic acid salts such as nitrates, ammine complexes, benzonitrile complexes, acetylacetonate complexes And an organic metal complex such as a carbonyl complex, an oxide, a hydroxide, or the like. The palladium compound is preferably palladium chloride or palladium acetate, and the ruthenium compound is preferably ruthenium chloride. As the compound of X, inorganic salts such as nitrates and acetates, and organic metal complexes such as phosphine complexes can be used, and nitrates and acetates are preferable. The alkali metal compound and alkaline earth metal compound are also selected from organic acid salts, inorganic acid salts, hydroxides and the like.
[0026]
The amount of the catalyst used can be largely changed depending on the type of the reaction raw materials, the composition and preparation method of the catalyst, the reaction conditions, the reaction type, and the like. When the catalyst is reacted in a slurry state, one liter of the reaction solution is used. It is preferable to use 0.04 to 0.5 kg.
In the reaction of the present invention, an alkali metal or alkaline earth metal compound (eg, oxide, hydroxide, carbonate, carboxylate, etc.) is added to the reaction system to maintain the pH of the reaction system at 6 to 9. Is preferred. In particular, setting the pH to 6 or more has an effect of preventing the dissolution of the X component in the catalyst. These alkali metal or alkaline earth metal compounds can be used alone or in combination of two or more.
The reaction of the present invention can be carried out at a high temperature of 100 ° C or higher, but preferably 30 to 100 ° C, more preferably 60 to 90 ° C. The reaction time varies depending on the set conditions, but is usually 1 to 20 hours.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to examples.
As a carrier, 150 g of a catalyst having 5% by weight of palladium, 5% by weight of lead, and 4% by weight of magnesium supported on silica gel manufactured by Fuji Silysia Ltd. (Carrierct 10 trade name, average particle size: 50 μm), equipped with a catalyst separator and provided with a liquid phase portion The reactor was charged to a 1.2 liter stainless steel external circulation bubble column reactor. At this time, the inside of the reactor is filled with water. Methanol was supplied at a rate of 0.10 liter / hr while circulating the catalyst with a gas containing an inert gas in the reactor to perform a replacement operation. The analysis of the water concentration was conducted by extracting a part of the aqueous solution as appropriate and using a normal gas chromatogram method to fill a glass column with a GC-14BT type machine manufactured by Shimadzu Corporation with a gas chromatography pack 56 (trade name, manufactured by GL Sciences) in a glass column. Was heated using a thermal conductivity detector (TCD). Next, it was confirmed that the replacement was performed to the desired water concentration. After confirming the water concentration, 34% by weight of methacrolein / methanol was supplied at a rate of 0.54 l / hr and NaOH / methanol was supplied at a rate of 0.06 l / hr, and air was supplied at a temperature of 80 ° C. and a pressure of 5.0 kg / cm 2. The reaction was started while supplying. The NaOH concentration was adjusted so that the pH of the reaction solution was 7.1, and lead acetate was dissolved in methacrolein / methanol and supplied continuously so that the lead concentration in the feed solution was 20 ppm. On the other hand, air was supplied to the reactor while adjusting the amount of air so that the oxygen concentration at the reactor outlet was 4 vol% (oxygen partial pressure 0.20 kg / cm 2 ).
[0028]
The reaction results were evaluated as follows.
(1) Aldehyde conversion, carboxylic acid ester selectivity The reaction solution and the gas at the outlet of the reactor were analyzed by a conventional gas chromatogram method using a GC-8A machine manufactured by Shimadzu Corporation and a G-100 column manufactured by the Chemical Inspection Association (G-100). (Eluted almost in the order of boiling points), and the temperature of the thermostat was increased by a program, and the measurement was performed using a hydrogen flame detector (FID). The conversion and yield used in the examples and comparative examples to represent the reaction results are defined by the following equations.
Figure 2004137173
[0029]
(2) Analysis of high-boiling products So-called high-boiling components such as high-boiling compounds and low-polymerization compounds have compounds having higher boiling points than carboxylic acids by gas chromatography, and among FID detection peaks, unsaturated carboxylic acids ( The peak areas of components eluted after the retention time at which methacrylic acid is eluted are summed, and the result is indicated as a ratio obtained by dividing by the area of the carboxylic acid ester.
The metal components in the reaction solution were analyzed as follows.
The measurement was performed using a Shimadzu AA-6400F atomic absorption spectrophotometer and a Rigaku JY-138 inductively coupled high frequency plasma emission spectrometer. The analysis was performed on Pb of the catalyst component and Fe, Ni, Cr, and Mo as the material of the reactor. The elution amount was regarded as the difference from the raw material, and the lower limit of analysis was 0.1 ppm. The sum of the concentrations of Fe, Ni, Cr and Mo derived from stainless steel is also shown as a measure of reactor corrosion.
[0030]
Embodiment 1
The reaction was started at a water concentration of 5% by weight of the reactor before the start. Thereafter, the reaction was continued for up to 50 hours under the above reaction conditions. The analysis results at the reactor outlet are shown in Table 1 over time. Table 4 shows the results of analyzing the metal components in the raw material liquid and the reaction outlet liquid 10 hours after the start of the reaction.
[0031]
Embodiment 2
The reaction was started at a water concentration of 10% by weight in the reactor before the start. Thereafter, the reaction was continued for up to 50 hours under the above reaction conditions. The results of the analysis at the reactor outlet are shown in Table 2 over time. Table 4 shows the results of analyzing the metal components in the raw material liquid and the reaction outlet liquid 10 hours after the start of the reaction.
[0032]
[Comparative Example 1]
The reaction was started at a water concentration of 20% by weight of the reactor before the start. Thereafter, the same reaction operation as in Example 1 was performed. The results are shown in Table 3 over time.
Table 4 shows the results of analyzing the metal components in the raw material liquid and the reaction outlet liquid 10 hours after the start of the reaction. The elution element (ppm), the conversion of methacrolein, and the selectivity of methyl methacrylate after 10 hours were lower than those of Examples 1 and 2, indicating that the catalyst was deteriorated.
Furthermore, remarkable deterioration of the high-boiling components was observed 10 hours after the start of the reaction, and the deterioration of the high-boiling components was not improved even after the reaction time had elapsed, suggesting that the polymerization had proceeded. ing. The time to reach steady state is long. After the reaction for 50 hours, the reactor was opened and inspected. As a result, it was found that a white solid was present and the white solid contained a catalyst.
[0033]
[Table 1]
Figure 2004137173
[0034]
[Table 2]
Figure 2004137173
[0035]
[Table 3]
Figure 2004137173
[0036]
[Table 4]
Figure 2004137173
[0037]
【The invention's effect】
According to the production method of the present invention, the time from the start of the reaction to the steady state can be shortened, and the methacrolein conversion and the MMA selectivity at the steady state can be kept high. Further, the generation of carboxylic acids immediately after the start of the reaction can be suppressed, the catalyst constituent elements can be eluted from the catalyst to prevent the catalyst quality from deteriorating, and the carboxylic acids can prevent corrosion of the reactor material. Further, it is possible to suppress the polymer generation from the start of the reaction to the steady state, thereby enabling a long-term operation.

Claims (3)

酸素の存在下で不飽和アルデヒドとアルコールを触媒と反応させて不飽和カルボン酸エステルを製造する方法において、反応開始前に触媒を含んだ水溶液を反応で使用するアルコールまたは反応で使用する不飽和アルデヒドとアルコールで置換して水濃度を10重量%以下に低下させてから酸素の供給を開始することを特徴とする不飽和カルボン酸エステル合成反応の反応開始方法。In a method for producing an unsaturated carboxylic acid ester by reacting an unsaturated aldehyde and an alcohol with a catalyst in the presence of oxygen, an alcohol containing an aqueous solution containing the catalyst in the reaction or an unsaturated aldehyde used in the reaction before the start of the reaction A method for initiating the reaction for synthesizing an unsaturated carboxylic acid ester, wherein the supply of oxygen is started after the water concentration is reduced to 10% by weight or less by replacing the water with an alcohol. 該触媒がパラジウムおよび/またはルテニウムとX(Xは鉛、ビスマス、水銀、タリウムから選ばれる少なくとも1種類以上の金属を示す)を含む触媒であることを特徴とする請求項1記載の不飽和カルボン酸エステル合成反応の反応開始方法。2. The unsaturated carboxylic acid according to claim 1, wherein the catalyst comprises palladium and / or ruthenium and X (X represents at least one metal selected from lead, bismuth, mercury, and thallium). Method for initiating the acid ester synthesis reaction. 不飽和アルデヒドがアクロレイン又はメタクロレインで、アルコールがメタノールである請求項1または2記載の不飽和カルボン酸エステル合成反応の反応開始方法。3. The method according to claim 1, wherein the unsaturated aldehyde is acrolein or methacrolein and the alcohol is methanol.
JP2002301912A 2002-10-16 2002-10-16 Reaction initiation method for unsaturated carboxylic acid ester synthesis reaction Expired - Fee Related JP4145621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301912A JP4145621B2 (en) 2002-10-16 2002-10-16 Reaction initiation method for unsaturated carboxylic acid ester synthesis reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301912A JP4145621B2 (en) 2002-10-16 2002-10-16 Reaction initiation method for unsaturated carboxylic acid ester synthesis reaction

Publications (2)

Publication Number Publication Date
JP2004137173A true JP2004137173A (en) 2004-05-13
JP4145621B2 JP4145621B2 (en) 2008-09-03

Family

ID=32450138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301912A Expired - Fee Related JP4145621B2 (en) 2002-10-16 2002-10-16 Reaction initiation method for unsaturated carboxylic acid ester synthesis reaction

Country Status (1)

Country Link
JP (1) JP4145621B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966141B1 (en) * 2005-07-08 2010-06-25 리창영 케미컬 인더스트리 코포레이션 Catalyst and process for preparing carboxylic acid esters
WO2015017437A1 (en) * 2013-07-29 2015-02-05 Rohm And Haas Company Preparation of methyl acrylate via an oxidative esterification process
EP2991763A1 (en) * 2013-07-29 2016-03-09 Rohm and Haas Company Oxidative esterification catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966141B1 (en) * 2005-07-08 2010-06-25 리창영 케미컬 인더스트리 코포레이션 Catalyst and process for preparing carboxylic acid esters
WO2015017437A1 (en) * 2013-07-29 2015-02-05 Rohm And Haas Company Preparation of methyl acrylate via an oxidative esterification process
CN105377806A (en) * 2013-07-29 2016-03-02 罗门哈斯公司 Preparation of methyl acrylate via an oxidative esterification process
EP2991763A1 (en) * 2013-07-29 2016-03-09 Rohm and Haas Company Oxidative esterification catalyst
JP2016525578A (en) * 2013-07-29 2016-08-25 ローム アンド ハース カンパニーRohm And Haas Company Preparation of methyl acrylate via oxidative esterification method
JP2016527082A (en) * 2013-07-29 2016-09-08 ローム アンド ハース カンパニーRohm And Haas Company Oxidative esterification catalyst
US9676699B2 (en) 2013-07-29 2017-06-13 Rohm And Haas Company Preparation of methyl methacrylate via an oxidative esterification process
CN105377806B (en) * 2013-07-29 2017-09-05 罗门哈斯公司 Methyl acrylate is prepared via oxidative esterification method
US9770708B2 (en) 2013-07-29 2017-09-26 Rohm And Haas Company Oxidative esterification catalyst

Also Published As

Publication number Publication date
JP4145621B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
CA1103272A (en) Process for producing carboxylic esters
US7446223B2 (en) Palladium-containing catalyst and method for producing same
JPWO2006054643A1 (en) Oxidation catalyst and oxidation method
JPS627902B2 (en)
JP5016920B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP4145621B2 (en) Reaction initiation method for unsaturated carboxylic acid ester synthesis reaction
US8088946B2 (en) Method for manufacturing palladium-containing catalyst
US20060014980A1 (en) Catalyst for alpha, beta-unsaturated carboxylic acid production, process for producing the same, and process for producing alpha, beta-unsaturated carboxylic acid
JP3556397B2 (en) Improved method for producing catalyst for carboxylic acid ester production
JPH05148184A (en) Production of carboxylic acid ester
US7994091B2 (en) Method for producing palladium-containing catalyst
JPH10263399A (en) Catalyst for production of carboxylic ester
JPWO2005118518A1 (en) Process for producing α, β-unsaturated carboxylic acid
JP2004345974A (en) Method for continuously producing carboxylic ester
JP2004345973A (en) Method for producing unsaturated carboxylic ester
JP3498103B2 (en) Method for activating catalyst for carboxylic acid ester production
JP3532668B2 (en) High Purity and High Quality Method for Carboxylic Acid Ester Production Catalyst
JP4507247B2 (en) Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof
JP2003267928A (en) Method for continuously producing carboxylic acid ester
JP2003277323A (en) Method for continuously producing carboxylic ester
KR20090101286A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP3503776B2 (en) Supported catalyst containing palladium and lead for carboxylic acid ester production
JP2003260357A (en) Catalyst for manufacturing carboxylic acid ester and manufacture method
JPH0957115A (en) Oxidative and reductive activation of catalyst for producing carboxylic ester
JP2004345975A (en) Method for continuously producing carboxylic ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Ref document number: 4145621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees