JP2004135382A - Magnet type generator - Google Patents

Magnet type generator Download PDF

Info

Publication number
JP2004135382A
JP2004135382A JP2002294985A JP2002294985A JP2004135382A JP 2004135382 A JP2004135382 A JP 2004135382A JP 2002294985 A JP2002294985 A JP 2002294985A JP 2002294985 A JP2002294985 A JP 2002294985A JP 2004135382 A JP2004135382 A JP 2004135382A
Authority
JP
Japan
Prior art keywords
power generation
laminated core
rotor
generating coil
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002294985A
Other languages
Japanese (ja)
Inventor
Norikazu Takeuchi
竹内 則和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
DensoTrim Corp
Original Assignee
Denso Corp
DensoTrim Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, DensoTrim Corp filed Critical Denso Corp
Priority to JP2002294985A priority Critical patent/JP2004135382A/en
Publication of JP2004135382A publication Critical patent/JP2004135382A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet type generator in which the shape of a laminate core is devised to allow the winding of a generating coil by tightly contacting the side surface of the laminate core for improved heat conductivity from the generating coil to the laminate core, and a gap between adjoining generating coil is enlarged to facilitate the winding work of the generating coil with the heat radiation of the generating coil improved. <P>SOLUTION: The magnet type generator comprises a laminate core 41 around which a generating coil 42 is wound. Related to the laminate core 41, the width of a rotor's rotation direction (a) narrows stepwise from the center in a rotor's axis direction (b) toward both ends. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、オートバイ(自動二輪車)などに搭載され、バッテリを充電するとともに前照灯など電気負荷に電力を供給する磁石式発電機に関する。
【0002】
【従来の技術】
従来から、特開2001−128429号公報に記載されるように、ロータ側に永久磁石を備え、ステータ側に積層コアと積層コアに巻かれた発電コイルを備えたオートバイ用の磁石式発電機が知られている。
【0003】
近年、この種のオートバイ用の磁石式発電機に対して、電気負荷の増加に伴う出力電流増加の要求がある。さらに、低回転域のアイドリング回転時にバッテリを充電させたいことから、電気負荷の増加に比例して出力電流を増加する必要がある。一方、高回転域では、出力電流に余裕があるためレギュレータで短絡して出力電流を抑えるようにしており、このため、高回転域では、負荷電流の増加に比例して出力電流を増加する必要はなく、むしろ、レギュレータの容量、発電コイルの発熱を少なくするために出力電流は少ない方がよい。
【0004】
低回転域での出力電流増加の要求及び高回転域での出力電流抑制の要求を同時に満たすためには、積層コアの厚さを厚くする必要がある。また、出力電流の増加に伴う発電コイルの温度上昇を抑制するためには、発電コイルの巻線を太くする必要がある。
【0005】
【発明が解決しようとする課題】
しかし、従来の積層コアは、プレス機で打ち抜かれた同一形状のコアプレートを積層して構成されるため、この積層コアに太い発電コイルを巻くときに、図6に示すように、積層コア41の中央部で発電コイル42が大きく膨らむようになる。このため、隣り合う発電コイル42間の隙間が狭くなり、発電コイル42の巻線作業が困難になる。さらに、上記隙間が狭くなることによる発電コイル42の放熱の悪化、及び、積層コア41の側面50aと発電コイル42との間に隙間が発生することによる発電コイル42から積層コア41への熱伝導の低下により、発電コイル42の温度が上昇し、耐熱限界を超えてしまうという問題が発生する。
【0006】
本発明は、上記の如き問題点を解決し、積層コアの形状を工夫することにより積層コアの側面に発電コイルを密着して巻くことを可能にし、これにより、発電コイルから積層コアへの熱伝導が向上し、また、隣り合う発電コイルの隙間の拡大により発電コイルの巻線作業が容易になるとともに発電コイルの放熱が向上する磁石式発電機を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の磁石式発電機は、発電コイルが巻装される積層コアを備える磁石式発電機において、前記積層コアは、ロータ軸方向の中央部から両端に向かってロータ回転方向の幅が段階的に狭くなるよう構成されることを特徴とする。
【0008】
本発明によると、積層コアのロータ回転方向の幅がロータ軸方向の中央部から両端に向かって段階的に狭くなるよう構成されているため、積層コアに太い発電コイルを巻装するとき、発電コイルを積層コアの外面に密着させて巻装させることができる。このため、発電コイルから積層コアへの熱伝導が向上し、また、隣り合う発電コイルの隙間が拡大することから発電コイルの巻線作業が容易になるとともに発電コイルの放熱が向上する。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0010】
図1は、本発明の一実施形態に係る磁石式発電機の断面図、図2は、ステータの正面図、図3は、図2図示III−III断面図、図4は、コアプレートの正面図をそれぞれ示す。
【0011】
図1〜図4において、1は、エンジンのクランクシャフト、2は、エンジンカバーをそれぞれ表している。
【0012】
クランクシャフト1の端部1aにはロータ3が固定され、ロータ3の内側にステータ4が配設されている。
【0013】
ロータ3は、磁性体からなる回転部材31を備える。回転部材31は、熱間鍛造後切削により仕上げ加工されてなる。回転部材31の中央のボス部31aの内側には、テーパ部31bが形成されており、テーパ部31bは、ボルト32によってクランクシャフト端部1aに嵌合、固着されている。回転部材31の端面部31cには、冷却用貫通穴31dが複数個設けられている。回転部材31の円筒状の外周部31eはヨークを構成している。回転部材外周部31eの内側に、非磁性体からなるリング状のスペーサ33、円周方向に等間隔に配置された複数個の永久磁石34、及び、非磁性体からなるリング状の位置決めケース35が、クランクシャフト1の軸方向に沿って順に配設されている。複数個の永久磁石34は、位置決めケース35に形成された凸部(図示せず)によって円周方向に等間隔となるよう位置決めされるとともに、永久磁石34の内側に磁石保護リング36を圧入し回転部材外周部31eの先端部31fを巻きかしめすることによって回転部材31に固定されている。なお、磁石保護リング36は、ステンレス板をプレス加工して形成されている。
【0014】
ステータ4は積層コア41を備える。積層コア41は、鉄板をプレス加工したコアプレート48を複数枚積層し、その両側にコアプレート48より若干厚いエンドプレート49を重ねた後、リベット52でかしめて一体化し、その表面をエポキシ樹脂50で絶縁されてなり、この積層コア41に巻線用銅線51を巻装して発電コイル42が形成されている。ステータ4は、積層コア41に形成されたねじ挿通用貫通穴41aに締付ねじ43を通し、締付ねじ43をエンジンカバー2に形成されたねじ穴2aにねじ込むことによって、エンジンカバー2に固定されている。
【0015】
発電コイル42は、絶縁チューブ44内でリード線45と結線されている。絶縁チューブ44は、積層コア41にねじ止めされたクリップ46で保持されている。絶縁チューブ44から引き出されたリード線45は、保護チューブ47によって保護されてグロメット部(図示せず)まで伸び、グロメット部を介して外部に引き出されている。
【0016】
積層コア41を構成する複数枚のコアプレート48は、図3に示すように、ロータ回転方向aにおける幅c(図4参照)が各々異なっている3種類のコアプレート48a,48b,48cからなり、ロータ回転方向aに対し垂直なロータ軸方向bにおける中央部に最大幅c1のコアプレート群(幅広コアプレート群)48Aが位置し、この最大幅コアプレート群48Aの両側に、中間幅c2のコアプレート群(中間幅コアプレート群)48Bが位置し、この中間幅コアプレート群48Bの両側に、最小幅c3のコアプレート群(幅狭コアプレート群)48Cが位置しており、各コアプレート48のロータ回転方向aにおける中心位置が一致するよう構成されている。換言すると、コアプレート群48A,48B,48Cは、ロータ軸方向bの中央部において最大幅c1を有し、この中央部からロータ軸方向bの両端に向かってc2,c3と段階的に幅が狭くなっている。また、エンドプレート49のロータ回転方向aの幅c4は、幅狭コアプレート群48Cのロータ回転方向aの幅c3よりも狭く形成されている。
【0017】
このようにコアプレート群48A,48B,48C及びエンドプレート49は、全体としてロータ軸方向bの中央部から両端に向かって段階的に幅狭になっているため、エポキシ樹脂50もこの外形形状に沿った形状つまりロータ軸方向bの中央部が膨らみ両端部が縮んだような形状となる。このため、エポキシ樹脂50の外側に太い巻線用銅線51を巻装するとき、太い巻線用銅線51をエポキシ樹脂50の外面50aにほぼ密着して巻装することが可能になる。
【0018】
なお、上記実施形態では、図3に示すように積層コア41の幅cを3段階(エンドプレートを含めると4段階)に設定しているが、積層コア41のロータ軸方向bの長さが短い場合、あるいは、発電コイル42の巻線用銅線51の線径が細い場合には、図5に示すように、2段階(エンドプレートを含めると3段階)に設定するようにしてもよく、積層コア41のロータ軸方向bの長さあるいは発電コイル42の線径の太さに応じて段階数を適宜設定すればよい。
【0019】
ロータ3の回転時、発電コイル42と鎖交する永久磁石34の磁束変化により発電コイル42に電流が流れ、この電流によって発電コイル42は発熱する。発電コイル42の発熱は、ロータ3の回転による空気攪拌により生成される、ロータ3の内側から冷却用貫通孔31d及びロータ3の外側を経てロータ3の内側へ戻る空気循環通路dから、エンジンカバー2を経てエンジンカバー2の外側に放熱されるとともに、発電コイル42から積層コア41を経てエンジンカバー2に至る放熱経路eを経てエンジンカバー2の外側に放熱される。
【0020】
本実施形態の場合、上述したように発電コイル42の巻線用銅線51はエポキシ樹脂50の外面50aとほぼ密着している。このため、積層コア41に発電コイル42を巻装した状態において発電コイル42のロータ軸方向bの中央部は、図6図示の従来の場合と比べロータ回転方向aの寸法が小さくなり、隣り合う発電コイル42間の隙間が拡大する。したがって、上記空気循環通路dにおける抵抗が小さくなり、この空気循環通路dを流れる空気の流速が増大することから、この空気循環通路dからエンジンカバー2を経て外部に放出される放熱経路の放熱効率が向上する。また、発電コイル42から積層コア41への熱伝導が向上するため、発電コイル42から積層コア41及びエンジンカバー2を経て外部に放出される放熱経路eの放熱効率も向上する。また、隣り合う発電コイル42間の隙間の拡大により、積層コア41に発電コイル42を巻装する巻線作業が容易になる。
【0021】
以上説明したように、本実施形態の磁石式発電機は、発電コイル42が巻装される積層コア41を備える磁石式発電機において、積層コア41は、ロータ軸方向bの中央部から両端に向かってロータ回転方向aの幅が段階的に狭くなるよう構成される。
【0022】
本実施形態によると、積層コア41のロータ回転方向aの幅がロータ軸方向bの中央部から両端に向かって段階的に狭くなるよう構成されているため、積層コア41に太い発電コイル42を巻装するとき、発電コイル42を積層コア41の外面50aに密着させて巻装させることができる。このため、発電コイル42から積層コア41への熱伝導が向上し、また、隣り合う発電コイル42の隙間が拡大することから発電コイル42の巻線作業が容易になるとともに発電コイル42の放熱が向上する。
【0023】
【発明の効果】
本発明の磁石式発電機によると、積層コアのロータ回転方向の幅がロータ軸方向の中央部から両端に向かって段階的に狭くなるよう構成されているため、積層コアに太い発電コイルを巻装するとき、発電コイルを積層コアの外面に密着させて巻装させることができる。このため、発電コイルから積層コアへの熱伝導が向上し、また、隣り合う発電コイルの隙間が拡大することから発電コイルの巻線作業が容易になるとともに発電コイルの放熱が向上する。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る磁石式発電機の断面図である。
【図2】ステータの正面図である。
【図3】図2図示III−III断面図である。
【図4】コアプレートの正面図である。
【図5】他の実施形態に係るステータの断面図である。
【図6】従来のステータの断面図である。
【符号の説明】
41  積層コア
42  発電コイル
a  ロータ回転方向
b  ロータ軸方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnet generator mounted on a motorcycle (motorcycle) or the like, which charges a battery and supplies power to an electric load such as a headlight.
[0002]
[Prior art]
Conventionally, as described in Japanese Patent Application Laid-Open No. 2001-128429, a magnet-type generator for a motorcycle including a permanent magnet on the rotor side, a laminated core on the stator side, and a generating coil wound on the laminated core is known. Are known.
[0003]
2. Description of the Related Art In recent years, there has been a demand for this type of motorcycle magnet generator to increase the output current as the electric load increases. Further, the battery needs to be charged at the time of idling rotation in a low rotation range, so that the output current needs to be increased in proportion to the increase of the electric load. On the other hand, in the high speed range, the output current has a margin, so the output current is suppressed by short-circuiting with the regulator.In the high speed range, it is necessary to increase the output current in proportion to the increase of the load current. Rather, it is better to reduce the output current in order to reduce the capacity of the regulator and the heat generated by the power generation coil.
[0004]
In order to simultaneously satisfy the requirement for increasing the output current in the low rotation region and the requirement for suppressing the output current in the high rotation region, it is necessary to increase the thickness of the laminated core. Further, in order to suppress a rise in the temperature of the power generation coil due to an increase in the output current, it is necessary to make the winding of the power generation coil thick.
[0005]
[Problems to be solved by the invention]
However, since the conventional laminated core is formed by laminating core plates of the same shape punched by a press machine, when winding a large power generation coil around the laminated core, as shown in FIG. The power generation coil 42 expands greatly at the center of the area. For this reason, the gap between the adjacent power generation coils 42 becomes narrow, and the winding operation of the power generation coils 42 becomes difficult. Further, heat dissipation of the power generation coil 42 is deteriorated due to the narrowing of the gap, and heat conduction from the power generation coil 42 to the multilayer core 41 due to generation of a gap between the side surface 50 a of the laminated core 41 and the power generation coil 42. As a result, the temperature of the power generation coil 42 rises, which causes a problem that the temperature exceeds the heat resistance limit.
[0006]
The present invention solves the above-described problems, and enables the power generation coil to be closely wound around the side surface of the laminated core by devising the shape of the laminated core. It is an object of the present invention to provide a magnet generator in which conduction is improved, winding work of the power generating coil is facilitated by enlarging a gap between adjacent power generating coils, and heat radiation of the power generating coil is improved.
[0007]
[Means for Solving the Problems]
The magnet type generator according to the present invention is a magnet type generator including a laminated core on which a generating coil is wound, wherein the laminated core has a stepwise width in a rotor rotation direction from a center portion in a rotor axial direction to both ends. It is characterized in that it is configured to be narrower.
[0008]
According to the present invention, the width of the laminated core in the rotor rotation direction is configured to gradually decrease from the center in the rotor axial direction toward both ends. The coil can be wound in close contact with the outer surface of the laminated core. For this reason, the heat conduction from the power generation coil to the laminated core is improved, and the gap between the adjacent power generation coils is enlarged, so that the winding operation of the power generation coil is facilitated and the heat radiation of the power generation coil is improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
1 is a sectional view of a magnet generator according to an embodiment of the present invention, FIG. 2 is a front view of a stator, FIG. 3 is a sectional view taken along line III-III of FIG. 2, and FIG. The figures are shown respectively.
[0011]
1 to 4, reference numeral 1 denotes an engine crankshaft, and reference numeral 2 denotes an engine cover.
[0012]
A rotor 3 is fixed to an end 1 a of the crankshaft 1, and a stator 4 is disposed inside the rotor 3.
[0013]
The rotor 3 includes a rotating member 31 made of a magnetic material. The rotating member 31 is formed by finishing after hot forging. A tapered portion 31b is formed inside the central boss portion 31a of the rotating member 31, and the tapered portion 31b is fitted and fixed to the crankshaft end 1a by a bolt 32. A plurality of cooling through-holes 31d are provided in the end face 31c of the rotating member 31. The cylindrical outer peripheral portion 31e of the rotating member 31 forms a yoke. A ring-shaped spacer 33 made of a non-magnetic material, a plurality of permanent magnets 34 arranged at equal intervals in the circumferential direction, and a ring-shaped positioning case 35 made of a non-magnetic material inside the outer periphery 31 e of the rotating member. Are arranged in order along the axial direction of the crankshaft 1. The plurality of permanent magnets 34 are positioned at equal intervals in the circumferential direction by convex portions (not shown) formed on the positioning case 35, and a magnet protection ring 36 is press-fitted inside the permanent magnets 34. The distal end portion 31f of the rotating member outer peripheral portion 31e is fixed to the rotating member 31 by crimping. The magnet protection ring 36 is formed by pressing a stainless steel plate.
[0014]
The stator 4 includes a laminated core 41. The laminated core 41 is formed by laminating a plurality of core plates 48 formed by pressing an iron plate, stacking end plates 49 slightly thicker than the core plate 48 on both sides thereof, caulking them with rivets 52, and integrating the surface with an epoxy resin 50. The power generation coil 42 is formed by winding a copper wire 51 for winding on the laminated core 41. The stator 4 is fixed to the engine cover 2 by passing a tightening screw 43 through a screw insertion through hole 41 a formed in the laminated core 41 and screwing the tightening screw 43 into a screw hole 2 a formed in the engine cover 2. Have been.
[0015]
The power generating coil 42 is connected to a lead wire 45 in the insulating tube 44. The insulating tube 44 is held by a clip 46 screwed to the laminated core 41. The lead wire 45 drawn out from the insulating tube 44 is protected by a protection tube 47, extends to a grommet portion (not shown), and is drawn out through the grommet portion.
[0016]
As shown in FIG. 3, the plurality of core plates 48 constituting the laminated core 41 are composed of three types of core plates 48a, 48b and 48c having different widths c (see FIG. 4) in the rotor rotation direction a. A core plate group (wide core plate group) 48A having a maximum width c1 is located at the center in the rotor axis direction b perpendicular to the rotor rotation direction a, and an intermediate width c2 is provided on both sides of the maximum width core plate group 48A. A core plate group (middle width core plate group) 48B is located, and a core plate group (narrow core plate group) 48C having a minimum width c3 is located on both sides of the intermediate width core plate group 48B. 48 are arranged so that the center positions in the rotor rotation direction a coincide with each other. In other words, the core plate groups 48A, 48B, and 48C have the maximum width c1 at the center in the rotor axis direction b, and the width gradually increases from this center to both ends in the rotor axis direction b as c2 and c3. It is getting smaller. The width c4 of the end plate 49 in the rotor rotation direction a is formed to be narrower than the width c3 of the narrow core plate group 48C in the rotor rotation direction a.
[0017]
As described above, since the core plate groups 48A, 48B, 48C and the end plates 49 are gradually reduced in width from the center in the rotor axial direction b toward both ends, the epoxy resin 50 also has this outer shape. The shape along the shape, that is, a shape in which the center portion in the rotor axial direction b is swelled and both end portions are shrunk. Therefore, when the thick copper wire for winding 51 is wound around the outside of the epoxy resin 50, the thick copper wire for winding 51 can be wound almost in close contact with the outer surface 50a of the epoxy resin 50.
[0018]
In the above embodiment, as shown in FIG. 3, the width c of the laminated core 41 is set in three stages (four stages when the end plate is included), but the length of the laminated core 41 in the rotor axial direction b is reduced. When the length is short, or when the wire diameter of the winding copper wire 51 of the power generation coil 42 is small, two stages (three stages including the end plate) may be set as shown in FIG. The number of stages may be appropriately set according to the length of the laminated core 41 in the rotor axial direction b or the thickness of the wire diameter of the power generation coil 42.
[0019]
When the rotor 3 rotates, a current flows through the power generation coil 42 due to a change in the magnetic flux of the permanent magnet 34 linked to the power generation coil 42, and the current generates heat in the power generation coil 42. The heat generated by the power generation coil 42 is generated by the air agitation caused by the rotation of the rotor 3, and from the air circulation passage d returning from the inside of the rotor 3 to the inside of the rotor 3 through the cooling through hole 31 d and the outside of the rotor 3, the engine cover 2, the heat is radiated to the outside of the engine cover 2 via the heat radiation path e extending from the power generation coil 42 to the engine cover 2 via the laminated core 41.
[0020]
In the case of the present embodiment, the winding copper wire 51 of the power generation coil 42 is almost in close contact with the outer surface 50a of the epoxy resin 50 as described above. For this reason, when the power generation coil 42 is wound around the laminated core 41, the center of the power generation coil 42 in the rotor axial direction b has a smaller dimension in the rotor rotation direction a than the conventional case shown in FIG. The gap between the power generation coils 42 increases. Therefore, the resistance in the air circulation passage d is reduced, and the flow velocity of the air flowing through the air circulation passage d is increased, so that the heat radiation efficiency of the heat radiation path discharged from the air circulation passage d to the outside through the engine cover 2 is increased. Is improved. Further, since the heat conduction from the power generation coil 42 to the laminated core 41 is improved, the heat radiation efficiency of the heat radiation path e that is released from the power generation coil 42 to the outside through the laminated core 41 and the engine cover 2 is also improved. In addition, since the gap between the adjacent power generation coils 42 is increased, the winding operation of winding the power generation coils 42 around the laminated core 41 becomes easy.
[0021]
As described above, the magnet type generator according to the present embodiment includes the laminated core 41 around which the generating coil 42 is wound, and the laminated core 41 is provided at both ends from the center in the rotor axial direction b. It is configured such that the width in the rotor rotation direction a gradually decreases in the direction of rotation.
[0022]
According to the present embodiment, the width of the laminated core 41 in the rotor rotation direction a is configured to gradually decrease from the center in the rotor axial direction b toward both ends. At the time of winding, the power generating coil 42 can be wound while being closely attached to the outer surface 50a of the laminated core 41. For this reason, the heat conduction from the power generation coil 42 to the laminated core 41 is improved, and the gap between the adjacent power generation coils 42 is enlarged, so that the winding operation of the power generation coil 42 is facilitated and the heat radiation of the power generation coil 42 is improved. improves.
[0023]
【The invention's effect】
According to the magnet type generator of the present invention, the width of the laminated core in the rotor rotation direction is configured to gradually decrease from the center in the rotor axial direction toward both ends, so that a thick power generating coil is wound around the laminated core. When mounting, the power generating coil can be wound in close contact with the outer surface of the laminated core. For this reason, the heat conduction from the power generation coil to the laminated core is improved, and the gap between the adjacent power generation coils is enlarged, so that the winding operation of the power generation coil is facilitated and the heat radiation of the power generation coil is improved.
[Brief description of the drawings]
FIG. 1 is a sectional view of a magnet generator according to an embodiment of the present invention.
FIG. 2 is a front view of a stator.
FIG. 3 is a sectional view taken along the line III-III shown in FIG. 2;
FIG. 4 is a front view of a core plate.
FIG. 5 is a cross-sectional view of a stator according to another embodiment.
FIG. 6 is a sectional view of a conventional stator.
[Explanation of symbols]
41 laminated core 42 power generation coil a rotor rotation direction b rotor axis direction

Claims (1)

発電コイルが巻装される積層コアを備える磁石式発電機において、
前記積層コアは、ロータ軸方向の中央部から両端に向かってロータ回転方向の幅が段階的に狭くなるよう構成されることを特徴とする磁石式発電機。
In a magnet generator having a laminated core around which a generating coil is wound,
The magnet type power generator is characterized in that the laminated core is configured such that the width in the rotor rotation direction decreases stepwise from the center in the rotor axial direction toward both ends.
JP2002294985A 2002-10-08 2002-10-08 Magnet type generator Pending JP2004135382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294985A JP2004135382A (en) 2002-10-08 2002-10-08 Magnet type generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294985A JP2004135382A (en) 2002-10-08 2002-10-08 Magnet type generator

Publications (1)

Publication Number Publication Date
JP2004135382A true JP2004135382A (en) 2004-04-30

Family

ID=32285378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294985A Pending JP2004135382A (en) 2002-10-08 2002-10-08 Magnet type generator

Country Status (1)

Country Link
JP (1) JP2004135382A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141173A (en) * 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd Stator of motor
DE102005058249A1 (en) * 2005-09-12 2007-03-15 Mitsubishi Denki K.K. Magnetoelectric generator
JP2007244065A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Stator structure of concentrated winding motor
JP2012023861A (en) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp Armature core and motor
US8354763B2 (en) 2010-04-02 2013-01-15 Mitsubishi Electric Corporation Magnet generator
CN104247212A (en) * 2012-07-04 2014-12-24 三菱重工汽车空调***株式会社 Electric motor
DE102006052656B4 (en) * 2006-08-10 2016-09-15 Mitsubishi Electric Corp. Stator of a permanent magnet generator
US20190238022A1 (en) * 2018-01-26 2019-08-01 Milwaukee Electric Tool Corporation Stepped stator for an electric motor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141173A (en) * 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd Stator of motor
DE102005058249A1 (en) * 2005-09-12 2007-03-15 Mitsubishi Denki K.K. Magnetoelectric generator
US7714468B2 (en) 2005-09-12 2010-05-11 Mitsubishi Denki Kabushiki Kaisha Magnetoelectric generator
DE102005058249B4 (en) * 2005-09-12 2021-03-25 Mitsubishi Denki K.K. Magnetoelectric generator
JP2007244065A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Stator structure of concentrated winding motor
DE102006052656B4 (en) * 2006-08-10 2016-09-15 Mitsubishi Electric Corp. Stator of a permanent magnet generator
US8354763B2 (en) 2010-04-02 2013-01-15 Mitsubishi Electric Corporation Magnet generator
JP2012023861A (en) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp Armature core and motor
CN104247212A (en) * 2012-07-04 2014-12-24 三菱重工汽车空调***株式会社 Electric motor
US10547224B2 (en) 2012-07-04 2020-01-28 Mitsubishi Heavy Industries Thermal Systems, Ltd. Electric motor with stator having step-shaped stator teeth
US10547225B2 (en) 2012-07-04 2020-01-28 Mitsubishi Heavy Industries Thermal Systems, Ltd. Method for producing an electric motor with stator having step-shaped stator teeth
US20190238022A1 (en) * 2018-01-26 2019-08-01 Milwaukee Electric Tool Corporation Stepped stator for an electric motor

Similar Documents

Publication Publication Date Title
USRE43055E1 (en) Permanent magnet type generator
JP5641154B2 (en) Rotating electric machine
JP3675074B2 (en) Landel core type rotary electric machine
JP2007104783A (en) Dynamo-electric machine for vehicle
JP3680213B2 (en) Three-phase magnet generator
JP5189615B2 (en) Magnet generator
KR20160014055A (en) Electric machine with liquid cooled housing
JP5439430B2 (en) AC generator for vehicles
TW200401495A (en) Claw-pole generator and hub dynamo for bicycle
JP5506836B2 (en) Magnet generator
JP2000175410A (en) Liquid cooled electric machine
JP3819386B2 (en) Magnet generator
JP2017175699A (en) Rotary electric machine
JP5129195B2 (en) Voltage regulator for vehicle alternator
JP3816492B2 (en) Magnet generator
US7145274B2 (en) Magnetoelectric generator
JP2004135382A (en) Magnet type generator
JP4879708B2 (en) Rotating electric machine
JP2010514406A (en) Stator for multi-phase rotating electrical machine, multi-phase rotating electrical machine having the stator, and method for manufacturing the stator
JP4081444B2 (en) Alternators, especially automotive alternators
JP2004166482A (en) Motor for hybrid vehicles
JP5724843B2 (en) Rotating electric machine
JP2007252076A (en) Three-phase magneto generator
JP3669343B2 (en) Cooling structure of rotating electric machine
JP2004088955A (en) Three-phase magnetic generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A02 Decision of refusal

Effective date: 20070320

Free format text: JAPANESE INTERMEDIATE CODE: A02