JP2004130175A - Method for separating metal ion from solution of metal complex - Google Patents

Method for separating metal ion from solution of metal complex Download PDF

Info

Publication number
JP2004130175A
JP2004130175A JP2002295797A JP2002295797A JP2004130175A JP 2004130175 A JP2004130175 A JP 2004130175A JP 2002295797 A JP2002295797 A JP 2002295797A JP 2002295797 A JP2002295797 A JP 2002295797A JP 2004130175 A JP2004130175 A JP 2004130175A
Authority
JP
Japan
Prior art keywords
metal
metal complex
aqueous solution
ion
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002295797A
Other languages
Japanese (ja)
Other versions
JP4069291B2 (en
Inventor
Tomoji Miyamoto
宮本 智司
Yumiko Fujita
藤田 由美子
Masao Tamada
玉田 正男
Noriaki Seko
瀬古 典明
Kazuhiko Yamazaki
山崎 和彦
Hitoshi Ito
伊藤 仁
Takahiro Chikasawa
近沢 孝弘
Yoshihisa Tamaki
田巻 喜久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Power Co Ltd
Mitsubishi Materials Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Power Co Ltd
Japan Atomic Energy Research Institute
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Power Co Ltd, Japan Atomic Energy Research Institute, Mitsubishi Materials Corp filed Critical Japan Atomic Power Co Ltd
Priority to JP2002295797A priority Critical patent/JP4069291B2/en
Publication of JP2004130175A publication Critical patent/JP2004130175A/en
Application granted granted Critical
Publication of JP4069291B2 publication Critical patent/JP4069291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating a metal ion effectively from a solution of a metal complex. <P>SOLUTION: This metal ion separating method comprises a step of adsorbing the metal complex in a liquid onto an ion exchanger, a step of eluting the metal complex from the ion exchanger, a step of adjusting the pH of an aqueous solution containing the eluted metal complex to around the neutral point and a step of separating the dissociated metal complex from the aqueous solution. Since only the metal ions can be separated efficiently by using a reagent of comparatively small consumption and the used ion exchanger and the used chelate adsorbing material can be regenerated and reused repeatedly, the amount of waste to be generated is minimized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属錯体から効率よく簡単な操作で金属イオンを分離する技術に関する。本発明の方法は、例えば、放射性廃棄物や重金属汚染土壌などの洗浄廃液処理において有用である。
【0002】
【従来の技術】
有機酸などが金属イオンに配位して形成される金属錯体を含む溶液では、金属錯体を金属イオンと錯化剤に分離することが難しい。例えば、エチレンジアミン4酢酸(EDTA)に代表されるキレート剤やクエン酸などの有機酸と金属イオンとを分離する方法として、次式で示されるFenton反応を利用した分解方法が知られている。この方法は、過酸化水素によって2価の鉄を3価の鉄に酸化し、ここで発生した水酸ラジカル(・OH)の酸化力を利用して金属イオンに配位した有機物を酸化分解する方法であり、例えば、放射性核種が有機酸等と金属錯体を形成している放射性廃液の処理を対象としている(特開平6−130188号等)。しかし、過酸化水素を利用した分解方法は有機酸などの有機物を完全に無機化するために大量の過酸化水素を必要とする問題がある。
Fe2++H → Fe3++HO+・OH
【0003】
【発明が解決しようとする課題】
本発明は、金属錯体から金属イオンを分離する方法において、従来の上記問題を解決したものであり、少ない試薬量で効率良く金属イオンを金属錯体から分離する方法を提供する。
【0004】
【課題を解決する手段】
すなわち、本発明によれば、(1)液中の金属錯体をイオン交換体に吸着させる工程、該イオン交換体から金属錯体を溶離する工程、溶離した金属錯体を含む水溶液を中性付近にpH調整する工程、pH調整した水溶液をキレート吸着材に通液して金属イオンのみを水溶液から分離する工程を有することを特徴とする金属イオンの分離方法に関する。このように、金属錯体のままイオン交換体に吸着させて錯化剤溶液から分離し、次にこの金属錯体をイオン交換体から溶離し、pH調整してキレート吸着材に金属イオンのみを吸着させることによって、有機酸などの錯化剤を無機化せずに金属イオンを水溶液から分離するので、酸化剤を大量に使用する必要がなく、しかも効果的に金属イオンを金属錯体から分離することができる。
【0005】
本発明の分離方法は、(2)金属錯体を含む溶液を透析して金属錯体を濃縮する工程を含み、濃縮した金属錯体をイオン交換体に吸着させる方法を含む。透析操作は必ずしも必要ではないが、透析を行って金属錯体を濃縮すれば効率良く金属イオンを分離することができる。さらに透析を行うことにより、金属錯体を形成しない遊離の錯化剤がイオン交換樹脂に吸着する割合を減らすことができ、遊離の錯化剤をイオン交換樹脂に吸着させずに再使用することができる。
【0006】
さらに本発明の分離方法は、(3)金属錯体を吸着したイオン交換体に酸性水溶液または塩基性水溶液を接触させて金属錯体を水溶液中に溶離させ、さらに溶離後のイオン交換体を再使用する方法を含む。イオン交換体に吸着した金属錯体は酸性水溶液または塩基性水溶液に錯体の状態で溶離するので、有機酸などの錯化剤溶液に含まれる金属錯体をイオン交換体に吸着させた後に酸性または塩基性の水溶液に溶離させることによって、金属錯体を錯化剤溶液から分離した水溶液とし、錯化剤溶液と分離して処理することができる。
【0007】
本発明の分離方法は、(4)pH調整した水溶液をキレート吸着材に通液して金属イオンを吸着させ、水溶液から分離する工程の後に、このキレート吸着材に鉱酸を接触させて金属イオンを溶離させる工程を含む。さらに、本発明の分離方法は(5)上記何れ方法において、溶離した金属イオンを含む溶液を溶媒抽出ないし沈澱形成によって金属化合物を回収し、必要に応じて焼成する工程を含む。上記(4)に示すように、解離した金属イオンを回収する具体的な手段としては、例えばキレート樹脂などを用いることができる。金属イオンをキレート樹脂に吸着させ、これを鉱酸に溶離させる。さらに上記(5)に示すように、金属イオンを含む鉱酸は溶媒抽出や沈澱処理などによって金属分を分離し、必要に応じて焼成し、金属分を回収することができる。
【0008】
【発明の実施の形態】
以下、本発明を実施形態に基づいて具体的に説明する。本発明の処理工程の一例を図1に示す。図示するように、本発明の金属イオン分離方法は、液中の金属錯体をイオン交換体に吸着させる工程、該イオン交換体から金属錯体を溶離する工程、溶離した金属錯体を含む水溶液を中性付近にpH調整する工程、pH調整した水溶液をキレート吸着材に通液して金属イオンのみを水溶液から分離する工程を有することを特徴とする。
【0009】
金属錯体の種類は限定されない。例えば、金属捕集材に吸着されている金属を有機酸などによって錯体を形成して溶離させたものなどについて効果的に適用することができる。具体的には、海水中のウラン、チタン、コバルト、バナジウムなどの有価金属に対して、アミドキシム基やイミドジオキシム基を有する捕集材を用いて吸着し、捕集した金属を回収することが知られている。この捕集された金属と強固に配位する有機錯化剤を含む溶液を金属捕集材に接触させて金属錯体として溶離させれば、鉱酸を用いるよりも穏和な条件下で捕集材中の金属を離脱させることができ、従って、捕集材を損傷せず、捕集性能の劣化を防止することができる。本発明の分離方法はこのような金属錯体に対して効果的に適用することができ、例えば、放射性廃棄物や重金属汚染土壌などの洗浄廃液が金属錯体を含む有機酸溶液である場合などには、本発明の処理方法を効果的に適用することができる。
【0010】
因みに、有機錯化剤としては、シュウ酸、クエン酸、ギ酸、マレイン酸、マロン酸、酒石酸、リンゴ酸、酢酸、フタル酸、プロピオン酸、エチレンジアミン4酢酸、カテコール、カテコールスルホン酸類、スルホサリチル酸、クロモトローブ酸、キノリノール類、キシレノー ルオレンジ等の有機酸を用いることができる。なお、十分に高い溶解度を得るには、形成した金属錯体が高い水溶性を持つことが好ましく、スルホン基などの顕著な親水性官能基を錯形成に関係せずに有するものが好ましい。
【0011】
〔透析工程〕
金属錯体をイオン交換体に吸着させる際に、予め金属錯体を含む溶液を透析して金属錯体を濃縮すると良い。透析工程は必須工程ではなく、経済性および処理効率を勘案して行えば良い。一般に透析を行って金属錯体を濃縮することによってイオン交換体への金属錯体の吸着濃度が向上し、他方、金属錯体を形成しない遊離の錯化剤を予め分離することができるので、遊離の錯化剤を再使用するのに都合が良い。透析方法は限定されない。濃度差を駆動力とする拡散透析、電位差を駆動力とする電解透析などが知られているが、何れの方法も適用することができる。
【0012】
〔イオン吸着工程〕
金属錯体を含む溶液を、経済的に有利なら透析を行って遊離の錯化剤を分離した後に、イオン交換体に接触させて金属錯体の状態のままイオン交換体に吸着させて、金属錯体を溶液から分離する。陽イオン交換樹脂や陰イオン交換樹脂などのイオン交換体の種類は金属錯体の種類に応じて選択すれば良い。金属錯体を含む溶液にイオン交換樹脂を浸漬し、あるいはイオン交換樹脂を充填した容器に金属錯体を含む溶液を通液して、イオン交換樹脂に金属錯体を吸着させる。
【0013】
〔溶離工程〕
金属錯体を吸着したイオン交換体に、陰イオン交換体の場合には水酸化ナトリウムやアンモニア水などの塩基性水溶液、陽イオン交換体の場合には酸性溶液を接触させ、金属錯体ごと溶離する。金属錯体を溶離した後のイオン交換体は再び金属錯体の吸着に用いることができる。具体的には、例えば、バナジウムのシュウ酸錯体を吸着した塩基性イオン交換樹脂にアンモニア水溶液を通液して上記シュウ酸錯体をアンモニア水溶液に溶離させる。
【0014】
〔pH調整〕
イオン交換体から溶離した金属錯体を含む溶液のpHを中性付近、概ねpH6〜10の中性付近に調整する。例えば、上記シュウ酸バナジウム錯体を含むアンモニア水溶液に硫酸を添加してpH7付近に調整する。溶離工程で酸性溶液を用いた場合にはアルカリを添加して中性付近に調整する。水溶液の液性を中性付近に調整することによって、次工程でキレート吸着材に金属イオンのみを吸着させるのが容易になる。
【0015】
〔キレート吸着〕
pH調整した水溶液を、キレート基を含む吸着材(キレート吸着材と云う)に通液し、金属イオンのみを吸着させて錯化剤と分離する。キレート基としては、イミノジ酢酸、ポリアミンなどのアミノ酸類、リン酸類、アミノリン酸類、チオール類、ジチオカルバミン酸、アミドキシム、グルカミン等がある。なお、これらに限定されない。吸着材中に吸着した金属イオンは、硫酸などの鉱酸を用いて溶離する。なお、キレート吸着材は鉱酸に対して比較的耐性のあるものが望ましい。鉱酸を通液した後のキレート吸着材は金属イオンが溶離しているので、これを再び使用する。
【0016】
〔金属回収〕
溶離した金属イオンを含む鉱酸から溶媒抽出ないし沈澱形成によって金属化合物を回収し、必要に応じて焼成を行い、金属酸化物を回収する。なお、上記処理工程に示すように、金属錯体を含む水溶液のpHを調整し、これをキレート吸着材に接触させて金属イオンのみを吸着させるので、キレート吸着材から溶離させた金属イオンを含む鉱酸には錯化剤が殆ど含まれず錯化剤の濃度が極めて低い。従って、錯化剤に影響されずに溶媒抽出や沈澱形成を行うことができる。なお、金属分の回収手段は溶媒抽出や沈澱形成に限らない。
【0017】
【発明の効果】
本発明の方法によれば、有機酸等の錯化剤を含む金属錯体溶液から、比較的少ない試薬消費量で金属イオンのみを効率良く分離することができる。使用するイオン交換体およびキレート吸着材は再生して繰り返し利用できるので廃棄物の発生量が少ない。
【0018】
【実施例】
以下、本発明を実施例によって具体的に示す。
〔実施例1〕
バナジウムを含むシュウ酸溶液(0.02g・V/L、1Mシュウ酸)を弱塩基性陰イオン交換樹脂(三菱化学社製品WA−20)に通液し、シュウ酸バナジウム錯体を飽和吸着量まで吸着させた。次に、この樹脂に1Mアンモニア水溶液を通液してシュウ酸バナジウム錯体を溶離させた。さらに、この溶離液に硫酸を添加してpH7に調整した後にキレート樹脂(三菱化学社製品CR−20)に通液した。その後、このキレート樹脂に1M硫酸を通液してバナジウムの硫酸溶液を得た。この溶液のシュウ酸濃度は極めて低く、ジ−2−エチルヘキシルリン酸〔Di(2−ethylhexyl)phosphoric acid〕などの溶媒を用いて容易にバナジウムイオンを抽出することができた。
【0019】
〔実施例2〕
バナジウムを含むシュウ酸溶液(0.02g・V/L、1Mシュウ酸)を、100ml/minで拡散透析装置に通液し、遊離の有機酸の大半を回収した。拡散透析装置を通過した後の溶液の遊離の有機酸濃度は最大で通過前の10%程度まで低下した。これを実施例1と同一の弱塩基性イオン交換樹脂中に通液し、主として金属錯体を吸着させた。これによって、単位体積あたりのキレート樹脂に吸着するバナジウムのシュウ酸錯体の飽和濃度が拡散透析装置を通過しない場合の2倍となった。以降は実施例1と同様に操作した。実施例1の場合に比べて、処理した溶液中のバナジウム濃度が増大し、収率が向上すると共に、操作に伴って生じる廃液量が減少した。また、弱塩基性イオン交樹脂に吸着することで失われるシュウ酸の量が減少し、再利用可能なシュウ酸の割合が向上した。
【0020】
〔実施例3〕
ウランおよびバナジウムをそれぞれ0.5g吸着したアミドキシム基重合不織布型捕集材を、その1kgに対して表1に示す錯化剤溶液20Lに浸漬し、液温50℃で24時間攪拌し、恒温槽中で振とうして、ウラン錯体およびバナジウム錯体を含む溶液を得た。各錯体溶液を実施例1と同様に処理し、ウラン、バナシウム溶液を得た。この溶液を表1に示す。
【0021】
【表1】

Figure 2004130175

【図面の簡単な説明】
【図1】本発明の処理方法の一例を示す工程図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for efficiently separating a metal ion from a metal complex by a simple operation. The method of the present invention is useful, for example, in the treatment of washing waste liquid such as radioactive waste and heavy metal contaminated soil.
[0002]
[Prior art]
In a solution containing a metal complex formed by coordinating an organic acid or the like with a metal ion, it is difficult to separate the metal complex into a metal ion and a complexing agent. For example, as a method of separating a metal ion from a chelating agent represented by ethylenediaminetetraacetic acid (EDTA) or an organic acid such as citric acid, a decomposition method using a Fenton reaction represented by the following formula is known. In this method, divalent iron is oxidized to trivalent iron by hydrogen peroxide, and an organic substance coordinated to a metal ion is oxidatively decomposed by utilizing the oxidizing power of a hydroxyl radical (.OH) generated here. For example, the method is intended for treating a radioactive waste liquid in which a radionuclide forms a metal complex with an organic acid or the like (Japanese Patent Laid-Open No. 6-130188). However, the decomposition method using hydrogen peroxide has a problem that a large amount of hydrogen peroxide is required to completely mineralize organic substances such as organic acids.
Fe 2+ + H 2 O 2 → Fe 3+ + HO + · OH
[0003]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems in a method of separating a metal ion from a metal complex, and provides a method of efficiently separating a metal ion from a metal complex with a small amount of a reagent.
[0004]
[Means to solve the problem]
That is, according to the present invention, (1) a step of adsorbing a metal complex in a liquid to an ion exchanger, a step of eluting the metal complex from the ion exchanger, and a step of bringing an aqueous solution containing the eluted metal complex to near neutral pH The present invention relates to a method for separating metal ions, comprising a step of adjusting and a step of passing a pH-adjusted aqueous solution through a chelate adsorbent to separate only metal ions from the aqueous solution. As described above, the metal complex is adsorbed on the ion exchanger as it is, separated from the complexing agent solution, and then the metal complex is eluted from the ion exchanger, and the pH is adjusted so that only the metal ion is adsorbed on the chelate adsorbent. As a result, the metal ions are separated from the aqueous solution without decomposing the complexing agent such as an organic acid, so that it is not necessary to use a large amount of an oxidizing agent, and the metal ions can be effectively separated from the metal complex. it can.
[0005]
The separation method of the present invention includes (2) a step of dialyzing a solution containing a metal complex to concentrate the metal complex, and a method of adsorbing the concentrated metal complex to an ion exchanger. Although a dialysis operation is not always necessary, metal ions can be efficiently separated if dialysis is performed to concentrate the metal complex. Furthermore, by performing dialysis, the rate at which the free complexing agent that does not form a metal complex is adsorbed on the ion exchange resin can be reduced, and the free complexing agent can be reused without being adsorbed on the ion exchange resin. it can.
[0006]
Furthermore, in the separation method of the present invention, (3) the acidic solution or the basic aqueous solution is brought into contact with the ion exchanger to which the metal complex is adsorbed to elute the metal complex into the aqueous solution, and the ion exchanger after the elution is reused. Including methods. Since the metal complex adsorbed on the ion exchanger elutes in the form of a complex in an acidic aqueous solution or a basic aqueous solution, the metal complex contained in the complexing agent solution such as an organic acid is adsorbed on the ion exchanger and then exposed to an acidic or basic solution. By eluting the metal complex into an aqueous solution, the metal complex can be separated from the complexing agent solution and treated separately from the complexing agent solution.
[0007]
In the separation method of the present invention, (4) a step of passing a pH-adjusted aqueous solution through a chelate adsorbent to adsorb metal ions, and separating the chelate adsorbent from the aqueous solution, and then contacting the chelate adsorbent with a mineral acid to form a metal ion Is eluted. Further, the separation method of the present invention comprises (5) any of the above methods, wherein the metal compound is recovered by solvent extraction or precipitation of the solution containing the eluted metal ions and, if necessary, calcined. As shown in the above (4), as a specific means for collecting dissociated metal ions, for example, a chelate resin or the like can be used. The metal ions are adsorbed on the chelating resin and eluted into the mineral acid. Further, as shown in the above (5), the mineral acid containing a metal ion can be separated from the metal by solvent extraction or precipitation, and then calcined if necessary, to recover the metal.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments. FIG. 1 shows an example of the processing steps of the present invention. As shown in the figure, the metal ion separation method of the present invention comprises a step of adsorbing a metal complex in a liquid to an ion exchanger, a step of eluting the metal complex from the ion exchanger, and a step of neutralizing an aqueous solution containing the eluted metal complex. The method is characterized by including a step of adjusting the pH to a vicinity, and a step of passing the pH-adjusted aqueous solution through a chelate adsorbent to separate only metal ions from the aqueous solution.
[0009]
The type of the metal complex is not limited. For example, it can be effectively applied to a metal adsorbed on a metal trapping material which is eluted by forming a complex with an organic acid or the like. Specifically, uranium, titanium, cobalt, vanadium and other valuable metals in seawater can be adsorbed using a collection material having an amidoxime group or an imidodioxime group to collect the collected metal. Are known. If a solution containing an organic complexing agent that coordinates strongly with the collected metal is brought into contact with the metal collecting material and eluted as a metal complex, the material can be collected under milder conditions than when using a mineral acid. The metal inside can be released, so that the trapping material is not damaged and the trapping performance can be prevented from deteriorating. The separation method of the present invention can be effectively applied to such a metal complex.For example, when the washing waste liquid such as radioactive waste or heavy metal contaminated soil is an organic acid solution containing the metal complex, Thus, the processing method of the present invention can be effectively applied.
[0010]
Incidentally, as organic complexing agents, oxalic acid, citric acid, formic acid, maleic acid, malonic acid, tartaric acid, malic acid, acetic acid, phthalic acid, propionic acid, ethylenediaminetetraacetic acid, catechol, catecholsulfonic acids, sulfosalicylic acid, chromoic acid Organic acids such as troveic acid, quinolinols and xylenol orange can be used. In order to obtain a sufficiently high solubility, the formed metal complex preferably has high water solubility, and preferably has a remarkable hydrophilic functional group such as a sulfone group irrespective of complex formation.
[0011]
[Dialysis process]
When the metal complex is adsorbed on the ion exchanger, the solution containing the metal complex is preferably dialyzed in advance to concentrate the metal complex. The dialysis step is not an essential step, and may be performed in consideration of economy and processing efficiency. In general, concentration of the metal complex by dialysis improves the adsorption concentration of the metal complex on the ion exchanger, and on the other hand, the free complexing agent that does not form a metal complex can be separated in advance. It is convenient to reuse the agent. The dialysis method is not limited. Diffusion dialysis using a concentration difference as a driving force, electrolytic dialysis using a potential difference as a driving force, and the like are known, and any method can be applied.
[0012]
[Ion adsorption step]
If the solution containing the metal complex is economically advantageous, the solution is dialyzed to separate the free complexing agent, and then brought into contact with the ion exchanger to be adsorbed to the ion exchanger in the state of the metal complex, thereby forming the metal complex. Separate from solution. The type of ion exchanger such as a cation exchange resin or an anion exchange resin may be selected according to the type of the metal complex. The metal complex is adsorbed on the ion exchange resin by immersing the ion exchange resin in the solution containing the metal complex or passing the solution containing the metal complex through a container filled with the ion exchange resin.
[0013]
(Elution step)
The metal complex-adsorbed ion exchanger is brought into contact with a basic aqueous solution such as sodium hydroxide or ammonia water in the case of an anion exchanger, and in contact with an acidic solution in the case of a cation exchanger, and eluted together with the metal complex. The ion exchanger after elution of the metal complex can be used again for adsorption of the metal complex. Specifically, for example, an aqueous ammonia solution is passed through a basic ion exchange resin to which a vanadium oxalate complex is adsorbed to elute the oxalate complex into the aqueous ammonia solution.
[0014]
(PH adjustment)
The pH of the solution containing the metal complex eluted from the ion exchanger is adjusted to near neutral, approximately pH 6 to about neutral. For example, sulfuric acid is added to an aqueous ammonia solution containing the vanadium oxalate complex to adjust the pH to around 7. When an acidic solution is used in the elution step, the pH is adjusted to around neutral by adding an alkali. By adjusting the liquid property of the aqueous solution to near neutrality, it becomes easy to adsorb only metal ions to the chelate adsorbent in the next step.
[0015]
[Chelate adsorption]
The pH-adjusted aqueous solution is passed through an adsorbent containing a chelate group (called a chelate adsorbent) to adsorb only metal ions and separate from the complexing agent. Examples of the chelating group include amino acids such as iminodiacetic acid and polyamine, phosphoric acids, aminophosphoric acids, thiols, dithiocarbamic acid, amidoxime, and glucamine. In addition, it is not limited to these. The metal ions adsorbed in the adsorbent are eluted using a mineral acid such as sulfuric acid. It is desirable that the chelate adsorbent is relatively resistant to mineral acids. The metal ion is eluted from the chelate adsorbent after the passage of the mineral acid, and this is used again.
[0016]
(Metal recovery)
The metal compound is recovered from the eluted mineral acid containing the metal ion by solvent extraction or precipitation, and if necessary, calcined to recover the metal oxide. In addition, as shown in the above-mentioned processing step, the pH of the aqueous solution containing the metal complex is adjusted, and this is brought into contact with the chelate adsorbent to adsorb only the metal ions. Therefore, the pH of the aqueous solution containing the metal ions eluted from the chelate adsorbent is adjusted. The acid contains almost no complexing agent and the concentration of the complexing agent is extremely low. Therefore, solvent extraction and precipitate formation can be performed without being affected by the complexing agent. The means for recovering the metal is not limited to solvent extraction or precipitation.
[0017]
【The invention's effect】
According to the method of the present invention, it is possible to efficiently separate only metal ions from a metal complex solution containing a complexing agent such as an organic acid with a relatively small amount of reagent consumption. Since the ion exchanger and the chelate adsorbent to be used can be recycled and reused, the amount of waste generated is small.
[0018]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples.
[Example 1]
An oxalic acid solution containing vanadium (0.02 g · V / L, 1M oxalic acid) is passed through a weakly basic anion exchange resin (WA-20, manufactured by Mitsubishi Chemical Corporation) to allow the vanadium oxalate complex to reach a saturated adsorption amount. Adsorbed. Next, a 1 M aqueous ammonia solution was passed through the resin to elute the vanadium oxalate complex. Further, sulfuric acid was added to the eluate to adjust the pH to 7, and then the solution was passed through a chelate resin (CR-20 manufactured by Mitsubishi Chemical Corporation). Thereafter, 1M sulfuric acid was passed through this chelate resin to obtain a sulfuric acid solution of vanadium. The oxalic acid concentration of this solution was extremely low, and vanadium ions could be easily extracted using a solvent such as di-2-ethylhexyl phosphoric acid [Di (2-ethylhexyl) phosphoric acid].
[0019]
[Example 2]
An oxalic acid solution containing vanadium (0.02 g · V / L, 1M oxalic acid) was passed through a diffusion dialysis device at 100 ml / min to recover most of the free organic acids. The free organic acid concentration of the solution after passing through the diffusion dialysis device was reduced to a maximum of about 10% before passing. This was passed through the same weakly basic ion exchange resin as in Example 1 to mainly adsorb the metal complex. As a result, the saturated concentration of the oxalate complex of vanadium adsorbed on the chelate resin per unit volume was doubled as compared with the case where the vanadium did not pass through the diffusion dialyzer. Thereafter, the same operation as in Example 1 was performed. Compared with the case of Example 1, the concentration of vanadium in the treated solution was increased, the yield was improved, and the amount of waste liquid produced by the operation was reduced. Further, the amount of oxalic acid lost by adsorption to the weakly basic ion exchange resin was reduced, and the ratio of oxalic acid that could be reused was improved.
[0020]
[Example 3]
An amidoxime-based polymerized nonwoven fabric-type trapping material adsorbing 0.5 g of uranium and vanadium, respectively, was immersed in 20 L of the complexing agent solution shown in Table 1 for 1 kg thereof, and stirred at a liquid temperature of 50 ° C. for 24 hours. By shaking in the solution, a solution containing a uranium complex and a vanadium complex was obtained. Each complex solution was treated in the same manner as in Example 1 to obtain a uranium and vanadium solution. This solution is shown in Table 1.
[0021]
[Table 1]
Figure 2004130175

[Brief description of the drawings]
FIG. 1 is a process chart showing an example of a processing method of the present invention.

Claims (5)

液中の金属錯体をイオン交換体に吸着させる工程、該イオン交換体から金属錯体を溶離する工程、溶離した金属錯体を含む水溶液を中性付近にpH調整する工程、pH調整した水溶液をキレート吸着材に通液して金属イオンのみを水溶液から分離する工程を有することを特徴とする金属イオンの分離方法。A step of adsorbing the metal complex in the liquid to the ion exchanger, a step of eluting the metal complex from the ion exchanger, a step of adjusting the pH of the aqueous solution containing the eluted metal complex to near neutrality, and chelating the pH adjusted aqueous solution. A method for separating metal ions, comprising a step of separating only metal ions from an aqueous solution by passing through a material. 金属錯体を含む溶液を透析して金属錯体を濃縮する工程を含み、濃縮した金属錯体をイオン交換体に吸着させる請求項1の金属イオン分離方法。2. The metal ion separation method according to claim 1, further comprising a step of dialyzing a solution containing the metal complex to concentrate the metal complex, and adsorbing the concentrated metal complex to an ion exchanger. 金属錯体を吸着したイオン交換体に酸性水溶液または塩基性水溶液を接触させて金属錯体を水溶液中に溶離させ、さらに溶離後のイオン交換体を再使用する請求項1または2の金属イオン分離方法。3. The metal ion separation method according to claim 1, wherein an acidic aqueous solution or a basic aqueous solution is brought into contact with the ion exchanger adsorbing the metal complex to elute the metal complex into the aqueous solution, and the ion exchanger after the elution is reused. pH調整した水溶液をキレート吸着材に通液して金属イオンを吸着させ、水溶液から分離する工程の後に、このキレート吸着材に鉱酸を接触させて金属イオンを溶離させる工程を含む請求項1、2または3の金属イオン分離方法。A method comprising: passing a pH-adjusted aqueous solution through a chelate adsorbent to adsorb metal ions and separating it from the aqueous solution, and then contacting the chelate adsorbent with a mineral acid to elute the metal ions. 2 or 3 metal ion separation method. 請求項1〜4の何れ方法において、溶離した金属イオンを含む溶液を溶媒抽出ないし沈澱形成によって金属化合物を回収し、必要に応じて焼成する工程を含む金属イオンの分離方法。The method according to any one of claims 1 to 4, further comprising a step of recovering the metal compound by solvent extraction or precipitate formation of the solution containing the eluted metal ion and, if necessary, calcining.
JP2002295797A 2002-10-09 2002-10-09 Method for separating metal ions from metal complex solution Expired - Lifetime JP4069291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295797A JP4069291B2 (en) 2002-10-09 2002-10-09 Method for separating metal ions from metal complex solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295797A JP4069291B2 (en) 2002-10-09 2002-10-09 Method for separating metal ions from metal complex solution

Publications (2)

Publication Number Publication Date
JP2004130175A true JP2004130175A (en) 2004-04-30
JP4069291B2 JP4069291B2 (en) 2008-04-02

Family

ID=32285943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295797A Expired - Lifetime JP4069291B2 (en) 2002-10-09 2002-10-09 Method for separating metal ions from metal complex solution

Country Status (1)

Country Link
JP (1) JP4069291B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325082A (en) * 2004-05-17 2005-11-24 Nippon Rensui Co Ltd Method for recovering highly pure oxalic acid aqueous solution
JP2010025650A (en) * 2008-07-17 2010-02-04 Wakasawan Energ Kenkyu Center Reversible humidity-sensitive material containing vanadium oxide, and method of manufacturing the same
JP2011505472A (en) * 2007-11-30 2011-02-24 ジョセフ ローリノ Chelating compounds poly (2-octadecyl-butanedioate) and corresponding acids, poly (2-octadecyl-butanedioate) and methods of use thereof
CN112645485A (en) * 2020-11-25 2021-04-13 江苏省环境科学研究院 Method for complex breaking and synchronous recovery of heavy metal-organic acid composite wastewater
CN112908508A (en) * 2021-01-12 2021-06-04 中国工程物理研究院材料研究所 Method for treating radioactive analysis waste liquid by one-step method
JP2022030391A (en) * 2020-08-07 2022-02-18 株式会社 イージーエス Metal separation method, metal separation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325082A (en) * 2004-05-17 2005-11-24 Nippon Rensui Co Ltd Method for recovering highly pure oxalic acid aqueous solution
JP4534591B2 (en) * 2004-05-17 2010-09-01 日本錬水株式会社 Recovery method of high purity oxalic acid aqueous solution
KR101206174B1 (en) 2004-05-17 2012-11-28 닛폰렌스이가부시키가이샤 A Method for Recovering Aqueous Oxalic Acid Solution with High Purity
TWI380953B (en) * 2004-05-17 2013-01-01 Nippon Rensui Kk Recovery of High Purity Oxalic Acid Aqueous Solution
JP2011505472A (en) * 2007-11-30 2011-02-24 ジョセフ ローリノ Chelating compounds poly (2-octadecyl-butanedioate) and corresponding acids, poly (2-octadecyl-butanedioate) and methods of use thereof
JP2010025650A (en) * 2008-07-17 2010-02-04 Wakasawan Energ Kenkyu Center Reversible humidity-sensitive material containing vanadium oxide, and method of manufacturing the same
JP2022030391A (en) * 2020-08-07 2022-02-18 株式会社 イージーエス Metal separation method, metal separation device
JP7249317B2 (en) 2020-08-07 2023-03-30 株式会社 イージーエス METHOD FOR SEPARATING METAL AND METAL SEPARATING DEVICE
CN112645485A (en) * 2020-11-25 2021-04-13 江苏省环境科学研究院 Method for complex breaking and synchronous recovery of heavy metal-organic acid composite wastewater
CN112908508A (en) * 2021-01-12 2021-06-04 中国工程物理研究院材料研究所 Method for treating radioactive analysis waste liquid by one-step method
CN112908508B (en) * 2021-01-12 2022-11-04 中国工程物理研究院材料研究所 Method for treating radioactive analysis waste liquid by one-step method

Also Published As

Publication number Publication date
JP4069291B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
RU1813111C (en) Process for extracting gallium from industrial solution of sodium aluminate in bayer process
CN105457599A (en) Synthesis of magnetic nano-adsorbent material and application method thereof to the treatment of heavy metal waste liquid
CN113293293A (en) Method for recovering nickel and cobalt from laterite-nickel ore by resin adsorption method
US4241027A (en) Reductive stripping process for the recovery of either or both uranium and vanadium
León et al. Kinetic study of the effect of carrier and stripping agent concentrations on the facilitated transport of cobalt through bulk liquid membranes
JP4069291B2 (en) Method for separating metal ions from metal complex solution
JP3062448B2 (en) Separation and recovery method of uranium and impurities using chelating resin
KR20190033142A (en) Method of arsenic treatment and oxalate recovery from soil washing wastewater
JPH0143590B2 (en)
JPH09225298A (en) Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
JP4619955B2 (en) Uranium waste treatment method
JPH08232026A (en) Method for refining scandium
JPH11235595A (en) Treatment of boron-containing waste water
RU2612107C2 (en) Method of extracting scandium from scandium-bearing product solution
KR100382848B1 (en) Effective recovery of valuable metals from wasted metal tailings, wasted printed circuit boards or low-graded metal stones
JP3284347B2 (en) Removal of boron from wastewater with high salt concentration
JPH0657347A (en) Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid
JP3633739B2 (en) Ash processing method
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP3043522B2 (en) Method for recovering noble metal ions from pickling waste liquid containing noble metal ions
JP3590266B2 (en) Ash treatment method
US5015458A (en) Method for purifying sulfuric acid solutions
JPH1099874A (en) Reduction of hexavalent selenium
JP2590494B2 (en) Rare earth element precipitation recovery method
Riveros et al. The recovery of iron from zinc sulphate-sulphuric acid processing solutions by solvent extraction or ion exchange

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term