JP2004136016A - Antebrachial pronation/supination measuring instrument - Google Patents

Antebrachial pronation/supination measuring instrument Download PDF

Info

Publication number
JP2004136016A
JP2004136016A JP2002305643A JP2002305643A JP2004136016A JP 2004136016 A JP2004136016 A JP 2004136016A JP 2002305643 A JP2002305643 A JP 2002305643A JP 2002305643 A JP2002305643 A JP 2002305643A JP 2004136016 A JP2004136016 A JP 2004136016A
Authority
JP
Japan
Prior art keywords
forearm
pronation
face plate
supination
reference face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002305643A
Other languages
Japanese (ja)
Inventor
Hidekazu Motoda
元田 英一
Kazushige Ota
太田 一重
Emiko Horii
堀井 恵美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROUDOU FUKUSHI JIGYODAN
Original Assignee
ROUDOU FUKUSHI JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROUDOU FUKUSHI JIGYODAN filed Critical ROUDOU FUKUSHI JIGYODAN
Priority to JP2002305643A priority Critical patent/JP2004136016A/en
Publication of JP2004136016A publication Critical patent/JP2004136016A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antebrachial pronation/supination measuring instrument capable of measuring the angles of antebrachial pronation and supination accurately, highly reproducibly and easily. <P>SOLUTION: This antebrachial pronation/supination measuring instrument is provided with an inclination display means composed of a perpendicular line indicator 18 which is mounted on the forearm 52 by using a reference surface plate 12 having a reference plane 12a which can be brought into tight contact with the backside in the vicinity of the wrist of the forearm 52, a support pole 14 erected and fixed on the reference surface plate 12, and a holding plate 16 which is held by passing through an angular hole 16a of the support pole 14 and which is fixed on the reference surface plate 12, for example. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、前腕の回内、回外の角度(手掌面を下に向けたり、上に向けたりする動作の角度)を測定する測定器及び測定方法に関する。
【0002】
【従来の技術】
前腕の回内( Pronation )、回外( Supination )は日常生活にとって欠くことができないものであり、その障害は食事動作等の物を把持して移動させる動作に大きな影響を与える。回内、回外の可動動作範囲が少なくなったことを医学的には拘縮と呼ぶ。拘縮には外傷によるもの、麻痺によるもの等種々有るが、これらの拘縮に対して、リハビリ訓練が行われ、重度なものに対しては外科的な手術も行われている。このような訓練、治療に対して、その評価をするため、前腕の回内外の可動域(関節が動く範囲)を正確に測定することが重要である。
また、近年、ロボットの技術を向上させるため、人の動きを正確にトレースすることが行われる。このためにも、各関節の動きを正確に測定することが重要である。
【0003】
図1は、前腕の回内( Pronation )、回外( Supination )を示す説明図である。図において、51は上腕、52は前腕、53は手(手掌面)、61は上腕骨( humerus )、62は橈骨( radius )、63は尺骨( ulna )である。
従来、回内外を測定するには、被測定者の肘を直角に屈曲して体躯に付け、前腕52を前方に突き出して手指を伸展した姿勢をとらせ、前腕52を回内、回外させて手掌面53の角度を目視または角度計を手掌面53のそばに持っていき測っていた。手掌面53の角度を測定するのであるから、はなはだ不正確なものであり、また、測定の再現性にも問題があった。さらに、手掌面53の角度を測定するということは、前腕52の関節の動きだけではなく手関節の動きを含んだ角度を測定することになり、前腕52の動きを純粋に測定しているわけではなかった。
【0004】
また、特開平8−308815号公報(特許文献1)には、回転機構部(1)にロータリエンコーダ(10)を組み込み、その回転を表示部(4)に表示するようにし、回転体(5、6)の外側面にコ字状のハンドル把手(12)を設けたものが提案されている。被測定者がハンドル(12)(回転操作部2)を手で握って回転させ、その回転量を表示部(4)から読み取ることにより、前腕の回内、回外を測定しようとするものである。
【0005】
【特許文献1】特開平8−308815号公報、 段落番号0011、段落番号0012、段落番号0016、図4、図5
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1のものは、ハンドル(12)(2)を手で握るため、握り方により測定値が異なってくるという問題、手関節の動きを含んだ角度を測定してしまうという問題、その図5に示されているように、回転機構部(1)の固定側を被測定者の身長に合わせて固定するため大がかりなスタンドを要するという問題等があった。
また、上述の医療現場で行われていた手掌面の角度を観察する手法は、測定が不正確になりやすく再現性が低いという問題点があった。
【0007】
そこで、本発明は、極く単純な機構でもって、前腕の回内回外を正確に再現性よく測定することのできる測定器及び測定法を提供することを目的とする。
【0008】
【課題を解決するための手段】
図2は、前腕を回内、回外させたときの骨の様子を示す平面図である。図中において、61は上腕骨( humerus )、62は橈骨( radius )、63は尺骨( ulna )、64は第1中手骨(母指)、65は第5中手骨(小指)である。左側が回外させた状態、右側が回内させた状態を示す。橈骨62と尺骨63は前腕骨間膜で繋がっているが骨ではないので省略している。前腕の回内及び回外は、上橈尺関節および下橈尺関節が協働して回転する。回転運動の軸は、橈骨頭および尺骨の茎状突起を結ぶ線101で、橈骨62はこの線101を中心にして回り、運動範囲は橈骨62下端で約180°である。したがって、橈骨62下端および尺骨63下端付近で、橈骨62と尺骨63を包含する平面が得られれば前腕52の回内、回外を正確に得られることになる。
【0009】
そして、前腕52の手首近傍の背側は、皮膚、皮下組織、皮下脂肪の他には、前腕52の筋肉の筋腹はなく細い少数の腱が走るのみであるので、手首近傍の背側の皮膚の表面が示す平面は橈骨62と尺骨63がなす平面に平行な平面をなす。
【0010】
そこで、上記の目的を達成するため、本発明のうち第1の実施態様の発明は、例示として図5を参照し、基準となる基準平面12aを有する基準面板12と、その基準平面12aを前腕52の手首近傍の背側に押し付けて基準面板12を前腕52に固定させる基準面板固定手段(14、16)と、前記基準面板12の傾きの方向を示す傾斜表示手段18と、を備えることを特徴とする。
ここで、基準面板固定手段とは、基準面板を前腕に押し付けて前腕に固定するための種々の構成のすべてを言う。また、傾斜表示手段とは、基準面板の傾斜の角度を表示することのできる構成のすべてを言う。
【0011】
このように形成すると、基準面板12の基準平面12aが基準面板固定手段(14、16)により前腕52の背側に押し付けられた状態で、前腕回内外測定器10が前腕52に装着される。前腕52の手首近傍の背側には筋腹はないから、基準平面12aは前腕52の橈骨62と尺骨63を結ぶ平面と平行な平面になる。そして、前述したように、手首近傍での橈骨62と尺骨63を結ぶ平面は橈骨62、尺骨63の下端での回転方向を示している。したがって、基準面板12の傾斜の方向を示す傾斜表示手段18でその傾斜角を読み取ることにより、前腕52の回内、回外の角度を容易に測定することができるという効果がある。
【0012】
ここで、前記基準面板固定手段が、図5に例示するように、基準面板12に端部が固定され基準平面12aから垂直に突出して基準面板12に固定された支持柱14と、前記支持柱14が嵌挿する孔16aを有しその孔16aにより摺動自在に支持柱14に保持され対向する基準面板12との協働により前腕52を挟持可能な把持板16と、を備えることを特徴とすることができる。
【0013】
このように形成すると、被測定者は前腕の手首近傍の背側を基準面板12の基準平面12aに押し付け、把持板16をスライドさせて上腕を挟む。すると、上腕の弾力性による反発力により把持板16は反対方向に押されるが、把持板16は上部の角孔16aを支持柱14に挿通され支持されているから、孔16aを中心に把持板16の下を開くように「こじる」ことになる。このため、把持板16は支持柱14上を摺動することが出来なくなり、前腕52を挟圧したままその位置にとどまる。つまり、基準面板12と把持板16とで前腕を挟圧把持し、前腕回内外測定器10は前腕52に装着されたことになる。
【0014】
このように、人体の弾力性を利用して把持板16を固定する構成であるので、バネ等を用いる構成に比べて基準面板固定手段の構造が単純であり、安価に提供できるという効果がある。
また、基準面板12と把持板16が対向してほぼ平行な状態で上腕を挟圧把持することになるから、基準面板12の基準平面12aを前腕52の背に正確に平行になるように密着させることが容易になり、前腕52の回内、回外の角度測定の精度が上がり、測定の再現性が向上するという効果がある。
【0015】
ここで、前記傾斜表示手段が、図5に例示するように、前腕回内外測定器30の基準面板12に固定された鉛直線指示計18であることを特徴とすることができる。
このように形成すると、重力を利用して基準面板12の傾斜を測定することになるから、簡単で安価な構造でもって、正確に基準面板12の傾斜角を読み取ることができ、前腕52の回内、回外の角度を簡単にかつ正確に測定することができるという効果がある。
【0016】
ここで、前記傾斜表示手段が、図9に例示するように、基準面板12に固定された指針31であることを特徴とすることができる。
このように形成すると、最も単純な構造でもって角度を表示できるので、前腕回内外測定器の重量を軽くできるという効果がある。角度の測定はディジタルカメラやビデオに撮像をしてコンピュータで画像処理を行うことにより行う。
【0017】
また、方法の発明として、前腕の手首近傍の背側に基準面板を押し付け、その基準面板の方向を測定することにより前腕の回内回外の角度を測定する測定方法が提案される。この方法によれば、基準面板が手首近傍で橈骨と尺骨のなす面と平行になるから、前腕の回内、回外の角度を、手関節の角度に影響されることなく、簡単にかつ正確に測定することができるという効果がある。この方法は、、純粋な医療での診断方法としてのみではなく、肘関節の動きを正確に観察し、ロボットの制御に応用することができるという工業的利用の価値がある。
【0018】
【発明の実施の形態】
本発明の第1の実施の形態について図面を参照し説明する。
図3は、本発明に係る前腕回内外測定器10を示す斜視図である。前腕回内外測定器10は、垂直に立った基準面板12と、基準面板12から垂直に突出して固定された支持柱14と、その支持柱14に貫通され摺動自在に支持された把持板16と、基準面板12に固定された鉛直線指示計18を主な要素とする。
【0019】
図4は、把持板16を支持柱14から外した状態を示す前腕回内外測定器10の斜視図である。図3を併せ参照し説明する。基準面板12は厚さ10mm弱の長方形のアクリル板からなり、その一面が平面の基準平面12aをなしている。基準平面に垂直に支持柱14がネジ24(図5に記載)により固定されている。支持柱14はアルミ合金からなる角柱であり、断面が正方形をなしている。一方、把持板16は厚さ10mm弱のアクリル板からなり、その上部に角孔16aが明けられている。角孔16aは支持柱14の断面と同じ形状をなしており、角孔16aに支持柱14を嵌挿することにより、把持板16は支持柱14に摺動自在に保持される。
【0020】
基準面板12の上縁に金属板20がビスにより固定され、その金属板20の上面に樹脂からなる基台22が固定され、その基台22により鉛直線指示計18が支持固定されている。鉛直線指示計18は重力による鉛直線を示す計器で、透明な樹脂で出来た円板状の容器の中に、矢指針18aが封入されている。矢指針18aは中心軸18bにより回転自在に支承され、矢指針18aの他端には錘18cが取り付けられ、重力に従って矢指針18aが鉛直方向を向くよう回転するようになっている。また、円板状の容器の中にはシリコンオイルが封入され、矢指針18aの無用な揺動を抑制するようになっている。鉛直線指示計18の周辺には角度目盛り18dが刻まれ、矢指針18aの示す鉛直方向の角度を読み取れるようになっている。
【0021】
以上の構成に基づき、作動について説明する。
図5は、前腕回内外測定器10を被測定者の前腕52に装着した状態を示す正面図であり、前腕52は手首近傍の近位面での断面で示している。前腕52には、橈骨62、尺骨63があり、橈骨62、尺骨63は手根関節近傍では大きく膨らんでいる(図2を参照されたい)。ここで、橈骨62、尺骨63の背側の皮膚71との間には伸筋腱72が介在するのみで、筋腹等は存在しない。腹側には、回内筋73の薄い筋腹があるだけで、屈筋腱74と神経75のみである。そのため、基準平面12aを有する基準面板12と把持板16で前腕52を挟めば、基準面板12のなす角度は橈骨62と尺骨63のなす角度に良く一致する。
【0022】
被測定者は前腕52の手首近傍の背側を基準面板12の基準平面12aに押し付け、把持板16を図面左方にスライドさせて前腕52を挟む。すると、前腕52の軟部組織の弾力性による反発力により把持板16は図面右方矢印F1の方向に押される。把持板16は上部の角孔16aを支持柱14に挿通され支持されているから、下方の部分を矢印F1の方向に押されると角孔16aを中心に把持板16を図面で左回転させる力が働き、基準面板12と把持板16の下端を開くように「こじる」ことになる。このため、把持板16はその角孔16aが支持柱14に食い込むような形になり、把持板16は支持柱14上を右方向に摺動することが出来なくなり、前腕52を挟圧したままその位置にとどまる。
【0023】
つまり、前腕回内外測定器10は前腕52に装着されたことになる。前腕回内外測定器10を前腕52から外すには、手指で把持板16を支持柱14と正確に直角になるようにしてやり、「こじり」を解いて、図面右方向に摺動させればよい。前腕回内外測定器10を前腕52に装着した状態で、前腕52を回旋させてやれば、そのときの回内角、回外角を矢指針18aの示す角度目盛り18dを読むことにより測定することができる。
【0024】
図6、図7、図8は、被測定者が前腕52の回内、回外をし、その角度を測定している状態を示す斜視図である。図6は、被測定者に前腕回内外測定器10を装着し、肘を直角に屈曲し手掌面53を垂直にした中間位の姿勢である。この時、前腕回内外測定器10の矢指針18aの示す角度は0°であるとする。図7は、前腕52を右回転し、手掌面53を上向きにした回外位の姿勢である。この時の前腕回内外測定器10の矢指針18aの示す角度は+90°であるとする。図8は、前腕52を左回転し、手掌面53を下向きにした回内位の姿勢である。この時の前腕回内外測定器10の矢指針18aの示す角度は−80°であるとする。すると、この被測定者の前腕回内外角度は、170°と測定されたことになる。このようにして、被測定者の回内外角度を容易に測定することができ、患者の拘縮の程度、リハビリ訓練による回復の程度を客観的な再現性のある数値として測定することができる。
【0025】
以上述べた実施の形態では、基準面板12を前腕52に押し付けて固定する基準面板固定手段を、把持板16の角孔16aと支持柱14の「こじり」によるものとしたが、基準面板固定手段には種々の形態が容易に考えられる。たとえば、把持板を支持柱に摺動自在に支承し、引っ張りバネで基準面板の方に付勢しておく構造でも良い。また、把持板を支持柱に揺動自在に支承し、クリップの如く、バネで基準面板の方へ閉じる方向に付勢しておいても良い。また、もっと単純に、基準面板を上腕の背に押し付けた状態で、マジックテープ(商標名)で固定するようにしても良い。
【0026】
前記の実施の形態では、基準面板12の傾きの方向を示す傾斜表示手段を、鉛直線指示計18によるものとしたが、3次元角度センサーを取り付け、無線により測定者の手元の計測器にデータを送信するようにしても良い。また、最も単純には、図9に示すように、前腕回内外測定器30の基準面板12に基準面板12と平行な指針31を固定しただけでも良い。指針31は金属針で構成する。被測定者に種々の姿勢を取らせ、そのときの指針31の角度を三脚等で固定したディジタルカメラで撮影し、コンピュータで画像処理して前腕の回内外角度を測定するようにすれば良い。また、レントゲン撮影をし、骨格と共に指針31の角度を測定するようにしても良い。いずれにしても、これらの種々の形態は、前腕の手首近傍の背側に基準面板を押し付け、その基準面板の方向を測定することにより前腕の回内回外の角度を測定する方法によるものである。この方法の測定により、肘関節の回内回外が正確に測定できれば、医療の場だけではなく、ロボットの制御への応用が期待できる。
【0027】
【発明の効果】
以上説明したように、本発明は、手関節の角度に影響されることなく、前腕の回内回外の角度を、正確に、再現性良く、簡便に測定できるという効果がある。
【図面の簡単な説明】
【図1】前腕の回内、回外を示す説明図である。
【図2】前腕を回内、回外させたときの骨の様子を示す平面図である。
【図3】本発明に係る第1の実施の形態の前腕回内外測定器を示す斜視図である。
【図4】把持板を支持柱から外した状態を示す前腕回内外測定器の斜視図である。
【図5】前腕回内外測定器を被測定者の前腕に装着した状態を示す正面図であり、前腕は手首近傍の近位面での断面で示している。
【図6】被測定者が前腕の回内、回外をし、その角度を測定している状態を示す斜視図であり、手掌面を垂直にした中間位の姿勢である。
【図7】被測定者が前腕の回内、回外をし、その角度を測定している状態を示す斜視図であり、手掌面を上向きにした回外位の姿勢である。
【図8】被測定者が前腕の回内、回外をし、その角度を測定している状態を示す斜視図であり、手掌面を下向きにした回内位の姿勢である。
【図9】第2の実施の形態の前腕回内外測定器を示す斜視図である。
【符号の説明】
10 前腕回内外測定器
12 基準面板
12a 基準平面
14 支持柱
16 把持板
16a 角孔
18 鉛直線指示計
52 前腕
53 手(手掌面)
62 橈骨
63 尺骨
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measuring instrument and a measuring method for measuring the angle of pronation and supination of a forearm (the angle of movement of turning a palm surface downward or upward).
[0002]
[Prior art]
Pronation (supination) and supination (supination) of the forearm are indispensable to daily life, and the obstacle has a great effect on the operation of grasping and moving an object such as a meal operation. Medically, the contraction of the supination and supination is reduced. There are various types of contractures, such as those caused by trauma and paralysis. Rehabilitation training is performed for these contractures, and surgical operations are performed for severe contractures. In order to evaluate such training and treatment, it is important to accurately measure the range of motion (the range in which the joint moves) of the pronation and forearm of the forearm.
In recent years, in order to improve robot technology, accurate tracing of human movement has been performed. For this reason, it is important to accurately measure the movement of each joint.
[0003]
FIG. 1 is an explanatory diagram showing pronation (pronation) and supination (supination) of the forearm. In the figure, 51 is the upper arm, 52 is the forearm, 53 is the hand (palm surface), 61 is the humerus (humerus), 62 is the radius (radius), and 63 is the ulna (ulna).
Conventionally, to measure pronation and pronation, the subject's elbow is bent at a right angle and attached to the body, the forearm 52 is protruded forward to take a posture in which fingers are extended, and the forearm 52 is pronation and supination. The angle of the palm surface 53 was measured visually or by bringing a goniometer near the palm surface 53. Since the angle of the palm surface 53 is measured, it is extremely inaccurate, and there is a problem in reproducibility of the measurement. Further, measuring the angle of the palm surface 53 means measuring not only the joint movement of the forearm 52 but also the angle including the movement of the wrist joint, which means that the movement of the forearm 52 is purely measured. Was not.
[0004]
In Japanese Patent Application Laid-Open No. 8-308815 (Patent Document 1), a rotary encoder (10) is incorporated in a rotation mechanism (1), and the rotation is displayed on a display unit (4). , 6) provided with a U-shaped handle handle (12) on the outer surface. The subject measures the pronation and supination of the forearm by grasping and rotating the handle (12) (rotation operation unit 2) with his hand and reading the amount of rotation from the display unit (4). is there.
[0005]
[Patent Document 1] JP-A-8-308815, paragraph number 0011, paragraph number 0012, paragraph number 0016, FIG. 4, FIG.
[0006]
[Problems to be solved by the invention]
However, in the case of Patent Literature 1, since the handles (12) and (2) are gripped by hand, the measurement value differs depending on how the user grips, the problem that the angle including the movement of the wrist is measured, As shown in FIG. 5, there is a problem that a large-scale stand is required for fixing the fixed side of the rotation mechanism (1) in accordance with the height of the subject.
Further, the method of observing the angle of the palm surface performed at the medical site described above has a problem that the measurement tends to be inaccurate and the reproducibility is low.
[0007]
Therefore, an object of the present invention is to provide a measuring instrument and a measuring method which can accurately measure pronation and pronation of a forearm with good reproducibility by using a very simple mechanism.
[0008]
[Means for Solving the Problems]
FIG. 2 is a plan view showing the state of the bone when the forearm is pronation and supination. In the figure, 61 is a humerus (humerus), 62 is a radius (radius), 63 is an ulna (ulna), 64 is a first metacarpal (thumb), and 65 is a fifth metacarpal (little finger). . The left side shows the supination state, and the right side shows the pronation state. The radius 62 and the ulna 63 are connected by the forearm ligament, but are omitted because they are not bones. For pronation and supination of the forearm, the upper radius joint and the lower radius joint rotate in cooperation. The axis of the rotational movement is a line 101 connecting the radial head and the stalk of the ulna. The radius 62 turns around the line 101, and the range of motion is about 180 ° at the lower end of the radius 62. Therefore, if a plane including the radius 62 and the ulna 63 is obtained near the lower end of the radius 62 and the lower end of the ulna 63, the pronation and supination of the forearm 52 can be accurately obtained.
[0009]
The back side of the forearm 52 near the wrist is the back of the forearm near the wrist because the skin, subcutaneous tissue, and subcutaneous fat have only a small number of thin tendons running without the muscle belly of the forearm 52. The plane indicated by the surface of the skin is a plane parallel to the plane formed by the radius 62 and the ulna 63.
[0010]
Therefore, in order to achieve the above object, the invention of the first embodiment of the present invention refers to a reference face plate 12 having a reference plane 12a as a reference, and a reference plane 12a having the forearm with reference to FIG. Reference surface plate fixing means (14, 16) for pressing the reference surface plate 12 to the forearm 52 by pressing against the back side of the wrist near the wrist 52; and inclination display means 18 for indicating the direction of inclination of the reference surface plate 12. Features.
Here, the reference surface plate fixing means means all of various configurations for pressing the reference surface plate against the forearm and fixing it to the forearm. In addition, the tilt display means means all configurations capable of displaying the tilt angle of the reference face plate.
[0011]
When formed in this manner, the forearm pronation measuring device 10 is mounted on the forearm 52 in a state where the reference plane 12a of the reference surface plate 12 is pressed against the back of the forearm 52 by the reference surface plate fixing means (14, 16). Since there is no belly on the back side near the wrist of the forearm 52, the reference plane 12a is a plane parallel to the plane connecting the radius 62 and the ulna 63 of the forearm 52. As described above, the plane connecting the radius 62 and the ulna 63 near the wrist indicates the rotation direction at the lower ends of the radius 62 and the ulna 63. Therefore, by reading the inclination angle by the inclination display means 18 indicating the inclination direction of the reference face plate 12, the angle of pronation and supination of the forearm 52 can be easily measured.
[0012]
Here, as shown in FIG. 5, the reference surface plate fixing means includes a support post 14 having an end fixed to the reference surface plate 12 and projecting perpendicularly from a reference plane 12a and fixed to the reference surface plate 12, A holding plate slidably held by the support column by the hole and capable of holding the forearm by cooperating with the opposed reference surface plate. It can be.
[0013]
With this configuration, the subject presses the back side of the forearm near the wrist against the reference plane 12a of the reference face plate 12, and slides the gripping plate 16 to pinch the upper arm. Then, the gripping plate 16 is pushed in the opposite direction by the repulsive force due to the elasticity of the upper arm. However, since the gripping plate 16 is inserted through the upper square hole 16a and supported by the supporting column 14, the gripping plate 16 is centered on the hole 16a. 16 to "pry" to open underneath. For this reason, the holding plate 16 cannot slide on the support column 14, and stays at that position while holding the forearm 52 under pressure. In other words, this means that the forearm is pinched and gripped by the reference face plate 12 and the gripping plate 16, and the forearm pronation / inside measuring device 10 is mounted on the forearm 52.
[0014]
As described above, since the holding plate 16 is fixed using the elasticity of the human body, the structure of the reference surface plate fixing means is simpler than the structure using a spring or the like, and has an effect that it can be provided at low cost. .
In addition, since the upper arm is pinched and gripped in a state where the reference plate 12 and the grip plate 16 face each other and are substantially parallel to each other, the reference plane 12a of the reference plate 12 is closely contacted with the back of the forearm 52 so as to be exactly parallel. This makes it easier to perform the angle measurement, and the accuracy of the angle measurement of the pronation and supination of the forearm 52 is increased, and the reproducibility of the measurement is improved.
[0015]
Here, as shown in FIG. 5, the inclination display means may be a vertical indicator 18 fixed to the reference face plate 12 of the forearm pronation measuring device 30.
With this configuration, the inclination of the reference surface plate 12 is measured using gravity. Therefore, the inclination angle of the reference surface plate 12 can be accurately read with a simple and inexpensive structure. There is an effect that the angle of inside and outside can be easily and accurately measured.
[0016]
Here, the inclination display means may be a pointer 31 fixed to the reference face plate 12, as exemplified in FIG.
When formed in this way, the angle can be displayed with the simplest structure, so that there is an effect that the weight of the forearm pronation measuring device can be reduced. The measurement of the angle is performed by taking an image with a digital camera or a video and performing image processing with a computer.
[0017]
Further, as a method invention, a measurement method is proposed in which a reference face plate is pressed against the back side of the forearm near the wrist and the direction of the reference face plate is measured to measure the angle of pronation and supination of the forearm. According to this method, since the reference face plate is parallel to the plane formed by the radius and the ulna near the wrist, the angle of pronation and supination of the forearm can be easily and accurately determined without being affected by the angle of the wrist. There is an effect that the measurement can be performed. This method is valuable not only as a pure medical diagnosis method but also for industrial use in that it can accurately observe the movement of the elbow joint and can be applied to robot control.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to the drawings.
FIG. 3 is a perspective view showing the forearm pronation / inside measurement device 10 according to the present invention. The forearm pronation measuring device 10 includes a vertically standing reference surface plate 12, a support column 14 vertically projecting and fixed from the reference surface plate 12, and a gripping plate 16 pierced through the support column 14 and slidably supported. And a vertical indicator 18 fixed to the reference face plate 12 as main elements.
[0019]
FIG. 4 is a perspective view of the forearm pronation measuring device 10 showing a state in which the gripping plate 16 is detached from the support column 14. This will be described with reference to FIG. The reference face plate 12 is formed of a rectangular acrylic plate having a thickness of less than 10 mm, and one surface thereof forms a flat reference plane 12a. The support column 14 is fixed by screws 24 (shown in FIG. 5) perpendicular to the reference plane. The support pillar 14 is a prism made of an aluminum alloy, and has a square cross section. On the other hand, the holding plate 16 is made of an acrylic plate having a thickness of less than 10 mm, and a square hole 16a is formed in an upper portion thereof. The square hole 16a has the same shape as the cross section of the support column 14, and the holding plate 16 is slidably held by the support column 14 by fitting the support column 14 into the square hole 16a.
[0020]
A metal plate 20 is fixed to the upper edge of the reference surface plate 12 with screws, and a base 22 made of resin is fixed to the upper surface of the metal plate 20, and the vertical indicator 18 is supported and fixed by the base 22. The vertical indicator 18 is a meter indicating a vertical line caused by gravity, and an arrow pointer 18a is enclosed in a disk-shaped container made of transparent resin. The arrow pointer 18a is rotatably supported by a center shaft 18b, and a weight 18c is attached to the other end of the arrow pointer 18a so that the arrow pointer 18a rotates in a vertical direction according to gravity. Further, silicone oil is sealed in the disc-shaped container so as to suppress unnecessary swing of the arrow pointer 18a. An angle scale 18d is engraved around the vertical line indicator 18 so that the angle in the vertical direction indicated by the arrow pointer 18a can be read.
[0021]
The operation will be described based on the above configuration.
FIG. 5 is a front view showing a state in which the forearm pronation / internal measuring device 10 is mounted on the forearm 52 of the person to be measured, and the forearm 52 is shown in a cross section on the proximal surface near the wrist. The forearm 52 has a radius 62 and an ulna 63, and the radius 62 and the ulna 63 are greatly expanded near the carpal joint (see FIG. 2). Here, only the extensor tendon 72 is interposed between the radius 62 and the skin 71 on the back side of the ulna 63, and there is no muscular belly or the like. On the ventral side, there is only a thin stomach of the pronation muscle 73, and only the flexor tendon 74 and the nerve 75. Therefore, if the forearm 52 is sandwiched between the reference plate 12 having the reference plane 12a and the grip plate 16, the angle formed by the reference plate 12 matches the angle formed by the radius 62 and the ulna 63 well.
[0022]
The subject presses the back side of the forearm 52 near the wrist against the reference plane 12 a of the reference face plate 12, and slides the gripping plate 16 to the left in the drawing to pinch the forearm 52. Then, the gripping plate 16 is pushed in the direction of the right arrow F1 in the drawing by the repulsive force due to the elasticity of the soft tissue of the forearm 52. Since the holding plate 16 is supported by the upper square hole 16a being inserted into the support pillar 14, when the lower portion is pushed in the direction of the arrow F1, the force for rotating the holding plate 16 counterclockwise around the square hole 16a in the drawing. Works to “pry” so as to open the lower ends of the reference face plate 12 and the holding plate 16. For this reason, the gripping plate 16 has a shape such that its square hole 16a cuts into the support column 14, and the gripping plate 16 cannot slide on the support column 14 rightward. Stay in that position.
[0023]
That is, the forearm pronation measuring device 10 is mounted on the forearm 52. In order to remove the forearm pronation measuring device 10 from the forearm 52, the gripping plate 16 is made to be exactly perpendicular to the support column 14 with the fingers, the "twist" is released, and the finger is slid rightward in the drawing. . If the forearm 52 is rotated while the forearm pronation measuring device 10 is mounted on the forearm 52, the pronation angle and the supination angle at that time can be measured by reading the angle scale 18d indicated by the arrow pointer 18a. .
[0024]
6, 7, and 8 are perspective views showing a state in which the subject measures the pronation and supination of the forearm 52 and measures the angle. FIG. 6 shows an intermediate posture in which the forearm pronation / internal measurement device 10 is attached to the subject, the elbow is bent at a right angle, and the palm surface 53 is vertical. At this time, the angle indicated by the arrow pointer 18a of the forearm pronation measuring device 10 is 0 °. FIG. 7 shows a supination posture in which the forearm 52 is rotated clockwise and the palm surface 53 is directed upward. At this time, the angle indicated by the arrow pointer 18a of the forearm pronation measuring device 10 is + 90 °. FIG. 8 shows a pronation position in which the forearm 52 is rotated left and the palm surface 53 is directed downward. At this time, the angle indicated by the arrow pointer 18a of the forearm pronation measuring device 10 is assumed to be -80 °. Then, the forearm pronation / inversion angle of the subject is measured as 170 °. In this manner, the pronation and pronation angles of the subject can be easily measured, and the degree of contracture of the patient and the degree of recovery by rehabilitation training can be measured as objectively reproducible numerical values.
[0025]
In the above-described embodiment, the reference surface plate fixing means for pressing and fixing the reference surface plate 12 against the forearm 52 is based on the square hole 16a of the gripping plate 16 and the "prying" of the support column 14, but the reference surface plate fixing means Various forms can be easily considered. For example, a structure may be used in which a gripping plate is slidably supported on a support column and is urged toward a reference surface plate by a tension spring. Alternatively, the gripping plate may be swingably supported by the support column, and may be biased by a spring like a clip in a direction to close toward the reference surface plate. Further, more simply, the reference face plate may be fixed to the back of the upper arm with magic tape (trade name) while being pressed against the back of the upper arm.
[0026]
In the above embodiment, the inclination display means for indicating the direction of the inclination of the reference face plate 12 is based on the vertical indicator 18. However, a three-dimensional angle sensor is attached, and data is wirelessly transmitted to a measuring instrument at hand of the measurer. May be transmitted. In the simplest case, as shown in FIG. 9, the pointer 31 parallel to the reference surface plate 12 may be fixed to the reference surface plate 12 of the forearm pronation / internal measurement device 30. The pointer 31 is formed of a metal needle. The subject may be placed in various postures, the angle of the pointer 31 at that time may be photographed by a digital camera fixed with a tripod or the like, and image processing may be performed by a computer to measure the pronation and inversion angles of the forearm. Alternatively, X-ray photography may be performed to measure the angle of the pointer 31 together with the skeleton. In any case, these various forms are based on a method of measuring the angle of pronation and supination of the forearm by pressing the reference face plate against the back side of the forearm near the wrist and measuring the direction of the reference face plate. is there. If the pronation and supination of the elbow joint can be accurately measured by the measurement of this method, it can be expected to be applied not only to the medical field but also to the control of the robot.
[0027]
【The invention's effect】
As described above, the present invention has an effect that the angle of the pronation and supination of the forearm can be accurately, reproducibly, and simply measured without being affected by the angle of the wrist joint.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing pronation and supination of a forearm.
FIG. 2 is a plan view showing a state of a bone when a forearm is pronation and supination.
FIG. 3 is a perspective view showing a forearm pronation measuring device according to the first embodiment of the present invention.
FIG. 4 is a perspective view of a forearm pronation measuring device showing a state in which a gripping plate is removed from a support column.
FIG. 5 is a front view showing a state in which a forearm pronation / internal measuring device is mounted on a forearm of a subject, and the forearm is shown in a cross section on a proximal surface near a wrist.
FIG. 6 is a perspective view showing a state in which the subject is prone and supination of the forearm and is measuring its angle, and is in a middle posture with the palm surface vertical.
FIG. 7 is a perspective view showing a state in which the subject measures the angle of the pronation and supination of the forearm, and is in a supination position with the palm surface facing upward.
FIG. 8 is a perspective view showing a state in which the subject measures the angle of the pronation and supination of the forearm, and is in a prone position with the palm surface facing down.
FIG. 9 is a perspective view showing a forearm pronation / pronation measuring instrument according to a second embodiment.
[Explanation of symbols]
Reference Signs List 10 Forearm pronation measuring device 12 Reference face plate 12a Reference plane 14 Support post 16 Gripping plate 16a Square hole 18 Vertical indicator 52 Forearm 53 Hand (palm surface)
62 radius 63 ulna

Claims (5)

基準となる基準平面を有する基準面板と、
その基準平面を前腕の手首近傍の背側に押し付けて基準面板を前腕に固定させる基準面板固定手段と、
前記基準面板の傾きの方向を示す傾斜表示手段と、
を備えることを特徴とする前腕回内外測定器。
A reference face plate having a reference plane serving as a reference,
Reference face plate fixing means for pressing the reference plane against the back side near the wrist of the forearm to fix the reference face plate to the forearm,
Tilt display means indicating the direction of tilt of the reference face plate,
A forearm pronation / internal measurement device, comprising:
前記基準面板固定手段が、
基準面板に端部が固定され基準面から垂直に突出して基準面板に固定された支持柱と、
前記支持柱が嵌挿する孔を有しその孔により摺動自在に支持柱に保持され、対向する基準面板との協働により前腕を挟持可能な把持板と、
を備えることを特徴とする請求項1記載の前腕回内外測定器。
The reference face plate fixing means,
A support pillar whose end is fixed to the reference face plate and protrudes vertically from the reference face and is fixed to the reference face plate,
A gripping plate having a hole into which the support column is inserted, slidably held by the support column by the hole, and capable of holding the forearm in cooperation with an opposing reference surface plate;
The forearm pronation / external measurement device according to claim 1, further comprising:
前記傾斜表示手段が、基準面板に固定された鉛直線指示計であることを特徴とする請求項1または2に記載の前腕回内外測定器。The forearm pronation measuring device according to claim 1 or 2, wherein the inclination display means is a vertical indicator fixed to a reference face plate. 前記傾斜表示手段が、基準面板に固定された指針であることを特徴とする請求項1または2に記載の前腕回内外測定器。3. The forearm pronation measuring device according to claim 1, wherein the inclination display means is a pointer fixed to a reference face plate. 前腕の手首近傍の背側に基準面板を押し付け、その基準面板の方向を測定することにより前腕の回内回外の角度を測定する前腕回内外測定方法。A forearm pronation / supination measurement method in which a reference face plate is pressed against the back side of the forearm near the wrist, and the angle of the pronation / supination of the forearm is measured by measuring the direction of the reference face plate.
JP2002305643A 2002-10-21 2002-10-21 Antebrachial pronation/supination measuring instrument Pending JP2004136016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305643A JP2004136016A (en) 2002-10-21 2002-10-21 Antebrachial pronation/supination measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305643A JP2004136016A (en) 2002-10-21 2002-10-21 Antebrachial pronation/supination measuring instrument

Publications (1)

Publication Number Publication Date
JP2004136016A true JP2004136016A (en) 2004-05-13

Family

ID=32452689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305643A Pending JP2004136016A (en) 2002-10-21 2002-10-21 Antebrachial pronation/supination measuring instrument

Country Status (1)

Country Link
JP (1) JP2004136016A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296025A (en) * 2006-04-28 2007-11-15 Sysmex Corp Living body component measuring method, and living body component measuring device
JP2008012311A (en) * 2006-06-30 2008-01-24 Samsung Electronics Co Ltd Bio-signal measuring instrument
JP2008245741A (en) * 2007-03-29 2008-10-16 Sysmex Corp Biological component measuring device
CN105962901A (en) * 2016-06-17 2016-09-28 山东师范大学 Active kinesthesis orientation testing device and method for forward swing of upper arm and lower arm
CN106137126A (en) * 2016-06-17 2016-11-23 山东师范大学 Active kinaesthesia Azimuth testing device and method of testing for large arm and forearm side-sway
CN109730653A (en) * 2018-12-07 2019-05-10 南京医科大学 A kind of patients with cerebral apoplexy hand Rehabilitation Evaluation System and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296025A (en) * 2006-04-28 2007-11-15 Sysmex Corp Living body component measuring method, and living body component measuring device
JP2008012311A (en) * 2006-06-30 2008-01-24 Samsung Electronics Co Ltd Bio-signal measuring instrument
JP4679551B2 (en) * 2006-06-30 2011-04-27 三星電子株式会社 Biological signal measuring device
JP2008245741A (en) * 2007-03-29 2008-10-16 Sysmex Corp Biological component measuring device
CN105962901A (en) * 2016-06-17 2016-09-28 山东师范大学 Active kinesthesis orientation testing device and method for forward swing of upper arm and lower arm
CN106137126A (en) * 2016-06-17 2016-11-23 山东师范大学 Active kinaesthesia Azimuth testing device and method of testing for large arm and forearm side-sway
CN109730653A (en) * 2018-12-07 2019-05-10 南京医科大学 A kind of patients with cerebral apoplexy hand Rehabilitation Evaluation System and method
CN109730653B (en) * 2018-12-07 2023-12-29 南京医科大学 Hand rehabilitation evaluation system and method for cerebral apoplexy patient

Similar Documents

Publication Publication Date Title
Norkin et al. Measurement of joint motion: a guide to goniometry
Lee et al. A real-time gyroscopic system for three-dimensional measurement of lumbar spine motion
Wise et al. Evaluation of a fiber optic glove for se-automated goniometric measurements
US4922925A (en) Computer based upper extremity evaluation system
Carpinella et al. Experimental protocol for the kinematic analysis of the hand: definition and repeatability
US5313968A (en) Joint range of motion analyzer using euler angle
TW200946095A (en) Rehabilitating and training device and controlling method thereof
US5327907A (en) Biomechanical measurement tool
US20060052726A1 (en) Key device to measure pronation and supination of the forearm
O'Flynn et al. Novel smart sensor glove for arthritis rehabiliation
Costa et al. Validity and reliability of inertial sensors for elbow and wrist range of motion assessment
Aizawa et al. Ranges of active joint motion for the shoulder, elbow, and wrist in healthy adults
Fang et al. A novel multistandard compliant hand function assessment method using an infrared imaging device
JP2002000584A (en) Joint movable area inspecting and training system
TW201121525A (en) Training system and upper limb exercise function estimation for hemiplegic stroke patient.
JP2004136016A (en) Antebrachial pronation/supination measuring instrument
KR20150072782A (en) Measuring instrument on grip force of hands
CN205359482U (en) Joint motion range measuring apparatu
Laupattarakasem et al. Axial Rotation Gravity Goniometer: A Simple Design of Instrument and a Controlled Reliability Study.
CN210992845U (en) Cervical vertebra postoperative gripping force training device
Hammond et al. Objective evaluation of fine motor manipulation—A new clinical tool
JP3242086U (en) Angle measuring instrument
Keller et al. A system for measuring finger forces during grasping
Scott et al. Hand impairment assessment: some suggestions
Stam et al. The compangle: a new goniometer for joint angle measurements of the hand

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930