JP2004131643A - Method for decomposing rubber by microorganism - Google Patents

Method for decomposing rubber by microorganism Download PDF

Info

Publication number
JP2004131643A
JP2004131643A JP2002298959A JP2002298959A JP2004131643A JP 2004131643 A JP2004131643 A JP 2004131643A JP 2002298959 A JP2002298959 A JP 2002298959A JP 2002298959 A JP2002298959 A JP 2002298959A JP 2004131643 A JP2004131643 A JP 2004131643A
Authority
JP
Japan
Prior art keywords
natural rubber
rubber
processed
culture
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002298959A
Other languages
Japanese (ja)
Other versions
JP4022618B2 (en
Inventor
Akio Doi
土井 明夫
Yutaka Tokiwa
常盤 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002298959A priority Critical patent/JP4022618B2/en
Publication of JP2004131643A publication Critical patent/JP2004131643A/en
Application granted granted Critical
Publication of JP4022618B2 publication Critical patent/JP4022618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve decomposition efficiency and shorten a time required for decomposition and efficiently carry out treatment or recycling of waste rubber in decomposition treatment of a natural rubber processed product, particularly the waste rubber by a natural rubber decomposing bacterium. <P>SOLUTION: When culturing the natural rubber decomposing bacterium in a culture solution containing the natural rubber processed product, decomposition treatment or surface treatment of the natural rubber processed product is carried out without stirring the solution or at a relative slow stirring rate at the initial stage of culture and then increasing the stirring rate thereafter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は微生物による天然ゴム加工物の分解方法、および該分解方法を適用して表面を限定分解処理した天然ゴム加工物に関する。
【0002】
【従来の技術】
廃ゴム製品の中でも、廃タイヤについてはその相当部分はセメント製造時の副材料兼燃料として利用する、あるいは再生ゴムとして、タイヤ製造や道路の舗装材料などとして再利用されている。しかし、依然として山林への投棄や埋立、焼却によって処理されている量も多いのが現状である。
そこで、微生物による効率的なゴムの処理方法が開発されれば、省エネルギー的かつ無公害の技術として有用なものと考えられる。本発明者らは既に、タイヤゴムなどの硬質のゴム製品を天然ゴム分解菌を利用して分解処理する方法として、軟質ゴムの存在下で、微生物による硬質ゴムを分解するもの(特許文献1、非特許文献1参照)、および軟質ゴムを加える必要のない特殊変異株を使用して、硬質ゴムを分解するもの(特許文献2、非特許文献2、3参照)などについて報告してきた。
【0003】
しかし、これらの方法は、未だ、培養時間が長く、分解効率の点で満足できるものではなく、培養時間の短縮化、分解効率のさらなる向上が求められていた。一方、これらの方法は、廃タイヤなどの硬質ゴム製品に含まれる天然ゴムを微生物によって分解除去する点に主眼が置かれた技術であるために、ゴムを再利用する目的のためにはゴムの量が減少してしまうという問題点があった。この問題点を解決するためのひとつの方法として、硫黄酸化細菌を利用して加硫ゴム製品の硫黄による架橋部分だけを分解して、脱加硫ゴムを製造し、再利用することが提案されている(非特許文献4参照)。しかし、実際には加硫ゴム製品中の架橋部分を切断することが可能であることは証明されていない。
そこで、上記天然ゴム分解菌を使用してゴム量をあまり減少させることなく、例えば再生ゴム原料として利用できるような廃ゴム表面の限定的な分解処理を行うことも有力視されるが、このような限定的な分解という目的であっても、より培養時間が短くてすみ、分解効率が高い手法を確立し、これにより、効率的に廃ゴムの表面処理を行うことが実用上望ましい。
【0004】
【特許文献1】
特開平9−194624号公報
【特許文献2】
特開平11−60793号公報
【非特許文献1】
Biodegradation  , 405−413(1997)
【非特許文献2】
J.Biosci.Bioengineer.87,542−544(1999)
【非特許文献3】
Biotecnol.Lett.23,964−969(2001)
【非特許文献4】
Biotecnol.Lett.20,637−642(1998)
【0005】
【発明の解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解消することにあり、具体的には、天然ゴム分解菌を培養して天然ゴム加工品を分解するに際して、培養時間の短縮化が図れまた分解効率を高めるための培養条件を見いだすことにあり、さらに、この培養条件のもとに、効率よく天然ゴム加工物、特に廃ゴムの表面を限定的に分解処理し、該ゴムを有用な形態に変換処理することによって、その有効利用を図るものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、天然ゴム分解菌を天然ゴム加工物を含む培養液中で培養するに際して、培養当初は無攪拌か、比較的攪拌速度を遅くして、天然ゴム分解菌の天然ゴム加工物表面への定着を促した後、後期培養において、攪拌速度を増大させることによって、培養時間の短縮、あるいは分解効率を向上できることを見いだし本発明を完成するに至ったものである。
【0007】
すなわち、本発明は、以下の(1)〜(8)に関するものである。
(1) 天然ゴム分解菌を天然ゴム加工物を含む培養液中で培養して、天然ゴム加工物を分解する方法であって、培養工程が、天然ゴム分解菌を天然ゴム加工物表面に定着させるための前期培養と実質的に天然ゴム加工物の分解を行うための後期培養とを含み、後期培養において、培養液の攪拌速度を増大せしめることを特徴とする天然ゴム加工物の分解方法。
(2) 前期培養を無攪拌あるいは50rpm以下の速度で攪拌して行うことを特徴とする(1)に記載の天然ゴム分解方法。
(3) 細片状の天然ゴム加工物を分解処理するものである、(1)または(2)に記載に天然ゴム加工物の分解法。
(4) 細片状の天然ゴム加工物が、天然ゴムを主原料として製造されたトラック用のタイヤを細片化したものであるある、(1)〜(3)いずれかに記載ののゴム加工物の表面処理法。
(5) 天然ゴム分解菌がノカルデイア属に属する天然ゴム分解菌である、(1)〜(4)のいずれかに記載の天然ゴム加工物の分解方法。
(6) 後期培養における天然ゴム分解菌による天然ゴム加工物の分解が、該加工物の表面に限定的に行われるものである(1)〜(5)いずれかに記載の天然ゴム加工物の分解方法。
(7)(6)に記載の分解方法により得られ、表面に天然ゴム分解菌の天然ゴム分解に基づく多数の孔あるいは凹凸が形成されている天然ゴム加工物からなる廃水処理微生物の担持担体
(8)(6)に記載の分解方法により得られ、表面に天然ゴム分解菌の天然ゴム分解に基づく多数の孔あるいは凹凸が形成されている天然ゴム加工物からなる再生ゴム原料。
【0008】
【実施の形態】
以下、本発明をさらに詳細に説明する。
本発明における天然ゴム加工物とは、天然ゴムあるいは該ゴムを含む原料を用い、これらを加硫固形化して得られた加工物全般をいい、該加工物の全部がこれらゴム原料からなる場合のみならず、その一部にこれらゴム原料が使用されている場合も含む。
ここで、本発明の天然ゴム分解菌とは天然ゴムの分解能力を持つ限りいかなる種類の細菌、放線菌をも包含するが、特にノカルディア属、ストレプトマイセス属、ゴルドニア属、アミコラトプシス属などの固体ゴムの分解能力の強い放線菌類が好ましい。
本発明は、古タイヤ等の廃ゴムの分解処理において特に有利であり、これには、例えばトラック用の硬質のタイヤゴムの分解処理に際しては強力な天然ゴム分解菌が望ましく、我々が既にタイヤゴムの強力な分解能力を持つ微生物として報告しているノカルディア属の放線菌Rd−Cm株が好ましい。なお、ノカルディア属Rd−Cm株は産業技術総合研究所 特許生物寄託センターにFERM P−16338として寄託されている(寄託日:平成9年7月17日 )
【0009】
しかし、比較的ゴム分解能力の弱い菌株であっても、分解されやすい手袋ゴムや輪ゴムのようなゴム製品の場合には、分解処理を行うことが出来る。
本発明においては、天然ゴム分解菌を天然ゴム加工物を含む培養液に接種して培養を行うことにより天然ゴム加工物を分解するが、この培養において、天然ゴム分解菌が天然ゴム加工物表面に定着する前期培養においては、定着を促すため培養液の攪拌を行わないかあるいは例えば50rpm以下の遅い速度で攪拌し、定着後の後期培養においては、天然ゴムの分解処理を促進するため、天然ゴム分解菌に対し酸素、栄養がより多く供給可能なように、培養液の攪拌速度を、例えば150〜300rpmに増大させる。なお、本明細書において培養液の攪拌速度を増大させるとは、静止培養後に攪拌培養を行う場合を包含する。
【0010】
すなわち、本発明の特徴は、攪拌速度を培養途中で切り替える2段階培養法を採用したことにある。このような2段培養法によれば、培養の全期間無攪拌あるいは遅い攪拌速度のまま速度を変えないで培養した場合、あるいは同期間中早い攪拌速度のままで培養した場合に比べ、培養時間あたりのゴム分解率は大幅に向上し、同程度の分解であっても、その培養時間は大幅に短縮する。本発明の2段階培養法における前期培養の期間は、3日〜2週間であり、同後期培養の期間は目的とする分解程度に応じて異なり、適宜設定できる。
また、本発明の2段階分解法は、天然ゴム加工物を天然ゴム分解菌により限定分解して表面処理を行う上で有効な手段である。本発明の2段階分解法によれば、分解処理速度が向上し、表面処理の時間を短縮できる。 このような天然ゴム分解菌による限定分解によれば、天然ゴム加工物表面には多数の孔、あるいは凹凸が形成される。
【0011】
この分解処理速度の向上について、タイヤを裁断加工した直径1〜2.5mm程度のゴム細片の表面処理を例にとり、さらに具体的に説明する。 上記従来技術として示した本発明者の報告によれば、ノカルディア属Rd−Cm等の天然ゴム分解菌を、該ゴム細片および培地成分を含む培養液に接種し、培養することにより粒子表面の限定分解を行う場合、攪拌を行わないかあるいは攪拌速度を例えば50rpm以下の遅い速度に設定すれば、その表面には、直径数ミクロンから数十ミクロンの孔が一様に多数形成される。また、例えば70〜150rpmの比較的速い速度に設定すれば、ゴム粒子表面には直径百ミクロン以上の比較的少数の大きな孔が形成されるが、これらの場合においては、タイヤゴムの分解速度は非常に遅い。
【0012】
これに対して、該ゴム細片の表面処理において、培養当初攪拌を行わないかあるいは遅い攪拌速度で培養し、ついで150〜300rpmの速い速度で攪拌して培養する、2段階培養を行う場合、分解処理速度が著しく向上する。例えば、同一培養期間(例えば8週間)において、ゴム細片の重量減少をみた場合、上記報告の1段階培養法に比べ、大体1.4〜1.9倍に達する。また、このとき、ゴム細片表面には、直径数ミクロン〜10ミクロン程度の微細な孔が多数形成される他、ゴム細片の角あるいは辺の部分に突起ないし縁取りの形成された特異な表面の構造をとる。
また、本発明の表面処理法によれば、ゴム細片の形状、また大きさや架橋密度によって、表面処理の進行状態は変化し、細片が大きいほど表面全体に一様に分解が起こる傾向がある。したがって、本件発明においては、使用するゴム細片の大きさ、形状などを適宜選択することにより様々な表面構造を有するゴム製品を提供することが可能である。
【0013】
以上は、粒子形態のゴム加工物を使用する場合において主に説明したが、本発明に使用するゴム加工物の形状は、例えばフィルム乃至シート状等であってもよく、特に形状には限定されない。また、他の素材例えば金属、布、その他の材料により構成した部材の表面あるいはその一部に天然ゴムを使用したものであってもよい。
本発明の方法により表面処理された天然ゴム加工物のうち、特に廃ゴム等から得たゴム粒子を使用したものは、孔、あるいは凹凸の形成により、表面積が極めて増大しており、再生ゴムの製造において使用するアルカリ、油分あるいは他の溶剤との接触面積が多く、また、脱硫にも適した形態であり、再生ゴム原料として優れる。また、表面に孔を多数形成したものは、例えば廃水処理微生物の担持担体に好適であり、廃水処理施設の処理層、流路等に配置することにより、効果的に廃水を浄化することが可能となる。また、本発明においては、この粒子担体の比重も調節可能であり、これには例えば中空プラスチック粒子等の浮力材あるいは金属粒子等の沈降材表面に、加硫天然ゴム被覆を施した後、天然ゴム層表面を天然ゴム分解菌により限定分解すればよい。
【0014】
さらに、このような廃水処理担体としては粒子形状のものに限らずその表面に孔を多数形成したシート形状のものも使用できる、例えば、これらは廃水処理層あるいは廃水流路に複数枚適宜間隔をあけて積層状態で配置する。また、排水管そのものの内面に加硫天然ゴムライニングを施し、層表面を天然ゴム分解菌により限定分解して多数の孔を形成したものは、排水管自体を廃水処理微生物の担持担体とできることに加え、ゴムライニングによる排水管内部の腐食防止も図れる。
【0015】
一方、フィルムあるいはシート状に成型したものについては、本発明の表面処理法により、貫通孔も形成することができる。この貫通孔の直径およびその数は、フィルムあるいはシート状の天然ゴム加工物の架橋密度および攪拌速度等の調整により制御できる、このようにして微細な貫通孔を形成されたフィルムあるいはシート状物は、フィルターとして使用できる。
以下に実施例を示すが、本発明は特にこれらに限定されるものではない。
【0016】
【実施例1】
一白金耳のノカルディアRd−Cm株および市販のゴム手袋の裁断片0.2gを、無機塩培地((NHSO:10g、KHPO:2g、KHPO:16g、MgSO・HO:1.0g、NaCl:0.1g、CaCl:0.02g、FeSO:0.01g、NaMoO・2HO:0.5mg、NaWO・2HO:0.5mgMnSO:0.5mg、蒸留水:1L、pH7.5)200mlに加えて30℃で15日間培養した培養液を種菌として使用した。一方、トラック用のタイヤトレッドから調製した一辺2.3mmのゴム細片を上記培地100mlに加えて分解処理培養液とした。次いで上記分解処理培養液に、上記種菌10mlを加えて、培養液の攪拌を行わないで30℃で1週間静置培養し、その後マグネチックスターラーで300rpmに撹絆速度を上げ、30℃でさらに7週間攪拌培養を行った。また、上記と同様にして、2週間静置培養し、6週間攪拌培養を行った。これら2種の培養液から、それぞれゴム細片を取り出し、十分水洗して微生物細胞を取り除いてから、乾燥してゴム細片の重量減少を測定し、さらにゴム細片表面を電子顕微鏡で観察した。
【0017】
一方、比較として、8週間の全培養期間中、静置培養を行う他は上記と同様に行った場合、および8週間の全培養期間中、マグネチックスターラーで300rpmの撹絆培養を行う他は上記と同様に行った場合においても、ゴム細片のそれぞれの重量減少を測定し、またゴム細片の表面状態の電子顕微鏡観察した。これらの結果を表1に示す。
その結果、本発明の2段階培養法により得られた各ゴム細片はおよそ0.1mm程度の探さまでゴムが分解され、これらの重量減少は、それぞれ41%、37%程度あった。これに対して、全期間静置培養の場合22%程度、および全期間300rpmの攪拌培養の場合26%程度であり、分解速度は本発明による分解方法の方が明らかに優れていた。
【0018】
また、各ゴム細片表面の電子顕微鏡による観察結果によれば、本発明の2段階培養法により得られたゴム細片表面には、いずれも直径数ミクロンから十ミクロン程度の微小な穴多数によって覆われていた。また、本発明の2段階培養法によるもの、および全期間攪拌培養によるゴム細片の表面には、直方体の角の部分に突起構造がみられた。
【表1】

Figure 2004131643
【0019】
【実施例2】
一白金耳のノカルディアRd−Cm株および市販のゴム手袋の裁断片を、実施例1と同様の無機塩培地200mlに加えて30℃で15日間培養した培養液を種菌として使用した。一方、トラック用のタイヤトレッドから調製した一辺2.3mmのゴム細片を使用して実施例1と同様にして、分解処理培養液を調製した。この培養液の攪拌を初めのマグネチックスターラーで40rpmの比較的遅い速度で攪拌し、その後攪拌速度を150rpmにあげて30℃で合計8週間表面処理を行い。培養は、40rpmの攪拌を1週間行い、その後150rpmの攪拌を7週間行ったものと、40rpmの攪拌を2週間行い、その後150rpmの攪拌を6週間行ったものとの2つの条件下で行った。培養終了後、その後、ゴム粒子を充分に水洗してゴム粒子表面の微生物細胞を取り除いてから、乾燥して重量減少を測定し、ゴム粒子表面の構造を電子顕微鏡で観察した。
【0020】
一方、比較として、8週間の全培養期間中マグネチックスターラーで、40rpmの攪拌培養を行う他は上記と同様に行った場合、および8週間の全培養期間中、マグネチックスターラーで150rpmの撹絆培養を行う他は上記と同様に行った場合においても、ゴム細片のそれぞれの重量減少を測定し、またゴム細片の表面状態の電子顕微鏡観察した。
これらの結果を表2に示す。
【表2】
Figure 2004131643
これによれば、本発明による2段階培養法による場合、ゴム細片の重量減少はそれぞれ42%、43%程度であるのに対して、比較の2者はそれぞれ30%程度にすぎなかった。 一方、電子顕微鏡写真の観察によれば、本発明による2段階培養法により表面処理されたゴム細片の表面には、いずれも、実施例1の場合とほほ同じ微少な孔多数が観察された。
【0021】
【実施例3】
一白金耳のRd−Cm株および市販のゴム手袋の裁断片を実施例1と同様の無機塩培地に加えて30℃で15日間培養した培養液を種菌として使用した。一方、タイヤゴムおよび特別に調製した各種加硫天然ゴムからなる、一辺約1mmの各ゴム細片をそれぞれ使用して実施例1と同様にして分解処理培養液を調製し、各ゴム細片の表面処理を行った。培養液の攪拌は初めの1週間は0から40rpmの遅い速度で攪拌し、その後攪拌速度を150ないし300rpmと速くして、合計4週間表面処理を行った。その後、ゴム細片を充分に水洗してゴム細片表面の微生物細胞を取り除いてから、乾燥して重量減少を測定し、ゴム細片表面の状態を電子顕微鏡で観察した。その結果、タイヤゴム細片の重量減少は約46%であり、加硫天然ゴム細片では架橋密度によって、72から9%程度であった。この時タイヤゴム粒子の表面を観察すると、ゴム細片の角または辺の部分に突起ないし縁取りのような構造が認められた。一方、加硫ゴム細片ではもっとも架橋密度の小さい軟質のゴム細片では全体にほほ一様に分解されており、中程度のものは表面の一部に大きく深い穴が形成されており、架橋密度の高い硬質のゴム細片では表面のゴム一部に浅くて大きなへこみが認められた。
【0022】
【発明の効果】
以上の説明から明らかなように、培養途中で攪拌速度を増大させる本発明の二段階培養法によれば、天然ゴム分解菌を使用する従来の天然ゴム分解法に比べて、分解速度を大幅に向上することが可能となり、分解処理に要する期間は大幅に短縮できる。また、このため、天然ゴム加工物の表面処理においても処理時間を短縮できることにより、該加工物表面に、容易かつ効率的に凸凹ないし微小な孔などを形成させることが可能となり、例えば廃タイヤ等を再生ゴムの原料、あるいは水処理のための担体等へ加工することを通じて再資源化することができるほか、ゴム加工物の用途の拡大にも大いに資するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for decomposing a processed natural rubber product by microorganisms, and a processed natural rubber product whose surface is subjected to limited decomposition treatment by applying the decomposition method.
[0002]
[Prior art]
Among waste rubber products, a considerable portion of waste tires is used as a secondary material and fuel during the production of cement, or is reused as recycled rubber as a material for producing tires or as a pavement for roads. However, a large amount is still being disposed of by dumping, landfilling and incineration in forests.
Therefore, if an efficient method for treating rubber by microorganisms is developed, it is considered that it is useful as an energy-saving and pollution-free technology. The present inventors have already developed a method of decomposing hard rubber products such as tire rubber using natural rubber decomposing bacteria by decomposing hard rubber by microorganisms in the presence of soft rubber (Patent Document 1, Non-Patent Document 1). Patent Literature 1) and those that degrade hard rubber by using a special mutant that does not require the addition of soft rubber (see Patent Literature 2, Non-Patent Literatures 2 and 3) have been reported.
[0003]
However, these methods are still unsatisfactory in terms of the cultivation time and the decomposition efficiency, and there has been a demand for shortening the cultivation time and further improving the decomposition efficiency. On the other hand, these methods focus on decomposing and removing the natural rubber contained in hard rubber products such as waste tires by microorganisms. There was a problem that the amount was reduced. As one method for solving this problem, it has been proposed to use sulfur-oxidizing bacteria to decompose only the sulfur-crosslinked portions of the vulcanized rubber product, produce de-vulcanized rubber, and reuse it. (See Non-Patent Document 4). However, it has not been proved that it is actually possible to cut a crosslinked portion in a vulcanized rubber product.
Therefore, it is also expected to perform a limited decomposition treatment of the waste rubber surface, which can be used as, for example, a recycled rubber raw material, without significantly reducing the amount of rubber using the natural rubber-decomposing bacteria. Even for the purpose of limited decomposition, it is practically desirable that the culture time is shorter and a method of high decomposition efficiency is established, thereby efficiently treating the waste rubber surface.
[0004]
[Patent Document 1]
JP-A-9-194624 [Patent Document 2]
JP-A-11-60793 [Non-Patent Document 1]
Biogradation 7 , 405-413 (1997)
[Non-patent document 2]
J. Biosci. Bioengineer. 87 , 542-544 (1999).
[Non-Patent Document 3]
Biotecnol. Lett. 23 , 964-969 (2001).
[Non-patent document 4]
Biotecnol. Lett. 20 , 637-642 (1998)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art. Specifically, when culturing natural rubber-decomposing bacteria to decompose a processed natural rubber product, the cultivation time can be reduced and decomposition can be achieved. In order to find culture conditions for increasing the efficiency, furthermore, under these culture conditions, the surface of a natural rubber processed product, particularly waste rubber, is decomposed to a limited extent to convert the rubber into a useful form. By performing the conversion process, the effective use is achieved.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above problems, and as a result, when culturing natural rubber-decomposing bacteria in a culture solution containing a processed natural rubber, at the beginning of the culture, no stirring or a relatively low stirring speed. After promoting the fixation of the natural rubber-decomposing bacteria on the surface of the processed natural rubber, in the latter stage of the culture, it was found that by increasing the stirring speed, the culture time could be shortened or the decomposition efficiency could be improved, and the present invention was completed. That is what led to it.
[0007]
That is, the present invention relates to the following (1) to (8).
(1) A method of decomposing a natural rubber processed product by culturing a natural rubber degrading bacterium in a culture solution containing a processed natural rubber product, wherein the culturing step fixes the natural rubber degrading bacterium on the surface of the processed natural rubber product. A method for decomposing a processed natural rubber product, comprising: increasing the agitation speed of a culture solution in the latter culture, which comprises a first-stage culture for causing the natural rubber processed product to be substantially decomposed and a second-stage culture for substantially decomposing the processed natural rubber product.
(2) The method for decomposing natural rubber according to (1), wherein the culture is performed without stirring or stirring at a speed of 50 rpm or less.
(3) The method for decomposing a processed natural rubber product according to (1) or (2), wherein the strip-shaped processed natural rubber product is decomposed.
(4) The rubber according to any one of (1) to (3), wherein the strip-shaped processed natural rubber product is a strip of a truck tire manufactured using natural rubber as a main raw material. Surface treatment method for workpieces.
(5) The method for decomposing a processed natural rubber product according to any one of (1) to (4), wherein the natural rubber-degrading bacterium is a natural rubber-degrading bacterium belonging to the genus Nocardia.
(6) The natural rubber processed product according to any one of (1) to (5), wherein the decomposition of the processed natural rubber product by the natural rubber-decomposing bacteria in the late culture is performed only on the surface of the processed product. Disassembly method.
(7) A carrier for wastewater treatment microorganisms obtained from the natural rubber processed product obtained by the decomposition method according to (6) and having on its surface a large number of pores or irregularities based on natural rubber decomposition of natural rubber degrading bacteria ( 8) A recycled rubber raw material obtained by the decomposition method according to (6) and formed from a processed natural rubber product, the surface of which is formed with a large number of holes or irregularities based on natural rubber decomposition of natural rubber-decomposing bacteria.
[0008]
Embodiment
Hereinafter, the present invention will be described in more detail.
The processed natural rubber product in the present invention refers to all processed products obtained by vulcanizing and solidifying natural rubber or a raw material containing the rubber, and only when all of the processed product is made of these rubber raw materials. However, the case where these rubber raw materials are used for a part thereof is also included.
Here, the natural rubber-degrading bacterium of the present invention includes any kind of bacteria and actinomycetes as long as it has the ability to degrade natural rubber, but in particular Nocardia, Streptomyces, Gordonia, Amycolatopsis. Actinomycetes having a strong ability to decompose solid rubber are preferred.
The present invention is particularly advantageous in the decomposition processing of waste rubber such as old tires. For example, in the decomposition processing of hard tire rubber for trucks, a strong natural rubber decomposition bacterium is desirable. The actinomycete Rd-Cm strain of the genus Nocardia, which is reported as a microorganism having a high decomposition ability, is preferred. The Nocardia Rd-Cm strain has been deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary as FERM P-16338 (deposit date: July 17, 1997).
[0009]
However, even if the strain is relatively weak in decomposing rubber, it can be decomposed in the case of a rubber product such as glove rubber or rubber band which is easily decomposed.
In the present invention, the natural rubber-decomposed bacteria are inoculated into a culture solution containing the processed natural rubber to decompose the processed natural rubber, and in this culture, the natural rubber-degrading bacteria are degraded on the surface of the processed natural rubber. In the early culture, the culture solution is not agitated in order to promote the fixation, or is stirred at a low speed of, for example, 50 rpm or less. The stirring speed of the culture solution is increased to, for example, 150 to 300 rpm so that more oxygen and nutrients can be supplied to the rubber-decomposing bacteria. In this specification, increasing the stirring speed of the culture solution includes the case where stirring culture is performed after static culture.
[0010]
That is, the feature of the present invention resides in adopting a two-stage culture method in which the stirring speed is changed during the culture. According to such a two-stage culturing method, the cultivation time is shorter than when culturing without changing the speed during the entire culturing without stirring or at a low stirring speed, or when culturing with a high stirring speed during the same period. The rate of decomposition of rubber per unit is greatly improved, and the culturing time for the same degree of decomposition is greatly reduced. The period of the first-stage culture in the two-stage culture method of the present invention is 3 days to 2 weeks, and the period of the second-stage culture varies depending on the desired degree of decomposition and can be set as appropriate.
In addition, the two-step decomposition method of the present invention is an effective means for performing a surface treatment by subjecting a processed natural rubber product to a limited decomposition by a natural rubber decomposition bacterium. According to the two-stage decomposition method of the present invention, the decomposition processing speed is improved, and the time for surface treatment can be reduced. According to such limited decomposition by the natural rubber-decomposing bacteria, a large number of holes or irregularities are formed on the surface of the processed natural rubber product.
[0011]
The improvement of the decomposition processing speed will be described more specifically by taking a surface treatment of a rubber strip having a diameter of about 1 to 2.5 mm obtained by cutting a tire as an example. According to the report of the present inventor shown as the above prior art, a natural rubber-degrading bacterium such as Nocardia genus Rd-Cm was inoculated into a culture solution containing the rubber strips and a medium component, and cultured to culture. In the case of performing the limited decomposition, if the stirring is not performed or the stirring speed is set to a low speed of, for example, 50 rpm or less, a large number of pores having a diameter of several microns to several tens of microns are uniformly formed on the surface. If the speed is set to a relatively high speed of, for example, 70 to 150 rpm, a relatively small number of large holes having a diameter of 100 microns or more are formed on the surface of the rubber particles. In these cases, the decomposition rate of the tire rubber is extremely high. Slow to.
[0012]
On the other hand, in the surface treatment of the rubber strip, in the case of performing a two-step culture in which the culture is not stirred at the beginning of the culture or cultured at a low stirring speed, and then cultured with stirring at a high speed of 150 to 300 rpm, The decomposition processing speed is significantly improved. For example, in the same culture period (for example, 8 weeks), when the weight loss of the rubber strips is observed, the weight is approximately 1.4 to 1.9 times that of the one-step culture method reported above. At this time, a large number of fine holes having a diameter of several microns to about 10 microns are formed on the surface of the rubber strip, and a unique surface having protrusions or edges formed at corners or sides of the rubber strip. Take the structure of
In addition, according to the surface treatment method of the present invention, the progress of the surface treatment changes depending on the shape, size, and crosslinking density of the rubber flakes, and the larger the flakes, the more uniformly the entire surface tends to be decomposed. is there. Therefore, in the present invention, it is possible to provide rubber products having various surface structures by appropriately selecting the size and shape of the rubber strip used.
[0013]
The above is mainly described in the case of using a rubber processed product in the form of particles, but the shape of the rubber processed product used in the present invention may be, for example, a film or a sheet shape, and is not particularly limited to the shape. . Further, a member made of another material, for example, metal, cloth, or another material, or a part thereof using natural rubber may be used.
Of the processed natural rubber products that have been surface-treated by the method of the present invention, those using rubber particles obtained from waste rubber or the like, particularly, have a greatly increased surface area due to the formation of pores or irregularities, and the recycled rubber has It has a large contact area with alkalis, oils or other solvents used in production, and is suitable for desulfurization, and is excellent as a raw material for recycled rubber. Further, those having a large number of pores formed on the surface are suitable as, for example, a carrier for carrying wastewater treatment microorganisms, and can be effectively purified by arranging them in a treatment layer, a channel, or the like of a wastewater treatment facility. It becomes. Further, in the present invention, the specific gravity of the particle carrier can also be adjusted, for example, by applying a vulcanized natural rubber coating to the surface of a buoyant material such as hollow plastic particles or a settling material such as metal particles, and The surface of the rubber layer may be limitedly decomposed by natural rubber decomposing bacteria.
[0014]
Further, such a wastewater treatment carrier is not limited to a particle-like carrier, and a sheet-like carrier having a large number of holes formed on its surface can be used. Open and place in a stacked state. In addition, if the inner surface of the drainage pipe itself is vulcanized with natural rubber lining and the layer surface is limitedly degraded by natural rubber decomposing bacteria to form a large number of holes, the drainage pipe itself can be used as a carrier for wastewater treatment microorganisms. In addition, corrosion of the inside of the drainage pipe can be prevented by the rubber lining.
[0015]
On the other hand, through-holes can be formed in the film or sheet by the surface treatment method of the present invention. The diameter and the number of the through-holes can be controlled by adjusting the cross-linking density and the stirring speed of the natural rubber processed product in the form of a film or a sheet. , Can be used as a filter.
Examples are shown below, but the present invention is not particularly limited thereto.
[0016]
Embodiment 1
0.2 g of Nocardia Rd-Cm strain with one platinum loop and commercially available rubber gloves were used in an inorganic salt medium ((NH 4 ) 2 SO 4 : 10 g, KH 2 PO 4 : 2 g, K 2 HPO 4 : 16 g). , MgSO 4 .H 2 O: 1.0 g, NaCl: 0.1 g, CaCl 2 : 0.02 g, FeSO 4 : 0.01 g, Na 2 MoO 4 .2H 2 O: 0.5 mg, Na 2 WO 4. (2H 2 O: 0.5 mg, MnSO 4 : 0.5 mg, distilled water: 1 L, pH 7.5), 200 ml, and a culture solution cultured at 30 ° C. for 15 days was used as an inoculum. On the other hand, a rubber strip having a side of 2.3 mm prepared from a tire tread for a truck was added to 100 ml of the above-mentioned culture medium to prepare a decomposition-treated culture solution. Next, 10 ml of the inoculum described above was added to the decomposition-treated culture solution, and the culture solution was incubated at 30 ° C. for 1 week without stirring, and then the stirring speed was increased to 300 rpm with a magnetic stirrer. Agitation culture was performed for 7 weeks. In addition, in the same manner as above, stationary culture was performed for 2 weeks and stirring culture was performed for 6 weeks. From each of these two types of culture solutions, rubber strips were taken out, washed thoroughly with water to remove microbial cells, dried, measured for weight loss of the rubber strips, and the rubber strip surface was observed with an electron microscope. .
[0017]
On the other hand, as a comparison, except that static culture was performed during the entire culture period of 8 weeks, and that the culture was stirred at 300 rpm with a magnetic stirrer during the entire culture period of 8 weeks. In the same manner as described above, the weight loss of each rubber strip was measured, and the surface state of the rubber strip was observed with an electron microscope. Table 1 shows the results.
As a result, in each rubber strip obtained by the two-step culture method of the present invention, the rubber was decomposed to a depth of about 0.1 mm, and the weight loss was about 41% and 37%, respectively. On the other hand, it was about 22% in the case of stationary culture for the whole period and about 26% in the case of stirring culture at 300 rpm for the whole period, and the decomposition rate of the decomposition method according to the present invention was clearly superior.
[0018]
In addition, according to the observation result of each rubber strip surface by an electron microscope, the rubber strip surface obtained by the two-step culture method of the present invention has many small holes of several microns to about 10 microns in diameter. Was covered. In addition, protrusions were observed at the corners of the rectangular parallelepiped on the surfaces of the rubber strip obtained by the two-step culture method of the present invention and by the stirring culture for the entire period.
[Table 1]
Figure 2004131643
[0019]
Embodiment 2
A Nocardia Rd-Cm strain of one platinum loop and a cut piece of a commercially available rubber glove were added to 200 ml of the same inorganic salt medium as in Example 1, and a culture solution cultured at 30 ° C. for 15 days was used as a seed. On the other hand, a degradation-treated culture solution was prepared in the same manner as in Example 1 using a rubber strip having a side of 2.3 mm prepared from a tire tread for a truck. The culture solution was stirred with a magnetic stirrer at a relatively low speed of 40 rpm, and then the surface speed was increased to 150 rpm at 30 ° C. for a total of 8 weeks. The cultivation was performed under two conditions of stirring at 40 rpm for 1 week, then stirring at 150 rpm for 7 weeks, and stirring at 40 rpm for 2 weeks and then stirring at 150 rpm for 6 weeks. . After the cultivation, the rubber particles were sufficiently washed with water to remove microbial cells on the surface of the rubber particles, dried, measured for weight loss, and the structure of the surface of the rubber particles was observed with an electron microscope.
[0020]
On the other hand, as a comparison, when the same culture was performed as described above except that stirring culture was performed at 40 rpm with a magnetic stirrer during the entire culture period of 8 weeks, and during the entire culture period of 8 weeks, stirring was performed with a magnetic stirrer at 150 rpm. Even when the culture was performed in the same manner as described above except for culturing, the weight loss of each rubber strip was measured, and the surface state of the rubber strip was observed with an electron microscope.
Table 2 shows the results.
[Table 2]
Figure 2004131643
According to this, in the case of the two-stage culture method according to the present invention, the weight loss of the rubber strip was about 42% and 43%, respectively, whereas the two persons in the comparisons were only about 30%. On the other hand, according to the observation of the electron micrograph, on the surface of the rubber strip surface-treated by the two-step culture method according to the present invention, almost all the fine pores almost the same as in Example 1 were observed.
[0021]
Embodiment 3
One platinum loop of the Rd-Cm strain and a cut piece of a commercially available rubber glove were added to the same inorganic salt medium as in Example 1, and a culture solution cultured at 30 ° C. for 15 days was used as a seed. On the other hand, a decomposition-treated culture solution was prepared in the same manner as in Example 1 using each rubber strip having a side of about 1 mm composed of tire rubber and various vulcanized natural rubbers specially prepared, and the surface of each rubber strip was prepared. Processing was performed. The culture solution was stirred at a low speed of 0 to 40 rpm for the first week, and then the stirring speed was increased to 150 to 300 rpm for a total of 4 weeks for surface treatment. Thereafter, the rubber strips were sufficiently washed with water to remove microbial cells on the surface of the rubber strips, dried and measured for weight loss, and the state of the surface of the rubber strips was observed with an electron microscope. As a result, the weight loss of the tire rubber strip was about 46%, and that of the vulcanized natural rubber strip was about 72 to 9% depending on the crosslinking density. At this time, when the surface of the tire rubber particles was observed, a structure such as a protrusion or a border was recognized at the corners or sides of the rubber strip. On the other hand, in the vulcanized rubber strip, the soft rubber strip with the lowest crosslink density is almost uniformly decomposed as a whole, and the medium one has a large deep hole in a part of the surface. In the high density hard rubber strip, a shallow and large dent was observed in a part of the surface rubber.
[0022]
【The invention's effect】
As is clear from the above description, according to the two-stage culturing method of the present invention in which the stirring speed is increased during the culturing, the decomposition rate is significantly increased as compared with the conventional natural rubber decomposition method using natural rubber-decomposing bacteria. The time required for the decomposition process can be greatly reduced. Also, for this reason, the processing time can be shortened even in the surface treatment of a processed natural rubber product, so that it is possible to easily and efficiently form irregularities or minute holes or the like on the surface of the processed product. It can be recycled by processing into a raw material for recycled rubber or a carrier for water treatment, etc., and greatly contributes to expansion of uses of rubber processed products.

Claims (8)

天然ゴム分解菌を天然ゴム加工物を含む培養液中で培養して、天然ゴム加工物を分解する方法であって、培養工程が、天然ゴム分解菌を天然ゴム加工物表面に定着させるための前期培養と実質的に天然ゴム加工物の分解を行うための後期培養とを含み、後期培養における培養液の攪拌速度が、前期培養における当該速度よりも大きくなるように設定したことを特徴とする天然ゴム加工物の分解方法。A method for decomposing a natural rubber processed product by culturing a natural rubber degrading bacterium in a culture solution containing a natural rubber processed product, wherein the culturing step is for fixing the natural rubber degrading bacterium on the surface of the natural rubber processed product. Including the former culture and the latter culture for substantially decomposing the processed natural rubber product, the stirring speed of the culture solution in the latter culture is set to be higher than the speed in the former culture. Decomposition method of processed natural rubber. 前期培養を無攪拌あるいは50rpm以下の速度で攪拌して行うことを特徴とする請求項1に記載の天然ゴム分解方法。The method for decomposing natural rubber according to claim 1, wherein the culturing is performed without stirring or stirring at a speed of 50 rpm or less. 細片状の天然ゴム加工物を分解処理するものである、請求項1または2に記載に天然ゴム加工物の分解法。The method for decomposing a processed natural rubber product according to claim 1 or 2, wherein the strip-shaped processed natural rubber product is decomposed. 細片状の天然ゴム加工物が、天然ゴムを主原料として製造されたトラック用のタイヤを細片化したものである、請求項1〜3いずれかに記載のゴム加工物の表面処理法。The method for surface treating a rubber processed product according to any one of claims 1 to 3, wherein the strip-shaped processed natural rubber product is obtained by fragmenting a tire for a truck manufactured using natural rubber as a main raw material. 天然ゴム分解菌がノカルデイア属に属する天然ゴム分解菌である、請求項1〜4のいずれかに記載の天然ゴム加工物の分解方法。The method for decomposing a processed natural rubber product according to any one of claims 1 to 4, wherein the natural rubber degrading bacterium is a natural rubber degrading bacterium belonging to the genus Nocardia. 後期培養における天然ゴム分解菌による天然ゴム加工物の分解が、該加工物の表面に限定的に行われるものである請求項1〜5いずれかに記載の天然ゴム加工物の分解方法。The method for decomposing a processed natural rubber product according to any one of claims 1 to 5, wherein the decomposition of the processed natural rubber product by the natural rubber-decomposing bacteria in the late culture is performed only on the surface of the processed product. 請求項6に記載の分解方法により得られ、表面に天然ゴム分解菌の天然ゴム分解に基づく多数の孔あるいは凹凸が形成されている天然ゴム加工物からなる廃水処理微生物の担持担体。A carrier for wastewater treatment microorganisms, comprising a natural rubber processed product obtained by the decomposition method according to claim 6 and having on its surface a number of holes or irregularities based on natural rubber decomposition of natural rubber-decomposing bacteria. 請求項6に記載の分解方法により得られ、表面に天然ゴム分解菌の天然ゴム分解に基づく多数の孔あるいは凹凸が形成されている天然ゴム加工物からなる再生ゴム原料。A recycled rubber raw material comprising a processed natural rubber product obtained by the decomposition method according to claim 6 and having a plurality of holes or irregularities formed on the surface thereof based on natural rubber decomposition of natural rubber-decomposing bacteria.
JP2002298959A 2002-10-11 2002-10-11 Decomposition method of rubber by microorganisms Expired - Lifetime JP4022618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298959A JP4022618B2 (en) 2002-10-11 2002-10-11 Decomposition method of rubber by microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298959A JP4022618B2 (en) 2002-10-11 2002-10-11 Decomposition method of rubber by microorganisms

Publications (2)

Publication Number Publication Date
JP2004131643A true JP2004131643A (en) 2004-04-30
JP4022618B2 JP4022618B2 (en) 2007-12-19

Family

ID=32288230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298959A Expired - Lifetime JP4022618B2 (en) 2002-10-11 2002-10-11 Decomposition method of rubber by microorganisms

Country Status (1)

Country Link
JP (1) JP4022618B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152237A (en) * 2004-10-26 2006-06-15 Kyoto Univ Rubber composition, its production method and pneumatic tire using the rubber composition
US8892261B2 (en) 2007-05-24 2014-11-18 Koninklijke Philips N.V. System and method for automatically creating a specific atmosphere by controlling contributions of sensorial perceptible stimulus means
CN115820473A (en) * 2023-01-31 2023-03-21 南京林业大学 Application of agrobacterium radiobacter in efficient degradation of rubber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152237A (en) * 2004-10-26 2006-06-15 Kyoto Univ Rubber composition, its production method and pneumatic tire using the rubber composition
JP4641214B2 (en) * 2004-10-26 2011-03-02 国立大学法人京都大学 Rubber composition for tire, method for producing the same, and pneumatic tire using the rubber composition for tire
US8892261B2 (en) 2007-05-24 2014-11-18 Koninklijke Philips N.V. System and method for automatically creating a specific atmosphere by controlling contributions of sensorial perceptible stimulus means
CN115820473A (en) * 2023-01-31 2023-03-21 南京林业大学 Application of agrobacterium radiobacter in efficient degradation of rubber

Also Published As

Publication number Publication date
JP4022618B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
Ghavipanjeh et al. Devulcanization of ground tires by different strains of bacteria: optimization of culture condition by taguchi method
Suresh et al. Investigation on biodegradability of polyethylene by Bacillus cereus strain Ma-Su isolated from compost soil
Jer̀ábková et al. Biofilm of Pseudomonas C12B on glass support as catalytic agent for continuous SDS removal
WO2003048236A1 (en) Powdery rubber having unevened surface and rubber compositions and tires using the same
JP4022618B2 (en) Decomposition method of rubber by microorganisms
Lao et al. Degradation of scrap tyre by Bacillus sp.–Kinetic aspects of major environmental parameters and identification of potential growth substrates
JP5064793B2 (en) Surface activation method and / or desulfurization method of sulfur-vulcanized rubber particles
KR100517230B1 (en) A porosity ceramic
JP2002301494A (en) Activated sludge and wastewater disposal method
JP2010220610A (en) New urethane-decomposing bacteria, and utilization of the same
JP2007191612A (en) Method fir grinding polyurethane foam using microorganism
JP2005060530A (en) Method for degrading polymer
JP5222610B2 (en) A novel microorganism having a resolution of polyisoprene rubber and a method for decomposing a rubber composition
JP2770007B2 (en) Disassembly method for hard rubber products
JP3410543B2 (en) Decomposition method of dimethylformamide
JPH0767619A (en) Screening method of highly affinitive microorganism and highly phenol-affinitive microorganism
JP3692455B2 (en) Novel microorganism having polylactic acid resin resolution and method for decomposing polylactic acid resin
Chernev et al. New approach for n-Hexadecane biodegradation by sol-gel entrapped bacterial cells
JP4603880B2 (en) Novel microorganism BS-HA1 strain, method for microbial degradation of rubber
JP2869838B2 (en) Degradation method of aliphatic polyester using anaerobic bacteria
JP4652147B2 (en) Novel microorganism WU-YS09 strain, method for microbial degradation of rubber
CN116640699B (en) Streptomyces viridochromogenes and application thereof in degradation of natural rubber
CN115820473B (en) Application of agrobacterium radiobacter in efficient rubber degradation
JP4251858B2 (en) Powdered rubber with an uneven surface, rubber composition and tire using the same
KR101874750B1 (en) The reactive capping aggregate comprising the bottomash lightweight aggregate and hydroball coated with effective microorganisms and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Ref document number: 4022618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term