JP2004132553A - Triple effect absorption refrigerator - Google Patents

Triple effect absorption refrigerator Download PDF

Info

Publication number
JP2004132553A
JP2004132553A JP2002294387A JP2002294387A JP2004132553A JP 2004132553 A JP2004132553 A JP 2004132553A JP 2002294387 A JP2002294387 A JP 2002294387A JP 2002294387 A JP2002294387 A JP 2002294387A JP 2004132553 A JP2004132553 A JP 2004132553A
Authority
JP
Japan
Prior art keywords
temperature regenerator
solution
low
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002294387A
Other languages
Japanese (ja)
Other versions
JP4064199B2 (en
Inventor
Nobuyuki Takeda
武田 伸之
Tatsuro Fujii
藤居 達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industries Co Ltd filed Critical Hitachi Ltd
Priority to JP2002294387A priority Critical patent/JP4064199B2/en
Publication of JP2004132553A publication Critical patent/JP2004132553A/en
Application granted granted Critical
Publication of JP4064199B2 publication Critical patent/JP4064199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a triple effect absorption refrigerator working efficiently when external exhaust heat is not generated and capable of sufficiently using the external exhaust heat when it is generated. <P>SOLUTION: This triple effect absorption refrigerator is provided with a high-temperature regenerator 1, a middle-temperature regenerator 2, a low-temperature regenerator 3, a condenser 4, an absorber 6, a vaporizer 5, a plurality of solution heat exchangers 8, 9 and 10, and other heat exchangers, solution pipes and refrigerant pipes for connecting these equipment to each other, a dilute solution pump 70 for circulating the solution and the refrigerant within a cycle, a concentrated solution pump 81 and a refrigerant pump 55. This triple effect absorption refrigerator is also provided with pipes for feeding the dilute solution from the absorber to the high-temperature regenerator 1 and the low-temperature regenerator 3 in parallel with each other and an exhaust heat supply unit 38 for throwing the low-temperature exhaust heat at 80-90°C from outside into the low-temperature regenerator 3, and also provided with a control device 210 for controlling a dilute solution flow to be fed from the dilute solution pump 70 to the low-temperature regenerator 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置等の熱源機として使用される三重効用吸収式冷凍機に関する。
【0002】
【従来の技術】
三重効用吸収式冷凍機に関する従来技術としては、例えば特開昭60−134172号公報に記載のものが挙げられる。本従来技術では、高温再生器、中温再生器及び低温再生器、凝縮器、蒸発器、吸収器、溶液熱交換器類、溶液ポンプ及び冷媒ポンプなどを主要構成機器とし、これら機器を溶液配管、冷媒配管などで接続する構成になっている。
【0003】
また本従来技術の溶液サイクルは、3個の再生器へ並列的に希溶液を供給してそれぞれ濃縮させる、いわゆるパラレルフロー方式の採用により、高温再生器の低温、低圧作動化を図っている。
【0004】
また、三重効用吸収式冷凍機に外部排熱を有効に利用する従来技術としては、例えば特開平7−218021号公報に記載のものが挙げられる。本従来技術では、低温再生器に中温再生器で発生した冷媒蒸気とは別の熱源としてエンジンの温水排熱を併用して利用することが記載されている。
【0005】
【特許文献1】
特開昭60−134172号公報
【特許文献2】
特開平7−218021号公報
【0006】
【発明が解決しようとする課題】
従来の外部排熱を有効に利用する三重効用吸収式冷凍機は、外部排熱が有る場合でも無い場合でも、溶液循環制御は同じ方式を採用していた。ここで、外部排熱が無い場合の溶液循環制御は、高温再生器、中温再生器及び低温再生器に送る溶液量を少なくした方が、それぞれの再生器で冷媒蒸気を発生するまでの温度(沸点)に到達するまでの加熱量を少なくすることができるので、効率が良くなる。
【0007】
しかしながら、ここで80〜90℃の外部排熱温水を低温再生器に投入する運転を考えた場合、低温再生器に外部排熱が加わるため低温再生器における交換熱量が増える。よって、溶液循環量が排熱無しの時と同じとすると、低温再生器出口溶液温度が上昇することになる。ここで、外部排熱温水と低温再生器溶液の温度差はもともと数℃から10℃程度と小さいため、低温再生器溶液温度が数℃上昇すると外部排熱から熱が伝わりにくくなる。また、低温再生器の伝熱管内に排熱温水を流すので、通常サイクルの中温再生器で発生した冷媒蒸気と比較すると一般的に管内の伝熱性能は劣る。これらの理由により低温再生器への溶液循環量が少ないと十分に排熱を回収できなくなる。
【0008】
従って、外部排熱を利用しない運転時に効率が良くなるような溶液循環量制御をすると、外部排熱を十分に利用することができないという課題があった。
【0009】
本発明の目的は、外部排熱を利用しない運転時に効率が良くなるような溶液循環量制御ができ、かつ外部排熱を利用する場合でも十分にそれを利用できる三重効用吸収式冷凍機を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明に係る三重効用吸収式冷凍機は、吸収器から低温再生器に希溶液を送る配管に低温再生器に送られる希溶液循環量を制御する制御装置を設けたものである。
【0011】
これにより、排熱未使用時は低温再生器に送る希溶液量を少なくして効率向上を図り、排熱使用時は低温再生器に送る希溶液量を多くすることによって、低温再生器の管外伝熱性能を向上させるとともに外部排熱温度と低温再生器溶液温度の温度差を維持できるので、低温再生器における交換熱量が増えても、外部排熱を十分に回収することが可能となる。
【0012】
また上記目的を達成するために本発明に係る三重効用吸収式冷凍機の他の発明は、吸収器から低温再生器に希溶液を送る配管と並列に仕切弁を付設したバイパス配管を設けたものである。
【0013】
これにより、排熱使用時にバイパス配管に設置されている仕切弁を開けることにより低温再生器に送る希溶液量を多くすることできるので、外部排熱を十分に回収することが可能となる。
【0014】
また上記目的を達成するために本発明に係る三重効用吸収式冷凍機の他の発明は、排熱使用時に希溶液ポンプの周波数を上げて吸収器から低温再生器に送る希溶液量を多くすることである。ここで、中温再生器及び高温再生器に送られる希溶液循環量は、それぞれの戻り濃溶液量に比例した希溶液量を送る制御機構を設けているので、希溶液ポンプの周波数を上げても増えることは無い。よって、低温再生器へ送る溶液循環量のみ増やすことができるので、効率を下げることなく外部排熱を十分に回収することが可能となる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る三重効用吸収式冷凍機のサイクル系統図で、中温再生器、低温再生器などへ高温再生器と並行に希溶液を流す、いわゆるパラレルフロー方式のものである。
【0016】
三重効用吸収式冷凍機は、高温再生器1、気液分離器15、中温再生器2、低温再生器3、凝縮器4、蒸発器5、冷媒ポンプ55、吸収器6、希溶液ポンプ70、濃溶液ポンプ81、低温熱交換器8、中温熱交換器9、高温熱交換器10、LGドレン熱交換器85、MGドレン熱交換器95、排ガス熱交換器105、106、およびこれら機器を結ぶ溶液配管及び冷媒配管などから構成されている。本実施形態においては、冷凍機の冷媒には水、吸収剤には臭化リチウムが用いられている。
【0017】
次に、この冷凍機の詳細構成を運転中の動作と共に説明する。
冷房に供される冷水は、蒸発器5で冷媒の蒸発熱によって冷却されて配管59から冷房負荷系に送られる。このとき発生した冷媒蒸気は、吸収器6の溶液によって吸収される。この吸収によって蒸発器内の圧力と蒸発温度とが低圧、低温に維持される。なお、本実施形態では、蒸発器5及び吸収器6は、2段蒸発吸収型の構成となっている。すなわち、上段側の蒸発部5aで蒸発した冷媒蒸気は、上段側の吸収部6a、下段側の蒸発部5bで蒸発した冷媒蒸気は下段側の吸収部6bでそれぞれ吸収される。この構成により、冷凍機の運転効率を一層向上している。
【0018】
吸収器6では、高温再生器1、中温再生器2、低温再生器3の各再生器で過熱濃縮された溶液、すなわち濃溶液が配管P3により供給され伝熱管群63上に滴下される。滴下された濃溶液は、吸収器6内の伝熱管群63内を流れる冷却水によって冷却されると共に冷媒蒸気を吸収し、濃度のより薄い溶液すなわち希溶液となって吸収器6の下部に滞留する。
【0019】
この希溶液は、希溶液ポンプ70によって配管P2により分岐され、低温熱交換器8およびLGドレン熱交換器85に送られる。
【0020】
低温熱交換器8に送られた希溶液は、吸収器6に流入する濃溶液と熱交換して温度上昇する。一方、LGドレン熱交換器85に送られた希溶液は、低温再生器3内で凝縮した冷媒液および中温再生器2からMGドレン熱交換器95を通過した冷媒液と熱交換して温度上昇する。その後、これらの希溶液は一旦合流し、再び分岐して、一部は配管P6により低温再生器3に、他の一部は中温熱交換器9に、残りはMGドレン熱交換器95に送られる。LGドレン熱交換器85で希溶液と熱交換して温度低下した冷媒液は、配管P7により凝縮器4に導かれる。
【0021】
中温再生器2で発生した冷媒蒸気は配管P4を経由して伝熱管群33に送られる。また、排熱供給部38から送られた外部からの排熱を、高温再生器1の排ガスと希溶液とを熱交換する排ガス熱交換器105を経由し、配管P12により送られてきた排ガスと熱交換し、その熱交換後の排熱が伝熱管群34に送られる。低温再生器3に送られた希溶液は、伝熱管群33、34で過熱濃縮されて濃度の濃い溶液すなわち濃溶液となる。この濃溶液は、配管P8により高温再生器1及び中温再生器2からの配管P3’を流れる濃溶液と合流し、濃溶液ポンプ81によって、低温熱交換器8を経由して配管P3により吸収器6へ送られる。低温再生器3で発生した冷媒蒸気は、凝縮器4に送られ、そこで凝縮伝熱管43内を流れる冷却水によって冷却されて凝縮し、LGドレン熱交換器85で希溶液と熱交換した冷媒液と共に配管P9により蒸発器5へ送られる。
【0022】
一方、中温熱交換器9に送られた希溶液は、高温再生器1、中温再生器2からの濃溶液と熱交換してさらに温度上昇する。またMGドレン熱交換器95に送られた希溶液は、中温再生器2内で凝縮した冷媒液と熱交換して温度上昇する。そして、これらの希溶液は一旦合流し、再び分岐して、一部は配管P11により中温再生器2に、残りは高温熱交換器10及び排ガス熱交換器105に送られる。
【0023】
MGドレン熱交換器95で希溶液と熱交換して温度を下げた冷媒液は、低温再生器3内で凝縮した液冷媒と合流してLGドレン熱交換器85に送られる。
【0024】
配管P11により中温再生器2に送られた希溶液は、高温再生器1で発生した冷媒蒸気を流す配管P5に散布される。そして、そのとき冷媒蒸気の凝縮熱によって過熱濃縮されて濃溶液となり、フロートボックス24にオーバーフローする。フロートボックス24内にはフロートバルブ25が設置されている。このフロートバルブ25は、フロートボックス24内の濃溶液の液位によって、中温再生器2に送られる希溶液量を調節する流量調整手段となっている。フロートボックス24内の濃溶液は、配管P10により高温再生器1で過熱濃縮された濃溶液の配管P3’と合流して、中温熱交換器9の高温側流路に導かれる。
【0025】
中温再生器2の加熱に用いられて管内で凝縮した冷媒は、配管P5によりMGドレン熱交換器95に送られて、希溶液を顕熱で加熱した後に、低温再生器で凝縮した冷媒液と合流し、LGドレン熱交換器85を経て凝縮器4に送られる。また中温再生器2で発生した冷媒蒸気は低温再生器3に送られ、ここで低温再生器3に流入した希溶液を過熱濃縮する。
【0026】
一方、高温熱交換器10に送られた希溶液は、高温再生器1からの濃溶液と熱交換してさらに温度上昇する。また、排ガス熱交換器105に送られた希溶液は、高温再生器1の加熱に用いられた後の燃焼ガスと熱交換して温度上昇する。そして、これらの希溶液は合流してフロートボックス24a内に設置されたフロートバルブ25aを介して高温再生器1に流入する。このフロートバルブ25aは、フロートボックス24a内の濃溶液の液位によって高温再生器1に送られる希溶液量を調節する流量調整手段となっている。
【0027】
本実施の形態の高温再生器1は貫流式となっており、燃料を燃焼するバーナ12、このバーナ12の周囲に同心円状に配置されて溶液を過熱濃縮する伝熱管群などから構成されている。
【0028】
高温再生器1に流入した希溶液は、伝熱管群の管内に導かれ、燃焼ガスとの熱交換によって過熱濃縮されて濃溶液となった後、発生した冷媒蒸気と共に、高温再生器1の出口部に設置された気液分離器15に導かれる。そして、気液分離器15内において冷媒蒸気と分離される。気液分離器15で冷媒蒸気から分離された濃溶液はフロートボックス24aに送られ、そこから、高温熱交換器10に送られる。高温熱交換器10では、濃溶液は高温再生器1に流入する希溶液と熱交換して温度低下した後、中温再生器2で過熱濃縮された濃溶液と合流し、さらに中温熱交換器9に送られる。気液分離器15で濃溶液から分離された冷媒蒸気は、配管P5により中温再生器2に送られて、中温再生器2の希溶液を過熱濃縮して管内で凝縮した後、MGドレン熱交換器95に導かれる。
【0029】
本実施の形態では、高温再生器1での燃料の燃焼による入熱の他に、外部から80〜90℃程度の低温排熱を投入できる排熱供給部38を備えた構成となっている。すなわち、低温再生器3の内部には、中温再生器2で発生した冷媒蒸気が流入する伝熱管群33に加えて、外部から排熱を投入する伝熱管群34が設置されている。
【0030】
さらに、この伝熱管群34に導かれる熱媒体は、低温再生器3に流入する前に排熱交換器106によって予熱されている。排熱交換器106には、排ガス熱交換器105で希溶液の一部を加熱した後の排ガスが導かれている。また、低温再生器の希溶液入口配管には制御弁210が設けられている。制御装置201が排熱投入量を監視しており、この排熱投入量によって制御弁210の開度が制御される。
【0031】
例えば、本実施の形態では、外部排熱が有る場合は制御弁210の開度を大きくして、低温再生器3に流入する希溶液量を増やしている。これにより、低温再生器3内に設置された伝熱管34に降りかかる溶液量が増えて、伝熱性能が向上する。また、これにより低温再生器3の出口溶液温度が低くなり、外部排熱温度との出口溶液温度との温度差が維持でき、より多くの排熱を利用することができる。
【0032】
外部排熱が無い場合は制御弁210の開度を小さくして、低温再生器3に流入する希溶液量を減らしている。これにより、内部冷凍サイクル効率を向上させることができる。
【0033】
次に、本発明の他の実施の形態について図2を用いて説明する。図2に示す三重効用吸収式冷凍機の基本構成要素は、図1の実施の形態と同様である。図1の実施の形態と異なる点は、吸収器6から低温熱交換器8及びLGドレン熱交換器85を経て低温再生器3に送る溶液配管P6と、その溶液配管P6と並列に仕切弁212が設置された溶液配管P60を設けた構成としたことである。
【0034】
本実施の形態によれば、外部排熱が有る場合には仕切弁212を開くことで低温再生器に流入する希溶液流量を増やし、外部排熱が無い場合は仕切弁212を閉じることで低温再生器に流入する希溶液流量を減らすことにより、外部排熱が無い場合は効率が良く、かつ外部排熱がある場合はそれを十分に利用できる運転が可能となる。
【0035】
次に、本発明のさらに他の実施の形態について図3を用いて説明する。図3に示す三重効用吸収式冷凍機の基本構成要素は、図1の実施の形態と同様である。図1の実施の形態と異なる点は、配管P6に制御弁210設けない構成としたものである。この構成場合には、希溶液ポンプ70をインバータ制御するようにしている。
【0036】
本実施の形態によれば、外部排熱が有る場合にはインバータ周波数を大きくすることで低温再生器に流入する希溶液流量を増やし、外部排熱が無い場合はインバータ周波数を小さくすることで低温再生器に流入する希溶液流量を減らす。ここで、中温再生器と高温再生器に流入する希溶液量はそれぞれフロートバルブ25、25aによりコントロールされているので、インバータ周波数が大きくなっても希溶液循環量が増えることはない。従って、外部排熱がない場合は効率が良く、外部排熱がある場合はそれを十分に利用できる運転が可能となる。
【0037】
以上説明してきた全ての実施の形態においては、蒸発器5および吸収器6はいわゆる2段蒸発吸収の構成となっているが、これは、吸収式冷凍機で一般的に用いられている1段蒸発吸収の構成とした場合においても、本発明の適用により、同様の優れた効果を発揮することは明白である。
【0038】
また以上説明してきた全ての実施の形態においては、吸収器の溶液出口に設けられた低温溶液ポンプ70は特に回転数制御を行わない構成としているが、これは、インバータをさらに追加して、制御装置201によって制御しても良い。この場合は、フロートバルブ25、25aの動作安定化による信頼性向上、低温再生器3への溶液供給量制御による部分負荷効率の向上、起動時のハンマリング回避による低温熱交換器8及びLGドレン熱交換器85の耐圧強度低減、さらには必要最小限の動力で駆動することによる消費電力の低減などの利点がある。
【0039】
【発明の効果】
以上説明したように本発明の三重効用吸収式冷凍機によれば、外部排熱が無い場合は、三重効用の内部サイクル効率を上げることにより省エネを図り、外部排熱が有る場合は、それを最大限に有効に活用することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る三重効用吸収式冷凍機の系統図である。
【図2】本発明の他の実施の形態に係る三重効用吸収式冷凍機の系統図である。
【図3】本発明のさらに他の実施の形態に係る三重効用吸収式冷凍機の系統図である。
【符号の説明】
1…高温再生器、2…中温再生器、3…低温再生器、4…凝縮器、5…蒸発器、6…吸収器、8…低温熱交換器、9…中温熱交換器、10…高温熱交換器、12…バーナ、15…気液分離器、24、24a…フロートボックス、25、25a…フロートバルブ、33、34、43、63…伝熱管、55…冷媒ポンプ、59…冷水配管、5a…上段側蒸発器、5b…下段側蒸発器、6a…上段側吸収器、6b…下段側吸収器、70…希溶液ポンプ、81…濃溶液ポンプ、85…LGドレン熱交換器、95…MGドレン熱交換器、105、106…排ガス熱交換器、201…制御装置、211…制御弁、212…仕切弁、213…希溶液配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a triple effect absorption refrigerator used as a heat source device of an air conditioner or the like.
[0002]
[Prior art]
As a prior art relating to a triple effect absorption refrigerator, there is, for example, the one described in JP-A-60-134172. In this conventional technology, high-temperature regenerator, medium-temperature regenerator and low-temperature regenerator, condenser, evaporator, absorber, solution heat exchangers, solution pumps and refrigerant pumps as the main components, these devices are solution piping, It is configured to be connected by a refrigerant pipe or the like.
[0003]
In the solution cycle of the prior art, a so-called parallel flow system is used, in which a dilute solution is supplied to three regenerators in parallel and concentrated, whereby the high-temperature regenerator is operated at low temperature and low pressure.
[0004]
Further, as a conventional technique for effectively utilizing external exhaust heat in a triple effect absorption refrigerator, there is, for example, a technique described in Japanese Patent Application Laid-Open No. 7-218021. This prior art describes that a low-temperature regenerator is used in combination with hot water exhaust heat of an engine as a different heat source from refrigerant vapor generated in a medium-temperature regenerator.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 60-134172 [Patent Document 2]
JP-A-7-218021
[Problems to be solved by the invention]
Conventional triple-effect absorption refrigerators that effectively use external exhaust heat employ the same system for solution circulation control whether or not there is external exhaust heat. Here, the solution circulation control in the case where there is no external exhaust heat is performed by reducing the amount of the solution sent to the high-temperature regenerator, the medium-temperature regenerator and the low-temperature regenerator, by changing the temperature until each of the regenerators generates refrigerant vapor ( Since the amount of heating until reaching the boiling point) can be reduced, the efficiency is improved.
[0007]
However, in the case where the operation of charging the externally heated hot water of 80 to 90 ° C. to the low-temperature regenerator is considered here, the amount of heat exchanged in the low-temperature regenerator increases because external low-temperature heat is applied to the low-temperature regenerator. Therefore, assuming that the solution circulation amount is the same as when there is no exhaust heat, the solution temperature at the outlet of the low-temperature regenerator will increase. Here, since the temperature difference between the external waste heat hot water and the low temperature regenerator solution is originally as small as about several degrees Celsius to about 10 ° C., when the temperature of the low temperature regenerator solution rises by several degrees, it becomes difficult to transfer heat from the external waste heat. Further, since the exhaust heat hot water flows through the heat transfer tube of the low temperature regenerator, the heat transfer performance in the tube is generally inferior to that of the refrigerant vapor generated in the medium temperature regenerator in the normal cycle. For these reasons, if the amount of solution circulated to the low-temperature regenerator is small, exhaust heat cannot be sufficiently recovered.
[0008]
Therefore, there is a problem that when the solution circulation amount is controlled so that the efficiency is improved at the time of operation without using the external exhaust heat, the external exhaust heat cannot be sufficiently utilized.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a triple effect absorption refrigerator capable of controlling a solution circulation amount so as to improve efficiency during operation without using external exhaust heat and sufficiently utilizing the same even when using external exhaust heat. Is to do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the triple effect absorption refrigerator according to the present invention is provided with a control device for controlling a dilute solution circulation amount sent to the low-temperature regenerator in a pipe for sending the dilute solution from the absorber to the low-temperature regenerator. Things.
[0011]
As a result, when the waste heat is not used, the amount of the dilute solution sent to the low-temperature regenerator is reduced to improve the efficiency. When the waste heat is used, the amount of the dilute solution sent to the low-temperature regenerator is increased. Since the external heat transfer performance is improved and the temperature difference between the external exhaust heat temperature and the low-temperature regenerator solution temperature can be maintained, the external exhaust heat can be sufficiently recovered even if the amount of exchanged heat in the low-temperature regenerator increases.
[0012]
In order to achieve the above object, another invention of the triple effect absorption refrigerator according to the present invention comprises a bypass pipe provided with a gate valve in parallel with a pipe for sending a dilute solution from an absorber to a low-temperature regenerator. It is.
[0013]
Thus, the amount of the dilute solution to be sent to the low-temperature regenerator can be increased by opening the gate valve provided in the bypass pipe at the time of using the exhaust heat, so that the external exhaust heat can be sufficiently recovered.
[0014]
In order to achieve the above object, another invention of the triple effect absorption refrigerator according to the present invention is to increase the frequency of the dilute solution pump when using exhaust heat to increase the amount of dilute solution sent from the absorber to the low temperature regenerator. That is. Here, the circulation amount of the dilute solution sent to the medium-temperature regenerator and the high-temperature regenerator is provided with a control mechanism for sending a dilute solution amount proportional to the respective return concentrated solution amounts. It does not increase. Therefore, only the amount of the solution circulated to the low-temperature regenerator can be increased, so that the external exhaust heat can be sufficiently recovered without lowering the efficiency.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cycle system diagram of a triple effect absorption refrigerator according to an embodiment of the present invention, which is a so-called parallel flow type in which a dilute solution is supplied to a medium-temperature regenerator, a low-temperature regenerator and the like in parallel with a high-temperature regenerator. It is.
[0016]
The triple effect absorption refrigerator includes a high temperature regenerator 1, a gas-liquid separator 15, a medium temperature regenerator 2, a low temperature regenerator 3, a condenser 4, an evaporator 5, a refrigerant pump 55, an absorber 6, a dilute solution pump 70, The concentrated solution pump 81, the low-temperature heat exchanger 8, the medium-temperature heat exchanger 9, the high-temperature heat exchanger 10, the LG drain heat exchanger 85, the MG drain heat exchanger 95, the exhaust gas heat exchangers 105 and 106, and these devices are connected. It is composed of a solution pipe and a refrigerant pipe. In the present embodiment, water is used as the refrigerant of the refrigerator, and lithium bromide is used as the absorbent.
[0017]
Next, the detailed configuration of the refrigerator will be described together with the operation during operation.
The cold water used for cooling is cooled by the heat of evaporation of the refrigerant in the evaporator 5 and sent from the pipe 59 to the cooling load system. The refrigerant vapor generated at this time is absorbed by the solution in the absorber 6. By this absorption, the pressure in the evaporator and the evaporation temperature are maintained at a low pressure and low temperature. In the present embodiment, the evaporator 5 and the absorber 6 have a two-stage evaporative absorption type configuration. That is, the refrigerant vapor evaporated in the upper evaporator 5a is absorbed in the upper absorber 6a, and the refrigerant vapor evaporated in the lower evaporator 5b is absorbed in the lower absorber 6b. With this configuration, the operation efficiency of the refrigerator is further improved.
[0018]
In the absorber 6, a solution overheated and concentrated in each of the high-temperature regenerator 1, the medium-temperature regenerator 2, and the low-temperature regenerator 3, that is, a concentrated solution is supplied by the pipe P <b> 3 and dropped on the heat transfer tube group 63. The dropped concentrated solution is cooled by the cooling water flowing through the heat transfer tube group 63 in the absorber 6 and absorbs the refrigerant vapor, and becomes a solution having a lower concentration, that is, a dilute solution, and stays at the lower portion of the absorber 6. I do.
[0019]
The dilute solution is branched by a dilute solution pump 70 through a pipe P2 and sent to the low-temperature heat exchanger 8 and the LG drain heat exchanger 85.
[0020]
The dilute solution sent to the low-temperature heat exchanger 8 heat-exchanges with the concentrated solution flowing into the absorber 6 to rise in temperature. On the other hand, the dilute solution sent to the LG drain heat exchanger 85 exchanges heat with the refrigerant liquid condensed in the low-temperature regenerator 3 and the refrigerant liquid passed from the intermediate-temperature regenerator 2 through the MG drain heat exchanger 95 to increase the temperature. I do. Thereafter, these dilute solutions are once merged and branched again, and a part is sent to the low temperature regenerator 3 by the pipe P6, another part is sent to the medium temperature heat exchanger 9, and the rest is sent to the MG drain heat exchanger 95. Can be The refrigerant liquid whose temperature has dropped due to heat exchange with the dilute solution in the LG drain heat exchanger 85 is led to the condenser 4 through the pipe P7.
[0021]
The refrigerant vapor generated in the intermediate temperature regenerator 2 is sent to the heat transfer tube group 33 via the pipe P4. In addition, the exhaust heat from the outside sent from the exhaust heat supply unit 38 is passed through the exhaust gas heat exchanger 105 for exchanging heat between the exhaust gas of the high temperature regenerator 1 and the dilute solution, and the exhaust gas sent by the pipe P12. After heat exchange, the exhaust heat after the heat exchange is sent to the heat transfer tube group 34. The dilute solution sent to the low-temperature regenerator 3 is overheated and concentrated in the heat transfer tube groups 33 and 34 to become a solution with a high concentration, that is, a concentrated solution. This concentrated solution merges with the concentrated solution flowing through the pipe P3 ′ from the high-temperature regenerator 1 and the intermediate-temperature regenerator 2 through the pipe P8, and is absorbed by the concentrated solution pump 81 through the low-temperature heat exchanger 8 through the pipe P3. Sent to 6. The refrigerant vapor generated in the low-temperature regenerator 3 is sent to the condenser 4, where it is cooled and condensed by the cooling water flowing in the condensing heat transfer tube 43, and the refrigerant liquid exchanges heat with the dilute solution in the LG drain heat exchanger 85. At the same time, it is sent to the evaporator 5 by the pipe P9.
[0022]
On the other hand, the dilute solution sent to the intermediate-temperature heat exchanger 9 exchanges heat with the concentrated solution from the high-temperature regenerator 1 and the intermediate-temperature regenerator 2 and further rises in temperature. In addition, the dilute solution sent to the MG drain heat exchanger 95 exchanges heat with the refrigerant liquid condensed in the intermediate temperature regenerator 2 and rises in temperature. These dilute solutions are once merged and branched again, and part of the dilute solution is sent to the intermediate temperature regenerator 2 through the pipe P11 and the rest is sent to the high temperature heat exchanger 10 and the exhaust gas heat exchanger 105.
[0023]
The refrigerant liquid whose temperature has been lowered by heat exchange with the dilute solution in the MG drain heat exchanger 95 is combined with the liquid refrigerant condensed in the low temperature regenerator 3 and sent to the LG drain heat exchanger 85.
[0024]
The dilute solution sent to the intermediate temperature regenerator 2 via the pipe P11 is sprayed on the pipe P5 through which the refrigerant vapor generated in the high temperature regenerator 1 flows. Then, at that time, the concentrated solution is overheated and concentrated by the heat of condensation of the refrigerant vapor, and overflows to the float box 24. A float valve 25 is installed in the float box 24. The float valve 25 serves as a flow rate adjusting means for adjusting the amount of the dilute solution sent to the intermediate temperature regenerator 2 according to the level of the concentrated solution in the float box 24. The concentrated solution in the float box 24 joins with the piping P3 'of the concentrated solution overheated and concentrated in the high-temperature regenerator 1 by the piping P10, and is led to the high-temperature side flow path of the intermediate-temperature heat exchanger 9.
[0025]
The refrigerant used for heating the intermediate-temperature regenerator 2 and condensed in the pipe is sent to the MG drain heat exchanger 95 via the pipe P5, and after heating the dilute solution with sensible heat, the refrigerant liquid condensed in the low-temperature regenerator They are merged and sent to the condenser 4 via the LG drain heat exchanger 85. The refrigerant vapor generated in the medium temperature regenerator 2 is sent to the low temperature regenerator 3, where the dilute solution flowing into the low temperature regenerator 3 is concentrated by overheating.
[0026]
On the other hand, the dilute solution sent to the high-temperature heat exchanger 10 exchanges heat with the concentrated solution from the high-temperature regenerator 1 and further rises in temperature. Further, the diluted solution sent to the exhaust gas heat exchanger 105 exchanges heat with the combustion gas used for heating the high-temperature regenerator 1 and rises in temperature. Then, these dilute solutions merge and flow into the high-temperature regenerator 1 via the float valve 25a installed in the float box 24a. The float valve 25a is a flow rate adjusting means for adjusting the amount of the dilute solution sent to the high temperature regenerator 1 according to the level of the concentrated solution in the float box 24a.
[0027]
The high-temperature regenerator 1 of the present embodiment is of a once-through type, and is composed of a burner 12 for burning fuel, a heat transfer tube group arranged concentrically around the burner 12 and for overheating and concentrating a solution. .
[0028]
The dilute solution that has flowed into the high-temperature regenerator 1 is guided into the tubes of the heat transfer tube group, and is overheated and concentrated by heat exchange with the combustion gas to form a concentrated solution. It is led to the gas-liquid separator 15 installed in the section. Then, it is separated from the refrigerant vapor in the gas-liquid separator 15. The concentrated solution separated from the refrigerant vapor by the gas-liquid separator 15 is sent to the float box 24a, and from there to the high-temperature heat exchanger 10. In the high-temperature heat exchanger 10, the concentrated solution exchanges heat with the dilute solution flowing into the high-temperature regenerator 1 to lower the temperature. Then, the concentrated solution merges with the concentrated solution overheated and concentrated in the intermediate-temperature regenerator 2, and Sent to The refrigerant vapor separated from the concentrated solution by the gas-liquid separator 15 is sent to the intermediate-temperature regenerator 2 through a pipe P5, where the dilute solution in the intermediate-temperature regenerator 2 is overheat-concentrated and condensed in the pipe, and then MG drain heat exchange is performed. It is led to the container 95.
[0029]
In the present embodiment, in addition to the heat input by the combustion of the fuel in the high-temperature regenerator 1, a configuration is provided in which an exhaust heat supply unit 38 that can input low-temperature exhaust heat of about 80 to 90 ° C. from the outside is provided. That is, inside the low-temperature regenerator 3, in addition to the heat-transfer tube group 33 into which the refrigerant vapor generated in the medium-temperature regenerator 2 flows, a heat-transfer tube group 34 for supplying exhaust heat from the outside is installed.
[0030]
Further, the heat medium guided to the heat transfer tube group 34 is preheated by the exhaust heat exchanger 106 before flowing into the low temperature regenerator 3. The exhaust gas after heating a part of the diluted solution in the exhaust gas heat exchanger 105 is led to the exhaust heat exchanger 106. Further, a control valve 210 is provided in a dilute solution inlet pipe of the low temperature regenerator. The controller 201 monitors the amount of exhaust heat input, and the opening of the control valve 210 is controlled by the amount of exhaust heat input.
[0031]
For example, in the present embodiment, when external exhaust heat is present, the opening of the control valve 210 is increased to increase the amount of the dilute solution flowing into the low-temperature regenerator 3. Thereby, the amount of solution falling on the heat transfer tube 34 installed in the low-temperature regenerator 3 increases, and the heat transfer performance improves. In addition, the temperature of the outlet solution of the low-temperature regenerator 3 is thereby reduced, and the temperature difference between the external exhaust heat temperature and the outlet solution temperature can be maintained, so that more exhaust heat can be used.
[0032]
When there is no external exhaust heat, the opening of the control valve 210 is reduced to reduce the amount of the dilute solution flowing into the low-temperature regenerator 3. Thereby, the internal refrigeration cycle efficiency can be improved.
[0033]
Next, another embodiment of the present invention will be described with reference to FIG. The basic components of the triple effect absorption refrigerator shown in FIG. 2 are the same as those in the embodiment of FIG. The difference from the embodiment of FIG. 1 is that a solution pipe P6 is sent from the absorber 6 to the low temperature regenerator 3 via the low temperature heat exchanger 8 and the LG drain heat exchanger 85, and a gate valve 212 is arranged in parallel with the solution pipe P6. Is provided with the solution piping P60 provided with the.
[0034]
According to this embodiment, when there is external exhaust heat, the gate valve 212 is opened to increase the flow rate of the dilute solution flowing into the low-temperature regenerator, and when there is no external exhaust heat, the gate valve 212 is closed to close the low-temperature regenerator. By reducing the flow rate of the dilute solution flowing into the regenerator, an operation can be performed efficiently when there is no external exhaust heat, and when the external exhaust heat is present, the operation can be sufficiently utilized.
[0035]
Next, still another embodiment of the present invention will be described with reference to FIG. The basic components of the triple effect absorption refrigerator shown in FIG. 3 are the same as those in the embodiment of FIG. The difference from the embodiment of FIG. 1 is that the control valve 210 is not provided in the pipe P6. In this configuration, the dilute solution pump 70 is controlled by an inverter.
[0036]
According to the present embodiment, when there is external exhaust heat, the inverter frequency is increased to increase the flow rate of the dilute solution flowing into the low-temperature regenerator, and when there is no external exhaust heat, the inverter frequency is decreased to decrease the Reduce the dilute solution flow into the regenerator. Here, since the amount of the dilute solution flowing into the intermediate temperature regenerator and the high temperature regenerator is controlled by the float valves 25 and 25a, the dilute solution circulation amount does not increase even if the inverter frequency increases. Therefore, when there is no external exhaust heat, the efficiency is high, and when there is external heat, an operation that can make full use of it is possible.
[0037]
In all of the embodiments described above, the evaporator 5 and the absorber 6 have a so-called two-stage evaporative absorption structure, which is a one-stage evaporator generally used in an absorption refrigerator. It is clear that the same excellent effects can be obtained by applying the present invention even in the case of the configuration of the evaporative absorption.
[0038]
Further, in all the embodiments described above, the low-temperature solution pump 70 provided at the solution outlet of the absorber is configured not to particularly perform the rotation speed control. The control may be performed by the device 201. In this case, the reliability is improved by stabilizing the operation of the float valves 25, 25a, the partial load efficiency is improved by controlling the amount of solution supplied to the low-temperature regenerator 3, and the low-temperature heat exchanger 8 and the LG drain are formed by avoiding hammering at the time of startup. There are advantages such as a reduction in the pressure resistance of the heat exchanger 85 and a reduction in power consumption by driving with the minimum necessary power.
[0039]
【The invention's effect】
As described above, according to the triple effect absorption refrigerator of the present invention, when there is no external exhaust heat, energy saving is achieved by increasing the internal cycle efficiency of the triple effect, and when there is external exhaust heat, it is reduced. It can be utilized to the fullest extent.
[Brief description of the drawings]
FIG. 1 is a system diagram of a triple effect absorption refrigerator according to an embodiment of the present invention.
FIG. 2 is a system diagram of a triple effect absorption refrigerator according to another embodiment of the present invention.
FIG. 3 is a system diagram of a triple effect absorption refrigerator according to still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... High temperature regenerator, 2 ... Medium temperature regenerator, 3 ... Low temperature regenerator, 4 ... Condenser, 5 ... Evaporator, 6 ... Absorber, 8 ... Low temperature heat exchanger, 9 ... Medium temperature heat exchanger, 10 ... High Heat exchanger, 12 burner, 15 gas-liquid separator, 24, 24a float box, 25, 25a float valve, 33, 34, 43, 63 heat transfer tube, 55 refrigerant pump, 59 cold water piping, 5a: Upper stage evaporator, 5b: Lower stage evaporator, 6a: Upper stage absorber, 6b: Lower stage absorber, 70: Dilute solution pump, 81: Concentrated solution pump, 85: LG drain heat exchanger, 95 ... MG drain heat exchanger, 105, 106: exhaust gas heat exchanger, 201: control device, 211: control valve, 212: gate valve, 213: dilute solution pipe.

Claims (3)

高温再生器、中温再生器及び低温再生器、凝縮器、吸収器、蒸発器、複数の溶液熱交換器、これらの機器を結ぶ溶液配管及び冷媒配管、溶液及び冷媒をサイクル内に循環させる溶液ポンプ及び冷媒ポンプを備え、前記吸収器から希溶液を少なくとも前記高温再生器と前記低温再生器に並列に送る配管を設けた三重効用吸収式冷凍機において、
前記低温再生器に外部から80〜90℃の低温排熱を投入する排熱供給部を設け、排熱の供給量に応じて前記溶液ポンプから前記低温再生器に送られる希溶液流量を制御する制御装置を設けたことを特徴とする三重効用吸収式冷凍機。
High-temperature regenerator, medium-temperature regenerator and low-temperature regenerator, condenser, absorber, evaporator, multiple solution heat exchangers, solution piping and refrigerant piping connecting these devices, solution pump for circulating solution and refrigerant in the cycle And a refrigerant pump, in a triple effect absorption refrigerator provided with piping for sending a dilute solution from the absorber at least in parallel to the high-temperature regenerator and the low-temperature regenerator,
The low-temperature regenerator is provided with an exhaust heat supply unit for externally supplying low-temperature exhaust heat of 80 to 90 ° C., and controls the flow rate of the dilute solution sent from the solution pump to the low-temperature regenerator according to the amount of exhaust heat supplied. A triple effect absorption refrigerator comprising a control device.
高温再生器、中温再生器及び低温再生器、凝縮器、吸収器、蒸発器、複数の溶液熱交換器、これらの機器を結ぶ溶液配管及び冷媒配管、溶液及び冷媒をサイクル内に循環させる溶液ポンプ及び冷媒ポンプを備え、前記吸収器から希溶液を少なくとも前記高温再生器と前記低温再生器に並列に送る配管を設けた三重効用吸収式冷凍機において、
前記低温再生器に外部から80〜90℃の低温排熱を投入する排熱供給部を設け、前記溶液ポンプから前記低温再生器に送られる希溶液配管を並列に2つ設け、前記希溶液配管の一方に仕切弁を設けたことを特徴とする三重効用吸収式冷凍機。
High-temperature regenerator, medium-temperature regenerator and low-temperature regenerator, condenser, absorber, evaporator, multiple solution heat exchangers, solution piping and refrigerant piping connecting these devices, solution pump for circulating solution and refrigerant in the cycle And a refrigerant pump, in a triple effect absorption refrigerator provided with piping for sending a dilute solution from the absorber at least in parallel to the high-temperature regenerator and the low-temperature regenerator,
An exhaust heat supply unit for externally supplying low-temperature exhaust heat of 80 to 90 ° C. to the low-temperature regenerator; two dilute solution pipes sent from the solution pump to the low-temperature regenerator in parallel; A triple-effect absorption refrigerator, wherein a gate valve is provided on one side.
高温再生器、中温再生器及び低温再生器、凝縮器、吸収器、蒸発器、複数の溶液熱交換器、これらの機器を結ぶ溶液配管及び冷媒配管、溶液及び冷媒をサイクル内に循環させる溶液ポンプ及び冷媒ポンプを備え、前記吸収器から希溶液を少なくとも前記高温再生器と前記低温再生器に並列に送る配管を設けた三重効用吸収式冷凍機において、
前記低温再生器に外部から80〜90℃の低温排熱を供給する排熱供給部を設け、前記溶液ポンプをインバータ制御し、中温再生器及び高温再生器に送るそれぞれの希溶液ラインに、それぞれの戻り濃溶液量に比例して希溶液を送る制御機構を設け、外部排熱投入時に前記溶液ポンプをインバータ制御することを特徴とする三重効用吸収式冷凍機。
High-temperature regenerator, medium-temperature regenerator and low-temperature regenerator, condenser, absorber, evaporator, multiple solution heat exchangers, solution piping and refrigerant piping connecting these devices, solution pump for circulating solution and refrigerant in the cycle And a refrigerant pump, in a triple effect absorption refrigerator provided with piping for sending a dilute solution from the absorber at least in parallel to the high-temperature regenerator and the low-temperature regenerator,
The low-temperature regenerator is provided with an exhaust heat supply unit for supplying low-temperature exhaust heat of 80 to 90 ° C. from outside, and the solution pump is inverter-controlled, and the dilute solution lines to be sent to the medium-temperature regenerator and the high-temperature regenerator, respectively. A triple-effect absorption refrigerator having a control mechanism for feeding a dilute solution in proportion to the amount of the returned concentrated solution, and inverting the solution pump when external heat is applied.
JP2002294387A 2002-10-08 2002-10-08 Triple effect absorption refrigerator Expired - Lifetime JP4064199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294387A JP4064199B2 (en) 2002-10-08 2002-10-08 Triple effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294387A JP4064199B2 (en) 2002-10-08 2002-10-08 Triple effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2004132553A true JP2004132553A (en) 2004-04-30
JP4064199B2 JP4064199B2 (en) 2008-03-19

Family

ID=32284939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294387A Expired - Lifetime JP4064199B2 (en) 2002-10-08 2002-10-08 Triple effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4064199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176604A (en) * 2015-03-18 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Absorption refrigeration machine and controlling method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176604A (en) * 2015-03-18 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Absorption refrigeration machine and controlling method thereof

Also Published As

Publication number Publication date
JP4064199B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JPS59189265A (en) Triple effect absorption type refrigerator
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP4885467B2 (en) Absorption heat pump
CN1361401A (en) Absorbing refrigerator
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP4321318B2 (en) Triple effect absorption refrigerator
KR101690303B1 (en) Triple effect absorption chiller
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP4064199B2 (en) Triple effect absorption refrigerator
KR20050101113A (en) Absorption refrigerator
JP3920619B2 (en) Absorption chiller / heater and control method thereof
US10018383B2 (en) Triple effect absorption chiller
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP3638408B2 (en) Absorption cogeneration system using engine exhaust heat and its operation control method
JPH04313652A (en) Absorption refrigerating machine
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP4199977B2 (en) Triple effect absorption refrigerator
KR101859550B1 (en) Elimanator for double stage evaporators and absorbers of absorption chiller and heater
JPH0555787B2 (en)
JPS6148064B2 (en)
JPWO2004046622A1 (en) Absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
JP2001208443A (en) Absorption freezer
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine
JPS60159570A (en) Multiple effect absorption type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4064199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term